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Abstract. The paper is devoted to the study of a mathematical model for
the thermomechanical evolution of metallic shape memory alloys. The main
novelty of our approach consists in the fact that we include the possibility for
these materials to exhibit voids during the phase change process. Indeed, in the
engineering paper [60] has been recently proved that voids may appear when
the mixture is produced by the aggregations of powder. Hence, the composition
of the mixture varies (under either thermal or mechanical actions) in this way:
the martensites and the austenite transform into one another whereas the voids

volume fraction evolves. The first goal of this contribution is hence to state a
PDE system capturing all these modelling aspects in order then to establish
the well-posedness of the associated initial-boundary value problem.

1. Introduction. Shape memory alloys are mixtures of many martensites variants
and of austenite. They exhibit an unusual behavior: even if they are permanently
deformed, they can totally recover their initial shape just by thermal or mechanical
means. There may be voids in the mixture, which may appear when the mixture
is produced by the aggregations of powders, as it has been recently proved in the
engineering paper [60]. Of course, the voids are filled either with gas or air when
appearing or when aggregating powders. We do not take into account the gas
phase mechanical properties (which are mainly described in terms of pressure and
temperature) because we focus on the mechanical behaviour of the solid mixture,
i.e., we assume the volume fraction of voids is small. The composition of the mixture
varies: the martensites and the austenite transform into one another whereas the
voids volume fraction evolves. These phase changes can be produced either by
thermal actions or by mechanical actions. The striking properties of shape memory
alloys result from interactions between mechanical and thermal actions (cf., e.g.,
[9, 42]).

We assume that the phases can coexist at each point and we suppose that,
besides austenite, only two martensitic variants are present. However, this choice
provides a sufficiently good description of the phenomenon, as we want describe
a macroscopic predictive theory which can be used for engineering purposes. The
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phase volume fractions, which are state quantities, are subjected to constraints. In
particular, their sum must be lower than 1, but not necessarily equal to 1, due
to the presence of voids (cf. also [40] and [41] where this property is introduced
in order to treat solid-liquid phase transitions with the possibility of voids and [1]
for the corresponding numerical results). It is shown that most of the properties
of shape memory alloys result from careful treatment of those internal constraints
(cf., e.g., [36]–[39]). All these quoted references are related to a three dimensional
model taking the temperature, the macroscopic deformation and the volumetric
proportion of austenite and martensite as state variables. Moreover, let us note
that in solid mechanics there are not too many mathematical models describing
phase transitions in which the interactions between different types of substances
and the possibility of having voids is taken into account: we can quote only the
two contributions [40, 41]. In fluid mechanics the contributions are numerous due
to the cavitation phenomenon which is a liquid-gas phase change. Let us quote the
paper by J.J. Moreau [53], which introduces basic mechanical ideas.

It is beyond our purposes to give a complete description of the existing literature
on models for SMA. However, restricting ourselves to the macroscopic description of
these phenomena, we can refer to the main contributions [36]–[39], [4, 5, 34, 35, 58]
and [3, 11, 12, 18, 19, 49, 57, 65] (and references therein) describing full thermo-
mechanical models and studying the resulting PDEs from mathematical viewpoint
respectively. We shall instead focus here on a generalization of the Frémond model
for SMA introduced in [36]–[39].

Let us then explain in detail which is the main aim of this contribution, compare
it with the results already present in the literature, and show the main mathemat-
ical difficulties encountered. As already mentioned, in this paper we deal with a
generalization of the model introduced in [36]–[39] and later on studied in many con-
tributions starting from the pioneering paper [25], where an existence and unique-
ness result has been proved for the solution of a simplified problem, where all the
nonlinearities in the balance of energy are neglected and the momentum balance
equation is considered in the quasi-stationary form and fourth order terms (related
to the second gradient theory) are taken into account. In the case when the fourth-
order term is omitted an existence result dealing with the linearized energy balance
equation has been proved in [21], while [22] one can find the proof of the existence of
solutions to the linearized problem by including an inertial term in the momentum
balance. We can report also of some results when some or all the nonlinearities
are kept in the energy balance. The full one-dimensional model is shown to ad-
mit a unique solution both in the quasi-stationary case in [30] and in the case of
a hyperbolic momentum equation in [31, 62]. Existence results have been proved
also for the three-dimensional model (cf. [23, 28, 43]). Finally, let us mention the
uniqueness result for the full quasi-static three-dimensional model proved in [17] and
an updated and detailed presentation of the Frémond model and related system of
equations and conditions, applying to the multidimensional case as well, which is
provided in [11, 12], [37, Chapter 13], and [39]. Let us also point out [11, 12] for
recent existence and uniqueness results in the three-dimensional situation, where
the various nonlinear terms arising in the derivation of the model are accounted.
The large time behavior of solutions is investigated in [26] in connection with the
convergence to steady-state solutions and in [27, 24] where the authors characterize
the large time behavior according to the theory of dissipative dynamical systems.



SMA WITH VOIDS 1635

However, all these contributions were dealing with the case in which no voids
can occur between phases. To model this possibility and to solve rigorously the
results PDE system is just our aim here. First, in the next Section 2, we derive
a model taking the possibility of having voids into account, introducing rigorously
the pressure which has a paramount importance on the mechanical behaviour. In
order to do that, we follow the ideas of [40] in which this was done in case of a two-
phase transition phenomenon. Then, in Section 3, we give a rigorous formulation of
initial boundary value problem associated with the resulting PDEs and we state our
main results: existence, uniqueness, and continuous dependence of solutions from
the data. The continuous dependence of the solution from the data is proved under
appropriate regularity assumption on the nonlinearities. The proofs are carried
over in Section 4 and Section 5. The main mathematical difficulties are due to
the nonlinear and singular coupling between the equations. In particular, in order
to describe the evolution of the absolute temperature variable, we shall use the
entropy balance equation (cf. [13]–[15] for a complete derivation and motivation of
this equation). This equation turns out to be singular in ϑ but the main advantage
of using it is that once one has proved that a solution component ϑ does exist then
it turns automatically out to be positive and the proof of positivity of the absolute
temperature is historically one of the main difficulties of these types of problems.
The idea here is to approximate the nonlinearities with regular functions, to solve
the regularized system by means of a Banach fixed point argument and then to use
compactness and lower semicontinuity arguments in order to pass to the limit and
obtain a solution of the original problem.

2. The derivation of the model. In this section we explicitly derive a macro-
scopic model describing the evolution of SMA with the possibility of voids. The
model is obtained by properly choosing the state quantities, the balance laws and
the constitutive relations in agreement with the principle of thermodynamics and
with experimental evidence.

2.1. The state quantities. We deal only with macroscopic phenomena and ma-
croscopic quantities. To describe the deformations of the alloy, the macroscopic
small deformation ε(u), (u being the small displacement) and the temperature ϑ
are chosen as state quantities.

The properties of shape memory alloys result from martensite–austenite phase
changes produced either by thermal actions (as usual) or by mechanical actions.
On the macroscopic level, some quantities are needed to take those phase changes
into account. For this purpose, the volume fractions βi of the martensites and
austenite are chosen as state quantities. For simplicity, we assume that only two
martensites exist together with austenite. The volume fractions of the martensites
are β1 and β2. The volume fraction of austenite is β3. These volume fractions are
not independent: they satisfy the following internal constraints

0 ≤ βi ≤ 1, i = 1, 2, 3 (1)

due to the definition of volume fractions. Since we assume that voids can appear
in the martensite–austenite mixture, then the β’s must satisfy an other internal
constraint

β1 + β2 + β3 ≤ 1 (2)

the quantity v = 1 − (β1 + β2 + β3) being the voids volume fraction. This is the
case when the alloy is produced by aggregating powders as shown in [60]. In case no
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voids are considered, this sum should be equal to 1 and this considerably simplifies
the analysis (cf., e.g., [25]).

We denote by β the vector of components βi (i = 1, 2, 3) and the set of the state
quantities is

E = {ε(u), β,∇β, ϑ}
while the quantities which describe the evolution and the thermal heterogeneity are

δE = {ε(u)t, βt,∇βt,∇ϑ} .

The gradient of ∇β accounts for local interactions of the volume fractions at their
neighborhood points.

2.2. The mass balance. Assuming the same constant density ρ (the reader can
refer to [41] for a model in which different densities of the substances are taken into
account in a general two-phase change phenomenon) and the same velocity U = ut

for each phase, the mass balance reads

ρ(β1 + β2 + β3)t + ρ(β1 + β2 + β3)divU = 0 .

Within the small perturbation assumption, this equation gives

ρ(β1 + β2 + β3)t + ρ(β0
1 + β0

2 + β0
3)divU = 0

where the β0
i ’s are the initial values of the βi. In agreement with the assumption

that the voids volume fraction is small, we assume

β0
1 + β0

2 + β0
3 = 1 (3)

and have ∂t(β1 + β2 + β3) + divU = 0, hence

∂t(β1 + β2 + β3) + divut = 0 . (4)

Mass balance is a relationship between the quantities of δE, indeed, its effects will
be included in the cinematic relations (cf. (9) in the following subsections).

