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Study on Normal and
Otosclerotic Bone Cell Cultures:

An Advance in Understanding the Pathogenesis

of Otosclerosis

M. MauRizi, MD,* E. DoNTI, PHD,T G. FANO’, PHD,* G. PALUDETTI, MD,* F. OTrTrAVIANI, MD,*

S. FULLE, PHD,* AND G. VENTI-DONTI, PHD+

The authors first reviewed the main theories concerning the pathogenesis of otosclerosis
and studied the morphologic and functional characteristics of cell cultures derived from
normal and otosclerotic bones. Light transmission and scanning electron microscopy did
not permit definite identification of the cultured cells as predominantly osteoblasts, nor
did these techniques show significant differences between cultured cells derived from
normal and pathologic bone. Functional tests of the cell cultures proved more interesting.
First, the bony nature of the cultured cells was demonstrated by studying the intracellular
#5Ca** uptake after stimulation with calcitonin and dybutryl-cAMP. Second, cell cultures
derived from otosclerotic bone behaved differently from those derived from normal bone.
Their peak uptake of calcium appeared later, and post-stimulatory values were higher,
suggesting that cells derived from otosclerotic bone store a greater quantity of “5Ca* .
Furthermore, after stimulation with calcitonin and propranolol, we observed an inhibition
of the calcium uptake and decreased intracellular cAMP levels in normal bone cell cul-
tures. In contrast, the cell cultures derived from otosclerotic bone exhibited an initial
inhibition of calcium absorption followed by massive calcium penetration.

The response of adenylate cyclase to the action of Mg*+*, Ca**, and F~ ions was evalu-
ated in cultures derived from normal bone, otosclerotic bone, and normal skin fibroblasts.
The resuiting data show that activation due to Mg*+ is much lower in cuitured cells
derived from otosclerotic bone than in those from either normal bone or skin fibroblasts.
No significant differences were found after Ca*+ inhibition in any of the cell cultures.
Moreover, in cell cultures derived from normal bone, F~ ions induced a strong activation
that was lower than the levels observed in cultures of otosclerotic bone or in normal
fibroblasts. We hypothesize that an alteration at the calcitonin receptor site is responsible
for the difference in calcium uptake and cAMP levels observed in the cells derived from

otosclerotic bone as compared to those cultured from normal cells.

HISTORY

Stapedo-ovalar ankylosis was first observed
by Valsalva in 1741,' and the labyrinthine cap-
sule involvement during otosclerosis was de-
scribed by Politzer in 1893, The relevant litera-
ture offers five major mechanisms for the eti-
ology of otosclerosis:
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. Otosclerosis as a localized manifestation of
degenerative arthritis,®* resulting from me-
chanical stress,4-% hormonal factors and ge-
netic predisposition,2:3-7~18 gsteochondro-
pathies,'®-22 or irradiation??

. Otosclerosis as a result of vascular defects24

. Otosclerosis as a result of bone cell dysfunc-

tion2,17,25-—44

The enzymatic theory of the etiology of oto-

sclerosis?®.45.46

Otosclerosis as an autoimmune disorder.47-52

4.

5.

Although some of these proposals have merit,
none has convincingly been shown to comport
with the true nature of the pathogenesis of
otosclerosis.

At the outset of our research, one crucial ques-
tion remained unanswered: How does oto-
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Figure 1. QOutgrowth of
cells surrounding tem-
poral bone fragments at
7—-10 days of culture. (Re-
produced with permis-
sion.5¢)

sclerosis begin? Of the morphologic findings, the
studies on the mineral content of the otoscle-
rotic bone, even the enzymatic theory, none re-
flects the cause, but rather the results, of a path-
ologic event. What we do know is that for some
reason bone cells do not function normally. They
rupture, delivering lysosomal enzymes that, to-
gether with activated osteoclasts, start the osteol-
ysis of the surrounding bone tissue.

