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1. Introduction 

There is a well-established consensus that agriculture statistics are plagued with different 

types of non-sampling errors which may derive from distortions introduced via data collection 

methodology and techniques, interviewer’s effect, respondents’ interpretation of specific questions and 

their motivation to provide accurate answers, as well as respondents’ characteristics like their level of 

education and gender.  A relatively recent addition to the toolbox of farm and household survey 

practitioners is the use of Global Position System (GPS) devices for the measurement of land areas.  

Household surveys, particularly multi-purpose surveys like the Living Standards Measurement Study 

(LSMS), commonly rely on farmers’ self-reporting to estimate the area under ownership and 

cultivation. As the technology become more affordable and its reliability improves, GPS devices are 

increasingly been used for land area data collection in household surveys. Preliminary empirical 

evidence  (Goldstein and Udry, 1999) suggests that the differences with self-reporting may be 

substantial, and that such difference varies by farm size.  If this intuition is correct, using GPS may 

have considerable implication on the much debated and contentious relationship between farm size 

and productivity.   

The long-standing controversy over the existence of an inverse relationship between farm size 

and productivity (IR henceforth) in developing countries has been recently reviewed by Eastwood et 

al. (2008) and, particularly in relation to African agriculture, questioned by Collier and Dercon (2009) 

who maintain that “there are (only) a handful of reasonably careful studies showing the inverse farm-

size/productivity relationship in African settings ... but also some showing the reverse (i.e. positive) 

farm-size/productivity relationship”. A substantial part of the debate, and increasingly so in recent 

contributions, has focussed on whether the IR may be a statistical artefact, stemming from problems 

with the available data. The debate has also emphasized the possible role of the omission or imprecise 

measurement of land quality traits in determining the empirical findings on the IR (Benjamin, 1995; 

Bhalla and Roy, 1998; Lamb, 2003; Barrett et al., 2010). Disentangling the factors driving the 
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observed relationship is crucial for putting in place the right policies and guide future investments in 

the agricultural sector in general, and smallholder agriculture in particular.  The empirical evidence, 

however, remains scant.  We are aware of only one study (Lamb, 2003) that attempts to empirically 

test the robustness of the IR relationship to possible errors in land area measurement using IV 

methods
2
.  

Drawing on data from a nationally representative household survey from Uganda,   in which 

both self-reported and GPS-based plot level information were collected, this paper 

systematically analyzes the difference in land area data using both measurements, and 

discusses the impact of such differences on estimates of agricultural productivity. In 

particular, we explore three different issues, namely (i) what are the determinants of the errors 

in land measurement, (ii) analyze the size the error according to plot size, and landholding, 

(iii) testing the existence of an inverse farm size relationship, and the extent to which land 

measurement error affect the relative advantage of small holders implied by an IR. 

The paper is organized as follows. The next section succinctly reviews the main strands of 

literature this paper relates to. Section 3 provides a description of the data. The econometric models 

used are sketched in Section 4 and the results discussed in Section 5. The final section discusses the 

contributions of the analysis to the literature and the policy discussion.  

 

2. The inverse farm size-productivity relationship: agronomic dominance or statistical 

artefact?  

The relationship between farm size and productivity in developing countries is one of the 

longest standing and most contentious empirical issues in agriculture and development economics.  

The reason for such attention is evident, as much of the current development paradigm and resulting 

investments have often assumed the existence of an inverse relationship. Several potential factors have 

been put forth in the literature as possible explanation for such relationship.  However, from a policy 

perspective, the real challenge has been not only to show the existence of an IR but, more importantly, 

to understand the reasons behind it.  Whether the relationship is the result of a host of factors related to 

differences in market and production processes across farm types or simply land measurement errors 

has radically different policy implications and, as such, has attracted the attention of many researchers. 

                                                
2
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Starting with the seminal work of Sen (1962, 1966) who observed an inverse relationship 

between farm size and output per hectare in Indian agriculture, a large number of empirical studies 

have presented evidence that appears to corroborate that hypothesis (Barrett, 1996; Carter, 1984, 

Benjamin and Brandt, 2002; Berry and Cline, 1979). A smaller set of empirical studies however does 

not find evidence of such a relationship (Hill, 1972, Kevane, 1996, Zaibet and Dunn, 1998).  Eastwood 

et al. (2010) provide a careful discussion of both the theory and the empirics of the IR debate, a full 

review of which is beyond the scope of this paper.  

