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We examine the relationship between technological complexity and wage inequality, using an efficiency

wage model that adopts Kremer’s O-ring production function. The model has two main implications: (i)

when the production process becomes more complex, within-task wage differences increase between

plants, and (ii) between-task wage differences increase within plants. We study these implications

empirically using industry data providing quantified information on the complexity of the tasks. We find

that wages increase in all the tasks with the complexity of the production process. Furthermore, the

relationship between the complexity of the tasks and wages is steepest in the firms with more complex

production processes.

INTRODUCTION

The last decades have witnessed important changes both in the production structure and
in wage dispersion, leading many observers to conclude that new technologies are closely
related to rising wage inequality. The most prominent hypothesis is that the introduction
of advanced technologies has caused a strong increase in the demand for skilled
workers.1 Kremer and Maskin (1996) have suggested that technological change may have
contributed substantially to increasing segregation of workers of different quality into
high-wage and low-wage firms. Less attention has been paid to the relation between
technological change and increasing within-group wage inequality, or residual variation,
mostly attributed to unobserved worker ability.2 However, according to Abowd et al.
(1999a, 1999b), individual ability alone cannot entirely explain wage differentials:
employers’ effects are still found to be relevant. The scope of this paper is to provide a
theoretical and empirical analysis of the relation between complex technologies and wage
structure. In particular, our approach can explain why identical workers may receive
different wages in equilibrium, and why complex technologies may increase wage
inequality among co-workers.

The first part of the paper substantively extends the theoretical model developed in
Dalmazzo (2002), where technology is represented by Kremer’s (1993) ‘O-ring’
production function and firms pay efficiency wages. Here, similarly to Kremer and
Maskin (1996), we postulate that production requires the execution of a certain number
of ‘easy’ and ‘hard’ tasks, characterized by a different sensitivity to effort. Both the
number and the composition of tasks are measures of technological complexity since, if
even a single task is mis-performed, output is lost. Such a notion of technology implies
the existence of strong complementarities among the tasks, or activities, that constitute
the production process.3 As in Dalmazzo (2002), we show that when monitoring is
imperfect the employer will have an incentive to pay wages that induce employees to elicit
a proper level of effort. When the degree of complexity in production is relatively high,
the employer will pay higher wages on average.4 The model proposed here, however,
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provides additional insights. Since different tasks have a different sensitivity to effort, we
are also able to analyse the employer’s wage policy within the plant.

Our model implies that plants with relatively more complex production processes
have incentives to pay higher wages to workers in all the tasks. This happens because
greater complexity increases the risk of failure in the production process. Thus, when
some plants become more complex than others, the within-task wage differences will
increase between plants. Moreover, because output in more complex tasks is more
sensitive to a worker’s effort, the increased complexity will have stronger wage effects in
complex tasks. Hence, within plants, a more complex production process will increase the
wage differences between tasks.5

In the empirical part of the paper, we consider how individual hourly wages are
affected by changes in the complexity of the plant’s production process. We have access
to unique data where the complexity of the worker’s tasks is proxied by a task-specific
minimum wage. In the Finnish metal industry each job is assigned a minimum wage
according to the complexity of the tasks it requires. This feature of the data overcomes a
major difficulty in the empirical implementations derived from O-ring theory, since we
can now proxy the complexity of the worker’s tasks with a continuous variable.
Furthermore, the linked employer–employee panel nature of the data allows us to
calculate the average task-specific minimum wages in each firm, which acts as a proxy for
the complexity of the firm’s production process.

We find that wages in all the tasks are increasing with the complexity of the
production process. This relationship also holds when unobservable individual and plant
characteristics are controlled for. Furthermore, the relationship between the complexity
of the tasks and wages is steepest in the firms that have most complex production
processes. These results are in line with the implications of the theoretical model.

The paper is structured as follows. Section I develops the basic theoretical model. In
Section II, the data are presented. Particular emphasis is put on the explanations of the
variables of interest. Section III presents the empirical results on the relation between
technology, wage levels and within-plant wage dispersion. Section IV concludes.

I. THE MODEL

In this section we first develop the basic model of the employer’s optimal behaviour when
the production function has the O-ring form and workers can be imperfectly monitored.
In Section I(b), we examine the effects of product market competition by characterizing a
zero-profit equilibrium, and obtain the main predictions of the theory.

(a) The basic framework

In the model we develop, workers dislike effort and monitoring is imperfect. As in the
efficiency–wage model by Summers (1988), we assume that the level of effort e exerted by
a worker is given by the following function:

ð1Þ e ¼
w�x
x

� �b
; if w>x

0; if w)x

� �
;

where w is the wage paid, x denotes the value of worker’s labour-market alternatives, and
bA(0, 1).
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For what concerns technology, we borrow from Kremer (1993) the notion of the ‘O-
ring production function’. Production requires that n tasks be correctly performed. Here,
as in Dalmazzo (2002), the probability that a task is carried out successfully depends on
the effort put in by the worker who is in charge of it. Similarly to Kremer and Maskin
(1996), production involves a number l of ‘easy’ tasks (l4n), and a number (n� l) of
‘hard’ tasks. We assume that easy and hard tasks have a different sensitivity to effort. In
particular, an easy task will be performed correctly with probability equal to q ¼ q(e),
with q040. On the other hand, a hard task will be performed correctly with probability
qz ¼ [q(e)]z, where z41. Thus, given the level of effort put in, a hard task is less likely to
succeed than an easy task. Without loss of generality, we assume that each task is
performed by a single worker.

When (i) tasks have different difficulty, (ii) all workers assigned to hard tasks put in
the same level of effort and (iii) all workers assigned to easy tasks put in the same level of
effort, the revenues y generated by the O-ring production function can be written as
follows:6

ð2Þ y ¼ nBðn; l; f Þql � qzðn�lÞ

where B(n, l; f ) denotes the average revenue per worker when all the tasks are correctly
performed, an event occurring with probability ql � qz(n � l ); the variable f denotes the
number of identical firms in the industry; and we take Bfo0: i e. the higher the number
of competing firms, the lower the firm’s revenues. Note that the production function (2)
entails complementarity among tasks: as will be shown, the optimal wage to be paid for a
certain task depends on the wage levels paid for all the other tasks, irrespective of
whether they are easy or hard. This property follows directly from the technology
considered: in the most extreme interpretation of Kremer (1993), the degree of
integration among tasks is such that if only one task is mis-performed the value of
production drops to zero.

