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a b s t r a c t

Real-data testing results of a real-time nonlinear freeway traffic state estimator are presented with
a particular focus on its adaptive features. The pursued general approach to the real-time adaptive
estimation of complete traffic state in freeway stretches or networks is based on stochastic nonlinear
macroscopic traffic flow modeling and extended Kalman filtering. One major innovative aspect of the
estimator is the real-time joint estimation of traffic flow variables (flows, mean speeds, and densities)
and some important model parameters (free speed, critical density, and capacity), which leads to four
significant features of the traffic state estimator: (i) avoidance of prior model calibration; (ii) automatic
adaptation to changing external conditions (e.g. weather and lighting conditions, traffic composition,
control measures); (iii) enabling of incident alarms; (iv) enabling of detector fault alarms. The purpose
of the reported real-data testing is, first, to demonstrate feature (i) by investigating some basic properties
of the estimator and, second, to explore some adaptive capabilities of the estimator that enable features
(ii)–(iv). The achieved testing results are quite satisfactory and promising for further work and field
applications.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Real-time freeway traffic state estimation refers to estimating
traffic flow variables (flows, space mean speeds, and densities)
for a considered freeway stretch (see e.g. Wang and Papageorgiou
(2005), Wang, Papageorgiou, and Messmer (2007)) or freeway
network (Wang, Papageorgiou, & Messmer, 2006; Wang et al.,
in press) with an adequate time resolution (e.g. 5–10 s) and
spatial resolution (e.g. 500 m or less) based on a limited amount
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of available measurement data from traffic detectors of various
types (e.g. inductive loops, video cameras, radar senors). It should
be emphasized that the number of traffic flow variables to be
estimated may be much larger than the number of traffic flow
variables that are directly measured, and this is in fact the
essential contribution of the traffic state estimation task. Real-time
freeway traffic state estimation is a fundamental task for freeway
traffic surveillance and control (Papamichail, Papageorgiou, &
Wang, 2007) and has attracted a lot of investigation efforts
in the past three decades. Related research proposed traffic
state estimation algorithms that were almost exclusively based
on macroscopic traffic flow modeling and (extended) Kalman
filtering; see a concise review in Wang and Papageorgiou (2005).
Following a similar avenue, this topic was recently investigated
further, and a general approach to the design of freeway traffic
state estimators was proposed (Wang & Papageorgiou, 2005).
One distinct innovative aspect of this recent work is on-line
model parameter estimation (Wang & Papageorgiou, 2005;
Wang, Papageorgiou, & Messmer, 2003; 2006), i.e. real-time
joint estimation of all involved traffic flow variables and some
important parameters (free speed, critical density, capacity) of
the macroscopic traffic flow model employed by the traffic state
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estimator. With the on-line model parameter estimation, four
significant features may be achieved for the traffic state estimator:
(i) Avoidance of off-line model calibration: When applying

macroscopic traffic flow modeling to a specific freeway stretch or
network, appropriate model parameter values are needed, which
are usually not precisely known beforehand and may indeed be
different from site to site. Therefore, before a traffic state estimator
can be applied to a specific site, a tedious model calibration
procedure usually has to be conducted off-line based on available
traffic measurement data to identify the corresponding values of
the model parameters (see e.g. Cremer and Papageorgiou (1981)
and Papageorgiou, Blosseville, and Haj-Salem (1990)). However, if
the model parameter values can also be properly estimated on-
line (i.e. estimated simultaneously with the interested traffic flow
variables), the extra workload for off-line model calibration may
be avoided.
(ii) Automatic adaptation to changing external conditions: For a

given site, the model parameter values may have to be changed
significantly in real-time, in order for the employed model to
reflect the impact of changing external conditions (weather and
lighting conditions, percentage of trucks, variable speed limits
applied, etc.) on the traffic flow characteristics. With fixed
model parameter values (even if carefully pre-identified), a traffic
state estimator may not be able to work well under strongly
changing external conditions. However, if the estimator can adapt
its model to the external condition changes via on-line model
parameter estimation using real-time traffic measurements, the
corresponding traffic situationsmay still be handled appropriately.
(iii) Enabling of incident alarms: In case of incidents, the traffic

flow characteristics along the concerned freeway stretch may
change substantially; this may also be reflected in correspondingly
drastic changes of some model parameter values. With on-
line model parameter estimation, such abrupt changes may be
identified in real time, and hence the incident occurrence may be
recognized promptly, leading to corresponding incident alarms for
traffic operators.
(iv) Enabling of detector fault alarms: In case of strong detector

malfunctions, the estimator has to adjust its model parameters
radically in order for the local traffic state estimates to approach
the disfiguredmeasurements. Hence, the on-linemodel parameter
estimates may also be used as an indicator for serious detector
malfunction.
Recently a freeway traffic state estimator using on-line model

parameter estimation was developed and successfully tested in
simulation (Wang & Papageorgiou, 2005; Wang et al., 2006),
whereby the significance of on-line model parameter estimation
for proper traffic state estimation as well as the aforementioned
estimator features were preliminarily demonstrated. In order to
draw more reliable conclusions, the same traffic state estimator
was also tested using real traffic measurement data collected from
the A92 Freeway close to Munich, Germany, and the A3 Freeway
in South Italy. Some representative testing results are presented
in this paper. It is important to mention that the average inter-
detector spacing used in these recent tests is much larger than
that reported inmost previousworks (seeWang and Papageorgiou
(2005) for a review therein).
The next section presents a stochastic nonlinear macroscopic

traffic flow model and a simple traffic measurement model,
based on which the traffic state estimator is designed with the
extended Kalman filtering. The A92 real-data testing in Germany
is subsequently reported so as, first, to demonstrate feature
(i) by investigating some basic properties of the estimator and,
second, to explore some adaptive capabilities of the estimator
that enable features (ii) and (iii), particularly under changing
external conditions and non-recurrent traffic incidents. The A3
real-data testing in south Italy provides a large-scale field
application example for the designed traffic state estimator,
which demonstrates feature (iv) as well as the overall adaptive
capabilities of the estimator. The main conclusions along with
some additional remarks on state estimation of nonlinear systems
corrupted with noise are provided in a final section.