It will suffice here to note that, following Barrett et al. (2009), an inverse relation between 

farm productivity and farm size may have three main explanations: (i) imperfect factor markets, (ii)  

omitted variables and, in particular, omitted controls for land quality, and (iii) statistical issues related 

to the measurement of plot size. Imperfect factor markets (labour, land, insurance) are linked to 

differences in the shadow price of production factors that in turn lead to differences in the application 

of inputs per unit of land, in ways that are correlated with farm size. Much of the earlier contributions 

to the IR debate focussed on testing this type of explanation. Later studies (e.g. Bhalla and Roy, 1988; 

Benjamin, 1995) have challenged the existence of the IR based on the observation that when land 

quality controls are introduced in the analysis, the strength of the IR often diminishes substantially or 

vanishes altogether. Barrett et al. (2010) utilize a dataset that includes laboratory measures of soil 

testing to conclude that in fact only a very limited proportion of the IR can be explained by differences 

in land quality. Lastly, attention has been drawn to the possibility that the existence of the IR may be a 

statistical artefact deriving by measurement error in land data (Lamb, 2003). A similar explanation is 

also given by Barrett et al (2010), after failing to explain the observed IR otherwise. 

However, for the IR to be partially or fully explained by errors in land measurements, smaller 

farmers would have to systematically underreport land area with respect to larger farmers, thus 

resulting in artificially inflated yields in the bottom part of the distribution.  However, as reported by 

De Groote and Traorè (2005), small farmers tend to overestimate their land holding – while large 

farmers tend to underreport – hence increasing the likelihood of analysts finding a (spurious) and even 

stronger inverse relationship in empirical studies based on more accurate measures. 

Land area measurement is one of the fundamental components of agricultural statistics, and it 

is therefore not surprising that the interest of agricultural statisticians in the possibility of applying 

technological innovations such as satellite imagery and GPS devices to land area measurement is 

growing exponentially with the increasing affordability and precision of these technologies and their 

applications. Kelly et al. (1995) have long identified the use of GPS has having the potential to 

contribute to making land area measurement a much less costly and time consuming exercise than 

traditional methods.  
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Keita and Carfagna (2009) provide a discussion of the performance of different GPS devices 

compared to traditional methods (rope and compass), which they consider the ‘gold standard’. They 

conclude that the GPS is a reliable alternative to traditional measures (80 percent of the plots in their 

sample is measured with negligible error), but that on average GPS measures tend to underestimate 

plot area somewhat. They find one main reason of error in GPS measures to be the density of plot tree 

canopy cover and to some degree to weather conditions at the time of measurement.  The advantage of 

their analysis is to test the use of the GPS under several hypothesis, namely, the influence of  plot size 

on the accuracy of the measurements with GPS receivers, time needed for measurement with 

traditional methods  versus GPS, stability of measurement of GPS, repetition of measurements and 

accuracy, accuracy by different type of GPS receivers. The evidence presented seems to prove that 

GPS devices allow to measure farm size with enough accuracy compared to traditional and objective 

land measurement methods such as compass and meters.   

In a study comparing crop area measurement via actual physical measurement with farmers’ 

own assessment following enumerator assisted visual inspections, De Groote and Traorè (2005) on the 

contrary find evidence that the bias in land self-reporting by farmers varies with plot size. In particular 

they find that small farmers, those owning less than one hectare of land, tend to over-estimate farm 

size, whereas larger farmers tend to under-estimate land ownership, with the extent of the bias 

negatively correlated to the size of the landholdings. Also, they find the size of the bias to vary across 

plots depending on the crop planted.   In a somewhat different application in the context of Peruvian 

market access self-reported data vis a vis “true travel time” using GPS, Escobal and Laszlo (2008) 

show how if the error is correlated with the main outcomes of interest the conclusion of the analysis 

may be biased and driven by a spurious correlation in that the deviation between the ‘true’ travel time 

and the respondents’ estimate is determined by observable socio-economic variables related to the 

outcome of choice. Gibson and Mckenzie (2007) show evidence of the non-random distribution of 

measurement error in several of the distance and location studies they review. 

