
Portable, Scalable, per-Core Power Estimation for Intelligent Resource Management

Bhavishya Goel*, Sally A. McKee*, Roberto Gioiosat, Karan Singh+, Major Bhadauria+, and Marco Cesati§

* Chalmers University of Technology, SE
t Barcelona Supercomputer Center, ES

+Cornell University, USA
§University of Rome-Tor Vergata, IT

Email: goelb@student.chalmers.se.mckee@chalmers.se.roberto.gioiosa@bsc.es.cesati@uniroma2.it

Abstract-Performance, power, and temperature are now
all first-order design constraints. Balancing power efficiency,
thermal constraints, and performance requires some means
to convey data about real-time power consumption and tem
perature to intelligent resource managers. Resource managers
can use this information to meet performance goals, maintain
power budgets, and obey thermal constraints. Unfortunately,
obtaining the required machine introspection is challenging.
Most current chips provide no support for per-core power
monitoring, and when support exists, it is not exposed to
software. We present a methodology for deriving per-core
power models using sampled performance counter values
and temperature sensor readings. We develop application
independent models for four different (four- to eight-core)
platforms, validate their accuracy, and show how they can
be used to guide scheduling decisions in power-aware resource
managers. Model overhead is negligible, and estimations exhibit
1.1 %-5.2% per-suite median error on the NAS, SPEC OMP,
and SPEC 2006 benchmarks (and 1.2%-4.4% overall).

I. IN TRODUCTION

Power and temperature have joined performance as first
order system design constraints. All three influence each
other, and together they affect architectural and packaging
choices. Power consumption characteristics further influence
operating cost, reliability, battery lifetime, and device life
time. Balancing power efficiency and thermal constraints
with performance requires intelligent resource management,
and achieving that balance requires real-time power con
sumption and temperature information broken down accord

ing to resource, together with software and hardware that can
leverage such information to enforce management policies.

One logical place to institute intelligent resource manage

ment with respect to power, performance, and temperature
for chip mUltiprocessor (CMP) systems is at the level of in

dividual cores. Measuring run-time power of a single core is
problematic, though. Current chips do not support it. Power
meters only report total consumption for everything behind

a single power cable, and even if such aggregate data were
sufficient, the use of meters becomes completely infeasible
as machines scale up: coordinating output and feedback

from thousands of meters would require a separate (super)
computing system. Cycle-level system simulators provide in

depth information, but are extremely time consuming and

978-1-4244-7614-511 0/$26.00 ©20 10 IEEE

prone to error. Power models implemented on top of the
architectural abstractions in such simulators are inherently

inaccurate [19], and are impossible to verify when attempt

ing to assess new architectural designs. Hardware could be
enhanced to measure the current and power draw of a CPU
socket, but per-core measurement is difficult when cores
share a power plane. Embedding measurement devices on
chip is usually infeasible. Even when measurement facilities
exist - e.g., the Intel Core i7 [16] features per-core power
monitoring at the chip-level - they are rarely exposed to
the user. Indeed, power sensing, actuation, and management
support is more often implemented at the blade level with a
separate computer monitoring output [14], [21].

On the other hand, temperature sensors are now com

monly available per core, and processor architectures gen
erally support some number of performance monitoring

counters (PMCs). We use data from these sensors and
counters to generate accurate, per-core power estimation

models. We create these models precisely because we lack

direct information on power consumed.
Previous work uses PMCs to estimate power on uniproces

sors and SMPs [18], [10], [24], [22]. Here we estimate power

for both single-threaded and multithreaded programs on
CMPs, observing median errors (across all benchmarks) of
1.2%,2.9%,3.8%, and 4.4% for a quad-core Intel Q6600, an
eight-core Intel E5430, a quad-core AMD Phenom, and an

eight-core AMD Opteron 8212, respectively. Corresponding

overall mean errors are 2.2%, 3.4%, 5.0%, and 4.9%. Results
for Intel Core2 Duo and Core i7 platforms are qualitatively
similar, and are omitted due to space considerations. We

then use our online estimation to help manage workloads
and frequencies dynamically.

In this paper we develop a model that uses performance
counters and temperature to generate accurate per-core

power estimates in real time, with no off-line profiling or
tracing. The approach is workload-independent and requires
no application modification. We show the effectiveness of
our models for driving power-aware scheduling and fre

quency scaling: schedulers whose decisions are informed
by these power models can enforce stricter power budgets,

usually with little or no loss in performance. Finally, we

demonstrate portability to four CMP platforms. Studying
sources of model error highlights the need for hardware

support for power-aware resource management, such as fine

grained power sensors across the chip and more accurate
temperature information. Our approach nonetheless shows
promise for balancing performance, power, and thermal re
quirements for platforms from embedded real-time systems

to consolidated data centers, and even to supercomputers.

II. ME THODOLOGY

Building an analytic software model of per-resource
power consumption requires some form of machine in
trospection. Any model must be based on knowledge of
how and when a resource is being used. The resource on

which we focus here is the processor core, and we leverage
nearly ubiquitous performance monitoring counters (PMCs)
to glean information about microarchitectural activity.

To build the model, we must 1) choose appropriate PMCs

to reflect major activities consuming power, and 2) gener
ate a mathematical model capturing relationships between
chosen PMCs and measured system power. Other PMC
based power models use counters chosen a priori [22], [24].
Instead, we formalize the relationship between observed
counter activity and measured system power with statistical

analysis, choosing PMCs that correlate most strongly with
measured power. We find that the best set of counters
is unique to each system. We sample those PMCs while
running micro benchmarks to exercise the microarchitecture
and then develop a linear regression model to fit collected
data to measured power values. We produce a verifiable
system power estimate by adding the "uncore" power (from

components external to the cores) to the per-core estimates.