In general, it can be useful to think of the model as if there were two types of worker:
high-skilled (indexed by h) and low-skilled (indexed by l ), assuming that workers of
different skills cannot be substituted for one another. Then low-skill workers will be
assigned to easy tasks, while high-skill workers will be assigned to hard tasks.7 For
example, managerial tasks will be given to workers who meet particular requirements in
terms of education, experience, etc. When there are common preferences towards labour
disutility, equation (1) will hold for both types of worker, with xh and xl denoting
respectively the high-skilled and the low-skilled labour-market opportunities (xhX xl).

For simplicity, we take the probability q to be equal to e. Hence the profit
maximization problem takes the form

ð3Þ
max
fwl ;whg

P ¼ n � Bðn; l; f Þ wl � xl

xl

� �b�l
wh � xh

xh

� �zb�ðn�lÞ

� wll � whðn� lÞ � F ;

where FX 0 represents a fixed cost in production and b � lþ zb(n� l )o1. The firm
maximizes profit by choosing simultaneously the wage levels wl and wh paid to the
workers assigned to easy and hard tasks, respectively.

The solution to problem (3) generates the following first-order conditions:

ð4Þ @P
@wl
¼ by

wl � xl
� 1 ¼ 0;
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ð5Þ @P
@wh
¼ zby

wh � xh
� 1 ¼ 0;

where y is defined by (2). Note that the equilibrium wage level wl depends, through y, on
the equilibrium wage level wh, and vice versa. By manipulating (4) and (5), we can derive

ð6Þ wh � xh

wl � xl
¼ z:

Condition (6) implies that (wh� wl)4(xh� xl). Thus, if the skilled workers’ outside
opportunities are better than for the unskilled workers (that is, if xh4xl), the employer
will pay skilled workers a higher wage.8

We now concentrate on the effects of n and l on the equilibrium values of wages, wh

and wl. The number of tasks n can be interpreted as a measure of complexity in
production: given l, the greater the number of tasks, the greater the probability that
something goes wrong and production is lost. On the other hand, given n, a greater
number of easy tasks l reduces the weight of hardFand riskierFtasks on the production
process.

By differentiating the system (4)–(5), and exploiting the second-order conditions
associated with problem (3), we obtain the following proposition.

Proposition 1. An increase in the number of tasks, n, will raise the wage paid to high-skilled
workers whenever expected revenues are increasing in n: hence it holds that dwh/dn40 if
and only if dy/dn40. Similarly, it holds that dwh/dl40 if and only if dy/dl40.

Note also that when dwh/dn is positive, dwl/dn is positive as well, since
(wh� xh) ¼ z(wl� xl). Analogously, when dwh/dl40, it will hold that dwl/dl40.

The implications of Proposition 1 need some discussion, because they crucially
depend on the sign of dy/dn and dy/dl. What are the plausible signs for dy/dn and dy/dl?
Consider first the case of a firm that is considering whether to implement a more complex
technology (higher n). The technology will be adopted only when profitable, that is, only
when the condition dP/dn40 holds. By the envelope theorem, it holds that
dP=dn ¼ dy=dn� wn

h . Consequently, it must be true that dy/dn40. We can conclude
that increasingly complex technologies will be implemented only when revenues y are
increasing in n: this can occur for example when more sophisticated products sell at
higher prices. Thus, as implied by Proposition 1, the adoption of more complex
technologies is bound to raise wages.

We can now discuss the effect of a change in l. Given the degree of complexity in the
technology considered (i.e. given n), a rise in l implies that some ‘hard’ tasks can be
transformed into ‘easy’, less risky, tasks. This occurs, for example, when certain tasks
requiring a high level of skills can be reduced into ‘routines’ performed by lower paid
workers.9 On balance, the net effect of changes in l on y is intrinsically ambiguous. On
the one hand, a greater number of easy tasks, given n, reduces risk and increases
revenues’ expected value. On the other hand, it is reasonable to expect that the condition
Blo0 holds: products that rely on very standardized production methods are likely to sell
at lower prices.

As shown in the following section, more precise predictions on the effects of n and l
on wage levels can be obtained by considering competition among firms.
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(b) The effects of competition

Proposition 1 holds for a given number of firms, f. In this section we consider product
market competition through the entry of new firms, in order to obtain sharper
predictions from comparative statics. To this purpose, we impose that the zero-profit
condition holds. This condition takes the form10

ð7Þ y ¼ wl � l þ whðn� lÞ þ F :

Exploiting condition (7) together with (4)–(5), one obtains the following system of two
equations in (wl, wh):

ð8Þ b wl � l þ whðn� lÞ þ F½ � � ðwl � xlÞ ¼ 0;

ð9Þ zb wl � l þ whðn� lÞ þ F½ � � ðwh � xhÞ ¼ 0:

By totally differentiating (8)–(9) with respect to (wh, wl, n, l, F), we obtain the following
result.11

Proposition 2. Under the zero-profit equilibrium, it holds that: (i) dwh/dn and dwl/dn are
positive, and (ii) dwh/dl and dwl/dl are negative.

Proposition 2 has some relevant implications. First, when the employer adopts a
relatively complex technology (i.e. when n is high in our model), it will be ready to pay
relatively high wages to its employees, irrespective of whether they are attached to hard
or easy tasks. Higher complexity raises the risk of failure in production. Thus, since tasks
are complementary, the employer will have an incentive to elicit more effort from every
employee. In this perspective, wage inequality tends to arise mainly through ‘plant
segregation’: there are high-wage plants and low-wage plants according to the type of
technology adopted.12

Empirically, it is a well known fact that inter-firm wage differentials are related to
observable differences in the production technologies. This result has been reported in
studies such as Dunne et al. (2004), Dunne and Schmitz (1995) as well as Doms et al.
(1997), which use plant-level data to study the relationship between wages and
production technologies. At the individual level, several papers have looked at how
explicit changes in the task content affect wages. A very influential study by Krueger
(1993) uses micro data to study the effect of computer use on wage structure and finds
that these kind of changes in tasks tend to increase wages.13

However, Proposition 2 implies that workers on equally complex tasks should be
paid differently depending on the complexity of the production process they are part of.
The empirical studies mentioned above do not separate the effect of change in the
complexity of the entire production process from the effects of the changes in the task
contents of the individual worker’s own job. Here, our aim is to examine the wage
differences in identical tasks across plants that have adopted production processes of
different degree of complexity. This approach is related to a recent branch of the
literature that studies the effects of technological changes on the organization of the firm.
Studies such as Autor et al. (2003) and Bresnahan et al. (2002) have shown that
technological change may affect the role of certain tasks in the production process, even
when such changes have no direct effect on the content of these tasks.