2. Modeling and methodology

2.1. Stochastic macroscopic traffic flow model

A stochastic version of a nonlinear second-order validated
macroscopic traffic flow model (Papageorgiou et al., 1990) is
employed in this paper to describe the dynamic behavior of traffic
flow along a freeway stretch in terms of appropriate aggregated
traffic flow variables. Any considered freeway stretch is sub-
divided into a numberN of segmentswith lengths∆i, i = 1, . . . ,N ,
while the time is discretized based on a time step T and the time
index k = 0, 1, 2, . . .. The aggregated traffic flow variables are
defined in this discrete space–time frame as follows:

• Traffic density ρi(k) (in veh/km/lane) is the number of vehicles
in segment i at time instant kT , divided successively by the
segment length∆i and lane number λi.
• Space mean speed vi(k) (in km/h) is the average speed of all
vehicles included in segment i at time instant kT .
• Traffic flow qi(k) (in veh/h) is the number of vehicles leaving
segment i during the time period [kT , (k+ 1)T ], divided by T .
• On-ramp inflow ri(k) and off-ramp outflow si(k) (both in veh/h)
at the segment i (if any).

It is shown in Papageorgiou et al. (1990) that the macroscopic
model works pretty accurately with segment lengths ∆i in the
order of 500 m (or less) and model time step T in the order of
10 s. Note that, for numerical stability reasons, T and ∆i must be
chosen such that T < ∆i/vf , where vf denotes the free speed
(to be explained in what follows). While subdividing a freeway
stretch into segments, care should be taken that all geometric
inhomogeneities or installed traffic detectors along the freeway
stretch are located at the boundaries of the segments. Moreover,
each segment is allowed to have at most one on-ramp or one off-
ramp, preferably at the upstream boundary of the segment.
For a segment i, the stochastic nonlinear difference equations of

the model are as follows:

ρi(k+ 1) = ρi(k)+
T
∆iλi
[qi−1(k)− qi(k)+ ri(k)− si(k)] (1)

si(k) = βi(k) · qi−1(k) (2)

vi(k+ 1) = vi(k)+
T
τ
[V (ρi(k))− vi(k)]

+
T
∆i
vi(k)[vi−1(k)− vi(k)]

−
νT
τ∆i

[ρi+1(k)− ρi(k)]
ρi(k)+ κ

−
δT
∆iλi

ri(k)vi(k)
ρi(k)+ κ

+ ξ vi (k), (3)

V (ρ) = vf exp
[
−
1
a

(
ρ

ρcr

)a]
(4)

qi(k) = ρi(k) · vi(k) · λi + ξ
q
i (k) (5)

where (1), (3)–(5) are the conservation equation, dynamic speed
equation, stationary speed equation, and transport equation,
respectively; βi(k) (dimensionless) denotes the exiting rate at the
off-ramp in segment i (if any); τ , ν, κ , δ, vf , ρcr , and a are model
parameters that may be given the same values for all segments
of the considered freeway stretch; ξ vi (k) and ξ

q
i (k) denote zero-

mean white noise acting on the empirical speed equation and the
approximate flow equation, respectively, to reflect the modeling
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Fig. 1. Fundamental diagram and related parameters (free speed vf , critical density
ρcr , and capacity qcap).

inaccuracies. Their variances may be set in accordance with the
related equation accuracy that is known from the previous off-
line model validation exercises (Cremer & Papageorgiou, 1981;
Papageorgiou et al., 1990). Note that (1) is not corrupted by noise
as it describes the conservation of vehicles, which holds strictly in
any case.
From (4), the fundamental diagram expressing a stationary

flow–density relationship that is well known in traffic engineering,
can be derived as

Q (ρ) = ρ · V (ρ) = ρ · vf exp
[
−
1
a

(
ρ

ρcr

)a]
(6)

based on which the (flow) capacity of a stretch (per lane) may be
deduced as

qcap(vf , ρcr , a) = vf · ρcr · exp [−1/a] . (7)

Fig. 1 plots the nonlinear bell-shaped fundamental diagram (6)
that is characterized by the free speed (or free-flow speed) vf ,
critical density ρcr , and capacity qcap. More specifically, vf is the
mean driving speed when any driver is not impeded/influenced
by other vehicles on the freeway; its value corresponds to the
slope of the Q (ρ)-curve at ρ = 0; qcap is the maximum attainable
flow (per lane), while ρcr is the traffic density at which the traffic
flow reaches qcap. Albeit not depicted in Fig. 1, the exponent a
determines the capacity (given the free speed and critical density)
and influences the shape of the fundamental diagram especially at
the right of the critical density.
The values of τ , ν, κ , δ, vf , ρcr , and a are usually not precisely

known beforehand and may be different from site to site; even for
a given site, these parameter values may vary with environmental
and further external conditions (weather and lighting conditions,
percentage of trucks, variable speed limits applied, etc.).4 However,
the model results are known to be most sensitive to variations of
the fundamental diagram parameters vf , ρcr , and a (Papageorgiou
et al., 1990). Therefore, this paper only considers vf , ρcr , and
a as unknown model parameters for on-line estimation, while