2.3. The equations of motion. They result from the principle of virtual power
involving the power of the internal forces, (cf, e.g., [37])

−
∫

Ω

{σ : D(V) + B · δ + H : ∇δ} dΩ

where V and δ are virtual velocities, the actual velocities being U and βt. The
internal forces are the stress σ, the phase change work vector B, and the phase
change work flux tensor H . The equations of motion are

ρUt = div σ + f , 0 = div H − B + A in Ω (5)

σn = g, Hn = a on ∂Ω (6)

where ρ is the density, Ut the acceleration of the alloy which occupies the domain Ω,
with boundary ∂Ω and outward normal vector n. The alloy is loaded by body forces
f and by surface tractions g, and submitted to body sources of phase change work
A and surfaces sources of phase change work a (for instance, electric, magnetic or
radiative actions producing the evolution of the alloys without macroscopic motion).
In the following we will suppose, for simplicity, A = a = 0.
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2.4. The free energy. As explained above, a shape memory alloy is considered
as a mixture of the martensite and austenite phases with volume fractions βi. The
volume free energy of the mixture we choose is

Ψ = Ψ(E) =

3∑

i=1

βiΨi(E) + h(E) (7)

where the Ψi’s are the volume free energies of the i phases and h is a free energy
describing interactions between the different phases. We have assumed that inter-
nal constraints are physical properties, hence, we decide to choose properly the two
functions describing the material, i.e., the free energy Ψ and the pseudopotential
of dissipation Φ, in order to take these constraints into account. Since, the pseu-
dopotential describes the kinematic properties (i.e., properties which depend on the
velocities) and the free energy describes the state properties, obviously the internal
constraints (1) and (2) are to be taken into account with the choice of the free
energy Ψ.

For this purpose, we assume the Ψi’s are defined over the whole linear space
spanned by βi and the free energy is defined by

Ψ(E) = β1Ψ1(E) + β2Ψ2(E) + β3Ψ3(E) + h(E) .

We choose the very simple interaction free energy

h(E) = IC(β) +
k

2
|∇β|2

where IC is the indicator function of the convex set

C = {(γ1, γ2, γ3) ∈ R
3; 0 ≤ γi ≤ 1; γ1 + γ2 + γ3 ≤ 1} . (8)

Moreover, and by (k/2)|∇β|2 we mean the product of two tensors ∇β multiplied
by the interfacial energy coefficient (k/2) > 0. The terms IC(β) + (k/2)|∇β|2 may
be seen as a mixture or interaction free-energy.

The only effect of IC(β) is to guarantee that the proportions β1, β2 and β3 take
admissible physical values, i.e. they satisfy constraints (1) and (2) (cf. also (8)). The
interaction free energy term IC(β) is equal to zero when the mixture is physically
possible (β ∈ C) and to +∞ when the mixture is physically impossible (β /∈ C).

Let us note even if the free energy of the voids phase is 0, the voids phase has
physical properties due to the interaction free energy term (ν/2)|∇β|2 which de-
pends on the gradient of β. It is known that this gradient is related to the interfaces
properties: ∇β1, ∇β2 describes properties of the voids-martensites interfaces and
∇β3 describes properties of the voids-austenite interface. In this setting, the voids
have a role in the phase change and make it different from a phase change without
voids. The model is simple and schematic but it may be upgraded by introducing
sophisticated interaction free energy depending on β and on ∇β.

For the volume free energies, we choose

Ψ1(E) =
1

2
ε(u) : K1 : ε(u) + σ1(ϑ) : ε(u) − C1ϑ log ϑ,

Ψ2(E) =
1

2
ε(u) : K2 : ε(u) + σ2(ϑ) : ε(u) − C2ϑ log ϑ,

Ψ3(E) =
1

2
ε(u) : K3 : ε(u) − la

ϑ0
(ϑ − ϑ0) − C3ϑ log ϑ,

where Ki are the volume elastic tensors and Ci the volume heat capacities of the
phases. Stresses σi(ϑ) depend on temperature ϑ and the quantity la is the latent
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heat martensite-austenite volume phase change at temperature ϑ0 (see Remark 2.1
below).

Remark 2.1. To make the model more realistic, we should introduce two temper-
atures to characterize the transformation: ϑ0, the temperature at the beginning of
the transformation and ϑf the temperature at the end. The interaction free energy
is completed by h(β) = (la/ϑ0)(ϑ0 − ϑf )(β3)

2 (cf. [6], [37], [58], [59]). However,
we prefer not to investigate this case in the present contribution which is only a
first mathematical approach to this problem. This realistic term could be treated
in further analysis on the topic.

Because we want to describe the main basic properties of the shape memory
alloys with voids, we assume that the elastic matrices Ki and the heat capacities
Ci are the same for all of the phases:

Ci = C̄, Ki = K i = 1, 2, 3 .

Always for the sake of simplicity, we assume that

σ1(ϑ) = −σ2(ϑ) = −τ(ϑ)I

where I stands for the identity matrix. Concerning the stress τ(ϑ), it is known that
at high temperature the alloy has a classical elastic behaviour. Thus τ(ϑ) = 0 at
high temperature, and we choose the schematic simple expression

τ(ϑ) = (ϑ − ϑc)τ , for ϑ ≤ ϑc, τ(ϑ) = 0, for ϑ ≥ ϑc

with τ ≤ 0 and assume the temperature ϑc is greater than ϑ0. With those assump-
tions, it results

Ψ(E) =
(β1 + β2 + β3)

2
{ε(u) : K : ε(u)}

−(β1 − β2)τ(ϑ)I : ε(u) − β3
la
ϑ0

(ϑ − ϑ0) − Cϑ log ϑ +
k

2
|∇β|2 + IC(β) .

2.5. The pseudo-potential of dissipation. The dissipative forces are defined
via a pseudo-potential of dissipation Φ introduced by J.J. Moreau (it is a convex,
positive function with value zero at the origin, [33], [51], [52]). As already remarked,
the mass balance (4) is a relationship between velocities of δE. Thus we take it into
account in order to define the pseudo-potential and introduce the indicator function
I0 of the origin of R as follows

I0(∂t(β1 + β2 + β3) + divut) .

From experiments, it is known that the behaviour of shape memory alloys depends
on time, i.e., the behaviour is dissipative. We define a pseudopotential of dissipation

Φ(ϑ, βt,∇βt,∇ϑ) =
c

2
|βt|2+

υ

2
|∇βt|2+

λ

2ϑ
|∇ϑ|2+I0(∂t(β1+β2+β3)+divut) (9)

where λ ≥ 0 represents the thermal conductivity and c ≥ 0, υ ≥ 0 stand for phase
change viscosities.
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2.6. The constitutive laws. The internal forces are split between non-dissipative
forces σnd, Bnd and Hnd depending on (E, x, t) and dissipative forces by

{
σd,Bd, Hd,−Qd

}
,

depending on δE = {ε(u)t, βt,∇βt,∇ϑ} and (E, x, t)

σ = σnd + σd, B = Bnd + Bd, H = Hnd + Hd

with the entropy flux vector Q being

Q = Qd .

The nondissipative forces are defined with the free energy

σnd(E) =
∂Ψ

∂ε(u)
(E) = (β1 + β2 + β3)K : ε(u) − (β1 − β2)τ(ϑ)I (10)

Bnd(E, x, t) =
∂Ψ

∂β
(E) =

1

2




ε(u) : K : ε(u) − 2τ(ϑ) : ε(u)
ε(u) : K : ε(u) + 2τ(ϑ) : ε(u)

ε(u) : K : ε(u) − 2 la
ϑ0

(ϑ − ϑ0)



 + Bndr(E, x, t)

(11)

Bndr(E, x, t) ∈ ∂IC(β) (12)

Hnd = k∇β (13)

and the dissipative forces are defined with the pseudo-potential of dissipation

{
σd,Bd, Hd,−Qd

}
= ∂Φ(E, δE) (14)

where the subdifferential of Φ is with respect to δE. Relationship (14) gives

σd = −pI (15)

Bd = −p




1
1
1



 + cβt (16)

Hd = υ∇βt (17)

−Qd =
λ

ϑ
∇ϑ (18)

where p is the pressure in the mixture and it results

− p ∈ ∂I0(∂t(β1 + β2 + β3) + divut) . (19)

The state laws (10)–(13), besides implying that the internal constraints are sat-
isfied, give also the value of the reactions, during the evolution, to these internal
constraints.
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Relationships (10)–(13) and (15)–(19) give the constitutive laws

σ = (β1 + β2 + β3)K : ε(u) − ((β1 − β2)τ(ϑ) + p) I, (20)

B(E, δE, x, t) =
1

2






ε(u) : K : ε(u) − 2τ(ϑ) : ε(u) − p
ε(u) : K : ε(u) + 2τ(ϑ) : ε(u) − p

ε(u) : K : ε(u) − 2
la
ϑ0

(ϑ − ϑ0) − p





+ Bndr(E, x, t) + cβt,

(21)

Bndr(E, x, t) ∈ ∂IC(β) (22)

−p ∈ ∂I0(∂t(β1 + β2 + β3) + divut) (23)

H = k∇β + υ∇βt (24)

−Q(E, δE) = −Qd(E, δE) = −λ

ϑ
∇ϑ . (25)

It can be proved that our choice is such that the internal constraints and the second
law of thermodynamics are satisfied (cf., e.g., [39, 37] and the next Subsection 2.7).