Proposition 2 has a second important implication for the employer’s wage policy.
Consider a plant that experiences a reduction in l for given level of n. An increase in ratio
between hard tasks and easy tasks is what Johnson (1997, p. 48) has termed ‘extensive
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technological change’. In this case, our model predicts that the employer will pay higher
wages to all employees. Intuitively, an increase in the proportion of hard tasks leads to
higher risk of production failure for any given level of effort put in by workers.
Consequently, the employer has an incentive to pay higher wages to elicit more effort.14

The use of the O-ring production function is consistent with alternative wage
theories. The competitive approach followed by Kremer and Maskin (1996) predicts that
firms adopting complex technologies will hire high-skill, high-wage workers. Hence,
increasingly complex technologies may lead to skill segregation among plants. However,
the ‘segregation’ story proposed by Kremer and Maskin is not entirely consistent with
evidence in Abowd et al. (1999a,b). Even when accounting for individual unobservables,
plant characteristics explain a relevant portion of wage variability.

Another implication of the model is related to the wage gap between workers
performing hard tasks and workers performing easy tasks. The following result holds:15

Proposition 3. An increase in n, or a decrease in l, will raise the wage differential between
wh and wl. Thus, it holds that d(wh� wl)/d(n� l)40.

This result has interesting implications for the wage policy followed within a plant,
and in particular for what concerns within-plant inequality. Increasing within-plant wage
inequality has been observed by Davis and Haltiwanger (1991) for US manufacturing
plants, and by Kramarz et al. (1996) for France.16 However, note that equation (6)
implies that the wage ratio (wh/wl) is independent of (n� l). Put differently, it holds that
log(wh)� log(wl) � log(z). Thus, the model also predicts that an increase in complexity
(i.e. a higher value of n� l) tends to increase all wages within the plant by the same
percentage.

To summarize, the model presented may account for two types of wage inequality:

(i) Within-group between-plant wage inequality. Our model can explain why identical
workers can be paid different wages in equilibrium. According to Proposition 2,
plants that adopt complex technologies will pay their workers higher wages than
plants that use simple technologies.
Since harder tasks are most likely to be given to high-quality workers, our results can
also account for differences in wage dispersion among heterogeneous workers:

(ii) Between-group within-plant wage inequality. Plants that adopt riskier technologies
Fas measured by a higher n, or a lower lFwill exhibit greater wage dispersion (see
Proposition 3). Consequently, the more complex the technology, the greater the level
of wage inequality among high-skill and low-skill employees within plants.

II. THE DATA

The data used in this paper come from the wage records of the Confederation of Finnish
Industry and Employers (Teollisuus ja työnantajat). Each year a survey is conducted
among the member employers of the Confederation and the information is presented in
the wage records. The wage records contain detailed information on the wages and
working hours of all the workers who are employed in the firms affiliated with the
Confederation. In the case of the metal industry in Finland, this covers practically all the
firms in the industry.

In this paper, we use 1996–2000 data on the whole blue-collar worker population in
the metal industry. After ruling out some workers because of missing or high probability
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of false information, we end up with a panel that has 287,587 employee/year observations
containing information on 84,196 individual workers, of whom for 65,204 (77%) we have
information from two consecutive years and 34,645 (41%) are observed in all the years
1996–2000.17 Apart from the firms, the data also identify the production plants at which
the workers are employed. Workers were distributed in 369 different firms and 570
plants.

The wage records’ data on wages and working hours can be considered as
exceptionally reliable, since the information comes, in principle, directly from the firms’
wage accounts. Apart from this information, the data contain basic individual
characteristics of the workers such as gender, age, seniority and education. We also
observe whether the worker is employed in single, double or triple shifts and whether the
plant is located in a sparsely or densely populated area. The fact that we can observe the
whole metal industry worker population also allows us to calculate the exact number of
employees in each plant. Table 1 gives descriptive statistics on the data for the 1996 cross-
section.

(a) Wage determination in the Finnish metal industry

The data on the metal industry are particularly useful for the analysis of the issues
discussed in Section II. The reason for this is the peculiar wage determination mechanism
in the Finnish metal industry. The employers and the trade union have established a
procedure that provides information on the complexity of each job in this industry.

In the Finnish metal industry, the general guidelines of the wage determination are
set in the national-level collective agreement that is negotiated between the central
employer organization and the trade union every one to three years. According to the
collective agreement, wages should be determined by the complexity of the job, by the

TABLE 1

Descriptive Statistics, 1996 Cross-Section

Variable Mean Std dev. Min. Max.

Final wage 55.28 8.458 32.5 154.48

Complexity 43.06 4.490 32.5 50.4

Residual wage 12.22 6.360 0 114.98

Age 38.71 10.56 14 65

Tenure 11.34 10.07 0 48

Part-time 0.011 0.105 0 1

Female 0.213 0.409 0 1

New 0.110 0.313 0 1

Double shift 0.221 0.415 0 1

Triple shift 0.195 0.396 0 1

Years of education 11.09 1.476 9 20

Plant size 123.12 237.11

Ave. plant complexity 39.95 2.81

No. observations 57,499

Note: ‘Complexity’ refers to the occupation-related wage. ‘Tenure’ is the number of years the person has worked
in the metal industry. Total hourly wage is in Finnish markka at year 2000 prices. ‘Plant size’ is the number of
employees per plant.
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individual performance of the worker given the requirements of the job, and by
individual and firm-specific arrangements. The same rules should be applied in all the
firms.

The complexity of the job specifies a job-specific minimum wage for each worker.
This minimum level is called the occupation-related wage. The determination of the final
wage outcome takes place at the firm level. An individual firm has considerable scope to
choose its wage levels so long as the wages are set above the minimum levels set by the
collective agreement.

(b) Occupation-related wages

In this paper we use occupation-related wage as our complexity measure. Occupation-
related wages are determined in the following way. The first stage of the wage
determination is the evaluation of the jobs in the industry. This is carried out by a
group of experts who consider various aspects of the jobs and assign them points
according to their complexity. The complexity level is based on three criteria: (i) how
long it takes to learn the tasks involved with the job; (ii) the degree of responsibility
involved with the job, and (iii) the working conditions. The outcome of the evaluation
should be independent of the characteristics of the workers and does not therefore
change when the individual on the job changes or when the characteristics of the
individual change.