4 For instance, the effect of various weather conditions on the free speed is
reported in Kyte, Khatib, Shannon, and Kitchener (2001), while the impact of
variable speed limits on aggregate traffic flow behavior has recently been reported
in Papageorgiou, Kosmatopoulos, and Papamichail (2008).
the values of the other model parameters are set as determined
by previous off-line model calibrations (Cremer & Papageorgiou,
1981; Papageorgiou et al., 1990).
For any segment i, qi(k) can be calculated from ρi(k) and

vi(k) via (5) and replaced in (1), hence ρi(k) and vi(k) may be
viewed as independent segment variables. On the other hand,
for each time instant k, the traffic flow variables qi−1(k), vi−1(k)
and ρi+1(k) as well as ri(k) and βi(k) (if any) are needed for
calculating ρi(k + 1) and vi(k + 1). These variables are boundary
variables of segment i, incorporating the impact of the adjacent
segments on the traffic dynamics of segment i. If a freeway stretch
is considered as a tandem connection of a number of segments,
the complete macroscopic model for the whole stretch can be
built upon a chain of segment models interconnected via some
of their respective boundary variables. More precisely, with (2)
and (5) substituted into (1) and (4) into (3), respectively, the
stretch model of N segments consists of 2N model equations
with 2N independent segment variablesρ1, v1, ρ2, v2, . . . , ρN , vN ;
three unknown model parameters vf , ρcr , and a; and a number of
boundary variables: (a) flowat the stretch origin q0, (b) speed at the
stretch origin v0, (c) density at the stretch end ρN+1, (d) on-ramp
inflows ri (if any), and (e) off-ramp exiting rates βi (if any).
This stretch model combined with a node model delivers a

freeway network model, see Wang et al. (2006) for details.

2.2. Model of traffic measurements

Traffic detectors of various types (e.g. loops, cameras, radar
sensors, etc.) are usually placed along freeway stretches at
a separation of up to several kilometres as a main device
for obtaining real-time traffic measurements. This paper only
considers flow and mean speed measurements.
Consider a traffic detector installed at the boundary of segments

i and i+ 1. For its flow measurement, we have

mqi (k) = qi(k)+ γ
q
i (k) (8)

where mqi (k) denotes the flow measurement during the time
period [kT , (k + 1)T ], and γ qi (k) the flow measurement noise.
Except for the measurement of q0, we have by (5)

mqi (k) = ρi(k) · vi(k) · λi + ξ
q
i (k)+ γ

q
i (k). (9)

For the mean speed measurement, we have

mvi (k) = vi(k)+ γ
v
i (k) (10)

wheremvi (k) denotes the spacemean speed thatmay be calculated
as the harmonic mean of measured individual-vehicle speeds
during the time period [kT , (k + 1)T ] and γ vi (k) the related
speed measurement noise. For on-ramps and off-ramps, only flow
measurements are of interest. The on-ramp and off-ramp flow
measurementsmri (k) andm

s
i (k) (if any) are modeled, respectively,

as

mri (k) = ri(k)+ γ
r
i (k) (11)

msi (k) = si(k)+ γ
s
i (k) = βi(k) · (ρi−1(k) · vi−1(k) · λi−1

+ ξ
q
i−1(k))+ γ

s
i (k) (12)

where γ ri (k) and γ
s
i (k) denote the on-ramp and off-ramp flow

measurement noise, respectively. All measurement noise involved
in (8)–(12) is assumed zero-meanwhite. The standard deviation of
each measurement noise is assumed known and should reflect the
reliability level of the corresponding measurements. The utilized
covariance of the measurement noise can be found in Wang and
Papageorgiou (2005) and Wang et al. (2007).
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2.3. State-space model and estimator design

For any freeway stretch, let vectors z, d, p, and ξ1 include,
respectively, all segment variables, stretch boundary variables,
unknown model parameters, and modeling noise. Then the
macroscopic traffic flow model of a freeway stretch can be
expressed in a compact state-space form:

z(k+ 1) = h[z(k), d(k), p(k), ξ1(k)] (13)

where h is a nonlinear differential vector function corresponding
to the 2N model equations previously mentioned. The utilization
of (13) requires the real-time availability of d(k) and (real-time)
determination of p(k). However, some elements of d(k)may not be
measured or even not measurable (Wang & Papageorgiou, 2005;
Wang et al., 2006), while p(k) is normally unknown (or partially
unknown). In order to overcome the obstacle of partially missing
boundary measurements and unknown model parameters, model
(13) may be extended using two random-walk equations:

d(k+ 1) = d(k)+ ξ2(k) (14)

p(k+ 1) = p(k)+ ξ3(k) (15)

where ξ2(k) and ξ3(k) are vectors of zero-meanwhite noise, whose
covariance matrices must be chosen so as to reflect typical time
variations of the boundary variables and model parameters.
The combination of (13)–(15) leads to the following augmented

state-space model

x(k+ 1) = f[x(k), ξ(k)], (16)

where x =
[
zT dT pT

]T
, ξ =

[
ξT1 ξ

T
2 ξ
T
3

]T
; the nonlinear

differentiable vector function f can be determined accordingly. In
this paper, vector x is referred to as the traffic state.
Consider a freeway stretch with traffic detectors installed at its

uppermost and lowermost boundaries, at some on/off-ramps, and
perhaps also at some stretch-internal locations. The measurement
model (8)–(12) can be written in a compact form as well:

y(k) = g[x(k), η(k)] (17)

where the output vector y consists of all available measurements
of flow and mean speed; g is a nonlinear differentiable vector
function; vector η is a function of state noise vector ξ and
measurement noise vector γ . Eqs. (16) and (17) constitute a
complete freeway traffic dynamic system 6(x, y, ξ, η).
Given real-time measurements y(k), the traffic state estimator

designed for 6(x, y, ξ, η) delivers state estimates:

x̂(k+ 1/k) = f[x̂(k/k− 1), 0] + K(k)[y(k)− g(x̂(k/k− 1), 0)].