Note that hardware performance counters have limitations.
For instance, most Intel platforms only support concurrent

sampling of two counters. We multiplex counters, sampling
two counters during each half of the time slice. A similar
time-slicing strategy would be necessary were we to employ
more counters than can be sampled concurrently on any
architecture. Many counters report aggregate events at the

chip level and not per core, thus they are not suited to our

approach. The PC of the instruction triggering a counter
overflow is often not the one reported. In some contexts
this sample skid can be problematic, but in time-based

sampling (used to create our models) precision with respect
to instructions causing events is unimportant.

A. Choosing PMCs

Current systems include a variety of event counters. We

identify those most relevant to our purposes, rank them,
evaluate our choices, and create a formal model mapping
observed events to measured system power.

Identifying Candidates. To choose appropriate PMCs,
we consider common events that represent the heavily used

parts of a core's microarchitecture. For instance, monitoring

last-level cache misses allows us to track the most power
hungry memory hierarchy activity. Monitoring instructions
retired along with their types allows us to follow power us

age in the FPUs and integer units. Tracking total instructions
retired gives information on overall performance and power.
We expect out-of-order logic to contribute to power usage,
as well. Even though no counter gives such information
directly, monitoring resource stalls can provide insight. Stalls

from issue logic may reduce power, but CPU stalls from
full reservation stations, load-store queues, or reorder buffers

may increase power, since the hardware attempts to extract
instruction-level parallelism from the instruction stream. For
example, if a fetched instruction stalls, the out-of-order

logic tries to find another to execute, examining reservation
stations to check each new instruction's dependences and
using more dynamic power. We separate available PMCs into

the smallest set that covers these contributions to dynamic
power, deriving four categories (a reasonable starting place,
since our systems monitor two or four counters simultane
ously): FP Units, Memory, Stalls, and Instructions Retired.

Ranking Counters. We create microbenchmarks to ex
ercise different parts of the machine. We use no code from
test benchmark suites, since the model must be application

independent. We explore the space spanned by the four

categories and attempt to cover common cases as well as
extreme boundaries. The resulting counter values have large

variations ranging from zero to several billion. For example,
CPU-bound benchmarks have few cache misses, and integer

benchmarks have few FP operations. The microbenchmarks
have large for loops and case statements branching to
different code nests. We compile the microbenchmarks with
no optimization to prevent redundant code removal, and run
them simultaneously on each core. All behaviors should
fall within the space defined by our categories, making the

approach applicable to both current and future applications.
While running the microbenchmarks (once, at system

startup), we collect power, and performance data for the
PMCs in the four categories. We use a Watts Up Pro power

meter to measure system power! and pfmon [13] to collect
PMC data. We order PMCs according to Spearman's rank
correlation to measure the relationship between each counter

and power, selecting the top counter per category.
Even though we select event categories that attempt to

capture different kinds of micro architectural activity, we're

analyzing a cohesive hardware component for which all
counters track inter-related events. This means that all

counters chosen will necessarily contribute some redundant
information. To assess this, we select several top-ranked
PMCs in each category, and analyze the correlations among

the PMCs themselves. If the top-ranked counters correlate
strongly with other counters, we investigate counters that

1 Note that we leave the meter plugged in to gauge model accuracy during
normal operation, but when not testing accuracy, the meter is no longer
required once the model is formed.

correlate less strongly with both power and other candidate
counters, and evaluate accuracy of several alternate models.
For the systems we study here, correlation of observed
event rates and measured power is the strongest criterion for
choosing PMCs: alternative models that try to leverage less
redundant information (but perhaps less information overall)
yield poorer models. In the absence of a mathematical

formula for evaluating information redundancy versus power
contributions of a set of events, this sanity check helps
ensure that we're generating high quality models.

Note that model accuracy depends on the PMCs available
on a given platform. If available PMCs do not sufficiently
represent the microarchitecture, model accuracy will suffer.

For example, the AMD Opteron 8212 supports no single
counter giving total floating point operations. Instead, sepa

rate PMCs track different types of floating point operations.
We therefore choose the one most highly correlated with

power. Model accuracy would likely improve if a single

PMC reflecting all floating point operations were available.

B. Forming the Machine Model

Having identified events that contribute significantly to
consumed power, we create a formalism to map observed
microarchitectural activity and measured temperatures to
measured power draw. We re-run the microbenchmarks

sampling just the chosen PMCs, collecting power and tem
perature data at each sampling interval. We normalize each

time-sampled PMC value, ei, to the elapsed cycle count
to generate an event rate, ri o We then map rise in core
temperature, T, and the observed event rates, ri, to core
power, PeaTe, via a piece-wise model based on multiple
linear regression, as in Equation 1. We apply linear weights
to transformations of event rates, as in Equation 2.

if condition else

where ri = €i/(cycle count), T = Tcurrent - Tidle

(1)

Fn = Po + Pi * gi(rd + ... + Pn * gn(rn) + Pn+i * T (2)

We use transformations to increase linearity or to achieve
constant variance in the regression equation (to make the

model more amenable to linear regression and to improve

estimation accuracy). Since Spearman's rank correlation is
independent of frequency distributions, transformations can
be linear, inverse, logarithmic, exponential, or square root.
We choose a piece-wise linear function because we observe

significantly different behavior for low PMC values. This
lets us retain the simplicity of linear regression and to
capture more detail in the core power function. We examine
counter values plotted against power measurements to find
opportunities for transformations, as well as to identify
candidate locations for splitting the data to form the piece
wise model. For example, for the (hypothetical) data in

----data
-linear function
-exponential function

(a) Best-Fit Continuous
-data
-piecewise function

(b) Piece-Wise

Figure 1. Examples of Poor Continuous and Better Piece-Wise
Approximation Functions

Figure 1 (a), neither a linear nor exponential transformation
fits well. By breaking the data into parts, we create the

better-fitting piece-wise combination in Figure 1 (b).

We use a least squares estimator to determine weights for

function parameters, yielding the piece-wise linear model in
Equation 3 (Figure 2). The first part of the equation estimates
power when the L2 counter is very low, and the second
estimates power for the rest of the space.