2.7. The entropy balance. By denoting

s = −∂Ψ

∂ϑ
= C̄(1 + log ϑ) + β3

la
ϑ0

(26)

the entropy balance is

ds

dt
+ divQ = R +

1

ϑ

{
σd : ε(u)t + Bd ∂β

∂t
+ Hd : ∇βt − Q · ∇ϑ

}

= R +
1

ϑ

{
c|βt|2 + υ|∇βt|2 +

λ

ϑ
|∇ϑ|2

}
, in Ω (27)

−Q · n = Π, in Ω (28)

because

p ((β1 + β2 + β3)t + divU) = 0

due to (19), ϑQ is the heat flux vector, Rϑ is the exterior volume rate of heat that is
supplied to the alloy, ϑπ is the rate of heat that is supplied by contact action, ε(ut)
is the strain rate. The constitutive laws, within the small perturbation assumption
and (3), become

σ = K : ε(u) − ((β1 − β2)τ(ϑ) + p) I (29)

−p ∈ ∂I0((β1 + β2 + β3)t + divU) (30)

B =






−τ(ϑ) : ε(u) − p
τ(ϑ) : ε(u) − p

− la
ϑ0

(ϑ − ϑ0) − p





+ Bndr + cβt (31)

Bndr ∈ ∂IC(β) (32)

H = k∇β + υ∇βt (33)

Q(E, δE) = Qd(E, δE) = −λ

ϑ
∇ϑ . (34)
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2.8. The set of partial differential equations. We assume also quasi-static
evolution and, using again the small perturbation assumption (i.e. neglecting the
higher order contributions in the velocities in (27) which are smaller than the other
quantities in applications), we get the following set of partial differential equations
coupling the equations of motion (5), the entropy balance (27) and constitutive laws
(29)–(34)

div ((K : ε(u) − ((β1 − β2)τ(ϑ) + p) I)) + f = 0 (35)

−p ∈ ∂I0(∂t(β1 + β2 + β3) + divut) (36)

cβt − υ∆βt − k∆β +




−τ(ϑ) : ε(u) − p
τ(ϑ) : ε(u) − p

− la
ϑ0

(ϑ − ϑ0) − p



 + Bndr = 0 (37)

Bndr ∈ ∂IC(β) (38)

C̄
∂ log ϑ

∂t
+

la
ϑ0

∂tβ3 − λ∆log ϑ = R. (39)

This set is completed by suitable initial conditions and the following boundary
conditions:

σn = g on Σ1 := Γ1 × [0, T ] (40)

u = ut = 0 on Σ0 := Γ0 × [0, T ] (41)

∂nβ̇ + ∂nβ = 0 on Σ := ∂Ω × [0, T ] (42)

∂n(lnϑ) = Π on Σ (43)

where ∂n is the normal outward derivative to the surface ∂Ω, g is the exterior
contact force applied to Γ1, where (Γ0, Γ1) is a partition of ∂Ω and Γ0 has positive
measures.

2.9. Remarks on the model. The evolution of a structure made of shape memory
alloys, i.e., the computation of

E(x, t) = (ε(u)(x, t), β1(x, t), β2(x, t), β3(x, t), ϑ(x, t)),

depending on the point x of the domain Ω occupied by the structure and on time
t, can be performed by solving numerically the set of partial differential equations
resulting from the equations of motion (5), (6) the energy balance (27), (28) and
the constitutive laws (20)–(25), completed by convenient initial and boundary con-
ditions (cf., e.g., [30], [17], [64], [56]). The model we have described here is able
to account for the different features of the shape memory alloys: in particular,
their macroscopic, mechanical and thermal properties. We have used schematic
free energies and schematic pseudopotentials of dissipation.

There are still many possibilities to upgrade the basic choices we have made
to take into account the practical properties of shape memory alloys. Let us, for
instance, mention that the pseudopotential of dissipation can be modified in order
to describe more precisely the hysteretical properties of the materials. There is
no difficulty in having more than two martensites, for instance, to take care of 24
possible martensites! In the same way, it is possible to take into account of the
different forms of a single martensite variant, as explained in [58].

Note that the physical quantities for characterizing an educated shape memory
alloys are K, C̄, la, ϑ0, ϑc, τ , the two martensite volume fractions (for the free
energy) and c, k, λ (for the pseudopotential of dissipation). They are indeed not
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so many in order to have a complete multidimensional model which can be used for
engineering purposes.

Other models and results may be found in [4, 5, 10, 46, 55, 45]. Let us note the
very important role of internal constraints and of the reaction Bndr to those internal
constraints which are responsible for many properties. Let us also note that the
pressure is the reaction to the kinematic constraint resulting from the mass balance.
From this point of view, pressure p is involved in the equations in a logic and clear
way.

3. Main results. In order to give a precise formulation of our problem, let us
denote by Ω a bounded, convex set in R

n (n = 1, 2, 3) with Lipschitz boundary Γ,
by T a positive final time, and by Q the space-time cylinder Ω× (0, T ). Let (Γ0, Γ1)
be a partition of ∂Ω into two measurable sets such that both Γ0 has positive surface
measure. Finally, denote by Σ := ∂Ω × [0, T ], Σj := Γj × [0, T ] (j = 0, 1) and
introduce the Hilbert triplet (V, H, V ′) where

H := L2(Ω) and V := W 1,2(Ω) (44)

and identify, as usual, H (which stands either for the space L2(Ω) or for (L2(Ω))2

or for (L2(Ω))3) with its dual space H ′, so that V →֒ H →֒ V ′ with dense and
continuous embeddings. Moreover, we denote by ‖ · ‖X the norm in some space X
and by 〈·, ·〉 the duality pairing between V and V ′ and by (·, ·) the scalar product
in H .

Moreover, let r, s be two nonnegative real numbers, then, we introduce the fol-
lowing notation (cf. also [48, Def. (2.1), p. 6])

Hr,s(Q) := L2(0, T ; W r,2(Ω)) ∩ W s,2(0, T ; H),

Hr,s(Σ) := L2(0, T ; W r,2(Γ)) ∩ W s,2(0, T ; L2(Γ)).

Set, for simplicity of notation and without any loss of generality

c = k = la/ϑ0 = C̄ = λ = υ = 1 .

Then, in order to write the variational formulation of our problem (35–39), we
need to generalize the relationship Bndr ∈ ∂IC(β) stated in (38) (cf. also [8] for
similar generalizations). Hence, we need to introduce the following ingredients

j : R
3 → [0, +∞] a proper, convex, lower semicontinuous function

such that j(0) = 0 and its subdifferential (45)

α = ∂j : R
3 → 2R

3

(46)

τ ∈ W 1,∞(R) . (47)

Moreover, we consider the associate functionals

JH(v) =

∫

Ω

j(v(x))dx if v ∈ H and j(v) ∈ L1(Ω) (48)

JH(v) = +∞ if v ∈ H and j(v) 6∈ L1(Ω) (49)

JV (v) = JH(v) if v ∈ V 3 (50)

with their subdifferentials (cf. [7, Chap. II, p. 52])

∂V,V ′JV : V 3 → 2(V ′)3 (51)
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and (cf. [16, Ex. 2.1.4, p. 21])

∂HJH : H → 2H . (52)

Denote by D(∂V,V ′JV ) := {v ∈ V 3 : ∂V,V ′JV (v) 6= ∅} the domain of ∂V,V ′JV .
Then, for χ, ξ ∈ H , we have (see, e.g., [16, Ex. 2.1.3, p. 52]) that

ξ ∈ ∂HJH(χ) if and only if ξ ∈ α(χ) a.e. in Ω

and, thanks to (50) and to the definitions of ∂V,V ′JV and ∂HJH , we have

∂HJH(χ) ⊆ H ∩ ∂V,V ′JV (χ) ∀χ ∈ V 3. (53)

Now we denote by W the following space

W := {v ∈ V 3 : v = 0 on Γ0} (54)

endowed with the usual norm. In addition, we introduce on W × W a bilinear
symmetric continuous form a(·, ·) defined by

a(u,v) :=

3∑

i,j=1

∫

Ω

εij(u)εij(v).