Although some canonical forms other than 6(x, y, ξ, η) can also
be constructed based on the presented traffic flow model and
measurement model, 6(x, y, ξ, η) leads to a straightforward,
general, and unique formulation of the traffic state estimator
for any freeway stretch or network of any topology, size, and
characteristics, with any suitable detector configuration (Wang &
Papageorgiou, 2005; Wang et al., 2006).

3. Performance evaluation using real measurement data

3.1. A normal congestion case

The first test of the designed traffic state estimator was
conducted with real traffic measurement data collected from a
2-lane westbound stretch of the A92 Freeway close to Munich,
Germany, which is within A92’s most congested part between
the Munich airport and the junction AK Neufahrn. As shown in
Fig. 2a, the test stretch has an on-ramp at its beginning while four
loop detector stations (gray bars) are installed along the stretch.
Fig. 2. Test stretch 1 inA92 freeway close toMunich: (a) stretch layout anddetector
configuration; (b) flow measurements; (c) mean speed measurements.

The single-car data recorded by the detectors were converted
into aggregated traffic measurements of flow and space mean
speed every minute. The utilized flow and speed measurements
of 8 h were collected on March 30, 2001. Fig. 2b displays the
flow measurements, with the plotted upstream flow being the
summation of the flowmeasurements at L0 and L1 (the flow at L0 is
around 10% of that at L1). Fig. 2c displays the speedmeasurements
at L1, L2, and L3. Two distinguished oscillatory (stop-and-go) speed
drops are observed at each mainstream measurement location,
during which the corresponding flows are noticeably reduced.
Moreover, the flow measurements keep reducing on average after
6:00 PM due to the decreasing traffic demand. As illustrated in
Fig. 2a, the test stretch is subdivided into 8 segments, each with an
approximate length of 500 m. Accordingly, the time step T of the
estimatormodel is set equal to 10 s. The free speed, critical density,
and capacity are assumed to be the same for thewhole stretch. The
flow and speed measurements from L0, L1, and L3 were used to
feed the estimator, while the flow and speed measurements from
L2 were only used to compare with the flow and speed estimates
of segment 4 so as to evaluate the performance of the estimator.
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The standard deviation (SD) values were set to be 100 veh/h
and 10 km/h for the flow and speed modeling noise, respectively,
and the same SD values were also used for the flow and speed
measurement noise. In fact, the SD values of the modeling noise
were chosen so as to reflect the expected accuracy level of the
model equations (Cremer & Papageorgiou, 1981; Papageorgiou
et al., 1990), while the SD values of the measurement noise were
specified according to the levels of typical measurement error of
loop detectors. Note that the SD values may need to be slightly
tuned for specific sites. For all test examples reported in this paper,
the utilized SD values vary between 50 and 200 veh/h for flows and
between 5 and 10 km/h for speeds, and were always set constant
for a given site.
The estimator’s performance was first examined without using

on-line model parameter estimation (i.e. keeping the parameters
constant at some pre-specified values over the investigation
time horizon). To this end, three groups of parameter values
were considered, namely (95, 30, 2042), (85, 25, 1289), and
(100, 50, 3894), each for the free speed (km/h), critical density
(veh/km/lane), and capacity (veh/h/lane). These parameter groups
are referred to as parameter conditions 1, 2, and 3, respectively.
The estimator was found capable of tracking the speed drops only
under parameter condition 1 as Fig. 3a presents, while the flow
estimation was good under parameter conditions 1 and 3 (Fig. 3b).
This demonstrates that:

(i) For a given test example, there exists (at least) one group of
nominal model parameter values, with which pretty accurate
traffic state estimates can be delivered by the estimator.
Normally this specific group of parameter values can be
obtained via off-line parameter identification.

(ii) If such nominalmodel parameter values are notwell identified
(e.g. as in the case of parameter conditions 2 and 3), then
unacceptable traffic state estimation bias may result (even
under free-flow conditions).

Next, the estimator is evaluated using on-linemodel parameter
estimation, and the same parameter conditions 1–3 are used
as initial conditions. Note that the model parameters actually
estimated are vf , ρcr , and a; however, since the flow capacity
qcap can be calculated with vf , ρcr , and a through (7) and has
a more apparent physical interpretation than the exponent a,
we will present in the rest of the paper the estimates of vf ,
ρcr , and qcap. In order to check the dynamic evolution of the
traffic state estimates as well as the stability of the estimator, the
testing was conducted over a quadruple time horizon, whereby
the traffic scenario of the first time horizon (12:00 AM–8:00
PM) was duplicated to the next three. Although the estimates
of the free speed, critical density, and capacity converge at the
end of the second time horizon (see e.g. Fig. 3c for the capacity
estimation), satisfactory speed estimates at L2 are delivered under
each initial condition already at the start of the second time
horizon (Fig. 3d and e), while satisfactory flow estimates at L2 are
obtained even from the start of the first time horizon (Fig. 3f). It is
important to mention that the shown ‘‘slow’’ convergence under
initial conditions 2 and 3, and hence the use of triple duplicate
of the 8 h real data, are due to the ‘‘cold’’ start of the estimator,
i.e. by use of an arbitrary initial matrix of the estimation covariance
and by use of the initial model parameter values that were set
unrealistically far from normal values (just to demonstrate the
estimator’s adaptive capability in achieving convergence evenwith
these extreme initial values). In contrast, under normal operation
conditions (i.e. with a ‘‘warm’’ start incorporating some prior field
knowledge of the model parameters), the estimator is seen, in
the subsequent sections with several demonstration examples
(snowstorm, incident, and detector fault), to adapt the model
parameters promptly as appropriate. In fact, even for the current
test example with the ‘‘cold’’ start, the use of larger SD values for
themodel parameter noise ξ3 in (15) leads to faster convergence in
the estimation of both traffic flow variables andmodel parameters.
In fact, a lower/higher SD of the noise for an estimated