Our purpose was to study bone cells, inten-
sively, observing their main functions to investi-
gate not only some aspects of their metabolism,
such as calcium incorporation, but also some
characteristics of their cell membranes. A further
area for investigation is suggested by the estab-
lished links between otosclerosis and certain hor-
monal events. An investigation of receptor sights
might involve exploring the cellular membrane to
various hormones,

The remaining problem involved securing a

sufficient number of bone cells, The only avail-
able source was a culture of very small fragments
of otosclerotic bone collected during surgery. The
cultured cells can then be compared with normal
bone cells obtained from the crura and the bone
of the external meatus.

We began by choosing a bone with the smallest
possible amount of marrow to minimize the
growth, in culture, of non-bone cells such as fi-
broblasts. The head and neck of the stapes con-
tain marrow. The crura consist of semicylindrical
shells of cortical bone. The footplate, in contrast,
arises embryologically from the otic capsule. We
were confident that cell cultures of such spec-
imens could provide sufficient material for our
experiments.

MATERIALS AND METHODS

The otosclerotic bone specimens were care-
fully selected intraoperatively, by microscopic
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examination, and consisted largely of fragments
of the footplate fixed within the oval window. In
some cases, the foci were involving the promon-
tory. The stapes superstructure was obtained
during surgery.

Specimens were immediately stored sepa-
rately in minimal essential medium containing
20% foetal calf serum, essential aminoacids, vi-
tamins, and antibiotics.

The living cells were then isolated from bone
matrices. Methods described in the literature
use enzymes to digest the matrix and liberate the
cells contained therein.53:5¢ Unfortunately, bone
samples taken during the stapedectomies were
too small to permit the use of this technique that
could have damaged the cells and caused exces-

NORMAL AND OTOSCLEROTIC BONE CELL CULTURES

Figure 2. Top left and
right, different types of
bone-derived cells in non-
confluent monolayers and
confluent monolayers
{bottom left and right).
(Reproduced with per-
mission.5)

sive loss. The only previous report that has
come to our attention on the culture of otoscler-
otic bone fragments describes a chicken plasma
clot method that makes it difficult to obtain free
cells for use in subcultures.?-5° Therefore, a thin
layer culture, generally used to induce cell sepa-
ration in various tissues, seemed to be the most
promising method for our purpose. Using their
technique as previously described,%® tiny tissue
fragments adhering to the surface of culture
flasks can be supported with a minimum of cul-
ture medium,. Like other tissues, the bone
biopsies gave rise to an outgrowth of cells sur-
rounding the spontaneously disintegrating frag-
ments within a period of 7 to 15 days (Fig. 1).
When the outgrowth around the fragment
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reached a diameter of 2 to 3 cm, subculturss
were prepared by detaching the monolayer by
trypsin; EDTA treatment.

The cells that grew out from the cultured bone
fragments appeared to be of four types: 1) os-
teoblast-like cells with large body and cytoplas-
matic processes, 2) fibroblast-like spindle
shaped cells, 3) cells intermediate between these
two types, and 4) osteoclast-like multinucleated
cells (Figs. 2, 3). All cell types were detectable in
cultures of otosclerotic footplate and of normal
bone fragments derived from the external audi-
tory meatus of the same patient. The first three
types, moreover, were also observed in sec-
ondary cultures, whereas the osteoclast-like
cells were much rarer and present only in pri-
mary cultures.

Further characterization of the cell cultures
was achieved using scanning and transmission
electron microscopy.®? Two types of cells were
identified by scanning electron microscopy:
star-shaped cells with cytoplasmatic processes
and microvilli (Fig. 4) and smooth, spindle-
shaped cells (Fig. 5). Transmission electron mi-
croscopy revealed the same two cell types. One
was an irregular osteoblast-like cell with a large
body, well-developed endoplasmic reticulum,
electron-dense cytoplasmic granules, and a mul-
tilobulated nucleus (Fig. 6}. The other was a
spindle-shaped fibroblast-like cell with elon-
gated nucleus and homogeneous cytoplasm (Fig.
7). No difference was observed, however, be-
tween cells cultured from normal and from
pathologic bone samples.