Note here that (since Γ0 has positive measure), thanks to Korn’s inequality (cf.,
e.g., [20], [32, p. 110]), there exists a positive constant c such that

a(v,v) ≥ c‖v‖2
W ∀v ∈ W. (55)

Next, in order to rewrite the problem (35–39) in an abstract framework, let us
introduce the operators

B : V → V ′, 〈Bu, v〉 =

∫

Ω

∇u · ∇v u, v ∈ V (56)

A : W → W ′, W ′〈Au,v〉W = a(u,v) u,v ∈ W (57)

H : H → W ′, W ′〈Hu,v〉W =

∫

Ω

u divv u ∈ H,v ∈ W. (58)

Moreover, we make the following assumptions on the data

u0 ∈ W, ϑ0 ∈ L1(Ω), (59)

ϑ0 > 0 a.e. in Ω, w0 := log ϑ0 ∈ W 2,2(Ω), (60)

β0 = (β0
1 , β0

2 , β0
3) ∈ D(∂V,V ′JV ), (61)

f ∈ W 1,1(0, T ; H), g ∈ W 1,1(0, T ; (L2(Γ1))
3), (62)

R ∈ L2(0, T ; V ) ∩ L1(0, T ; L∞(Ω)), Π ∈ L∞(Σ) ∩ H3/2,3/4(Σ). (63)

Then, we introduce the functions R ∈ L2(0, T ; V ′) and F ∈ W 1,1(0, T, W ′) such
that

〈R(t), v〉 =

∫

Ω

R(t)v +

∫

∂Ω

Π(t)v|∂Ω v ∈ V, for a.e. t ∈ [0, T ], (64)

W ′〈F(t),v〉W =

∫

Ω

f(t) · v +

∫

Γ1

g(t) · v|∂Ω v ∈ W, for a.e. t ∈ [0, T ]. (65)

Now take the function

γ(r) := exp(r) for r ∈ R (66)

and take JV as in (50), then we are ready to introduce the variational formulation
of our problem as follows.
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Problem (P). Find (u, w, β1, β2, β3) and (ξ1, ξ2, ξ3, p) with the regularities

u ∈ L∞(0, T, W ), divu ∈ W 1,2(0, T ; V ) (67)

w ∈ W 1,2(0, T ; H) ∩ L2(0, T ; V ) ∩ L∞(Q) (68)

β1, β2, β3 ∈ W 1,2(0, T ; V ) ∩ L∞(0, T ; V ), β ∈ D(∂V,V ′JV ) a.e. in (0, T ) (69)

ξ1, ξ2, ξ3 ∈ L2(0, T ; V ′), p ∈ L2(Q) (70)

satisfying

Au−H(p + (β1 − β2)τ(γ(w))) = F in W ′ a.e. in [0, T ] (71)

∂t(β1 + β2 + β3) + divut = 0 a.e. in Q (72)

∂tw + ∂t(β3) + Bw = R in V ′ a.e. in [0, T ] (73)

∂tβ +




B∂tβ1

B∂tβ2

B∂tβ3



 +




Bβ1

Bβ2

Bβ3



 + ξ =




−τ(γ(w)) : ε(u) − p
τ(γ(w)) : ε(u) − p
−(γ(w) − ϑ0) − p





in (V ′)3 a.e. in [0, T ] (74)

ξ = (ξ1, ξ2, ξ3) ∈ ∂V,V ′JV (β) a.e. in [0, T ] (75)

and such that

u(0) = u0 a.e. in Ω (76)

w(0) = w0 a.e. in Ω (77)

β(0) = β0 a.e. in Ω . (78)

Remark 3.1. Obviously we can take j = IC in (45) with C as in (8) (cf. [7, Ex. 3,
p. 54]) and recover the problem already stated in (35–39) as a particular case of our
more general formulation. Note moreover that we can write down equation (74) only
in (V ′)3 (and by consequence we need to introduce the notion (51) of subdifferential

in (V ′)3) because of the V ′ regularity of (Bβ̇1,Bβ̇2,Bβ̇3) in (74). Indeed in this case
the subdifferential has sense only in (V ′)3 as it is physically meaningful because
equation (74) comes from the principle of virtual power, which is written down as
duality with virtual velocities (cf. also the modelling Section 2). Notice moreover
that, in case j = IC , we can still recover the physically meaningful constraint β ∈ C
a.e. due to the last relation of (69). The difficult point in the proof of our result will
be in fact the passage to the limit in the two non-smooth nonlinearities in equation
(74). By the contrary, we aim to remark that this dissipative term in (74) gives more
spatial regularity to ∂tβ which furnish more regularity to w in (73) (cf. the following
Theorem 3.2) and consequently to ϑ = γ(w) in (74). This regularity is needed in
order to prove well-posedness for our problem. However, we can also notice that,
from the mechanical viewpoint, since we have introduced in the model the elastic
(non-dissipative) local interaction term −∆β (in (36)), it seems also reasonable to
include in the model the dissipative local interaction term −∆βt, as it is done also
in other solid-solid phase transition models (cf., e.g., [11, 12]).

We are now ready to state our main result which is the following global existence
and uniqueness theorem.

Theorem 3.2. Let the assumptions on the data (45–65) hold and let T be a positive
final time. Then Problem (P) has a unique solution on the whole time interval
[0, T ].
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Remark 3.3. Let us note that assumption (63) on the data are needed (in partic-
ular) in order to get the L∞-bounds on the w(= log ϑ)-component of our solution
(cf. Lemma 4.4 in Section 4.2). Moreover, let us notice that proving the L∞-bound
on log ϑ ensures that ϑ is also bounded and bounded away from 0.

Moreover, in the last Section 5, we will get a proof for the following continuous
dependence result for Problem (P).

Theorem 3.4. Let T be a positive final time, (ui
0, wi

0, βi
0) (i = 1, 2) be two sets

of initial data satisfying conditions (59–61), (Ri, F i) (i = 1, 2) be two data of
Problem (P) satisfying assumptions (64–65) with (f i, gi, Ri, Πi) (i = 1, 2) as
in (62–63). Let (ui, wi, βi

1, βi
2, βi

3) (i = 1, 2) be two solutions of Problem (P)
corresponding to these data. Moreover, besides conditions (45–46), suppose that the
following hypothesis

α ∈ C0,1(R3) (79)

holds. Then, there exists a positive constant M , depending on the parameters of the
problem, such that the following continuous dependence estimate

‖w1 − w2‖2
L∞(0,t;H)∩L2(0,t;V ) + ‖u1 − u2‖2

W 1,2(0,t;W ) +

3∑

j=1

‖β1
j − β2

j ‖2
W 1,2(0,t;V )

≤ M
(
‖w1

0 − w2
0‖2

H + ‖u1
0 − u2

0‖2
W +

3∑

j=1

‖β01
j − β02

j ‖2
V

+ ‖F1 −F2‖2
L2(0,t;W ′) + ‖R1 −R2‖2

L2(0,t;V ′)

)
(80)

holds for any t ∈ (0, T ).

Remark 3.5. Let us note that in this paper we can treat the difficult coupling
between the phase-equations (74) in which appears the temperature ϑ (= γ(w))
and the entropy balance equation (73) in which only the function log ϑ (= w) plays
some role, using the L∞-bound on the w-component of solution to Problem (P)
(cf. (68)). Indeed it was just due to the lack of regularity of solutions that in [13]
(where there was the same type of coupling without the ∆∂tβ-term in (74)) the
authors did not obtain uniqueness of solutions (cf. also [13, Remark 5.2]).

However, let us observe that the main advantage of taking the entropy balance
equation instead of the internal energy balance equation is that once one has solved
the problem in some sense and has found the temperature ϑ := γ(w), it is automat-
ically positive because it stands in the image of the function γ (cf. (66)). Indeed in
many cases it is difficult to deduce this fact only from the internal energy balance
equation (cf., e.g., [29] in order to see one example of these difficulties). Let us
note that within the small perturbations assumption the entropy balance and the
classical heat equation are equivalent in mechanical terms (cf. [13, 14, 15]).

Finally, note that the uniqueness and continuous dependence result is obtained
only in case the subdifferential α is Lipschitz continuous in R

3, and so it cannot be
applied to the case α = ∂IC , but only to some regularizations of it. Moreover the
result is given in terms of the phase, displacement and temperature variables, but
not in the selections p and ξ (as usual for these kind of problems) (cf. (80)).

4. Proof of Theorem 3.2. The following section is devoted to the proof of The-
orem 3.2. First we approximate our Problem (P) by a more regular Problem
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(P ε), then (fixed ε > 0) we find well-posedness for the approximating problem us-
ing a iterated Banach contraction fixed-point argument and then we perform some
a-priori estimates (independent of ε) on its solution, which allow us to pass to the
limit in Problem (P ε) as ε ց 0, recovering a solution to Problem (P).

4.1. The approximating problem. We take a small positive parameter ε > 0
and approximate ∂V,V ′JV in (74–75) , let us take the Lipschitz continuous Yosida-
Moreau approximation αε = ∂jε = (jε)′ (cf. [16, Prop. 2.11, p. 39]) of α and the
associated functional JH,ε(v) =

∫
Ω jε(v(x)) dx, whose differential (∂HJH,ε) is the

Yosida-Moreau approximation of ∂HJH (cf. [16, Prop. 2.16, p. 47]). Now we aim to
recall some properties of this approximation which will be useful in order to pass
to the limit as ε ց 0. Note that the proof of the following lemma is a consequence
of [2, Thm. 3.20, p. 289], [2, Thm. 3.62, p. 365], and of the Lebesgue theorem of
passage to the limit under the sign of integral.