model parameter is a ‘‘message’’ to the extended Kalman filter
that this parameter is less/more time-variant. More specifically,
higher SDs are expected to lead to faster convergence of the
parameter estimates but also more nervous behavior of the
parameter estimates. The group of the SD values for ξ vf (k),
ξρcr (k), and ξ a(k) (see (15)) utilized for the results in Fig. 3c–f
is (0.1 veh/h, 0.02 veh/km/lane, 0.002), while two more groups
of SD values (0.2 veh/h, 0.04 veh/km/lane, 0.004) and (0.5 veh/h,
0.1 veh/km/lane, 0.01) were also considered for a sensitivity
investigation; these three groups of the SD values are referred
to as SD 1, 2, and 3. The test demonstrates that the estimates
of traffic flow variables are little sensitive to the various groups
of the SD values (see e.g. Fig. 3g for the speed estimates at L2),
although the corresponding parameter estimation trajectoriesmay
be different (see e.g. Fig. 3h for the capacity estimates). Note that
the speed estimates in Fig. 3g are actually obtained over the third
time horizon under initial condition 2 (compare Fig. 3d, e, g),
while virtually the same results as presented in Fig. 3g can be
delivered from the start of the third time horizon onwards under
any initial condition (due to the aforementioned convergence).
This low sensitivity property of the estimator with regard to
various SD values used guarantees to a large extent the robustness
of the estimator and a very limited need for fine-tuning of the SDs.
As shown in Fig. 3g and h, SD 1 seems to be most appropriate
among the three SD-groups, as it leads to minor variations of
the model parameter estimates over time, while preserving the
adaptive properties of the estimator as shown in Fig. 3c. Unless
specifically mentioned, SD 1 (the nominal SD group) is considered
in the rest of the paper. The reader is also referred to Wang et al.
(2007) formore results and interpretation in relation to the current
test example.

3.2. A snowstorm case

This testing was conducted in the same A92 Freeway in 2004.
The involved freeway stretch is displayed in Fig. 4. In fact, the
stretch shown in Fig. 2a is the downstream part of this one (from
the on-ramp with R4 to the downstream end). Note that the A92
Freewaywas extended from a two-lane freeway either direction to
a three-lane one in 2003 (with its detector configuration changed
as well). Accordingly, the traffic flow characteristics may also have
changed to an extent. It can be seen that five video detector stations
(C2, C5, C6, C8, C10) and two loop detector stations (L1b and L2) are
installed along the main stretch, while one loop detector station
(L1a) is installed in a stretch merging into the main stretch, and
two radar detector stations (R3 and R4) are installed respectively
at the off-ramp and on-ramp. Fig. 5a and b display 24 h flow and
speed measurements collected at C8, C6, and C2 on February 11,
2004. One may observe on the referred figures that the speed
measurements decreased considerably from midnight until early
morning, while the corresponding flowmeasurements kept steady
at very low values. Surprisingly, the speed measurements during
this time period were even lower than those during the afternoon
peak period. Note that a similar observation was also delivered
by the other detectors placed along the stretch on the same day.
With the help of the local transportation authority, it was found
out that a snowstorm was present in the area from the midnight
until the morning of that day. It is not difficult to infer that the
free speed along the test stretch decreased substantially under the
snowstorm, which led to the observed speed decrease, despite a
very low traffic flow.
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Fig. 3. A normal congestion case: (a) mean speed estimates at L2; (b) flow estimates at L2; (c) estimated capacity; (d) mean speed estimates at L2 (over the first time
horizon); (e) mean speed estimates at L2 (over the second time horizon); (f) flow estimates at L2 (over the first time horizon); (g) mean speed estimates at L2 (over the third
time horizon); (h) estimated capacity.
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Fig. 4. Test stretch 2 in A92 freeway close to Munich: stretch layout and detector configuration.
Fig. 5. A snowstorm case: (a) flow measurements; (b) mean speed measurements; (c) estimated free speed; (d) mean speed estimates at C6; (e) estimated critical density;
(f) flow estimates at C6.
The designed traffic state estimator was ever tested in
simulation with regard to an abrupt free speed drop (Wang &
Papageorgiou, 2005). For the current real-data example, the test
stretch is subdivided into a number of segments (each with
a length of 280–600 m). For the sake of simplicity, the test
stretch is assumed homogeneous in its traffic flow characteristics
(i.e. assuming the same free speed, critical density, and capacity for
the whole stretch), although this is actually not completely true
at least for the free speed as it is visible in Fig. 5b. The utilized
aggregated traffic measurement data was updated every minute
while the time step of the estimator model was set equal to 5 s.
The utilized evaluation plan is as follows: the flow and speed
measurements at C2 and C8 as well as the flow measurements at
R3 and R4 were fed to the estimator, while the flow and speed
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measurements at C6 were used only for evaluating the estimation
results. Typical testing results are presented in Fig. 5c–f. First, by
activating the on-linemodel parameter estimation, the estimator is
able to identify and track in real time the free speed decrease under
the snowstorm (Fig. 5c) and deliver satisfactory speed estimates at
C6 (‘‘estimation 1’’ in Fig. 5d). It is noted that the on-line estimates
of the critical density and exponent evolve steadily over time (see
e.g. Fig. 5e for the critical density estimate); hence, in view of
(7), the profile of the capacity estimation trajectory is very similar
to that in Fig. 5c. Second, if the free speed is fixed at 140 km/h
(i.e. forcing the estimator to ignore the snowstorm impact on
the free speed), the estimator fails to track the speed decrease
(‘‘estimation 2’’ in Fig. 5d). However, in either case satisfactory
flow estimates at C6 can be obtained (Fig. 5f) as the conservation
equation (1) does not seem to be strongly impacted by the model
mismatch.
Due to a strong fog frommidnight until the morning of May 29,

2004, a speed limit of 80 km/h was applied in the A92 Freeway,
which influenced the free speed and resulted in a clear speed
decrease during the fog hours. Similarly good traffic state estimates
were also obtained for that case (Wang, Papageorgiou, &Messmer,
2005).