On the basis of the expert evaluation, an occupation-related wage is determined for
each job in the collective agreement. The more demanding the job, i.e. the more
complexity points it gets, the higher is the corresponding occupation-related wage. This is
the feature of the data that we use in the analysis. Basically, there should be a one-to-one
mapping from the occupation-related wages to the complexity points. The occupation-
related wages can therefore be interpreted as a continuous variable that measures the
complexity of the job. In our data we directly observe the occupation-related wages of all
the workers along with their final wages. There are typically around fifty different levels
of occupation-related wages per year.

Here we use the worker’s own occupation-related wage as the measure of the tasks
that he is performing and the average of the co-workers’ occupation-related wages as the
measure of the complexity of the plant’s production process. While occupation-related
wages are a very convenient measure of complexity, there are several problems related to
their use that have to be addressed. First of all, it is crucial for our analysis that the scale
with which the complexity is measured does not change in time. However, the
examination of the yearly distributions of the occupation-related wages revealed that
occupation-related wages were increased almost every year by a general growth factor.
Table 2 reports the average final wages and occupation-related wages for 1996–2000. It is
clear that they follow a similar pattern. The occupation-related wages seem to increase
with final wages. It is unlikely that these increases in the occupation-related wages are
related to changes in tasks.

In order to correct for these wage increases, we transformed the data by grouping the
workers according to their occupation-related wages in yearly cross-sections and
analysing the distributions of year-to-year changes of occupation-related wages in each
group. This revealed that for most of the workers within the groups the changes in
occupation-related wages were identical. Hence we interpreted the group mode of this
change as the change in the occupation-related wage that was not related to changes in
the tasks. The occupation-related wages were then corrected by subtracting the within-
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group mode-change from the corresponding occupation-related wages. The last
column of Table 2 shows the yearly means of the adjusted values of occupation-related
wages.18

Another potential problem with the use of occupation-related wages as a complexity
measure is the possibility that occupation-related wages are determined ex post by final
wages. Indeed, it is common that administrative job categories are simply applied to
categorize individuals with similar wages rather than similar tasks. This would of course
be a major problem for us, since if it were true the occupation-related wages would not
reflect the complexity of the tasks. Simple wage increases would appear to change the
tasks of the worker.

Figure 1 explores the relationship between the final wages and the occupation-related
wages using the cross-sectional data from 1996. Statistics for the other years were
virtually identical. The figure plots complexity groups and their wage distributions
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FIGURE 1. Distribution of wages as a function of the complexity of the worker’s own tasks, 1996

cross-section.

TABLE 2

Unadjusted and Adjusted Average FinalWages and Occupation-RelatedWages,

1996–2000

Year Final wage

Occupation-

related wage

Adjusted occupation-

related wage

1996 55.29 43.06 43.06

1997 56.01 43.09 43.09

1998 57.45 44.45 43.15

1999 59.21 45.86 43.26

2000 60.90 47.61 43.10

Note: ‘Final wage’ refers to the average nominal wage. ‘Occupation-related wage’ refers to the average nominal
occupation-related wage. Adjusted values are adjusted for the shifting of the complexity scale.
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expressed by the within-group median as well as the 10th, 25th, 75th and 90th percentiles.
The complexity groups were formed by aggregating the occupation-related wages into
integers. There is considerable overlapping in the upper percentiles of the wage
distributions, which seems to indicate that occupation-related wages are not determined
by final wages.

To further assure that this is not the case, one can look at the relationship between
the movement of workers across different levels of occupation-related wages and the
changes in final wages. In Table 3, we look at workers who move up the complexity axis.
We call these workers ‘promotees’. Table 3(a) reports the positions of these workers in
the within-plant wage distribution of the group they parted from. Similarly, Table 3(b)
reports their position in the within-plant wage distribution of the arrival group. Groups
were constructed in the same way as in Figure 1.

If occupation-related wages were determined simply by final wages, we should expect
to see most of the movement taking place from the top of the wage distribution of the
departure group to the bottom of the wage distribution of the arrival group. This is
clearly not the case here. In fact, Table 3(a) reveals that most of the movement of
promotees takes place from lower deciles of the departure group. Moreover, these
workers seem to be spread more or less evenly across the deciles of the wage distribution
of the arrival group, as can be seen from Table 3(b). It seems that occupation-related
wages are not determined by final wages.

Finally, the use of average complexity as the measure of plant complexity also
requires some justification. In the theoretical model presented above, each additional
task, be it easy or hard, increases the aggregate probability of failure in the production
process, which is the definition of complexity of production in Kremer’s original model.
However, if the number of tasks is held constant, converting a hard task into an easy task
will reduce the probability of failure. Therefore, conditional on the number of tasks, the
average complexity of the tasks is a valid measure of the complexity of the production
process. In the regressions that follow, we always control for the number of employees in
the plant. Assuming that this is a valid proxy for the number of tasks in the production
process, we claim that the average complexity of the tasks is the best available measure
for the complexity of the production process.19

We believe that the evidence reported above justifies the use of occupation-related
wages as a measure of the complexity of the tasks in the job. Thus, for each individual,
the occupation-related wage measures the complexity of the tasks she is performing, and
the average occupation-related wages of her coworkers measures the complexity of the
production process of the plant.20

(c) Complexity and wage inequality trends in the Finnish metal industry

Even though the availability of the complexity information is the main reason for
focusing on the metal industry, we would argue that the Finnish metal industry is also
suitable for this analysis in other ways. It is the largest and arguably the most successful
of Finnish manufacturing industries. Furthermore, the metal industry includes the entire
modern electronics sector, which in the 1990s experienced considerable expansion. While
focusing on one industry naturally limits the scope of the paper, the existing literature,
e.g. Dunne et al. (2004), indicates that the rise in wage inequality has largely been a
within-industry phenomenon.

We were unable to explore whether there was any overall trend in the complexity of
the tasks in this industry during 1990s. This was because the scale with which we
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measured complexity was bounded from above and constant over time. However,
complexity of the tasks within plants was fairly persistent. Year-to-year variation in the
plant level means of occupation-related wages was small and concentrated around zero.