Lemma 4.1. If ∂V,V ′JV,ε is the Yosida-Moreau approximation of ∂V,V ′JV (cf. [7,
Thm. 2.2, p. 57]), then the following inclusion

∂HJH,ε ⊆ ∂V,V ′JV,ε (81)

holds true. Moreover, the following properties hold true (for ε ց 0)

JV,ε → sup
ε>0

JV,ε in the sense of Mosco (cf. [2, Def. 3.17, p. 295]), (82)

sup
ε>0

JV,ε = lim
εց0

∫

Ω

jε =

∫

Ω

j, hence (83)

JV,ε → JV in the sense of Mosco and, in particular, (84)

∀v ∈ V 3, ∀vε → v weakly in V 3 JV (v) ≤ lim inf JV,ε(vε). (85)

Finally, for ε ց 0, it holds

(u, ∂V,V ′JV,ε(u)) → ∂V,V ′JV in the graph sense ( cf. [2, Def. 3.58, p. 360]). (86)

Then, let us call γε the following Lipschitz continuous approximation of the
function γ(w) = exp(w), i.e. the function

γε(r) :=

{
exp r if r ≤ 1/ε

(r − 1/ε) exp(1/ε) + exp(1/ε) if r ≥ 1/ε.
(87)

Moreover let δε be the inverse function of γε, i.e.

δε
(
γε(r)

)
= r ∀r ∈ R (88)

and let γ̂ε be a primitive of the function γε, i.e.

γ̂ε(r) = 1 +

∫ r

0

γε(s) ds ∀r ∈ R. (89)

Then the following properties of γε hold true (cf. also [13, Lemma 5.1]).

Lemma 4.2. There holds

γ̂ε(r) ≥ γε(r), r(δε)′(r) ≥ 1 ∀r ∈ R.

We are ready now to introduce the approximating Problem (P ε) as follows.
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Problem (P ε). Find (uε, wε, βε
1, β

ε
2 , β

ε
3 , p

ε) with the regularities

uε ∈ L∞(0, T, W ), divuε ∈ W 1,2(0, T ; V ), pε ∈ L2(0, T ; H) (90)

wε ∈ W 1,2(0, T ; H) ∩ L2(0, T ; V ) ∩ L∞(Q) (91)

βε
1 , β

ε
2, β

ε
3 ∈ W 1,2(0, T ; V ) (92)

satisfying

Auε −H(pε + (βε
1 − βε

2)τ(γε(wε))) = F in W ′ a.e. in [0, T ] (93)

∂t(β
ε
1 + βε

2 + βε
3) + div (uε)t = εpε a.e. in Q (94)

∂tw
ε + ∂tβ

ε
3 + Bwε = R in V ′ a.e. in [0, T ] (95)

∂tβ
ε +




B∂tβ

ε
1

B∂tβ
ε
2

B∂tβ
ε
3



 +




Bβε

1

Bβε
2

Bβε
3



 + ∂HJH,ε(β
ε) =




−τ(γε(wε)) : ε(uε) − pε

τ(γε(wε)) : ε(uε) − pε

−(γε(wε) − ϑ0) − pε





in (V ′)3 a.e. in [0, T ] (96)

and such that

uε(0) = u0 a.e. in Ω (97)

wε(0) = w0 a.e. in Ω (98)

βε(0) = β0 a.e. in Ω . (99)

Concerning this approximating problem, we prove hereafter the following well-
posedness result.

Theorem 4.3. Let the assumptions (45–65) hold true. Let T be a positive final
time and ε > 0. Then the Problem (P ε) has a unique solution in [0, T ].

Proof. Here we are going first to prove local existence (and uniqueness) in a fi-
nite time interval [0, t̄] for some t̄ ∈ [0, T ], then we will extend the solution to
the whole interval [0, T ] proving global existence (and uniqueness) of solution to
Problem (P ε). Hence, let us take t̄ ∈ [0, T ] (we will choose it later) and denote
by X := (W 1,2(0, t̄; V ))3. Fix for the moment (β̄1

ε
, β̄2

ε
, β̄3

ε
) ∈ X in the equa-

tions (93–95), then, by well-known results (cf. also (62–63)), we find a unique wε =
T2(β̄1

ε
, β̄2

ε
, β̄3

ε
) ∈ W 1,2(0, T ; H)∩C0([0, T ]; V )∩L2(0, T ; W 2,2(Ω)) solution of (95).

By [32, Thm. 6.2, p. 168], it is possible to find a unique uε = T1(β̄1
ε
, β̄2, β̄3

ε
, wε) ∈

L∞(0, T ; W ) solution of (93–94) such that div (uε)t ∈ L2(0, T ; H).
Moreover, if we take these values of uε and wε in (96), we can find a solution

(βε
1 , β

ε
2 , β

ε
3) ∈ X , depending on

uε =: T1(β̄1
ε
, β̄2

ε
, β̄3

ε
, wε)

and

wε =: T2(β̄1
ε
, β̄2

ε
, β̄3

ε
),

of the equation (96) again by standard results.
In this way, we have defined an operator T : X → X such that (βε

1 , β
ε
2 , β

ε
3) =:

T (β̄1
ε
, β̄2

ε
, β̄3

ε
). What we have to do now is to prove that T is a contraction map-

ping on X for a sufficiently small t̄ ∈ [0, T ] and moreover, repeating the procedure
step by step in time (this is possible thanks to the regularities properties of the
solution listed above), we can prove well-posedness for the Problem (P ε) on the
whole time interval [0, T ] and conclude the proof of Theorem 4.3. In order to prove
that T is contractive, let us proceed by steps and forget of the apices ε.
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First step. Let (β̄1
i
, β̄2

i
, β̄3

i
) ∈ X , ui = T1(β̄1

i
, β̄2

i
, β̄3

i
), wi = T2(β̄1

i
, β̄2

i
, β̄3

i
), and

(β̄1
i
, β̄2

i
, β̄3

i
) = T (β̄1

i
, β̄2

i
, β̄3

i
) (i = 1, 2, 3). Then, writing two times (95) with β̄3

i

(i = 1, 2) instead of ∂t(β3), making the difference, testing the resulting equation
with (w1 − w2)t, and integrating on (0, t) with t ∈ [0, T ], we get the following
inequality

‖(w1 − w2)t‖2
L2(0,t;H) + ‖(w1 − w2)(t)‖2

V ≤C0‖(β̄1
3)t − (β̄2

3)t‖2
L2(0,t;H) (100)

+
1

2
‖w1 − w2‖2

L2(0,t;H),

for some positive constant C0 independent of t. Hence, we get, for all t ∈ [0, T ],

‖(w1 − w2)t‖2
L2(0,t;H) +

1

2
‖w1 − w2‖2

C0([0,t];V ) ≤ C1‖(β̄1
3)t − (β̄2

3)t‖2
L2(0,t;H) (101)

being C1 := C0e
T/2.

Second step. Let us take ϑi = γε(wi) and εpi := ∂t(β̄
i
1+β̄i

2+β̄i
3)+div (ui)t (i = 1, 2)

and write (93) with β̄i
1 and β̄i

2, make the difference, test the resulting equation with
ε
2 (u1 − u2)t, integrate on (0, t) with t ∈ [0, T ], and use equation (94), getting the
following inequality

ε

2
‖u1(t) − u2(t)‖2

W +
ε2

2
‖p1 − p2‖2

L2(0,t;H)

≤ ε

2

∫

Q

3∑

j=1

(β̄1
j − β̄2

j )t(p
1 − p2)

− ε

2

∫

Q

(
τ(ϑ1)

(
(β̄1

1 − β̄1
2) − (β̄1

2 − β̄2
2)

))


ε(p1 − p2) −
3∑

j=1

(β̄1
j − β̄2

j )t





+
ε

2

∫

Q

((
τ(ϑ1) − τ(ϑ2)

)
(β̄1

2 − β̄2
2)

)


ε(p1 − p2) −
3∑

j=1

(β̄1
j − β̄2

j )t





≤ ε2

4
‖p1 − p2‖2

L2(0,t;H) +
1

2

3∑

j=1

‖(β̄1
j )t − (β̄2

j )t‖2
L2(0,t;H)

+ C2

(
t2 + t

)
ε

3∑

j=1

‖(β̄1
j )t − (β̄2

j )t‖2
L2(0,t;H)

+ C3t exp(2/ε)‖w1 − w2‖2
C0([0,t];V ) . (102)

Third step. Write equation (96) for ϑi and ui, make the difference between the two
equations written for i = 1 and i = 2, and test the resulting vectorial equation by
the vector ε

4

(
(β1

1)t − (β2
1)t, (β

1
2)t − (β2

2)t, (β
1
3)t − (β2

3)t

)
. Summing up the two lines

and integrating on (0, t) with t ∈ [0, T ], we have (exploiting the Lipschitz continuity
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of ∂HJH,ε (cf. [16, Prop. 2.6, p. 28]))

ε

4

3∑

j=1

‖(β1
j )t − (β2

j )t‖2
L2(0,t;V ) +

ε

4

3∑

j=1

‖∇(β1
j − β2

j )(t)‖2
H

≤ −ε

4

∫

Q

3∑

j=1

(β1
j − β2

j )t(p
1 − p2)

− ε

4

∫

Q

(
(τ(ϑ1) − τ(ϑ2))div u1 + (div u1 − divu2)τ(ϑ2)

)
(β1

1 − β2
1)t

+
ε

4

∫

Q

(
(τ(ϑ1) − τ(ϑ2))div u1 + (div u1 − divu2)τ(ϑ2)

)
(β1

2 − β2
2)t

− ε

4

∫

Q

(ϑ1 − ϑ2)(β1
3 − β2

3)t +
ε

16

3∑

j=1

‖(β1
j )t − (β2

j )t‖2
L2(0,t;H)

+
1

4ε

3∑

j=1

‖β1
j − β2

j ‖2
L2(0,t;H) .