Data source and descriptive statistics 

Our analysis is based on the Uganda National Household Survey (UNHS) round implemented 

by the Uganda Bureau of Statistics (UBOS) in 2005-2006. The UNHS is a standard multi-purpose 

household survey with a sample of some 7,500 households out of which some 5,500 are located in 

rural areas and cultivating land. One unique feature of this survey that makes our analysis possible is 

that it contains plot level information on agricultural land area measured through both GPS and 

farmers’ own estimates.  

The total number of plots with self estimated measure is 13,959. About 65 percent of these 

plots (9173 plots) have a corresponding GPS measure. However, to control for total households 

landholding, we have restricted our sample to 5767 plots for which with have complete information on 
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both type of measures on all plots cultivated by farmers. This will allow us to match the information 

with the agriculture production section which contains information at the household/farm level. We 

end up with a sample of 2893 rural households for which we have both non-zero land area measures 

for the entire households’ landholdings.3.  

Table 1 reports some summary statistics for the plots for which we have information on both 

type of area measurements, along with the mean and standard deviation (in acres) of plot size 

measured through GPS, self-reporting, and the absolute and relative difference between the two 

measures. For simplicity of presentation, we will take the GPS measure as the benchmark and talk of 

farmers over- (or under-) reporting plot size whenever the area self-reported is larger (smaller) than 

the area measured by GPS. We do acknowledge however that the GPS measure may be subjected to a 

certain degree of inaccuracy  (Keita and Carfagna, 2009). 

On average the two methods produce strikingly similar estimates of land area. The average 

size of plots using GPS is 2.24 acres, a mere 0.11 acres larger than the area reported by farmers. The 

sample level means however mask pervasive differences in measurement that emerge at closer 

scrutiny. In the overall sample, farmers overestimate plot size in 54.12 percent of the cases (or 3,121 

plots), and underestimate it in 44.13 percent of plots (equivalent to 2545 plots). For the remaining 101 

plots (1.75 percent) the survey reports identical measures with either method. For the plots where a 

‘positive discrepancy’ is observed, namely a GPS measure larger than self reporting, the amount of 

area overestimated is larger in absolute value (1.07 acres on average) than for the plots for which the 

bias is negative (-0.67 acres).  

Table 2 summarizes the size of the bias by deciles of landholding area computed using the 

GPS measure. The last column of table 2 reports the discrepancy in percentage terms, in order to 

account for scale effect. In percentage terms, the magnitude of the discrepancy appears to increase 

monotonically as one moves from the bottom (smallest landholders, --142 percent) to the top deciles 

(largest landholders, 21 percent). The majority of the average negative discrepancy is due to difference 

in measures in the first 2 deciles. The sixth deciles, for example, account 2 times less than the average 

(-16 percent against --27 percent). The size of the positive discrepancy increases three times between 

the eight and nice deciles (between 0.13 and 0.39 acres), and is the largest in the top deciles (3.96 

acres).  

All this suggests that there is a pattern in the direction of the bias, with smaller farmers 

generally over-reporting their land relatively more than larger farmers, and with the largest farmers 

actually under-reporting land size somewhat (but less in relative terms). Up to 4.57 acres  (the 7th  

deciles), the bias is on average negative, in the top three deciles, the opposite is true.  
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As in Keita and Carfagna (2009) our data point to the fact that the bias is much more 

pronounced in the tails, thereby confirming that the majority of the bias lies there.  

What is particularly interesting about the distribution of these data, is that they seem to go 

contrary to the results of De Groote and Traorè (2005) and the expectations of Barret et al. (2009). As 

we recalled earlier, De Groote and Traorè find that farmers have a tendency to underestimate small 

plots (which they define as below 1 hectare4) compared to larger ones, whereas the opposite is true in 

our case. Barrett et al. (2010: p. 89) in fact only provide an example of what the impact of 

measurement error would be if it was a statistical artefact stemming from land measurement error, but 

it is relevant to our discussion later in the paper, that their example assumes that error is negatively 

correlated with farm size, i.e. that “respondents with smaller plots and farms systematically 

over-report the size of their farm. What we find, is that small farms in the Uganda sample (defined as 

farmers with less than 4.57 acres – equivalent to 1.8 ha)  are actually more likely to under-report the 

size of theirfarms. Also, the GPS and self-reported plot area measures in our sample display a 

correlation of 0.96 (, well above the 0.15 found by Goldstein and Udry in their Ghana dataset. 