TABLE 3

Distribution of Pay for Promotees, inWage Deciles (% in each decile)

Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% N

(a) Before the promotion
33 20.70 8.58 6.96 9.06 12.30 13.50 12.18 7.38 3.18 6.18 1650
34 17.33 7.39 12.78 11.36 12.50 8.81 7.67 7.95 2.56 11.65 351
35 18.67 10.27 7.81 10.42 13.89 11.65 7.81 5.50 2.60 11.36 1377
36 25.08 7.92 6.27 5.94 7.59 6.27 7.92 6.93 5.94 20.13 300
37 18.25 8.55 10.60 10.42 10.30 9.10 8.61 6.69 5.96 11.51 1651
38 17.81 15.19 10.83 11.83 9.22 7.47 4.36 7.22 5.98 10.09 799
39 13.18 7.80 10.49 11.81 11.12 9.86 10.70 7.70 5.48 11.86 1885
40 10.26 10.26 11.32 11.98 10.39 13.04 11.45 7.54 6.22 7.54 1507
41 12.77 9.12 10.95 10.40 10.68 10.02 10.02 10.05 6.44 9.55 2567
42 10.02 9.66 16.36 13.91 13.97 11.01 9.61 5.45 4.57 5.45 1924
43 11.25 8.44 10.58 11.25 14.42 9.55 11.16 8.21 5.40 9.73 2238
44 8.70 7.97 11.50 12.29 14.48 13.02 8.45 8.88 7.91 6.81 1642
45 11.82 8.65 11.38 13.04 12.85 10.65 11.38 7.33 5.08 7.82 2046
46 7.87 8.34 8.14 12.38 13.27 15.25 14.23 8.89 6.36 5.27 1462
47 9.36 8.22 9.45 9.63 10.16 14.22 13.25 10.25 4.86 10.60 1131
48 6.89 5.21 7.73 12.10 15.80 18.82 11.93 8.40 5.71 7.39 595
49 13.33 16.67 15.00 13.33 10.00 8.33 5.00 0.00 11.67 6.67 60

Total % 12.99 8.93 10.57 11.41 12.27 11.39 10.38 7.81 5.41 8.85
N 3013 2076 2468 2627 2849 2648 2397 1809 1245 2053 23,185

(b) After the promotion
35 2.64 3.33 11.48 25.37 25.83 19.17 6.66 2.30 1.38 1.84 864
36 19.61 11.76 11.76 9.80 9.80 11.76 5.88 1.96 1.96 15.69 51
37 16.67 8.33 10.83 15.14 16.94 9.17 8.61 2.92 3.19 8.19 712
38 17.54 13.74 11.37 9.95 10.90 8.53 7.11 5.69 3.79 11.37 211
39 14.80 10.81 15.95 14.26 14.57 9.89 7.67 3.83 2.68 5.52 1298
40 10.62 10.76 13.66 21.93 14.62 10.90 7.17 4.28 2.76 3.31 724
41 15.22 11.79 13.06 12.62 13.46 11.48 10.29 4.97 3.43 3.69 2263
42 15.43 12.53 17.31 13.78 12.06 9.01 7.67 4.70 3.84 3.68 1275
43 18.75 12.79 11.22 11.92 13.58 8.91 7.30 5.77 3.46 6.28 2158
44 12.36 12.74 16.09 18.90 14.18 9.93 6.92 4.34 1.81 2.72 2090
45 16.16 11.50 13.73 15.14 12.91 10.55 7.92 4.70 3.09 4.30 3037
46 12.78 16.02 15.93 14.99 12.31 8.79 7.61 5.45 3.01 3.10 2123
47 15.64 9.57 10.77 12.42 12.59 13.08 9.78 6.73 4.21 5.20 2421
48 12.67 9.30 10.80 14.77 15.31 11.76 10.98 6.00 3.54 4.86 1666
49 18.50 10.51 18.77 11.47 9.97 7.78 7.03 5.73 3.82 6.42 1464
50 12.95 10.60 13.25 13.56 14.68 13.66 8.05 4.59 3.47 5.20 981

Total % 14.62 11.33 13.74 14.73 13.79 10.73 8.25 5.02 3.20 4.60 100.00
N 3399 2681 3217 3442 3214 2490 1918 1165 735 1078 23,339

Note: ‘Promotees’ are workers who move from a given complexity level to a higher one. Complexity levels are
constructed by aggregating the occupation-related wages into integers. Rows report the distribution of
promotees in the wage deciles of the within-plant wage distribution of given level after the promotion takes
place. Columns are deciles of the within-plant wage distribution of that level. Column N reports the number of
promotees from each complexity group. Row N reports the number of promotees from each wage decile.
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Standard measures of wage inequality, such as standard deviation of wages and the
ratio of the 10th and 90th percentiles of wages, remained almost constant throughout the
decade. There is no indication whatsoever that wage inequality would have increased in
the Finnish metal industry during these years. However, there are some signs of
increasing segregation of both tasks and wages across plants. The index of segregation
suggested by Kremer and Maskin (2000) (1996, revised version), which measures the
extent of within-plant correlation of the complexity of the tasks, increased from 0.41 in
1996 to 0.46 in 2000. Similarly, the segregation of wages increased from 0.50 in 1996 to
0.58 in 2000. There are signs that plants were becoming increasingly different with respect
to each other in terms of both complexity and wages.

III. THE RESULTS

The theory presented in Section I has two major implications. First of all, the within-task
wage differences should increase between plants as the dispersion of the complexity of the
production processes increases. Hence, controlling for the complexity of the tasks of the
individual worker, we should find a positive effect of the complexity of the production
process on wages. Second, the increasing complexity of the production process should
increase between-task wage differences within plants. This implies that wages should
increase more steeply with the complexity of the tasks in plants that have adopted more
complex production processes. In this section we study these implications empirically.

(a) Plant complexity and the wage dispersion within tasks

As explained in the previous section, we measure the complexity of the tasks with task-
specific minimum wages (occupation-related wages). Thus, if the implications of the
theory are right, plants with more complex production processes, i.e. with higher average
occupation-related wages, should pay more on top of the occupation-related wages than
the plants with less complex production processes. In what follows, we refer to the
difference between the final wage and the occupation-related wage as the residual wage.
Hence, the theory implies that residual wages should increase with the complexity of the
production process.

In Figure 2 we plot average plant-level residual wages against average occupation-
related wages in the plant in 1996 cross-section. The figure shows clearly that the
relationship between the average complexity of the tasks in the plant and the willingness
of the plant to pay on top of the occupation-related wages is positive. However, it is not
clear whether this correlation reflects the effect of plant complexity on wages. After all,
there are many unobservables, at both plant and individual level, that can affect wages
and be correlated with the complexity of the plant’s production process at the same time.