C. Applying the Model

System power is based on measuring the power supply's
current draw from the power outlet when the machine is idle.

When we cannot find published values for idle processor
power, we sum power draw when powered off and power
saved by turning off cdrom, floppy, and hard disk drives;

removing all but one memory DIMM; and disconnecting
fans. We subtract idle core power from idle system power to
get uncore (baseline without processor) power. Change in the
uncore power itself (due to DRAM or hard drive accesses,
for instance) is included in the model estimations. Including
temperature as a model input accounts for variation in uncore

static power. We always run in the active power state (CO):
experimenting with other power states is future work.

III. EXPERIMENTAL RESULTS

We evaluate our models by estimating per-core power for
the SPEC 2006 [29], SPEC-OMP [28], [4], and NAS [6]
benchmark suites. We use gcc 4.2 to compile our bench
marks for a 64-bit architecture with optimization flags

enabled, and run all benchmarks to completion. We use
the pfmon utility from the perjmon2 library [l3] to access

hardware performance counters. Table I gives system details.
Idle processor temperature is 36°C for both the Intel Q6600
and AMD Phenom platforms. Idle system power is 141.0W

for the Intel Q6600, and 84.1 W for the AMD Phenom. We
subtract 38.0W [1] idle processor power to obtain an uncore
power of 103W for the Q6600, and subtract 20.1 W [2]
idle processor power to obtain an uncore power of 64.0W

Peore = { 7.699 + 0.026 * log(rl) + 8.458 * r2 + -3.642 * r3 + 14.085 * r4 + 0.183 * T,
5.863 + 0.114 * log(rl) + 1.952 * r2 + -1.684 * r3 + 0.110 * log(r4) + 1.044 * T, (3)

where ri = e;/2200000000 (Is = 2.2B cycles), T = Teurrent - Tidle
Figure 2. Piece-Wise Linear Function for Core Power

for the Phenom. Idle processor temperature for the Intel
E5430 system is 45°C, and uncore power is 122.0W. Idle
processor temperature for the AMD 8212 is 33°C, and

uncore power is 90W. Table II lists chosen counters. We use
the sensors utility from the 1m-sensors library to obtain core
temperatures, and we use a Watts Up Pro power meter [12]
to gather power data. This meter is accurate to within 0.1 W,
and it updates once per second. We can thus only verify our
power estimates at the granularity of one second.

We test our models for both multithreaded and single

threaded applications on our four platforms. We assess
model error by comparing our system power estimates to
power meter output (which our power meter limits to a one
second granularity). Then we incorporate the power model
into a proof-of-concept, power-aware resource manager (a
user-level meta-scheduler) designed to maintain a specified

power envelope. The meta-scheduler manages processes
non-invasively, requiring no modifications to the applications
or as. It does so by suspending/resuming processes and,

where supported, applying dynamic voltage/frequency scal
ing (DVFS) to alter core clock rates. For these experiments,
we degrade the system power envelope by 5%, 10%, or
15%. Lower envelopes render cores inactive, and we do not
consider them. Finally, we incorporate the model in a kernel

scheduler, implementing a pseudo power sensor per core.
The device does not exist in hardware, but is simulated by

the power model module. Reads to a pseudo-device retrieve
the power estimate computed most recently.

A. Computation Overhead

If computing the model is expensive, its use becomes
limited to course timeslices. In this experiment we study
the overhead of our power model in order to evaluate its
use in an as task scheduler. The scheduler we use is
specifically tailored to High Performance Computing (HPC)
applications, which require that the as introduce little or

no overhead. In most cases, it delivers better performance
with better predictability, and it reduces as noise [8], [9].

The model's overhead depends on 1) the frequency with
which the per-core power is updated, and 2) the complexity

of the operations required to calculate the model. We cal
culate overhead by measuring execution time for our kernel
scheduler running with and without reading the PMCs and

temperature sensors. We vary the sample period from one
minute to 10 msec. We time applications for five runs and
take the average (differences among runs are within normal
execution time variation for real systems). Table III gives

measured times for the scheduler with and without evaluat
ing the model. These data show that computing the model
adds no measurable overhead, even at lOms timeslices.

B. Estimation Error

In our experiments, we run multithreaded benchmarks
with one thread per core, and single-threaded benchmarks
with an instance on each core. Data are calculated per
core, and errors are reported across all cores. Figure 3
through Figure 6 show percentage error for the NAS, SPEC
aMP, and SPEC 2006 applications on all systems. Figure 7

through Figure 10 show standard deviation of error for each
benchmark suite on the Intel Q6600, Intel E5430, AMD
Phenom, and AMD Opteron platforms. The occasional high

standard deviations illustrate the main problem with our
current infrastructure: instantaneous power measurements
once per second do not reflect continuous performance
counter activity since the last meter reading.

Estimation error ranges from 0.3% (leslie3d) to 7.1 %
(bzip2) for the Intel Q6600 system, from 0.3% (ua) to 7.0%
(hmmer) for the Intel E5430 system, from 1.02% (bt) to

9.3% (xalancbmk) for the AMD Phenom system, and from
1.0% (bt.B) to 10.7% (soplex) for the AMD Opteron

8212 system. Our model exhibits median error of 1.6%,
1.6%, and 1.1 % for NAS, SPEC-aMP, and SPEC 2006,

respectively, on the Q6600. Corresponding errors per suite
are 3.9%, 3.5%, and 2.8% on the E5430, 4.5% 5.2%, and
3.5% on the Phenom, and 2.6%, 3.4%, and 4.8% on the
8212. On the Intel Q6600, only five (out of 45) applications

exhibit median error exceeding 5%; on the Intel E5430,
only six exhibit error exceeding 5%; on the AMD Phenom,

eighteen exhibit error exceeding 5%; and on the AMD
Opteron 8212, thirteen exhibit error exceeding 5%. These

errors are not excessive, but lower is better: identifying
causes of error and refining the model are ongoing work.
For instance, the Opteron 8212 temperature sensor data

appear inaccurate: we measure different idle temperatures
for different cores. We achieve good results despite the
inaccuracies by underestimating idle temperature and using
that value consistently for model training, testing, and dy
namic calculation. Prediction errors are not clustered, but are
spread throughout application execution. Monitoring PMCs

at a finer granularity reveals that our meter's one-second
resolution for delivering instantaneous power measurements
prevents capturing counter activity between samples.