One additional issue in our data, that is immediately apparent from the visual inspection of the 

distributions of the two land measures in Figure 2, is the considerable tendency of respondents (or 

enumerators) to round their reported plot size to nearest acre or half acre. This ‘heaping’ in the 

response pattern s is not uncommon (Roberts and Brewer, 2001) but we suspect it may be particularly 

important in the case of land measurement since it is bound to  matter proportionally more to the left 

of the distribution, as the same amount of rounding represents a larger percentage of the actual plot 

size.  

Figure 1 also confirms the observation made above based on Table 1. While the two 

distributions are overall quite close (and in fact the means are not much different) at any single point 

in the distribution they deviate considerably, in a way that appears to be considerably influenced by 

heaping in the self-reporting distribution as opposed to a smooth curve for the GPS measure. Finally, 

the comparison of the two distributions appears to support the case for treating the GPS measure as the 

more accurate of the two. 

This, as any other systematic pattern in land measurement error, has the potential to 

introduce a bias in the estimation of agricultural/land productivity. To explore that point 

descriptively, Figure 3 draws the relationship between deciles of cultivated land and farm yields 

(computed as the ratio of the value of agricultural production over farm size). The slope of both lines 

is negative, pointing to an inverse yield-farm size relationship in both cases, but the line is much 

steeper when the GPS land measure is used.  

                                                
4
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Table 3 summarizes yield computed through GPS and area self-reported. We divide farmers 

between small and large, and we take the 5th deciles as the threshold. Small farms, those cultivating 

landholding smaller than 2.3 acres exhibit higher yields when area cultivated is measured through GPS 

as compared to self-reporting. In  both cases, smaller farmers have higher yields than larger ones.  

The inclusion of a more accurate measure of land area in this dataset seems to be 

strengthening the empirical case for the existence of an inverse farm size productivity relationship, 

rather than weakening it. This is consistent with what we expected after looking at the distribution of 

the discrepancies in the two measures, but appears to contradict expectations based for instance on the 

analysis in Lamb (2003), who finds that the IR disappears after introducing random fixed effects 

which he hypothesize capture the influence of measurement error. Nor it would be related to 

difference in by factor market imperfections or unobserved soil quality as reviewed recently by Barrett 

et al. (2010) 

 

3. The econometric approach 

In order to deepen the analysis of (a) the characteristics and determinants of the discrepancy 

between our two land measures, and (b) the implications of using one or the other on the IR 

hypothesis, we estimate the two models specified below.  

In order to identify what are the factors affecting the plot bias between the two measures, we 

propose to estimate the following function, at the plot level: 

iii uxe += β                   (1) 

Where ie
 is the plot size specific bias, ix

 is a (K+1)-row vector of control variables with ‘1’ 

as its first element, 
)',...,,( 10 Kββββ =

 is vector of parameters to be estimated. iu
 is a two-sided 

error term representing white noise that is assumed to be normally distributed with mean 0 and 

variance 
2

vσ
. 

The set of controls included in this regression includes a set of characteristics of the household 

head (age, education, gender) to proxy respondents’ characteristics that are deemed to influence the 

ability to accurately report land size. We also include plot size, and its squared term, to test whether 

the negative relationship observed in the descriptive analysis holds in a multivariate framework, and a 

dummy reflecting whether the self-reported land variable is a round number, to capture the impact of 

rounding. Finally we include information on whether the household is involved in disputes over land 

ownership, as we expect such households to have less information or interest in these plots.  
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Next we estimate a standard model for testing the existence of the IR, and to understand how 

land measurement errors weaken, eliminate or reinforce this empirical evidence. Our model is based 

on the one originally proposed by Binswanger, Deininger and Feder (1995), and not dissimilar from 

the approach used by several others including, most recently, Barrett et al. (2010). We estimate the 

following function: 

iii
i

i uRBXA
A

Y
+++++= 43210 lnln βββββ      

 (2) 