Moreover, using the definition (4.2) of γε and the assumption (47) on τ , we get the
following inequality

3ε

16

3∑

j=1

‖(β1
j )t − (β2

j )t‖2
L2(0,t;V ) +

ε

4

3∑

j=1

‖∇(β1
j − β2

j )(t)‖2
H

≤ ε2

8
‖p1 − p2‖2

L2(0,t;H) + C4ε
2‖(β1

j − β2
j )t‖2

L2(0,t;H)

+ C5t exp(2/ε)‖w1 − w2‖2
C0([0,t];V )

+ C6‖u1 − u2‖2
L2(0,T ;W )

+ t exp(2/ε)‖w1 − w2‖2
C0([0,t];H)

+
t2

4ε

3∑

j=1

‖(β1
j )t − (β2

j )t‖2
L2(0,t;V ) . (103)

Fourth step. Summing up the two inequalities (102) and (103), using (100), and
choosing t sufficiently small, we get

ε
3∑

j=1

‖(β1
j )t − (β2

j )t‖2
L2(0,t;V ) + ε

3∑

j=1

‖∇(β1
j − β2

j )(t)‖2
H + ε‖u1 − u2‖2

C0([0,t];W )

≤ Cε

(
t + t2 +

1

2

) 2∑

j=1

‖(β̄1
j )t − (β̄2

j )t‖2
L2(0,t;V ) (104)

where Cε does not depend on t. Hence, choosing t sufficiently small (this is our
t̄), we recover the contractive property of T . Moreover, applying the Banach fixed
point theorem to T , we get a unique solution for the Problem (P ε) on the time
interval [0, t̄]. Due to this estimate it is easy to prove that there exists m ∈ N such
that T m is a contraction on X . Hence we have a unique solution on the whole time
interval [0, T ]. This concludes the proof of Theorem 4.3.
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4.2. A priori estimates. In this subsection we perform a-priori estimates on
Problem (P ε) uniformly in ε which will lead us pass to the limit as ε ց 0 and re-
cover a solution of Problem (P). We denote by c all the positive constants (which
may also differ from line to line) independent of ε and depending on the data of the
problem. For simplicity, we omit the subscript ε when it is not necessary.

Let us prove here the following regularity result for parabolic equations which
will be useful in the sequel.

Lemma 4.4. Consider the operator B already introduced in (56), take R as in (64),
and w0 as in (60). Then, if R ∈ L2(0, T ; V ) and Π ∈ H3/2,3/4(Σ), the solution w
of the following initial-boundary value problem

wt + Bw = R in V ′ and a.e. in (0, T ) (105)

w(0) = w0 a.e. in Ω (106)

is bounded in L∞(Q).

Proof. First of all let us note that the problem (105–106) is the weak formulation
of the parabolic equation

wt − ∆w = R a.e. in Q (107)

coupled with the Neumann non-homogeneous boundary condition

∂nw = Π a.e. on Σ (108)

with the initial condition
w(0) = w0 a.e. in Ω. (109)

In order to prove this lemma, we need to reduce (107–109) to the case of Neumann
homogeneous boundary condition, i.e. to the problem

vt + Bv = G in V ′ and a.e. in (0, T ), (110)

v(0) = v0 a.e. in Ω (111)

with

〈G, v〉 =

∫

Ω

Gv and G ∈ L2(0, T ; V ). (112)

This is possible with the choice

G := R − w̄t + ∆w̄, v0 = w0 − w̄(0) and w̄ ∈ H3,3/2(Q) : ∂nw̄ = Π a.e. on Σ.
(113)

Note that w̄ is well-defined in H3,3/2(Q) because Π ∈ H3/2,3/4(Σ) and Theorem
5.3, p. 32 in [48] holds true. Indeed, if we take w = w̄ + v and put it in (107), we
find that v solves

vt − ∆v = G a.e. in Q, (114)

∂nv = 0 a.e. on Σ, (115)

v(0) = w0 − w̄(0) a.e. in Ω. (116)

Then, (110–111) is the weak formulation of (114–116) if one takes G as in (112).
Note that (cf. (113)) G ∈ L2(0, T ; V ) because R ∈ L2(0, T ; V ) and, since w̄ ∈
H3,3/2(Q), ∆w̄ ∈ L2(0, T ; V ) by definition and w̄t ∈ L2(0, T ; V ) because H3,3/2(Q)
is embedded in the interpolation space (L2(0, T ; W 3,2(Ω)), H3/2(0, T ; L2(Ω)))ζ,2 =

W (3/2)ζ,2(0, T ; W 3(1−ζ),2(Ω)) for ζ ∈ (0, 1) (cf. [48, Prop. 2.1, p.7] and [47, Prop. 2.3,
p. 19]). Choosing ζ = 2/3, we get exactly w̄ ∈ W 1,2(0, T ; V ). Hence, we may apply
the regularity result [44, Thm. 7.1, p.181] with n = 3, r = 2, and q = 6 to (110–111),
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in order to find that v is bounded in L∞(Q). Note that we have to do just one
modification in order to apply [44, Thm. 7.1, p.181], i.e. their argument works with
Dirichlet boundary conditions and uses inequality [44, (3.4), p. 75] to derive the
estimate. On the other hand, this inequality still holds even though the functions
involved do not vanish on the boundary provided that Ω is bounded and Lipschitz
and we allow the constants to depend also on Ω. Moreover, by using the fact that
w̄ is bounded in H3,3/2(Q) and by the previous interpolation results, we have that
H3,3/2(Q) →֒ L∞(Q). Hence w(= w̄ + v) is bounded in L∞(Q) and this concludes
the proof of our lemma.

First a-priori estimate. Test (93) by ut, (94) by p, (95) by γε(w) + w, (96) by βt,
sum up the resulting equations and integrate over (0, t) (t ∈ [0, T ]). The result is

∫

Ω

(
γ̂ε(w(t)) +

1

2
w2(t)

)
+

∫

Q

∇δε(ϑε)∇ϑε +

∫

Q

|∇w|2 +

∫ t

0

‖βt‖2
V

+
1

2

∫

Ω

|∇β(t)|2 + JH,ε(β(t)) +
1

2
‖u(t)‖2

W + ε‖p‖2
L2(0,t;H) =

∫

Ω

γ̂ε(w0)

+
1

2

∫

Ω

w2
0 +

1

2
‖∇β0‖2

H +
1

2
‖u0‖2

W +

∫ t

0
W ′〈F ,ut〉W +

∫ t

0

〈R, (γε(w) + w)〉

−
∫

Q

∂tβ3(w − ϑ0) +

∫

Q

τ(γε(w)) (divu (∂tβ1 − ∂tβ2) + (β1 − β2)divut) .