In order to account for the effects of observable and unobservable individual and
plant characteristics, we estimate the following residual wage equation:

ð10Þ wres
i;t ¼ b1�nJði;tÞ;t þ b2½�nJði;tÞ;t�2 þ Xi;tgþ mJði;tÞai þ dJði;tÞ þ ei;t;

where wres
i;t is the real residual hourly wage of an individual i at time t, �nJði;tÞ;t is our

measure of the complexity of the production process of the plant J(i, t), where i is
employed at t, Xi,t is a set of observable individual and plant characteristics, and ei,t is the
residual.
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As explained in Section II, we measure the production process with the i’s co-
workers’ average occupation-related wages at the plant J(i, t). After conducting various
experiments, we decided to use the quadratic functional form in (10) since this seemed to
fit the data best. In Xi,t we include quadratic terms of the age and seniority of the worker,
years of education, a dummy for female worker, shift work, and newcomer in the
industry, the number of employees at the plant, and a linear time trend.

In equation (10), ai and dJ(i,t) are the unobservable individual and plant effects,
respectively. We assume that both ai and dJ(i,t) are fixed in time, but we allow the effect of
individual unobservables to vary across plants. The factor loading mJ(i,t) represents the
within-plant returns to unobservable individual characteristics.

It seems plausible that the unobserved individual ability, ai, is correlated with the
complexity of the worker’s own task and the complexity of the plant. After all, the output
in more complex tasks should be more sensitive to a worker’s ability, and because of this
the employers might want to assign the high ability workers to more complex tasks.
Similarly, plants with complex production processes may offer higher returns to
unobserved ability, and thus attract high-ability workers.

Because of the potential correlation between unobservable ability and our complexity
variables, the estimation of (10) with OLS would yield biased estimates. We address this
problem by exploiting the panel nature of the data. More precisely, we control for factors
that make an individual more productive in a given plant by transforming (10) into first
differences within plant–individual matches, i.e.

ð11Þ Dwres
i;t ¼ b1D�nJði;tÞ;t þ b2D½�nJði;tÞ;t�2 þ gDXi;t þ Dei;t;

and estimating (11) by OLS. This procedure yields consistent estimates of b1 and b2
provided that the observables in (10) are not correlated with ei,t.

In (11), the variation in the valuation of individual ability across plants is absorbed
by differencing within plant-individual matches. Thus, the movement of workers that is
driven by the differences in the valuation of both observable and unobservable skills does
not bias the estimates of b’s in (11). The identification of b’s in (11) is based on the
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FIGURE 2. The average residual and occupation-related wages in the plants, 1996 cross-section.

Plant-size weighted OLS is super-imposed. Coefficient is 0.55 and the standard error 0.01.
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observations of workers who stay within the same plant and comes from the changes in
the plant-level complexity over time.

Table 4 presents results from different specifications of our residual wage equation.
As a benchmark case, we present the results from the OLS estimation of (10) in levels in
the first column. In the second column, equation (10) is first-differenced within
individuals and firm dummies are excluded. This specification assumes that individual
fixed effects, ai, are equally valued across plants and that the plant unobservables, dJ(i,t),
are not correlated with the other explanatory variables. To allow for the latter possibility,
in column (3), a full set of 570 plant dummies is introduced into the equation. Finally, in
the fourth column we present the results from the OLS estimation of (11), where the first-
differencing is done within individual–plant pairs.

The pooled OLS estimate of the effect of plant complexity from equation (10) is
positive and decreasing and is clearly significant. The same pattern was repeated when we
estimated the equation in yearly cross-sections. As was to be expected, the effect of
the complexity of the production process on wages is considerably reduced once the
unobservables at both individual and plant level are controlled for. When only the
individual effects are included, the estimates of b’s are halved but they remain significant.
The introduction of a full set of 570 plant dummies further decreases the estimates of b’s,
whereas allowing for the heterogeneous valuation of individual effects across plants does
not seem to have an effect on the estimates.

These results clearly indicate that an increase in the complexity of the co-workers’
tasks has a positive effect on the worker’s own hourly wage. In Table 5 we report the
marginal effects of plant complexity at different points of the plant complexity
distribution. Using these marginal effects, one can calculate the elasticity of residual
wages with respect to changes in plant complexity. Our preferred estimates, the ones
obtained in the specification in column (4) that controls for both plant and individual
fixed effects and allows the latter to be differentially valued across plants, suggest that at
the mean value the effect of plant complexity is 0.15. This implies that a 1 percentage
point increase in the complexity of the production process increases a worker’s residual
wages by 0.46 percentage point. However, taking into account that residual wages are on
average 21% of the final wages, this translates to an elasticity of 0.10 in final wages.

(b) Plant complexity and the wage dispersion between tasks

Proposition 3 predicts that differences in wage levels between difficult and easy tasks
should increase as the production technology of the plant becomes more complex. This
implies that, on average, the wage dispersion between tasks should be higher in relatively
more complex plants.

Figure 3 provides a crude way of looking at the relationship between plant
complexity and the dispersion of wages between tasks. In this Figure, we plot the
differences between the average levels of final wages in ‘high’ and ‘low’ complexity tasks
against plant complexity in the 1996 cross section. High-complexity tasks were defined as
tasks whose occupation-related wages fell in the four top groups in Figure 1. Similarly,
the low-complexity tasks were defined as tasks whose occupation-related wages fell in
one of the four lowest groups in Figure 1. Of the 467 plants in the 1996 cross-section, 218
had both low and high-complexity tasks.

Figure 3 suggests that the within-plant wage differences between high and low-
complexity tasks are higher in high-complexity plants. The pattern was very similar for
the years 1997–2000. Also, more conventional measures of within-plant wage dispersion,
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TABLE 4

Regression Analysis of the ResidualWage Function

(1) (2) (3) (4)

OLS in
levels

First
differences
within

individuals

First differences
within individuals
with a full set of
plant dummies

First differences
within (individual �

plant) pairs

Plant complexity 4.087 2.110 1.743 1.635
(2.084) (0.601)nn (0.613)nn (0.621)nn

(Plant complexity)2 � 0.044 � 0.024 � 0.020 � 0.018
(0.024) (0.007)nn (0.007)nn (0.007)nn

Age/10 4.302
(0.429)nn

(Age/10)2 � 0.456 � 0.896 � 0.914 � 0.945
(0.053)nn (0.112)nn (0.111)nn (0.111)nn