Figure 11 shows model coverage via Cumulative Distri
bution Function (CDF) plots for the suites. On the Q6600,

10
" 8
.li
c '"
'g 4
::;
'" 2

�

]
c '"

I 'g ::;
'"

'0'

Inlel Q6600 Intel Xeon E5430 AMO Phenom 9500 AMD Opteron 8212

Cores/Chips 4, dual dual-core 8, dual quad-core 4 8, quad dual-core

Frequency (GHz) 2.4 2.0,2.66 1.1,2.2 2.0

Process (nm) 65 45 65 90

L 1 Instruction 32 KBB-way 32 KBB-way 64 KB 2-way 64 KB 2-way

Ll Data 32 KB8-way 32 KB 8-way 64 KB 2-way 64 KB 2-way

L2 Cache 4 MB 16-way shared 6 MB 16-way shared 512 KB a-way exclusive 1024 K6 16-way exclusive

L3 Cache N/A N/A 2 MB 32-way shared N/A

Memory Controller off-chip, 2 channel off-chip, 4 channel on-chip, 2 channel on-chip, 2 channel

Main Memory 4 GB DDR2-800 8 GB DDR2-800 4 GB DDR2-800 16 GB DDR2-667

Bus (MHz) 1066 1333 1100,2200 1000

Max TDP(W) 105 80 95 95

Linux Kernel 2.6.27 2.6.27 2.6.25 2.6.31

Table I
MACHINE CONFIGURATION PARAMETERS

Category Intel 06600 Inlel ES430 AMD Phenom 9500 AMD Opteron 8212

Memory l2 LINES IN lAST_lEVEL CACHE MISSES l2 CACHE_MISS DATA CACHE ACCESSES

Instructions Executed UOPS RETIRED UOPS RETIRED RETIRED UOPS RETIRED INSTRUCTIONS

Floating Point X87 OPS_RETIRED X87 OPS RETIRED RETIRED_MMX-.AND FP INSTRUCTIONS DISPATCHED FPU:OPS�UlTIPlY

Stalls RESOURCE_STAllS RESOURCE_STAllS DISPATCH_STAllS D E CODER EMPTY

Table II
P MCs SELEC TED FOR EACH P LATFORM

Benchmark baseline model (10msee) model (1 OOmsee) model (lsee)

ep.A serial 35.68 35.57 36.04 35.59

ep.AOMP 4.84 4.89 4.77 4.74

ep.AMPI 4.77 4.72 4.73 4.75

eg.A serial 5.82 5.83 5.83 5.83

eg.AOMP 1.95 1.95 1.95 1.95

cg.AMPI 2.19 2.20 2.20 2.20

ep.S serial 146.53 146.52 145.52 146.77

ep.80MP 19.45 19.33 19.35 19.54

ep.BMPI 18.95 19.41 19.12 19.18

eg.S serial 559.58 560.50 560.11 560.10

eg.8 OMP 91.29 92.64 96.90 89.92

eg.B MPI 79.11 79.18 79.18 79.05

Table III
SCHEDULER BENCHMARK TIMES FOR SAMPLE NAS ApPLICATIONS ON THE AMD OPTERON 8212 (SEC)

(a) NAS

I I I I I I
0> .� "" ,� ,<\:i�� <f>o, <Jl ","

(a) NAS

g

]
w
c '"
'g

I I I ::;
'" I I

(b) SPEC-OMP

Figure 3. Median Estimation Error for Intel Q6600 system

II II I I . I . I I I I I I

(C) SPEC 2006

"

'�l
.li
c '"
'g ::;

I I
'" I k I I I I k I I I I I . .

�« ft� si�
'1>� '1>q 'b'

(b) SPEC-OMP

Figure 4_ Median Estimation Error for Intel E5430 system

(C) SPEC 2006

(a) NAS (b) SPEC-OMP (c) SPEC 2006

Figure 5. Median Estimation Error for the AMD Phenom 9500

e 8

I I

I O j
II I ! � _ I I I I II I I I I

(a) NAS (b) SPEC-OMP (c) SPEC 2006

Figure 6. Median Estimation Error for the AMD Opteron 8212

85% of estimates have less than 5% error, and 98% have
less than 10%. On the E5430, 73% have less than 5% error,

and 99% less than 10%. On the Phenom, 59% have less than
5% error, and 92% less than 10%. On the 8212, 37% have

less than 5% error, and 76% have less than 10%. The vast
majority of estimates exhibit very small error.

Figure 12 through Figure 15 compare measured to es
timated power for our experimental platforms. Values are
calculated as the mean of power over an application's exe
cution. These data show that our models do not consistently

under- or over-estimate power across benchmark suites.
Figure 16 shows that estimates closely follow measured data
throughout gcc execution on the Intel Q6600, illustrating
why the model underestimates power by 0.7W on average
for this application. We validate by running identical work

loads on all cores, so errors on individual cores are likely to
be similar and cumulative (instead of canceling each other).

C. Live Power Management

We use per-process power estimates to enforce a given
power budget for multi programmed workloads on each
CMP. Table IV presents three sets of multiprogrammed
workloads exhibiting varying levels of computational inten

sity, or the ratio of instructions retired to cache misses.