Now, following the line of [13, (5.5)–(5.7), p. 1583], we can deal with the source
term R recalling (64) and using a well-known compactness inequality (cf. [47, The-
orem 16.4]) in this way

∫

Q

Rγε(w) ≤
∫ t

0

‖R(s)‖L∞(Ω)‖γε(w(s))‖L1(Ω) ds (117)

∫ t

0

∫

∂Ω

Πγε(w) ≤ c‖Π‖L∞(Σ)‖(γε(w))1/2‖2
L2(Σ)

≤ 1

2
‖∇(γε(w))1/2‖2

(L2(0,t;H))3 + c‖(γε(w))1/2‖2
L2(0,t;H) . (118)

Moreover, using assumptions (62) and (65), we get (integrating by parts in time)
∫ t

0
W ′〈F ,ut〉W = −

∫ t

0
W ′〈Ft,u〉W + W ′〈F(t),u(t)〉W − W ′〈F(0),u(0)〉W

≤ c +
1

4
‖u(t)‖2

W +

∫ t

0

‖Ft‖W ′‖u‖W . (119)

Now, collecting estimates (117–119), using Lemma 4.2 and (94) in order to estimate
the term containing divut and employing assumptions (47) on τ and (59–65) on
the data, we get the following inequality

∫

Ω

(
γε(w(t)) +

1

2
w2(t)

)
+

∫

Q

|∇γε(w)|2
γε(w)

+

∫

Q

|∇w|2 +
1

4

∫ t

0

‖βt‖2
V

+
1

2
‖β(t)‖2

V + JH,ε(β(t)) +
1

4
‖u(t)‖2

W + ε‖p‖2
L2(0,t;H) ≤ c +

∫

Q

w2 +

∫ t

0

‖u‖2
W

+c

∫ t

0

‖β‖2
H +

ε2

4

∫ t

0

‖p‖2
H + c‖(γε(w))1/2‖2

L2(0,t;H) +

∫ t

0

‖Ft‖W ′‖u‖W
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which - via Gronwall lemma - and choosing ε small, leads to the following first
estimate

‖u(t)‖2
W + ‖(γε(w))1/2(t)‖2

H +

∫ t

0

‖∇(γε(w))1/2‖2
H + ‖w(t)‖2

H + ‖w‖2
L2(0,t;V )

+ε‖p‖2
L2(0,t;H) + ‖∂tβ‖2

L2(0,t;V ) + ‖∇β(t)‖2
H + JH,ε(β

ε(t)) ≤ c . (120)

Then, applying the standard regularity results for linear parabolic equations to (95),
we get

‖w‖W 1,2(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W 2,2(Ω)) ≤ c . (121)

Now, thanks to assumptions (60) and (63), we may apply [40, Lemma 4.3] to equa-
tion (94), getting the further bound

‖w‖L∞(Q) ≤ c . (122)

Thanks to (87) we can immediately recover

‖γε(w)‖L∞(Q) ≤ c (123)

and, due to Lemma 4.2 and (120–123), we have
∫

Q

|∇γε(w)|2 ≤ c

∫

Q

|∇γε(w)|2
γε(w)

≤ c

∫

Q

∇δε(γε(w))∇γε(w)

≤ c

∫

Q

|∇w|2 ≤ c

and
∫

Q

|(γε(w))t|2 ≤ c

∫

Q

∣∣∣
(γε(w))t

γε(w)

∣∣∣
2

≤ c

∫

Q

|(δε)′(γε(w))(γε(w))t|2

≤ c

∫

Q

|wt|2 ≤ c.

Hence, from these two inequalities it follows that

‖γε(w)‖W 1,2(0,T ;H)∩L2(0,T ;V )∩L∞(Q) ≤ c . (124)

Second a-priori estimate. In order to pass to the limit (as ε ց 0) in (96), we need
to pass to the limit in pε. We will use the following Lions’ lemma which is stated
in this form, e.g., in [63, Rem. 1.1, p. 17] (its proof is due to [50, Note (27), p. 320]
in case of a C1 class domain Ω and to [54] when Ω is only Lipschitz). For further
comments on this topic the reader can refer to [40, Remark 4.1].

Lemma 4.5. Let Ω be a bounded and Lipschitz set in R
3 and let m be a continuous

seminorm on H and a norm on the constants. Then there exists a positive constant
c(Ω) (depending only on Ω) such that the following inequality

‖u‖H ≤ c(Ω){m(u) + ‖∇u‖V ′} (125)

holds for all u ∈ H with ∇u ∈ V ′.

We want to apply this result in order to find the uniform (in ε) bound on pε.
First of all let us note that from comparison in (93), using also the bound (120) on
u with the assumption (62) on F , we immediately deduce that

‖∇pε‖L2(0,T ;V ′) ≤ c . (126)
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Moreover, always by comparison in (93), we have that

∣∣∣
∫

Q

pεdivv

∣∣∣ ≤ c ∀v ∈ W. (127)

Following the idea of [40], we can choose v⋆ ∈ W such that

∫

Ω

div (v⋆) dx =

∫

∂Ω

v⋆ · n ds 6= 0. (128)

Note that, since Ω is regular (it suffices for Ω to be a Lipschitz domain), we can
always find a v⋆ ∈ W such that (128) is satisfied, because, if we take Bε(x) the
ball in R

3 centered in x ∈ Γ1 with radius ε such that Bε(x) ∩ Γ0 = ∅ and con-
sider the parametrization of Γ1 ∩ Bε(x) through the Lipschitz function (x1, x2) 7→
(x1, x2, ϕ(x1, x2)), then the normal unit vector associated is

n =
(∂x1

ϕ,−∂x2
ϕ, 1)√

1 + |∇ϕ|2
.

Then, if we take v⋆ = (0, 0, ζ) with

ζ(y) =





exp

(
− 1

1−
|x−y|2

ε2

)
if |x − y| ≤ ε

0 otherwise,

then v⋆ ∈ W and moreover we can show that (128) holds because

1√
1 + |∇ϕ|2

≥ 1√
1 + L2

,

where L is the Lipschitz constant of ϕ, and hence
∫

Ω

divv⋆ =

∫

Γ1

v⋆ · n ds =

∫

Γ1∩Bε(x)

ζ√
1 + |∇ϕ|2

ds 6= 0 .

Take now m in Lemma 4.5 as

m(v) =
∣∣∣
∫

Ω

vdivv⋆

∣∣∣.

Then, m(v) is a seminorm on H and a norm on the constants because of (128).
Hence, we can apply Lemma 4.5 to pε with the choices done above and, thanks to
(126–127), we get the bound

‖pε‖L2(Q) ≤ c . (129)

Finally, by comparison in (96) and using the estimates (120) and (124–129), we
deduce that also ∂HJH,ε(β) is bounded in L2(0, T ; V ′). Then, testing (96) with
Bβε and then by using again (120) and (124–129) and the monotonicity properties
of αε, we get also

‖βε
j‖L∞(0,T ;W 2,2(Ω)) ≤ c (j = 1, 2, 3). (130)

Now it remains only to pass to the limit in (93–96) as ε ց 0. This will be the aim
of the next subsection.
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4.3. Passage to the limit and uniqueness. As we have just mentioned, we want
to conclude the proof of Theorem 3.2 passing to the limit in the well-posed (cf. Sub-
section 4.1) Problem (P ε) as ε ց 0 using the previous uniform (in ε) estimates
on its solution (cf. Subsection 4.2) and exploiting some compactness-monotonicity
argument. Let us list before the weak or weak-star convergence coming directly
from the previous estimates and well-known weak-compactness results. Note that
the following convergences hold only up to a subsequence of ε ց 0 (let us say
εk ց 0). We denote it again with ε only for simplicity of notation. From the
estimates (120–130) and the property (81) of ∂HJH,ε, we deduce that

uε → u weakly star in L∞(0, T ; W ) (131)

divuε
t → divut weakly in L2(0, T ; H) (132)

wε → w weakly in W 1,2(0, T ; H) ∩ L2(0, T ; W 2,2(Ω))

and weakly star in L∞(Q) ∩ L∞(0, T ; V ) (133)

γε(wε) → ϑ weakly star in W 1,2(0, T ; H) ∩ L∞(0, T ; V ) ∩ L∞(Q) (134)

βε
j → βj weakly star in W 1,2(0, T ; V ) ∩ L∞(0, T ; W 2,2(Ω))

(j = 1, 2, 3) (135)

pε → p weakly in L2(Q) (136)

ξε
j → ξj weakly in L2(0, T ; V ′) (j = 1, 2, 3) . (137)

Moreover, employing [61, Cor. 5, p. 86], we get also

wε → w strongly in L2(0, T ; V ) ∩ C0([0, T ]; H)

and hence a.e. in Q (138)

ϑε → ϑ strongly in C0([0, T ]; H) (139)

βε
j → βj strongly in C0([0, T ]; V ) (j = 1, 2, 3) . (140)

Note that (138–139) imply immediately the convergence

γε(wε) → ϑ = γ(w) and τ(γε(wε)) → τ(ϑ) a.e. in Q .

Moreover, the two convergences (137) and (140) along with the property (86) and
[2, Thm. 3.66, p. 373] give immediately the identification of the maximal monotone
graph ∂V,V ′JV , i.e.

ξ ∈ ∂V,V ′JV (β) in (V ′)3 and a.e. in [0, T ]

with ξ = (ξ1, ξ2, ξ3) and ξj (j = 1, 2, 3) are the weak limits defined in (137). All
these convergences with the identifications made above make us able to pass to the
limit (as ε ց 0 or at least for a subsequence of it) in Problem (P ε) finding a
solution to Problem (P) and concluding in this way the proof of Theorem 3.2.
Note that the convergences hold for all subsequences εk of ε tending to 0 because
of uniqueness of solutions. Indeed we may prove it in this way.