3.3. An incident case

3.3.1. Traffic congestion types
From a traffic state estimation point of view, freeway traffic

congestions can be classified as normal or abnormal. Given a free-
way stretch, there are two types of normal congestions. Type 1
occurs within the freeway stretch due to overload, e.g. at an exist-
ing bottleneck, while Type 2 occurs sufficiently downstream of a
considered stretch, creating an exogenous congestion shockwave
that propagates upstream and may eventually spill back into the
considered stretch. The normal congestions of Type 1 are typically
recurrent congestions, while those of Type 2 may result from ei-
ther recurrent congestions or traffic incidents. Under a normal con-
gestion, the mean speeds upstream of the bottleneck (in the case
of Type 1) or along the stretch (in the case of Type 2) gradually
drop due to the shockwave propagation. For traffic state estima-
tion under a normal congestion of Type 1, the macroscopic model
employed by the estimator has sufficient knowledge regarding the
existing bottleneck, so that the congestion may be well tracked by
the estimator. A relevant simulation investigation was reported by
Wang et al. (2003, 2006). In the case of a normal congestion of
Type 2, an upstream-moving shockwave reaches the downstream
boundary of the stretch and the speed and flow drops there are
measured by the detectors installed at the boundary; thus, based
on the utilized model, the estimator is able to predict the prop-
agation of the shockwave inside the stretch. A relevant real-data
testing was already presented in Section 3.1, where the congestion
shockwave that was successfully tracked by the estimator, arrived
indeed from the downstream of L3.
On the other hand, abnormal congestions are caused by

traffic incidents (e.g. collisions, disabled cars, etc.), and are
characterized by abrupt and substantial real-time changes of the
impacted traffic flow characteristics, which may be reflected in
corresponding changes of the model parameter values. When
a traffic incident occurs within a freeway stretch, usually a
non-recurrent bottleneck is created temporarily around the
incident location, and the local capacity, free speed, and critical
density decrease to an extent depending on the severity of
the incident; moreover, the resulting congestion shockwave
propagates upstream. It is noted that a same incident-incurred
congestion can be an abnormal congestion for one stretch (if
the incident occurs therein) but a normal congestion for another
stretch (if the stretch is far upstream of the incident location). In
addition, if an incident occurs outside of a freeway stretch but quite
close to its downstream boundary, the resulting congestion may
still have a clear impact on the local free speed, critical density,
and capacity of that stretch.
Under an incident-incurred abnormal congestion, (a) a flow

dropmay be observed at the detectors downstream of the incident
location, while the corresponding speed measurements may be
seen to change only slightly; (b) both flow and speed drops may
be observed at the detectors upstream of the incident location (if
these detectors are not located too far upstream). Then, due to the
contrast between the upstream and downstream measurements,
the traffic state estimator is able to identify, via the on-line model
parameter estimation, the occurrence of an abnormal event (of
course, without knowing the exact reason). A real-data testing
under an abnormal congestion is reported below.

3.3.2. Incident alarm
This test was conducted in the same stretch as shown in Fig. 4,

using the same evaluation plan as for the snowstorm case. Fig. 6a
and b display the flow and speed measurements collected on April
18, 2004. (Notice that the speed measurements are around 130
km/h from midnight until early morning, in contrast to those
shown in Fig. 5b under the snowstorm.) One may observe from
Fig. 6c and d that:

• During 7:15 PM–7:40PM, the flow trajectories drop to the range
of 0–500 veh/h in the sequence C10–C8–C6–C5.
• During 6:30 PM–8:10 PM, the speed trajectories drop to less
than 25 km/h in the sequence C8–C6–C5, and recover later in
the opposite sequence.
• An abrupt speed drop is observed at C8 during 6:30 PM–8:10
PM, while no speed drop is observed at C10; on the other
hand, the flow measurements at C8 and C10 drop almost
simultaneously at about 7:15 PM and recover after 7:40 PM.
• No obvious speed or flow drop is observed at C2.

These observations indicate that an incident (or abnormal
event) occurred between C10 and C8, which gave rise to a capacity
drop in the stretch including C8, C6, and C5 and led to a sharp
abnormal congestion shockwave propagating upstream, albeit
without ever reaching C2 (because many drivers chose to escape
the freeway via the off-ramp with R3 during the congestion, as
confirmed with the R3 flow measurements).
Some representative testing results are presented in Fig. 6e–h.