Because of the suggested mechanisms for the
pathogenesis of genetic alteration in osteo-
blastic activity, we analyzed the karyotype of
both otosclerotic and normal bone cells. Thirty
metaphases each of normal and pathologic bone
cultures were scored for each of the patients to
detect constitutional or acquired chromosomal
abnormalities. G-banding karyotype analysis
(Fig. 8) was performed according to the trypsin-
Giemsa technique3® to better recognize both
structural and numeric cytogenetic aberrations.
This technique revealed that both normal and
pathologic bone cells have a completely normal
karyotype; the former were taken to be the pa-
tient’s constitutional karyotype. This finding
weakens the hypothesis that this disease is asso-
ciated with a specific chromosomal alteration.

It has been demonstrated that the morphology
of cultured bone-derived cells is variable, and
that even the same cell may change shape spon-
taneously or in response to exogenous stimuli.?®

Figure 3. Osteoclast-like cells in primary cultures.
{Reproduced with permission,®®)

Therefore, characterization of cultured cells
based on morphologic features alone is unreli-
able. On the basis of the knowledge that, even in
culture, some hormones such as calcitonin (CT)
and parathyroid hormone (PTH) can stimulate
the uptake of Ca** ions,% we attempted to
functionally characterize normal and otoscler-
otic cells by evaluating **Ca** incorporation
after calcitonin stimulation.
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NORMAL AND OTOSCLEROTIC BONE CELL CULTURES

Figure 4, (top). Scan-
ning electron microphoto-
graphs showing osteo-
blast-like cells with
several cytoplasmic pro-
cesses and microvilli.
{Original magnification,
X 5000,) (Reproduced
with permission.5?)

Figure 5. (bot-
tom). Scanning electron
microphotographs of
spindle-shaped and
smooth-surfaced fibro-
blast-like cells. (Original
magnification; left,
%x1250; right x1000.)
(Reproduced with per-
mission,7)

Figure 6. Transmission electron microphotographs of osteoblast-like cells. The nucleus is characteristically peripheral and
multilobulated; the cytoplasm contains several mitochondria (M), an abundant endoplasmic reticulum (RE) with enlarged
cisternae, and electron-dense granules (G). (Original magnification; left, x11,500; right, x12,600.) (Reproduced with per-
mission.5?)



MAURIZI ET AL

Figure 7. Transmission
electron microphoto-
graphs of spindle-shaped
fibroblast-like cells with
elongated nucleus (N) and
homogeneous cytoplasm
containing several mito-
chondria (M), {Original
magnification; top,
X 14,000; bottom,
x12,600.) (Reproduced
with permission.®?)

The first series of experiments was performed
on cell cultures obtained from normal bone
biopsies of 5 different patients. We noted a sub-
stantial difference between normal bone-derived
cells and the skin fibroblasts used as controls
(Fig. 9). Ca** uptake was low in CT treated fi-
broblasts and virtually identical to the controls
of untreated fibroblasts and bone-derived cells.
Calcium incorporation was clearly increased in
CT-stimulated (0.5 IU/ml) bone-derived cells. A
lower dose of 0.1 IU/ml did not produce any
noteworthy variation in %Ca** incorporation,
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Figure 8. Normal 46, XY
G-banded karyotype of
cells obtained from oto-
sclerotic bone.
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and higher doses of 1.0 and 2.0 1U/m] did not
change the reaction either qualitatively or quan-
titatively (Fig. 10). The intracellular Ca** flow
induced by CT stimulation was greatly en-
hanced by the influence of an electromagnetic
field (Donti et al., unpublished data (Fig. 11).
Because the dybutyryl-derivative of cylic
adenosynmonophosphate (db-cAMP) mimics
hormonal action by facilitating the penetration
of Ca** into isolated bone-derived cells,8281 we
used it to treat normal bone-derived cell cul-
tures.’® The resulting calcium uptake was sub-