We experiment with two example policies for our meta
scheduler. The policies themselves are not particularly in
teresting, but they try to optimize for different goals, and

together they provide a proof of concept with respect to the
use of our power models in resource management. When

the power envelope is breached on a system supporting
DVFS, the meta-scheduler reduces the frequency of the core
running the process selected by the policy. When DVFS
is unavailable or exhausted, the meta-scheduler suspends

the selected process. When there is power slack, the meta
scheduler resumes the process selected by the policy, or if all
processes are running and DVFS is supported, it increases
the frequency of the core running the selected process. The
max instlwatt policy attempts to achieve the most energy

efficiency under a given power envelope by selecting the
process with the fewest instructions committed per watt of
power consumed when the power budget is exceeded, and
the one with the most instructions committed per watt when
there is slack. The per-core fair policy tries to allocate

available power equitably per core. When the envelope is
breached, the policy selects the process with highest average
consumed power. When there is slack, the policy selects the

process with lowest average consumed power.

We perform two sets of experiments. For the first set, we

use the 2.2 GHz AMD Phenom and 2.4 GHz Intel Q6600
systems. We selectively suspend/resume processes to remain
within the system power envelope. For the second set, we use
the AMD Phenom and Intel E5430 systems, using DVFS to
vary frequencies between 1.1 and 2.2. GHz, and between 2.0
and 2.67 GHz, respectively. We form separate power models

for the lower frequencies. The power manager can thus better
implement policy decisions by estimating power for either
frequency. Since the E5430 platform supports DVFS per
(quad-core) chip, and not per core, we independently vary
frequencies among the two chips. If all core frequencies
have been reduced but the power envelope is still breached,
we suspend processes to reduce power. We compare against
runtimes with no enforced power envelope.

Figure 17 and Figure 18 show examples of the two
policies with different power envelopes for the Intel Q6600
and AMD Phenom systems. Measured and estimated power

correlate well. We follow the power envelope, and we do so

-g :.
� '" .
i
"0
.�
�

10

Cl 6
<f)
'" 4

Cl

] <f)
'"

10

Cl 6
<f)
*- 4

'�j
Cl
<f)
'"

1.0
0.8
0.6
0.4
0.2
0.0

0

(a) NAS

I I I I
-0' 6> e'l ". ,..;) ,.;;;'<:-� <,-'"

(a) NAS

(a) NAS

I I I I I
� 6> e'l ". ,'::' ,.;;;v;:.� <,-'"

(a) NAS

10 20 30
% ErrOf

(a) Intel Q6600

.'1

I

I
.,"

10

Cl 6
<f)
"# 4

(b) SPEC-OMP

10

Cl 6
<f)
'* 4

(c) SPEC 2006

Figure 7. Standard Deviation of Error for Intel Q6600 system

(b) SPEC-OMP

Figure 8. Standard Deviation of Error for Intel E5430 system

(b) SPEC-OMP

(c) SPEC 2006

(c) SPEC 2006

Figure 9. Standard Deviation of Error for the AMD Phenom 9500

Cl

'] <f)
'"

I I I I I i}
'<:I� ,;;:,'It �� �.;:, '/)<f:5 'It� .. 'I

�t:- �o -:..0(::. �{> �0 -t::' .�
,<f;:''Ii �'li <f::'CS �'li "'.:/> �Q.:j.

(b) SPEC-OMP (c) SPEC 2006

Figure 10. Standard Deviation of Error for the AMD Opteron 8212

:. :.
� 0.8 .3 0.8 '" . 0.6 . 0.6 1 1
"0 0.4 "0 0.4

j
0.2 .� 0.2

U
.i' 0.0

10 20 30 0 10 20 30
% Error '>to Error

(b) Intel E5430 (c) AMD 9500

:. .3 0.8
. 0.6 1
"0 0.4
.� 0.2

� 0.0
0 10 20 30

% ErrOf

(d) AMD 8212

Figure 11. Cumulative Distribution Function (CDF) Plots Showing Fraction of Space Predicted (y axis) under a Given Error (x axis) for
Each System

Benchmark Set Intel 06600 and AMD Phenom Intel E5430

CPU bound ep, gamess, namd, povray calculix, ep, gamess, gromacs, h264ref, namd, perlbench, povray

Moderate art, lu, wupwise, xalancbmk bwaves, cactusADM, fma3d, gee, leslie3d, sp, ua, xalancbmk

Memory bound aslar, mel, mite, soplex applu, aslar, Ibm, mel, mile, omnetpp, soplex, swim

Table IV
EXPERIMENTAL MULTI PROGRAMMED WORKLOADS

35

_30
�

� 25
Il. 20

15
",'

35

35

_30
� :. 25
� 20

15
oQ-

50

E 45

:. 40
� 35

30
",'

0>

,,<>

.q

(a) NAS

actual
predicted

(a) NAS

.q

(a) NAS

actual
predicted

(a) NAS

(b) SPEC-OMP (c) SPEC 2006

Figure 12. Estimated VS. Measured Error for Intel Q6600 system

35 actual
predicted

_30
�

! 25
Il. 20

15 �---------------------------
�� �v �

'l1� 'l1�'('b�

(b) SPEC-OMP (c) SPEC 2006

Figure 13. Estimated VS. Measured Error for Intel E5430 system

(b) SPEC-OMP (c) SPEC 2006

Figure 14. Estimated VS. Measured Error for the AMD Phenom 9500

(b) SPEC-OMP (c) SPEC 2006

Figure 15. Estimated VS. Measured Error for the AMD Opteron 8212

25

24

� 23
a; � 22
Cl.