where iY
is the logarithm of the net revenue per acre

5
, iA

the total area operated, iX
denotes a 

vector of households’ characteristics that influence production such as the availability of family labor, 

the gender, age and education of the household’s head, value of inputs used, and a set of land quality 

variables, B is the bias in both measurements, R is the rounding effect,  and iu
 is the error term. We 

estimate two versions of this relationship, one using GPS and the other one self-reported land 

measures, and compare the two to gauge the impact of measurement on the IR, which is captured by 

the coefficient on the land size variable. We also run a quintile regression of the same model, to 

investigate whether the coefficient on the land variable may change at different points in the 

distribution.  

A coefficient below one on the land area variable indicates the presence of the IR. The further 

below 1 the coefficient, the stronger  is the IR.  

4. Econometric results  

The results of the model (1) regression are reported in Table 4. As it emerged already by the 

descriptive analysis in section 3,  ur data show a positive association between plot size and the error in 

measurement in levels. The discrepancy (the error) increase with farm size with larger farms having 

the tendency of under-reporting their land, and small farms tend to overestimate. As already stated, 

this results is contrary to De Groote and Taoré (2005) hypothesis. The inflection point (see the 

negative coefficient on the square term) kicks in at very large plot sizes (around 170-200 acres, 

depending on the specification). 

The other signs are also as expected. The presence of rounding contributes to increasing 

measurement error, as we hypothesized based on the heaping displayed by the self-reported 

distribution in Figure 2. While the education and gender of the household head variables are not 

significant, his/her age is: older respondents are likely to be less accurate in their reporting of plot 
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sizes. Household who are involved in disputes over land are also likely to make larger errors in self-

reporting, which we hypothesize is due to the fact that such disputes diminish their interest, access, 

and in general knowledge about plot characteristics. Contrary to our expectation plot demarcation does 

not seem to reduce the bias in self-estimating land. The coefficient of the dummy if the plot has a 

fence is positive and significant thereby suggesting an increase in the bias
6
.   

Table 5 presents the results of the net revenue regression in model (2).  In columns (1) 

and (2) land is measured with the traditional respondent self-report, whereas columns (3) and 

(4) GPS measure of land size is used. The main variable of interest in this table is the (log) of 

land size, as it is this coefficient that captures the size-productivity relationship. A negative 

coefficient indicates an inverse relationships.  In all the specifications, with both communities 

and enumerators fixed effects,   the estimates support the IR hypothesis. When the GPS 

measure is used, however, the magnitude of the coefficient increases significantly 

approaching -1, indicating an even stronger IR;. 

This result goes against the hypothesis according to which the IR would be a statistical 

artefact due to small farmers supposedly under-reporting their farm size. In our sample, small 

farmers in fact over-report land size more than larger farmer do, and it is the very large famers 

who are actually more likely to under-estimate their holdings, thus resulting in artificially 

higher yields. As a result, when the more accurate GPS measure is used instead of the famer’s 

self-reported one, the estimated slope of the function becomes steeper indicating an even 

stronger IR
7
. 

To control for land characteristics we have used variables related to soil quality, 

topography,  and irrigation. Whereas land with good soil quality and hilly land affect 

positively farms ‘profit, irrigation does not appear to be a main factor helping at increasing 

farm outcome. The variable is significant but negative only when controlling for enumerators 

fixed effects.  We have also introduced household specific controlled variables. As expected 

older household head have larger profits, but higher levels of education of the head does not 

seem to affect agriculture net profits. Female households heads experiences lower levels of 

agriculture gains.  

 

 

                                                
6
 The regression has been repeated introducing plot quality dummies such as soil quality, irrigation and topography. 

However, the results are not significant and do not change the overall specification of the model. .  
7 To look further into this relationship we have re-estimated it in a quintile regression framework to assess whether 

the slope changes across the land size. We find no evidence of that. The coefficient on the plot size variable is significant in 

all quintiles and its magnitude does not change by any appreciable amount.   
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5. Conclusions 

According to the analysis in this paper, two conclusions seemingly supported with 

some degree of general validity by recent contributions to the literature, are to be questioned 

or revisited. At a minimum, they do not apply to the study of Ugandan agriculture.  