X B &

3 4 5

i 3OXS X
8 ° 10 " 12

AS AR LE ce
15 16 17 L

L
B
x
<

Volume 9
Number 2
March 1988

73



American
Journal

of
Otolaryngology

74

2000

1400

1200

in

prote

1000.

epm. Y00 pg
~
=]
o

1
o
o

w
o
o

100,

time {min)

Figure 9. Effect of sCT (0.5 LU./ml) on “*Ca** uptake in
hone-derived cel] cultures (A—A) and skin-derived fibro-
blast cultures (/)--- A). The circles (® and O) represent
the calcium uptake in the same two cell populations incu-
bated without sCT. Each point represents the mean + SE (n
= 8). Statistical evaluation compares these data with those
obtained from cells incubated with 43Ca*+ alone (p < 0.01).
The upper curve shows the results of experiments performed
on a single bone biopsy, because the other 4 samples dis-
played similar patterns of response but different absolute
values of radioactivity. A significant increase in calcium up-
take following hormonal stimulation was observed only in
bone-derived csll cultures. (Reproduced with permission.5)

stantially the same as that after calcitonin stimu-
lation (Fig. 12) with one exception. The period
for maximum uptake was longer, probably be-
cause the derivative nucleatide is slower to pen-
etrate the cells.

A second series of experiments on otosclerotic

NORMAL AND QTOSCLEROTIC BONE CELL CULTURES

bone-derived cells used only normal bone-de-
rived cells as controls (Fig. 13). The two cell
populations exhibited only a slight difference in
the time required for 45Ca™* * to reach maximum
incorporation (2.5 minutes in pathologic and 1
minute in normal cells). Although this research
yielded reliable evidence that cultured cells
were indeed bone cells, it failed to reveal any
difference between normal and otosclerotic
bone-derived cells.

Distinctive aspects started to emerge when CT
stimulation was performed in the presence of
propranolol, Experimental data suggest that B
receptors mediate the action of calcitonin on
target cells.82:63 To test this hypothesis and
better characterize the CT-receptors on otoscler-
otic bone-derived cells, we used propranolol on
normal bone-derived cultures. This experiment
led to the discovery that the two cell cultures
behaved differently, Propranolol caused a stable
inhibition of the intracellular uptake of 45Ca*+
in normal bone-derived cells, and in otosclerotic
cells it provoked a transitory inhibition fol-
lowed by a massive penetration of Ca** ions
(Fig. 13). These results indicate a difference be-
tween normal and pathologic tissues and sup-
port the validity of our approach to studying the
pathogenic mechanism of otosclerosis.

cAMP is assumed to be the intracellular mes-
senger of the CT-induced signal 8485 Measured
levels of cAMP revealed similar responses in the
two cell types after CT and CT + propranolol
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Figure 10. (left). #5Ca** uptake in normal bone cell cultures after stimulation with different doses of calcitonin. The

hormone was added (arrow) after 30 minutes of preincubation (bresk on the left) with 45Ca*+ alone. Higher calcitonin
concentrations (0.1; 1.0; 2.0 .U./ml, m—#), lower concentration (0.1 1.U.; ml, A—A), and controls (*3Ca* *+ without calcitonin,
0-—0). The response of the bone-derived cells to hormonal stimulation is clearly dose-dependent. (Reproduced with per-
mission.5%)

Figure 11. (right). **Ca** uptake in normal bone cell cultures treated with sCT (0.5 I.U./ml) in the presence of an electro-
magnetic field (EF). Each point represents the mean + SE of 5 assays performed in triplicate. Calcium incorporation induced
by sCT treatment in bone-derived cells with (w—a) or without (@—@®) EF; skin-derived fibroblasts with (0— —-0) or without
(O— ——O) EF. (unpublished data.)
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Figure 12. Effect of sCT (0.5 [.U./ml) {A—-—A) and db-
cAMP (10-3 M) (@—@) on 5Ca** uptake in bone cell cul-
tures. The lower line (O---O) shows controls incubated
without either sCT or db-cAMP. Each point represents the
mean *= SE (n = 8). Statistical evaluation compares these
data with those obtained from cells incubated with 46Ca*+
alone (p < 0.01). The curve represents experiments per-
formed on cells derived from a single biopsy. The results
obtained from 4 other bone samples showed similar patterns
of response, but different absolute values of radioactivity.
{(Reproduced with permission.®)