During the incident period, both sharp critical density drop and
capacity drop are identified in real-time (Fig. 6e and f). The
comparison between Figs. 6f and 3c (the third time horizon)
indicates that the respective traffic situations are quite different.
To further highlight the abrupt capacity variation due to the
incident, Fig. 6g and h contrast the time-derivative of the estimated
capacity in both cases. In fact, the on-line parameter estimation in
Fig. 6e and f delivered the first indication on the existence of the
incident, upon which the presented data analysis was conducted
to confirm the incident presence. The flows and mean speeds are
estimated fairly well with on-line model parameter estimation;
see trajectories ‘‘estimation 1’’ in Fig. 7 for the flow and speed
estimates at C6. With fixed model parameter values, however,
a speed estimation bias is created (trajectories ‘‘estimation 2’’),
under free-flow conditions.
It is also noticed in Fig. 6e and f that, after the abrupt parameter

drops due to the incident, the model parameter estimates did not
recover promptly, although this has no impact on the flow and
speed estimates (Fig. 7). This is because the traffic flow was under
a lasting (night) free-flow condition after the incident (see Fig. 6a
and b), in which case the traffic measurements (illustrated by the
dots in Fig. 1) do not contain sufficient information in relation to
the critical density and capacity. An extended investigation has
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Fig. 6. An incident case: (a) flow measurements; (b) mean speed measurements; (c) zoom on the flow-drop period in (a); (d) zoom on the speed-drop period in (b);
(e) estimated critical density; (f) estimated capacity; (g) and (h) estimated capacity derivative.
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Fig. 7. An incident case: (a) flow estimates at C6; (b) mean speed estimates at C6.
shown that the parameter estimates recover from the drops in
the next day, soon after the traffic flow assumes considerably
higher values than during the night. This underlines that, in order
to identify well all model parameters, the estimator needs to
be persistently excited with traffic measurement data covering a
sufficiently large spectrum of possible traffic flow conditions.

4. A large-scale field application

Recently the real-time freeway network traffic surveillance tool
RENAISSANCE has been developed (Wang et al., 2006), which
bases its various traffic surveillance functions upon the presented
traffic state estimator. Since April 2006, RENAISSANCE has been
operational in the South-Italian freeway traffic control center in
Naples to supervise the A3 Freeway. The A3 Freeway has a total
directed length of about 100 km and connects the municipalities
of the coastal strip along the southern slope of Mount Vesuvius
with Naples and Salerno (Fig. 8a). Freeway A3 actually serves one
of the most congested metropolitan areas in southern Italy. Fig. 8b
presents a schematic diagram of the A3 layout in both Naples and
Salerno directions. The A3 detector configuration is also presented
in Fig. 8b, where each black dot represents a video detector that
offers both flow and speed measurements, and each black triangle
just upstreamof each pair of on-ramps represents a toll station that
records only the number of passing vehicles. The measurement
interval is irregular but of 30 s on average while the model time
step is set equal to 5 s. The detectors are rather sparsely installed
in the freewaymainstream,with an average spacing of 4 kmwithin
the first 20 km and of about 7 km within the next 27.5 km.
From the modeling point of view, this test site, including a

number of internal bifurcations at the immediate downstream
of some toll stations, has to be modeled as a freeway network.
In other words, both directions of A3 must be considered
all together, else the partial missing of independent on-ramp
and off-ramp measurements would damage the observability
of the corresponding traffic dynamic system and thus render
infeasible the state estimation task and further traffic surveillance
tasks. Significant spatial difference may daily be observed from
mainstream speed measurements under free-flow conditions (see
e.g. Fig. 9a for speed measurements collected in the Naples
direction). This indicates traffic flow inhomogeneity; in other
words, the free speed valuemay change over a long freeway stretch
due to the involved curvature, upgrade, tunnels, etc. To address
such traffic flow inhomogeneity, multiple fundamental diagrams
were introduced to the estimator model, each like the one shown
in Fig. 1, addressing a directional stretch between twomainstream
detectors. In this context, the on-line model parameter estimation
refers to joint estimation of multiple fundamental diagram
parameters and normal traffic flow variables, still under the
presented modeling and EKF framework. For the A3 test example,
17 fundamental diagrams and totally 516 state variables were
involved, 80 of which were measured. In fact, it is the first time to
report on the real-time field application of traffic state estimation
to so large a freeway site.
A testwas conductedwithmeasurement data collected fromA3

on October 9, 2006. In addition to the traffic flow inhomogeneity
displayed in Fig. 9a, 9b shows that D10025 in the Salerno direction
broke down from 12:00 PM onward during the day (see also the
corresponding flowmeasurements in Fig. 11b or f). Fed with these
measurements, the estimator delivers speed and flow estimates
with a spatial resolution of 500 m. First, some representative
speed estimation results at some detector locations in the Naples-
bound direction are presented in Fig. 10 along with the free
speed estimates for the sections downstream bounded by those
detectors. Clearly, the traffic flow inhomogeneity is well identified
via the free speed estimates. A speed decrease between 6:00
PM and midnight was recorded by D10024 (Fig. 10c), while the
corresponding flow measurements are rather low (the figure
omitted). Similar to the snowstorm case presented in Section 3.2,
this indicates the occurrence of a certain abnormal event leading to
the decrease of free speed, which is also confirmed by the local free
speed estimation (Fig. 10d). Second, as indicated by Fig. 9b, this test
example also offers a chance to observe the impact of a disabled
detector on the traffic state estimation performance. Without any
mechanism for detector fault alarms, the faulty measurements
were considered by the estimator as reflecting the ground truth.
Consequently, a huge fictitious congestion was created at D10025
in the estimator model, which propagated upstream until Naples
for the rest of the day (Fig. 11a and b). Meanwhile drastic drops of
the free speed and capacity resulted in the estimator model only
for the freeway section upstream of D10025 (Fig. 11c and d), in
order for the model output to be in agreement with the faulty
measurements. However, if the measurements of D10025 would
not be fed to the estimator, then the faulty impact of D10025 does
not appear in the estimation results (see Fig. 11e and f), while the
local model parameter estimates look normal (Fig. 11g and h). This
interesting test example suggests that:
• The on-line model parameter estimation may also be used as
an indicator for real-time detector faults if this information
is not directly provided by traffic detectors or via another
method;
• If a reliable mechanism for detector fault alarm is available,
the estimator would be able to avoid the impact of faulty
measurements on traffic state estimation via real-time self-
reconfiguration (e.g. by excluding the faulty measurements
from (17), provided that this does not violate flow observabil-
ity).
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Fig. 8. The A3 freeway between Naples and Salerno in south Italy: (a) geographical illustration of A3; (b) A3 layout and detector configuration (with each dot representing
a video sensor and each triangle representing a toll station).
(a) In the Naples direction. (b) In the Salerno direction.