21

20�--�-.--�--'-�---r--�-''-�
20 40 60 80

Sample Index

Figure 16. Detail of Estimated VS. Measured Error for gee on the Intel Q6600

500 1000 1500 2000 2500
Time (sec)

(a) Moderate, Max InstlWatt, 90%

� 250
-; 200 fo--="' ... ==I;;IlSI--.... ==-C==
� 150

.-.predicted
---actua l
-envelope

� 100
� 50
00 04-�--.-�--.-�--.-�---

o 200 400 600
Time (sec)

(b) CPU-bound, Per-Core Fair, 95%

Figure 17. Estimation Error for Different Workloads and Envelopes on the Intel Q6600

� 200
:;; � 150

.-.predicted
0.. 100 ----pre Ie E

---actual <1> 50 ---actual

-envelope ;;; -envelope >- 0 00
500 1000 1500 2000 2500 0 200 400 600 800

Time (sec) Time (sec)

(a) Moderate, Max InstlWatt, 90% (b) CPU-bound, Per-Core Fair, 95%

Figure 18. Estimation Error for Different Workloads and Envelopes on the AMD Phenom

2.0 2.0
-+- maxinst!wat

�

--- per-core far .�
1.5 a:

] 1.5
'ii
E
a

1.0 z 1.0
85% 90% 95% 100% 85%

Power Envelope

-+- maxinst/wat
�

--- per-core far .�
a:

]
'ii
E
a z

90% 95% 100%
Power Envelope

2.0

1.5

1.0
85%

-.- max inst!wat

90% 95% 100%
Power Envelope

(a) CPU-bound (b) Memory-bound (c) Moderate

Figure 19. Runtimes for Workloads on the Intel Q6600

-+- maxinst/wat -+- maxinstlwat -.- maxinst/wat

� 1.4
c
�

--- per-core far � --- per-core far � 1.4
.� 1.4

c
� �

a: a:

] 1.2
'ii
E
a 1.0

a:

�] 1.2

�.] 1.2
'ii 'ii
E E
a 1.0 II a 1.0 z �.' ..

z z

85% 90% 95% 100% 85%
Power Envelope

90% 95% 100%
Power Envelope

85% 90% 95% 100%
Power Envelope

(a) CPU-bound (b) Memory-bound (c) Moderate

Figure 20. Runtimes for Workloads on the AMD Phenom

entirely on the basis of our estimation-based power manager.
This obviates the need for a power meter, and is a useful

tool for software control of total system power. Figure 19
and Figure 20 show normalized runtimes for the two sample
policies and all power envelopes on both systems. This meta
scheduler only suspends/resumes processes. Performance

sometimes improves for the 95% and 90% power envelopes,
since with no power envelope, all processes compete for

cache and memory bandwidth. When power envelopes are
enforced, the meta-scheduler throttles processes to conserve

power, making more cache and memory bandwidth available
to the executing processes. This can speed application ex
ecution. This effect disappears for the 85% envelope: even
though there is less competition, processes cannot execute
at maximum speed without breaching the power envelope.

For the second set of experiments we vary power usage
by choosing between frequencies of 1.1 and 2.2 GHz on

the AMD Phenom system and between 2.0 and 2.67 GHz

on the Intel 5430 system. If DVFS is insufficient, the meta
scheduler suspends processes. Figure 21 and Figure 22 show

normalized runtimes for the two policies and all power
envelopes on the AMD Phenom and E5430 systems. Note
the different scales of the y axes: performance losses for

shrinking power envelopes on the Phenom are much smaller
with DVFS. For that machine, the performance-oriented

policy maintains performance in all cases. On the Intel
E5430, we lose under 4% performance for all but the CPU
bound workload under the strictest power envelope. The
performance differences for the policies shows that DVFS
alone does not maintain the power envelope (except in the

case of the memory bound workloads), and that the policies
obviously suspend different processes for the CPU-bound

and moderate workloads. Memory-bound workloads benefit

most from the policy that tries to allocate power equally
among cores. Likewise, those same workloads suffer little or
no performance loss with stricter power budgets when DVFS
and scheduling are used to enforce power budgets. Lower
frequency slows computation, but since it does not impact
memory performance, the non-CPU-bound workloads suffer
little (and sometimes benefit).

IV. RELATED WORK

Much previous work leverages performance counters for

power estimation. Most does not report model error, and
none presents results as extensively as we do here. Our
work is based on the approach of Singh et al. [27], [26];
we augment that work by incorporating temperature in the
models, exploiting frequency scaling, and validating the
models on several more platforms.

Joseph and Martonosi [18] use PMCs to estimate power
in a simulator (SimpleScalar [5]) and on real hardware (a
Pentium Pro). Their hardware supports two PMCs, while
they require twelve. They perform multiple benchmark runs
to collect data, forming the model offline. Multiplexing

twelve PMCs would require program behavior to be rel
atively constant across the entire sampling interval. They

cannot estimate power for 24% of the chip, and so they
assume peak power for those structures.

Contreras and Martonosi [10] use five PMCs to esti

mate power for different frequencies on an XScale system
(with an in-order uniprocessor). Like Joseph and Martonosi,
they gather data from multiple benchmark runs. They de

rive power weights for frequency-voltage pairs, and form
a parameterized linear model. Their model exhibits low
percentage error, like ours, but they test on only seven

applications, and their methodology is only demonstrated
for a single platform. This methodology, like that of Joseph
and Martonosi, is not intended for on-line use.

Economou et al. [11] use PMCs to predict power on
a blade server. They profile the system using application

independent microbenchmarks. The resulting model esti
mates power for the CPU, memory, and hard drive with

10% average error. Wu et al. [30] also use microbenchmarks

to develop a model using a variable number of PMCs to
estimate active power of Pentium 4 functional units. They

measure CPU power with a clamp-on ammeter. Such inva
sive approaches are neither applicable to systems in the field,
nor scalable to HPC clusters. Rajamani et al. [24] develop

online power and performance models on a Pentium M sys
tem. They track a small number of PMCs (chosen a priori),

and develop their model using existing kernels (as opposed
to microbenchmarks specifically designed to exercise the
counters). They present two power-management strategies

(one targeting performance and the other power savings)

that leverage their models for dynamic p-state control. Their
policies are effective in meeting power and performance
requirements. No percentage errors are reported.

Merkel and Bellosa [22] use PMCs to estimate power

per processor in an eight-way SMP, shuffling processes to
reduce overheating of individual processors. They do not
state which PMCs they use, nor how they are chosen. Their

goal is not to reduce power, but to distribute it. Their
estimation method suffers less than 10% error in a linux
kernel implementation.