treatment (Fig. 14). This suggested an alteration
in the transducing mechanism between the stim-
ulus, receptor, and cellular effector in cells de-
rived from otosclerotic bone. On the basis of
previous research,f%66-68 that seems to demon-
strate an adenylate cyclase (AC) dependence of
calcitonin action, we undertook a detailed in-
vestigation of the functional activity of this type
of cell membrane receptor.

Adenylate cyclase is an enzymatic complex

Figure 14. Cyoclic adeno-
sine monophosphate 14
(cAMP) levels after hor-
monal stimulation (arrow)
with caleitonin (0.5 LU/
ml, A—A) and calcitonin
+ propranaolel (0.5 LU./
ml and 1 pg/m! respec-
tively, @—@) compared
to controls (#3Cat+
without calcitonin,
m___m). A Normal cell
cultures B. Otosclerotic al
cell cultures. (Repro-
duced with permission.5®)
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Figure 13. Effect of propranoclol on calcium incorporation
induced by sCT {0.6 I.U./ml) in normal and otosclerotic bone
cell cultures: normal (triangles) and otosclerotic (circles)
bone-derived cells after stimulation with calcitonin in the
presence (solid lines) or absence (broken lines) of propran-
olol {2 wg/ml). Unstimulated controls are represented by
n— — -0, (Reproduced with permission. )

that includes an extracellular receptor site, an
intramembranous portion, and a catalytic unit
on the cytoplasmic side (Fig. 15). When the hor-
monal molecules bind the specific receptor, they
activate a catalytic unit capable of producing
cAMP through a mediator sensitive to fluoride
(F-) and other intracellular molecules (G-pro-
teins).®® The last step of this reaction can be
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stimulated or inhibited by Mg*+* or Ca** re-
spectively,”9.71 Therefore, the effectof F—, Ca*t ™,
and Mg™** on cAMP synthesis was evaluated in
isolated membranes of normal otoscleratic
bone-derived cells as well as in the skin fibro-
blasts used as controls. The results, summarized
in Table 1, show that the increase of AC activity
induced by Mg** is much lower in otosclerotic
cells than in normal bone-derived cells or fibro-
blasts. The Ca* * ion has almost the same inhibi-
tory effect on all the three cell types, and F~
causes a strong AC activation in normal bone-
derived cells, but a significant but clearly lower
cAMP synthesis occurs in otosclerotic bone-de-
rived cells. Adenylate cyclase activity is signifi-
cantly depressed in cells derived from otoscler-
otic bone, and F~ ions can induce a partial re-
covery of enzymatic activity that, however,
reaches less than 50% of the AC activity dis-
played by normal bone cells exposed to the
same experimental conditions.

In conclusion, all experiments performed on
the AC-dependent CT-receptor of otosclerotic
bone-derived cells demonstrate an alteration of

TABLE 1. Specific Activity of Adenylate Cyclase in
Bone Cells
BoONE
COFACTOR OTOSCLEROTIC  NORMAL  FIBROBLASTS
Mg** (5.0 mM)  2.55 + 0.4 6.60 = 0.9 10.18 * 1.5
Ca** (5.0 mM) 0.69 = 0.1 0.63 = 0.2 0.96 £ 0.2
NaF (5 mM) 6.92 = 1.0 19.00 £ 2.9 8.40 = 1.3

NORMAL AND QTOSCLEROTIC BONE CELL CULTURES

Figure 15. Scheme of the
adenylate cyclase com-
plex.

CELL
MEMBRANE

this enzymatic complex. Correspondingly, this
complex may play a crucial role in the patho-
genesis of otosclerosis. We intend to continue
our investigations in this direction.
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