Tenure 2.919
(0.423)nn

(Tenure)2 � 0.600 � 0.439 � 0.376 � 0.355
(0.107)nn (0.176)n (0.174)n (0.180)n

Female dummy � 2.885
(0.342)nn

Double shift dummy 0.585 0.043 0.016 0.059
(0.373) (0.136) (0.136) (0.121)

Triple shift dummy � 0.588 � 0.046 � 0.111 � 0.099
(0.615) (0.171) (0.164) (0.162)

Years of education 0.001 0.158 0.150 0.153
(0.043) (0.059)nn (0.059)n (0.061)n

Sparse area dummy � 0.907 0.518 0.904 0.911
(0.775) (0.273) (0.259)nn (0.256)nn

Plant size/100 0.908 � 0.021 0.319 0.271
(0.356)n (0.258) (0.517) (0.541)

Trend 0.156 1.178 1.203 1.231
(0.104) (0.101)nn (0.104)nn (0.103)nn

Constant � 92.622
(45.281)n

Plant dummies None None 570 None
Observations 287,758 196,610 196,610 189,114
R2 0.17 0.02 0.05 0.02
Test for the joint

significance of
plant complexity
and its square

F(2,569) ¼ 5.70
P ¼ 0.004

F(2,514) ¼ 6.72
P ¼ 0.001

F(2,569) ¼ 4.12
P ¼ 0.017

F(2,488) ¼ 3.54
P ¼ 0.030

Note: nnRefers to significance at 5% level. nRefers to significance at 10% level. Age is divided by 10. ‘Tenure’ is
the number of years the individual has worked in the firm divided by 10. ‘Plant-size’ refers to the number of
employees in the firm divided by 100. Plant complexity is measured as the mean of the real occupation-related
wages of individual’s co-workers. Standard errors, reported in parentheses, are corrected for heteroskedasticity
using Huber–White formula accounting for the fact that there are multiple observations per plant. Column (1)
reports the results from the estimation of equation (10) in levels. Column (2) reports the results from the
estimation of equation (11) differenced within individuals and omitting the plant dummies. Column (3) reports
the results from the estimation of equation (11) differenced within individuals and including a full set of plant
dummies. Column (4) reports the estimation results from the estimation of equation (11) differenced within
(individual � plant) pairs. The final row reports the F-test statistics for the joint significance of plant complexity
and plant complexity squared.

2007] O-RING WAGE INEQUALITY 529

r The London School of Economics and Political Science 2006



such as the standard deviation of what the plant pays on top of the occupation-related
wage, were positively correlated with the average complexity of the tasks in the plant.

Generalizing to multiple task levels, the theory indicates that, in the plants that have
adopted more complex production processes, the wage levels should rise more steeply
with the complexity of the worker’s own tasks. In order to see whether this is the case, we
grouped plants into coarse complexity groups according to their average occupation-
related wages. We followed the same logic as in the grouping of workers in Figure 1. That
is, we first rounded the average plant occupation-related wages into integers and then
grouped plants according to these numbers. This resulted in 15 plant complexity
groups.21 We then regressed final wages on individual complexity and the same set of

TABLE 5

EstimatedMarginal Effects of Plant Complexity at Different Points of the Plant

Complexity Distribution

Percentiles

Plant

complexity

(1) (2) (3) (4)

OLS in

levels

First differences

within individuals

First differences

within individuals

with a full set of

plant dummies

First differences

within (individual �
plant) pairs

10% 37.07 0.825 0.331 0.260 0.300

25% 38.99 0.656 0.238 0.183 0.231

Mean 41.19 0.462 0.133 0.095 0.152

75% 43.44 0.264 0.025 0.005 0.071

90% 45.25 0.105 � 0.062 � 0.067 0.006

Note: Estimated marginal effects of plant complexity from the models in Table 4. Column (1) reports the
marginal effects from the equation (10) in levels. Column (2) reports the marginal effects from equation (11)
differenced within individuals and omitting the plant dummies. Column (3) reports the marginal effects from
equation (11) differenced within individuals and including a full set of plant dummies. Column (4) reports the
marginal effects from equation (11) differenced within (individual � plant) pairs.
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FIGURE 3. The wage difference between high and low complexity tasks and the plant complexity,

1996 cross-section.

Plant-size weighted OLS is superimposed. Coefficient is 0.82 and the standard error 0.01.
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controls as in the regression (11) within these groups. If the wage dispersion between
tasks of different complexity is increasing with plant complexity, we would expect to see
higher coefficients of individual complexity in the high-plant-complexity groups.

The results of this exercise are reported in Table 6. To save space, we report only the
estimated coefficients of individual complexity. The coefficients, along with 95%
confidence intervals, are plotted against plants’ complexity in Figure 4. As can be seen

TABLE 6

Regression Analysis of theWage Function in Levels within Plant Complexity

Groups: Individual � Plant Effects

Plant complexity

groups

Coefficient of

individual

complexity

No. of

individuals

No. of

plants

36 0.178 (0.125) 1,418 11

37 0.459nn (0.142) 3,305 19

38 0.602nn (0.043) 12,270 41

39 0.544nn (0.080) 9,503 62

40 0.479nn (0.063) 9,283 81

41 0.467nn (0.084) 12,378 100

42 0.448nn (0.050) 17,307 120

43 0.451nn (0.117) 19,378 111

44 0.290nn (0.088) 28,213 95

45 0.708nn (0.174) 34,673 95

46 0.661nn (0.086) 20,965 89

47 0.800nn (0.138) 12,775 56

48 0.584nn (0.095) 5,506 35

49 0.694nn (0.202) 1,033 19

50 1.032nn (0.089) 910 9

Note: Dependent variable real hourly wage in levels. The coefficient of the individual complexity in levels is
reported. All the regressions use the same set of controls as in Table 4. Groups 36–50 refer to complexity groups
that were constructed by rounding the average occupation-related wages in the plant to nearest integers.
Standard errors, reported in parentheses, are corrected for heteroskedasticity using the Huber–White formula,
accounting for the fact that there are multiple observations per plant.
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from Table 6 and Figure 4, the effect of the complexity of the worker’s own tasks is
highest in group 50. In general, the coefficients of individual complexity tend to increase
with plant complexity, although not monotonically. These results suggest that a worker
switching from a low-complexity task to a more demanding task in a plant that has
adopted a very complex production process obtains, on average, a higher wage increase
than that he would obtain by doing the same switch in a plant with a less complex
production process. We interpret these results as being supportive of the wage dispersion
implications of the theory discussed in Section I.