Fig. 9. Speed measurements along the A3 freeway on October 9, 2006.
In summary, this large-scale application example provides a
platform for an overall testing of the traffic state estimator in case
of sparse measurement availability, spatial traffic flow inhomo-
geneity, abnormal events, detector faults, general measurement
inaccuracy, etc. Further field installations of RENAISSANCE are cur-
rently in progress in various countries.

5. Conclusive remarks

A number of real-data tests have been reported in this paper
to evaluate the performance of a generic freeway traffic state esti-
mator under various traffic situations. The testing results demon-
strate that, as compared to the traffic state estimators developed
in the past, this estimator has four distinguished features enabled
with joint state and parameter estimation. The first feature is that
the estimator is able to work satisfactorily without a prior need for
off-line model calibration. More specifically,
• The on-line model parameter estimation is indispensable for
proper traffic state estimation, particularly in case of poor prior
model calibration.
• The estimator with the on-line model parameter estimation
is able to deliver satisfactory traffic state estimates under
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Fig. 10. Traffic state estimation results in A3: (a) and (b) speed and free speed estimates around D10019; (c) and (d) speed and free speed estimates around D10024;
(e) and (f) speed and free speed estimates around D11014; (g) and (h) speed and free speed estimates around D11009.
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Fig. 11. Detector fault alarm: (a)–(d) using the faulty measurements from D10025; (e)–(h) without using the faulty measurements from D10025.
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various traffic conditions (fluid, dense, congested), despite a
large average inter-detector spacing (4–7 km).
• The estimator is little sensitive to the initial values of themodel
parameters and traffic flow variables as well as to the related
standard deviations.
The second feature is that the estimator can adapt itself

efficiently to the changes of weather conditions (like snow,
fog, etc.), traffic composition (percentage of trucks), and control
measures (e.g. variable speed limits applied). The third feature
is that under an incident-incurred abnormal congestion the
estimator is able to issue an incident alarm promptly, while
handling the traffic state estimation adequately. The fourth feature
is that the estimator is capable of issuing alarms regarding obvious
detector faults. The real-time freeway network traffic surveillance
tool RENAISSANCE (Wang et al., 2003, 2006) developed on the
basis of the reported adaptive traffic state estimator has been
operational in the Naples freeway traffic control center in south
Italy since April 2006 (Wang et al., in press), and will be soon
implemented in the Antwerp freeway traffic control center in
Belgium and further freeway networks.
The state estimation of nonlinear systems corrupted with noise

has been extensively considered in research and applications. Be-
cause the optimal solution to this problem is infinite dimensional
(see e.g. Kushner (1967)), a variety of approximate (or subopti-
mal) approaches have been developed, amongwhich the extended
Kalman filter (EKF) is probably most widely used (see e.g. Jazwin-
sky (1970) and Sorenson (1985)). In the past three decades, nu-
merous successful applications of the EKF have been reported in
the literature, but some intractable difficulties have also been en-
countered. For example, the use of EKF was reported in some ap-
plications to lead to biased estimates or even divergence, due to
stepwise linearization (Julier &Uhlmann, 2004; Norgaard, Poulsen,
& Ravn, 2000; Romanenko & Castro, 2004), inappropriate initial
state estimates (Glielmo, Setola, & Vasca, 1999; Ljung, 1979; Reif,
Sonnemann, & Unbehauen, 1998), unknown covariance matrices
of involved noise, or even the Gaussianity assumption of involved
noise (Arulampalam, Maskell, Gordon, & Clapp, 2002; Chen, Mor-
ris, & Martin, 2005), etc. To address such problems, some other
nonlinear filtering methods, especially unscented Kalman filter-
ing (UKF) (Julier & Uhlmann, 2004) and particle filtering (PF) (Aru-
lampalam et al., 2002), have been tested for a variety of state
estimation applications, gaining increasing popularity. Recently
such attempts towards traffic state estimation have also appeared
(Antoniou, Ben-Akiva, & Koutsopoulos, 2007; Hegyi, Girimonte,
Babuska, & De Schutter, 2006; Mihaylova, Boel, & Hegyi, 2007).
The reported results demonstrate that the application of the EKF

to traffic state estimation is not strongly affected by the above-
mentioned difficulties. In addition to the estimator’s adaptive
features shown, the estimator is seen little sensitive to the involved
noise statistics. More precisely, satisfactory functioning of the
traffic state estimator does not seem to require a prior knowledge
of noise characteristics (distribution or mean/covariance), and
this facilitates general applicability of the estimator. Nevertheless,
comparable evaluations of EKF with UKF and PF for this significant
application problem could indicate accuracy advantages of one or
another filtering approach.
Besides accuracy, adaptiveness, and robustness, another con-

cern regarding traffic state estimation in relation to practical ap-
plications is the computational real-time properties. In this aspect
the EKF-based approach is clearly superior to the UKF-based or
PF-basedmethods. For instance, the presented EKF-estimator took
11 h 34 min in a Pentium 4 personal computer (2.80 GHz, 1 GB
RAM, Windows XP) to deal with 24 h measurement data (with a
measurement updating interval of 30 s to 1 min on average) from
thewhole A3 networkwith a total directed length of some 100 km.
On the other hand, approaches may also be sought to improve the
computational cost-effectiveness of alternative filtering methods
(see e.g. Hegyi, Mihaylova, and Boel (2007)).
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