Lee and Brooks [20] predict power via statistical infer
ence models. They build correlations based on hardware
parameters, using the most significant parameters to train

their model. They profile their design space a priori, and
then estimate power on random samples. This methodology
requires training on the same applications for which they

want to estimate power, and so their approach depends on
having already sampled all applications of interest.

Isci et al. [17] analyze power management policies for
a given power budget, performing experiments on the Tu

randot [23] simulator. They assume on-core current sen
sors to obtain per-core power, while we propose a tech

nique to model per-core power without additional hardware.
They leverage per-core and domain-wide dynamic volt
age/frequency scaling (DVFS) to retain performance while

remaining within a power budget. Here we explore both
suspending threads and adapting frequencies to make our
approach applicable to more systems.

Instead of applying DVFS per core, Rangan et al. [25]
study thread placement and migration among independent

voltage and frequency domains. This thread motion permits
much finer-grain control over power management and deliv
ers better performance than conventional DVFS for a given
power budget. Grochowski et al. [15] study four methods to

control energy per instruction (EPI), finding that a combina
tion of VFS and asymmetric cores offers the most promising

approach to balancing latency and throughput in an energy
constrained environment. Annavaram et al. [3] leverage this
work to throttle EPI by scheduling multithreaded tasks on

an asymmetric CMP, using more EPI in periods of low
parallelism to make better use of a fixed power budget.

Banikazemi et al. [7] present a power-aware meta
scheduler. They exploit the built-in power monitoring hard

ware on an IBM blade server with eight Intel Xeon 5345
cores (four dual-core chips). They use PMC data to cal
culate cache occupancy, miss ratios, and CPI, deriving a

performance model from which they estimate system power.

V. CONCLUSIONS AND FUTURE WORK

We derive analytic, piece-wise linear power models map

ping PMC values and temperature readings to power, and
demonstrate their accuracy for the SPEC 2006, SPEC-aMP
and NAS benchmark suites. We write micro benchmarks to
exercise the PMCs in order to characterize the machine, and

1.2 ---+- max inst/watt (OVFS) 1.2 ---+- max inst/watt (OVFS) 1.2 ---+- max inst/watt (DVFS)
-- per-core fair (OVFS) -- per-core fair (OVFS) -- per-core fair (OVFS)

1.1 1.1 1.1

1.0 � 1.0 � • 1.0 •

85% 90% 95% 100% 85% 90% 95% 100% 85% 90% 95% 100%
Power Envelope Power Envelope Power Envelope

(a) CPU-bound (b) Memory-bound (c) Moderate

Figure 21. Runtimes for Workloads on the AMD Phenom (with DVFS)

�

�
'"

]
'i
E 0 z

1.05

1.00

--+- max inst/watt (DVFS)
per-core fair (DVFS) �

.� _ 1.05
'"

]
'OJ
§ 1.00
z

---+- max inst/watt (DVFS)
� per-core fair (DVFS) � _ 1.05

'"

]
� o 1,00
z

max inst/watt (DVFS)
per-core fair (DVFS)

85% 90% 95% 100%
Power Envelope

85% 90% 95% 100%
Power Envelope

85% 90% 95% 100%
Power Envelope

(a) CPU bound (b) Memory bound (c) Moderate

Figure 22. Runtimes for Workloads on the Intel E5430 system (with DVFS)

run those microbenchmarks with a power meter plugged in
to generate data for building the models. We select the PMCs
that correlate most strongly with measured power for our re

gression models. Because they are built on microbenchmark
data, and not actual workload data, the resulting models are
application independent. We apply the models to 45 bench
marks (including multithreaded applications) on four CMPs
containing dual- or quad-core chips totaling four or eight
cores. We omit data for Core2 Duo and Core i7 platforms:
results are qualitatively and quantitatively similar. Previous
work focuses largely on uniprocessor power models (that do
not incorporate temperature), and each methodology targets

a single architecture. In spite of our generality, estimation
errors are consistently low across six different systems (data

for four of which we include here). We observe overall

median errors per machine between 1.2% and 4.4%.

We leverage our power model to perform live power

management on CMP systems with and without DVFS.
We suspend and resume processes based on per-core power
usage, ensuring that a given power envelope is not breached.
Where supported, we also scale core frequencies to remain
under the power envelope. Our power managers enforce
power budgets with little or no performance loss.

Estimating per-core power is challenging, since some
resources are shared among cores (e.g., caches, the DRAM
memory controller and off-chip memory). Current machines
only permit sampling a few PMCs simultaneously per core,

which necessitates multiplexing the counters for models
requiring more inputs. This affects the size of the sampling
interval for applying the model, something we have just

begun to study. We have incorporated the model into an
HPC Linux kernel scheduler, and are in the process of

experimenting with different scheduling policies. Having a

unified infrastructure permits a fair comparison of power
aware thread scheduling with techniques like thread motion.
Tracking PMC values at finer timeslices than that for which
our meter can measure power emphasizes the need for
accurate power sensors on chip: our model is sufficient to
be useful, but much finer resource management would be
enabled by making more hardware information available.

As numbers of cores and power demands continue to

grow, efficient computing requires better methods for man
aging individual resources. The per-core power estimation
methodology presented here extends previously published
models in both breadth and depth, and represents a promis

ing tool for helping meet those challenges, both by providing
useful information to resource managers and by highlighting
opportunities for improving hardware support for energy
aware resource management. Such support is essential for

fine-grained, power-aware resource management.

V I. ACKNOWLEDGMENTS

This work is supported in part by the Ministry of Sci
ence and Technology of Spain (TIN-2007-60625, JCI-2008-
3688), by the European Commission (IST-004408, ICT-

249059), and by the United States National Science Founda

tion (CCF-0702616). Opinions expressed herein are solely
the authors', and in no way reflect those of the funding
agencies.

REFERENCES

[1] Intel Core 2 Quad Q6600 (Power consumption, tempera
ture, overclocking). http://www.behardware.com/articles/

651-2!intel-core-2-quad-q6600.htrnl, Jan. 2007.