IV. CONCLUDING REMARKS

The idea that an employer’s characteristics, such as the features of technology, drive the
firm’s wage policy has been widely discussed. As argued by Krueger and Summers (1987,
1988), technological factors seem to be very relevant for explaining wage structures over
different countries. Moreover, Katz (1986) and Gibbons and Katz (1992) have noted that
inter-industry wage ‘relativities’ are remarkably similar in different occupations. On the
basis of Katz’s evidence, Layard et al. (1991, p. 167) have concluded that ‘this is not at all
consistent with a technological approach. Why should the responsibilities of office
workers, janitors, technicians, and operatives in different industries all vary in
proportion? It seems most unlikely.’ However, the objection raised by Layard et al. is
not valid when technology is represented by an O-ring production function. In the O-ring
perspective, production succeeds when a number of interdependent operations are
performed correctly. Consequently, ill performance by an electrician in the production of
airplanes can have more dramatic consequences than that electrician’s sloppy
performance in the car industry. The model we propose implies that heterogeneity in
technological complexity across plants generates both (i) within-task, between-plant
wage dispersion, and (ii) between-task, within-plant wage dispersion. These predictions
are broadly supported by evidence from a unique dataset of Finnish metalworkers.

APPENDIX

The problem with using occupation-related wages as a measure of the complexity of the tasks is
that they are increased in some years by a general growth factor that is not related to real changes
in tasks (see also Pekkarinen 2003). Figure A1 plots the yearly distributions of occupation-related
wages and reveals that in some years the whole distribution of the occupation-related wages shifts.
It is clear that the complexity of the tasks cannot undergo such changes. Thus, in order to use the
occupation-related wages as a measure of the complexity of the tasks, we need to clear away these
changes.

We corrected the occupation-related wages from this kind of change by constructing two-year
samples of workers who (i) were present in both years t and t þ 1, (ii) did not change their
occupational code, and (iii) did not change firms between the two years. Thus, we ended up with
four separate samples of workers with two observations per worker in each. The idea was to have
samples of workers who remained in the same tasks in years t and t þ 1 and to observe the changes
in their occupation-related wages.

We grouped the workers in each two-year sample according to their occupation-related wages
in year t and analyzed the distributions of year-to-year changes in the occupation-related wages of
each group. This analysis revealed that, for most of the workers within a group, the year-to-year
changes in occupation-related wages were identical. Thus, we interpreted the group mode of the
change of occupation-related wage as the increase in occupation-related wage that is not related to
changes in the tasks. All the rest of the changes were interpreted as a change in tasks.

532 ECONOMICA [AUGUST

r The London School of Economics and Political Science 2006



The occupation-related wages were then corrected in order to make them correspond to
complexity by substracting from each occupation-related wage the mode of the change of the
occupation-related wage of the workers with the same value of occupation-related wage. Figure A2
plots the yearly distributions of the corrected occupation-related wages.
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NOTES

1. See, among many others, Berman et al. (1994), Autor et al. (1998), Berman et al. (1998), Doms et al.
(1997), Goldin and Katz (1996, 1998), Haskel and Heden (1999) and Machin and Van Reenen (1998).

2. On within-group inequality, see e.g. Gottschalk (1997) and Acemoglu (1999).
3. Similar ideas are put forward by Milgrom and Roberts (1990, 1995).
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FIGURE A1. Yearly distributions of occupation-related wages, 1996–2000.
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4. These implications are supported by evidence on Finnish metalworkers provided in Pekkarinen (2002).
5. On within-plant wage inequality, see Entorf et al. (1999) and the references quoted therein.
6. We abstract from physical capital in the production function. The inclusion of capital leaves the main

results unaltered.
7. High-quality workers are assigned to difficult jobs in the original Kremer (1993) model and in the

assignment models surveyed by Sattinger (1993). Kremer and Maskin (1996) analyse the firm’s optimal
matching decision when workers intrinsically have different productivity.

8. The model can also capture the special case where all workers are identical. In this case the employer will
have to hire workers of the same quality to perform tasks of different complexity. It follows that xh ¼ xl,
and condition (6) implies that workers assigned to harder tasks will be paid more. Then, since workers
of equal skills are paid different wages, this special case clarifies that what drives wage dispersion here is
not workers’ quality, but the fact that different tasks within a plant are differentially sensitive to effort.

9. See the example of the printing industry reported in Mark (1987). See also Bresnahan (1999) on white-
collar tasks.

10. The zero-profit condition determines fn, the equilibrium number of firms operating in the market.
11. The determinant associated with the system (8)–(9) is negative. The proof of Proposition 2 is rather

immediate, although it requires some tedious calculations.
12. For evidence on plant segregation, see Davis and Haltiwanger (1991), and, in particular, Kremer and

Maskin (1996). Verhoogen (2004) and Kaplan and Verhoogen (2005) reach similar conclusions from
evidence on the Mexican manufacturing sector. After the Peso crises in 1994, quality upgrading in
production has led to higher wages in exporting firms. These differentials are mostly due to plant-level
wage-premia.

13. However, DiNardo and Pischke (1997), as well as Entorf et al. (1999), attribute this effect to unobserved
individual heterogeneity.

14. The model also implies that dwh/dF and dwl/dF are positive. Firms that bear high fixed costs, as
measured by F, tend to safeguard their investment by paying high wages, so as to obtain a better
performance from their workers. Fixed costs can capture different kinds of sunk investment, such as
irreversible equipment, or R&D itself. Moreover, the amount of fixed costs is likely to be related to the
firm’s size, measured by the number of times the basic production process is replicated. Also note that
dwh/dz and dwl/dz are positive: when hard tasks become even more sensitive to effort, the firm will pay
higher wages to all workers.

15. To verify Proposition 3, note that dðwh � wlÞ=dn ¼ 1� ð1=zÞ½ �ðdwh=dnÞ>0, since z41.
16. According to Entorf et al. (1999), this phenomenon is accounted forFat least in partFby the

introduction of new technologies.
17. In addition, 8325 employee/year observations (2.9%) were dropped because of potentially false or

missing data.
18. In the Appendix we provide a more detailed description of this adjustment to occupation-related wages.
19. We also experimented with other moments of the within-plant complexity distribution, such as

skewness. However, while these variables had the expected sign in the OLS regressions, there was not
enough within-individual variation to identify their effect in the fixed effects regressions.

20. We chose to calulate the complexity of the production process at the level of plants instead of firms. It
seems that plants are closer to the actual production units that the theory describes.

21. There were two other groups where the number of plants was too small (2 and 6) to conduct a
reasonable analysis.
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