Firstly, we conclude that in Uganda small farmers tend to over-report plot size relative 

to relatively larger farmers, while the largest farm groups under-report plot size on average. 

This is contrary to the common perception according to which small farmers would under-

report land size, whereas large farmers would do the opposite. 

Secondly, we find that the empirical validity of the IR hypothesis is strengthened, not 

weakened, by the availability of better measures of land size collected using GPS devices. 

Lamb (2003) concludes that by controlling for measurement error in land size, the statistical 

case for the IR disappears. Barrett et al. (2010) on the other hand, show that including 

rigorous controls for land quality the IR does not significantly affect the findings concerning 

the IR. Along the same lines this paper argues that introducing rigorous controls for land 

quantity does not affect the evidence concerning the IR, which is in fact strengthened when 

the better land data are used
8
.  

Self-reported measures of land size are notoriously imprecise. In large household 

surveys in developing countries they have however for a long time been the only option 

available to practically collect data on the physical dimension of the plots owned or cultivated 

by the household. More recently, however, the greater availability of more affordable and 

more reliable GPS devices has made GPS measurement a practical alternative that is 

increasingly being applied in surveys worldwide.  

Being able to measure land with any degree of accuracy is clearly of outmost 

importance in economies that are largely agricultural based and for communities that derive a 

large share of their livelihood from agriculture and for whom land constitutes the main, when 

not the only, capital asset. In particular, an accurate measure of land size is necessary if one is 

to measure agricultural productivity with any degree of confidence.  

                                                
8
 We also use land quality controls, but these are based on self report while Barrett’s are based 

on laboratory soil testing. 
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This paper has shown that GPS measures of land quality are a valid alternative to self-

reports in large household surveys. While our explanation of what causes error in 

self-reporting is not fully satisfactory, we do find however that self-reported land measures 

are a reasonable alternative in a well conducted survey. The overall distribution, mean and 

standard deviation of the two distributions are fairly close to each other. The respondents’ 

rounding of responses can however create fairly serious measurement error particularly when 

plots are small, as is the case here (but also in most of the developing regions).  
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Table 1: Summary of statistics at the plot level 

 Nb of Plots Unit Mean Std. Dev. Min Max 

       

GPS 5767 Acre 2.24 12.43 0.01 600 

Self – Reported 5767 Acre 2.13 12.75 0.01 600 

Discrepancy (GPS-Self reported) 5767 Acre 0.11 2.28 -49 45 

       

Negative discrepancy 

(Negative Error => GPS<Self Reported ) 
3121 Acre -0.67 1.82 -49 -0.01 

       

Positive discrepancy 

(Positive Error => GPS>Self Reported) 
2545 Acre 1.07 2.47 0.01 44.83 

       

Source: Authors’ calculations based on UNHS 2005 

 

 

Table 2: Mean farm size size and discrepancy characteristics by deciles of landholding  

(GPS measure). 

 

Deciles 
Area of 

HH landholding 

Nb. of 

plot per 

hh 

Mean 

farm area 

using 

GPS 

Mean 

farm area 

using 

Self-Reported 

Farm Discrepancy 

(GPS-Self Reported) 

Discrepancy in % 

terms 

1 0.01-.65 1.70 0.37 0.73 -0.36 -142 

2 0.66-1.12 2.33 0.90 1.43 -0.53 -60 

3 1.13-1.62 2.40 1.37 1.78 -0.41 -29 

4 1.63-2.09 2.70 1.84 2.36 -0.52 -29 

5 2.09-2.69 2.94 2.38 2.91 -0.52 -22 

6 2.7 2.80 3.04 3.53 -0.48 -16 

7 3.44-4.57 2.74 3.96 4.10 -0.14 -4 

8 4.59-6.16 2.94 5.31 5.18 0.13 3 

9 6.17-9.13 3.20 7.46 7.08 0.39 5 

10 9.14-600 3.40 21.03 17.07 3.96 21 

Total 0.01-600 2.70 4.75 4.60 0.15 -27 

Note: area is expressed in acres, and computed for total household landholding.  