Consider two solutions of Problem (P) (ui, wi, βi
1, βi

2, β
i
3, p

i) (i = 1, 2, 3) cor-
responding to the same data. Moreover let us take the mass balance equation (72)
in the following integrated form

β1 + β2 + β3 + divu = β1(0) + β2(0) + β3(0) + divu(0) a.e. in Q . (141)

Then, integrate equation (73) over (0, t) (let us call it 1 ∗ (73) with a little abuse
of notation) and write down two times equations (71–72), 1 ∗ (73), (74) with
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(ui, wi, βi
1, βi

2, βi
3, pi), make the difference between the two equations 1 ∗ (73),

and test the result with (w1 −w2). Make the difference between the two equations
(71), test the result with (u1 −u2). Make the difference between the two equations
(74), written for i = 1 and i = 2, and test the resulting vectorial equation by the
vector

(
(β1

1) − (β2
1), (β1

2) − (β2
2), (β1

3) − (β2
3)

)
. Finally, summing up the three result-

ing equations, integrating over (0, t), with t ∈ [0, T ], exploiting the monotonicity
of ∂V,V ′JV , using equation (141) in order to get rid of the p-terms, and using the
fact that γ, defined in (66), is a locally Lipschitz continuous function, ϑi = γ(wi)
(i = 1, 2), and wi are bounded in L∞(Q) (cf. (68)), we get the following inequality

1

2
‖(u1 − u2)‖2

L2(0,t;W ) +
1

2
‖w1 − w2‖2

L2(0,t;H) + ‖1 ∗ (w1 − w2)(t)‖2
V

+

3∑

j=1

(
‖(β1

j − β2
j )(t)‖2

V + ‖(β1
j − β2

j )‖2
L2(0,t;V )

)

≤ c

∫ t

0

3∑

j=1

(
1 + ‖divu1‖2

V + ‖divu2‖2
V

)
‖β1

j − β2
j ‖2

V

for some positive constant c depending on the data of the problem. Let us notice
that we have estimated the terms containing the nonlinearity τ in (71) and (74) on
the right hand side as follows

∫

Q

(
(β1

1 − β1
2)τ(ϑ1) − (β2

1 − β2
2)τ(ϑ2)

) (
div (u1 − u2)

)

+

∫

Q

((
τ(ϑ1) − τ(ϑ2)

)
divu1 + τ(ϑ2)(div u1 − divu2)

) (
β1

2 − β2
2 − β1

1 + β2
1

)

≤ 1

4
‖w1 − w2‖2

L2(0,t;H) +
1

2
‖(u1 − u2)‖2

L2(0,t;W )

+c

∫ t

0

(
1 + ‖divu1‖2

V + ‖divu2‖2
V

) (
‖β1

1 − β1
2‖2

V + ‖β2
1 − β2

2‖2
V

)
.

The application of the standard Gronwall lemma together with the regularity (67)
leads to uniqueness of solutions to Problem (P) and concludes to proof of Theo-
rem 3.2.

5. Proof of Theorem 3.4. In this section we give the proof of Theorem 3.4. We
will use here the same symbol c for some positive constants (depending only on the
data of the problem), which may also be different from line to line.

Then, let us take two sets of data (ui
0, wi

0, βi
0), (Ri, F i) (i = 1, 2) of Prob-

lem (P) and let (ui, wi, βi
1, βi

2, βi
3, pi) (i = 1, 2) be two solutions of Problem (P)

corresponding to these data.
Then, write two times equations (71–74) with (ui, wi, βi

1, βi
2, βi

3, pi), make the
difference between the two equations (73), and test the result with 2(w1−w2). Make
the difference between the two equations (71), test the result with 2(u1−u2)t. Make
the difference between the two equations (74), written for i = 1 and i = 2, and test
the resulting vectorial equation by the vector

(
(β1

1)t − (β2
1)t, (β

1
2)t − (β2

2)t, (β
1
3)t −

(β2
3)t

)
.

Finally, summing up the three resulting equations, integrating over (0, t), with
t ∈ [0, T ], and exploiting the Lipschitz continuity of α (cf. assumption (79)), we get
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the following inequality

‖u1(t) − u2(t)‖2
W + ‖w1(t) − w2(t)‖2

H + ‖w1 − w2‖2
L2(0,t;V )

+

3∑

j=1

(
‖(β1

j )t − (β2
j )t‖2

L2(0,t;V ) + 1/2‖∇(β1
j − β2

j )(t)‖2
H

)

≤ c

∫ t

0

(
1 + ‖divu1‖2

V + ‖divu2‖2
V

)
‖ϑ1 − ϑ2‖2

H

+

3∑

j=1

(
c‖β1

j − β2
j ‖2

L2(0,t;H) + 1/2‖(β1
j )t − (β2

j )t‖2
L2(0,t;V )

)

+‖u1
0 − u2

0‖2
W + ‖w1

0 − w2
0‖2

H + 1/2

3∑

j=1

‖∇(β01
j − β02

j )‖2
H

+c‖F1 −F2‖2
L2(0,T ;W ′) + c‖R1 −R2‖2

L2(0,t;V ′). (142)

Let us notice that we have estimated the terms containing the nonlinearity τ in (71)
and (74) on the right hand side using (72) and the fact that γ, defined in (66), is a
locally Lipschitz continuous function, ϑi = γ(wi) (i = 1, 2), and wi are bounded in
L∞(Q) (cf. (68)), as follows

∫

Q

(
(β1

1 − β1
2)τ(ϑ1) − (β2

1 − β2
2)τ(ϑ2)

) (
div (u1 − u2)t

)

+

∫

Q

((
τ(ϑ1) − τ(ϑ2)

)
divu1 + τ(ϑ2)(div u1 − divu2)

) ((
β1

2 − β2
2

)
t
−

(
β1

1 − β2
1

)
t

)

= −
∫

Q

(
(β1

1 − β1
2)

(
τ(ϑ1) − τ(ϑ2)

)
+

(
β1

1 − β2
1 − β1

2 + β2
2

)
τ(ϑ2)

) 3∑

j=1

(
β1

j − β2
j

)
t

+

∫

Q

((
τ(ϑ1) − τ(ϑ2)

)
divu1 + τ(ϑ2)(div u1 − divu2)

) (
β1

2 − β2
2

)
t

−
∫

Q

((
τ(ϑ1) − τ(ϑ2)

)
divu1 + τ(ϑ2)(div u1 − divu2)

) (
β1

1 − β2
1

)
t

≤ 1

4

3∑

j=1

‖(β1
j − β2

j )t‖2
V + c

3∑

j=1

‖β1
j − β2

j ‖2
L2(0,t;H)

+ c

∫ t

0

(
1 + ‖divu1‖2

V + ‖divu2‖2
V

) (
‖w1 − w2‖2

H + ‖(u1 − u2)‖2
W

)
.

Moreover, by adding to both sides in the inequality (142)

1

2

3∑

j=1

‖(β1
j )(t) − (β2

j )(t)‖2
H =

1

2

3∑

j=1

‖β01
j − β02

j ‖2
H +

∫ t

0

3∑

j=1

((β1
j )t − (β2

j )t, β
1
j − β2

j )
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we get the following inequality

‖u1(t) − u2(t)‖2
W + ‖w1(t) − w2(t)‖2

H + ‖w1 − w2‖2
L2(0,t;V )

+
3∑

j=1

(
‖(β1

j )t − (β2
j )t‖2

L2(0,t;V ) + ‖(β1
j − β2

j )(t)‖2
V

)

≤ c

∫ t

0

(
1 + ‖divu1‖2

V + ‖divu2‖2
V

) (
‖w1 − w2‖2

H + ‖(u1 − u2)‖2
W

)

+c
( 3∑

j=1

‖β1
j − β2

j ‖2
L2(0,t;H) + ‖u1

0 − u2
0‖2

W + ‖w1
0 − w2

0‖2
H +

3∑

j=1

‖β01
j − β02

j ‖2
V

+‖F1 −F2‖2
L2(0,T ;W ′) + ‖R1 −R2‖2

L2(0,t;V ′)

)
.

Applying now a standard version of Gronwall’s lemma (cf. [16, Lemme A.4, p. 156]),
we get the desired continuous dependence estimate (80). This concludes the proof
of Theorem 3.4.
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of Parabolic Type,” Vol. 23, American Mathematical Society, Providence, R.I., 1967.

[45] F. Lebon (coordonnateur), Modélisation des alliages à mémoire de forme, Revue européenne
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des Sciences et des Techniques du Languedoc, Montpellier, 1994.

[50] E. Magenes and G. Stampacchia, I problemi al contorno per le equazioni differenziali di tipo

ellittico, Ann. Scuola Norm. Sup. Pisa, 12 (1958), 247–358.
[51] A. Miranville and R. Temam, “Mathematical Modeling in Continuum Mechanics,” 2nd Edi-

tion, Cambridge University Press, 2005.
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Roma Tor Vergata, Roma, ISBN 9 788862 960014, 2003.

[53] J. J. Moreau, Sur la naissance de la cavitation dans une conduite, C. R. Acad. Sci., Paris,
259 (1965), 3948–3950.
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