[2] Energy Consumption: The Processor and Coorn'Quiet Mode.
www.tomshardware.com/reviews/amd-power-cpu.1925-7.html,

Dec. 2008.

[3] M. Annavaram, E. Grochowski, and J. Shen. Mitigating Am
dahl's Law through EPI throttling. In Proc. 32nd IEEElACM
International Symposium on Computer Architecture, pages
298-309, June 2005.

[4] V. Aslot and R. Eigenmann. Performance characteristics
of the SPEC OMP2001 benchmarks. In Proc. European
Workshop on OpenMP, Sept. 2001.

[5] T. Austin. SimpleScalar 4.0 release note.
http://www.simplescalar.com/.

[6] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo,
and M. Yarrow. The NAS parallel benchmarks 2.0. Report
NAS-95-020, NASA Ames Research Center, Dec. 1995.

[7] M. Banikazemi, D. Poff, and B. Abali. PAM: A novel perfor
mance/power aware meta-scheduler for multi-core systems. In
Proc. IEEElACM Supercomputing International Conference
on High Performance Computing, Networking, Storage and
Analysis, number 39, Nov. 2008.

[8] E. Betti, M. Cesati, R. Gioiosa, and F. Piermaria. A global op
erating system for HPC clusters. In Proc. IEEE International
Conference on Cluster Computing, page 6, Aug. 2009.

[9] C. Boneti, R. Gioiosa, F. Cazorla, and M. Valero. A
dynamic scheduler for balancing HPC applications. In
Proc. IEEElACM Supercomputing International Conference
on High Performance Computing, Networking, Storage and
Analysis, number 41, Nov. 2008.

[10] G. Contreras and M. Martonosi. Power prediction for Intel
XScale processors using performance monitoring unit events.
In Proc. IEEEIACM International Symposium on Low Power
Electronics and Design, pages 221-226, Aug. 2005.

[11] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan.
Full-system power analysis and modeling for server environ
ments. In Proc. Workshop on Modeling, Benchmarking, and
Simulation, June 2006.

[12] Electronic Educational Devices. Watts Up PRO.
http://www.wattsupmeters.com/. May 2009.

[13] S. Eranian. Perfmon2: a flexible performance monitoring
interface for Linux. In Proc. 2006 Ottawa Lima Symposium,
pages 269-288, July 2006.

[14] M. Floyd, S. Ghiasi, T. Keller, K. Raj amani , F. Rawson,
J. Rubio, and M. Ware. System power management support in
the IBM POW ER6 microprocessor. IBM Journal of Research
and Development, 51(6):733-746, 2007.

[15] E. Grochowski, R. Ronen, J. Shen, and H. Wang. Best of
both latency and throughput. In Proc. IEEE International
Conference on Computer Design, pages 236--243, Oct. 2004.

[16] Intel Corporation. Intel Core(TM) i7 Processor.
http://www.intel.com/products/processor/corei7/.

Dec. 2008.

[17] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and
M. Martonosi. An analysis of efficient multi-core global
power management policies: Maximizing performance for
a given power budget. In Proc. IEEEIACM 40th Annual
International Symposium on Microarchitecture, pages 347-
358, Dec. 2006.

[18] R. Joseph and M. Martonosi. Run-time power estimation
in high-performance microprocessors. In Proc. IEEEIACM
International Symposium on Low Power Electronics and
Design, pages 135-140, Aug. 2001.

[19] N. Kim, T. Austin, T. Mudge, and D. Grunwald. Challenges
for A rchitectural Level Power Modeling, pages 317-337.
Kluwer Academic Publishers, 2002. ISBM: 0-306-46786-0.

[20] B. Lee and D. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power pre
diction. In Proc. 12th ACM Symposium on Architectural
Support for Programming Languages and Operating Systems,
pages 185-194, Oct. 2006.

[21] H.-Y. McCreary, M. Broyles, M. Floyd, A. Geissler, S. Hart
man, F. Rawson, T. Rosedahl, J. Rubio, and M. Ware. En
ergyscale for IBM POWER6 microprocessor-based systems.
IBM Journal of Research and Development, 51(6):775-786,
2007.

[22] A. Merkel and F. Bellosa. Balancing power consumption
in multicore processors. In Proc. ACM SIGOPSIEuroSys
European Conference on Computer Systems, pages 403-414,
Apr. 2006.

[23] M. Moudgill, P. Bose, and J. Moreno. Validation of Turandot,
a fast processor model for microarchitecture exploration. In
Proc. International Performance, Computing, and Communi
cations Conference, pages 452-457, Feb. 1999.

[24] K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, and F. Rawson.
Application-aware power management. In Proc. IEEE Inter
national Symposium on Performance Analysis of Systems and
Software, pages 39-48, Oct. 2006.

[25] K. Rangan, G.-y' Wei, and D. Brooks. Thread motion:
Fine-grained power management for multi-core systems. In
Proc. 36th IEEEIACM International Symposium on Computer
Architecture, June 2009.

[26] K. Singh. Prediction Strategies for Power-Aware Computing
on Multicore Processors. PhD thesis, Cornell University,
2009.

[27] K. Singh, M. Bhadauria, and S. McKee. Real time power
estimation and thread scheduling via performance counters.
Proc. Workshop on Design, Architecture and Simulation of
Chip Multi-Processors, Nov. 2008.

[28] Standard Performance Evaluation Corporation. SPEC OMP
benchmark suite. h t t p://www . specbench . org!hpg!omp 2 00 1 !,

2001.

[29] Standard Performance Evaluation Corporation. SPEC CPU
benchmark suite. http://www . specbench. org!osg!cpu2006!,

2006.

[30] W. Wu, L. Jin, and J. Yang. A systematic method for
functional unit power estimation in microprocessors. In Proc.
43rd ACMIIEEE Design Automation Conference, pages 554-
557, July 2006.