Source: Authors’ calculations based on UNHS 2005 

 

 

Table 3: Relation between yield and Farms Size  

 Area Landholding 
Yield  

(GPS) 

Yield  

(Self Reported) 

Bias in yield  

(GPS-Self Reported) 

Small Farms 0.01 – 2.3 263 201 62 

Large Farms 2.4 - 600 114 123 -9 

Yield computed in Uganda Shilling per acre 
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Table 4: Determinants of difference in plot measurement (dependent variable: GPS-self 

reported plot size, in acres) 

 Bias in Level 

 
With PSU 

dummies 

With 

Enumerators 

dummies 

Plot size (GPS) 0.04*** 0.07*** 

 
[0.000] 

 

[0.000] 

 

Square Plot size (GPS) -0.0001*** -0.0001*** 

 [0.000] [0.000] 

Rounding in Self Reported 0.26*** 0.27*** 

 [0.001] [0.001] 

Dummy: parcel has a fence 0.46*** 0.27* 

 [0.006] [0.082] 

Head's age 0.72*** 0.33* 

 [0.000] [0.079] 

Head’s Education -0.01 -0.01 

 [0.553] [0.476] 

Dummy Female Head 0.07 -0.02 

 [0.366] [0.778] 

Dummy: was/is in  dispute with other relatives 0.67*** 0.33 

 [0.004] [0.153] 

Constant -0.55*** -0.39*** 

 [0.000] [0.000] 

Observations 5767 5723 

R-squared 0.23 0.08 

Threshold for plot size 173 acres 202 acres 

p values in brackets 

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 5: Testing the IR hypothesis. Dependent variable Log of Net Revenue per acre  
 

VARIABLES Area Self Reported Area GPS 

(1) (2) (3) (4) 

Land characteristics 

  
Log Land Size -0.63*** -0.67*** -0.85*** -0.98*** 

 

[0.000] [0.000] [0.000] [0.000] 

Dummy Rounding -0.01 0.03 -0.12* -0.13** 

 

[0.896] [0.603] [0.053] [0.016] 

Log value of ag. Inputs 0.10*** 0.11*** 0.08*** 0.10*** 

 

[0.000] [0.000] [0.000] [0.000] 

Log family labor 0.48*** 0.50*** 0.42*** 0.41*** 

 

[0.000] [0.000] [0.000] [0.000] 

Log hired labor 0.02 0.02 0.03 0.03 

 

[0.250] [0.258] [0.145] [0.124] 

Share of land GPS with good soil quality 0.20*** 0.26*** 0.19*** 0.26*** 

 

[0.000] [0.000] [0.000] [0.000] 

Share of land GPS  hilly 0.19** 0.36*** 0.20** 0.33*** 

 

[0.050] [0.000] [0.046] [0.000] 

Share of land GPS irrigated -0.06 -0.15** -0.1 -0.16*** 

 

[0.326] [0.013] [0.117] [0.008] 

Households characteristics 

Log Head's age 0.10* 0.13*** 0.04 0.11** 

[0.063] [0.009] [0.448] [0.041] 

Log Head's education -0.03 -0.02 0.01 0.01 

[0.527] [0.561] [0.850] [0.892] 

Dummy female head -0.08* -0.11*** -0.06 -0.09** 

[0.074] [0.010] [0.199] [0.034] 

Constant 1.84*** 1.65*** 3.15*** 3.07*** 

[0.000] [0.000] [0.000] [0.000] 

Fixed Effects 

Communities  YES NO YES NO 

Enumerators  NO YES NO YES 

Observations 2,860 2,836 2,860 2,836 

R-squared 0.60 0.44 0.63 0.47 

p values in brackets     

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Figure 1: Bias in Land Measurement: Rounding Problems  

0
.2

.4
.6

.8

0 1 2 3 4
x

GPS Farmers' Estimate

Plot Size Measured with GPS and Farmers ' Estimate

 

 

0
5

1
0

1
5

2
0

2
5

%
 (

A
re

a
 s

e
lf
 R

e
p
o

rt
e

d
)

0
2

6
4

8
%

 (
A

re
a
 G

P
S

)

0 1 2 3 4
x...

GPS Farmers' Estimate

Plot Size Measured with GPS and Farmers ' Estimate

 
 

 

 



 17 

Figure 3: The inverse relationship between yields and farm size: Comparison using GPS 

and self-reported area estimates 
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