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Abstract-Performance, power, and temperature are now 
all first-order design constraints. Balancing power efficiency, 
thermal constraints, and performance requires some means 
to convey data about real-time power consumption and tem­
perature to intelligent resource managers. Resource managers 
can use this information to meet performance goals, maintain 
power budgets, and obey thermal constraints. Unfortunately, 
obtaining the required machine introspection is challenging. 
Most current chips provide no support for per-core power 
monitoring, and when support exists, it is not exposed to 
software. We present a methodology for deriving per-core 
power models using sampled performance counter values 
and temperature sensor readings. We develop application­
independent models for four different (four- to eight-core) 
platforms, validate their accuracy, and show how they can 
be used to guide scheduling decisions in power-aware resource 
managers. Model overhead is negligible, and estimations exhibit 
1.1 %-5.2% per-suite median error on the NAS, SPEC OMP, 
and SPEC 2006 benchmarks (and 1.2%-4.4% overall). 

I. IN TRODUCTION 

Power and temperature have joined performance as first­
order system design constraints. All three influence each 
other, and together they affect architectural and packaging 
choices. Power consumption characteristics further influence 
operating cost, reliability, battery lifetime, and device life­
time. Balancing power efficiency and thermal constraints 
with performance requires intelligent resource management, 
and achieving that balance requires real-time power con­
sumption and temperature information broken down accord­

ing to resource, together with software and hardware that can 
leverage such information to enforce management policies. 

One logical place to institute intelligent resource manage­

ment with respect to power, performance, and temperature 
for chip mUltiprocessor (CMP) systems is at the level of in­

dividual cores. Measuring run-time power of a single core is 
problematic, though. Current chips do not support it. Power 
meters only report total consumption for everything behind 

a single power cable, and even if such aggregate data were 
sufficient, the use of meters becomes completely infeasible 
as machines scale up: coordinating output and feedback 

from thousands of meters would require a separate (super) 
computing system. Cycle-level system simulators provide in­

depth information, but are extremely time consuming and 
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prone to error. Power models implemented on top of the 
architectural abstractions in such simulators are inherently 

inaccurate [19], and are impossible to verify when attempt­

ing to assess new architectural designs. Hardware could be 
enhanced to measure the current and power draw of a CPU 
socket, but per-core measurement is difficult when cores 
share a power plane. Embedding measurement devices on­
chip is usually infeasible. Even when measurement facilities 
exist - e.g., the Intel Core i7 [16] features per-core power 
monitoring at the chip-level - they are rarely exposed to 
the user. Indeed, power sensing, actuation, and management 
support is more often implemented at the blade level with a 
separate computer monitoring output [14], [21]. 

On the other hand, temperature sensors are now com­

monly available per core, and processor architectures gen­
erally support some number of performance monitoring 

counters (PMCs). We use data from these sensors and 
counters to generate accurate, per-core power estimation 

models. We create these models precisely because we lack 

direct information on power consumed. 
Previous work uses PMCs to estimate power on uniproces­

sors and SMPs [18], [10], [24], [22]. Here we estimate power 

for both single-threaded and multithreaded programs on 
CMPs, observing median errors (across all benchmarks) of 
1.2%,2.9%,3.8%, and 4.4% for a quad-core Intel Q6600, an 
eight-core Intel E5430, a quad-core AMD Phenom, and an 

eight-core AMD Opteron 8212, respectively. Corresponding 

overall mean errors are 2.2%, 3.4%, 5.0%, and 4.9%. Results 
for Intel Core2 Duo and Core i7 platforms are qualitatively 
similar, and are omitted due to space considerations. We 

then use our online estimation to help manage workloads 
and frequencies dynamically. 

In this paper we develop a model that uses performance 
counters and temperature to generate accurate per-core 

power estimates in real time, with no off-line profiling or 
tracing. The approach is workload-independent and requires 
no application modification. We show the effectiveness of 
our models for driving power-aware scheduling and fre­

quency scaling: schedulers whose decisions are informed 
by these power models can enforce stricter power budgets, 

usually with little or no loss in performance. Finally, we 



demonstrate portability to four CMP platforms. Studying 
sources of model error highlights the need for hardware 

support for power-aware resource management, such as fine­

grained power sensors across the chip and more accurate 
temperature information. Our approach nonetheless shows 
promise for balancing performance, power, and thermal re­
quirements for platforms from embedded real-time systems 

to consolidated data centers, and even to supercomputers. 

II. ME THODOLOGY 

Building an analytic software model of per-resource 
power consumption requires some form of machine in­
trospection. Any model must be based on knowledge of 
how and when a resource is being used. The resource on 

which we focus here is the processor core, and we leverage 
nearly ubiquitous performance monitoring counters (PMCs) 
to glean information about microarchitectural activity. 

To build the model, we must 1) choose appropriate PMCs 

to reflect major activities consuming power, and 2) gener­
ate a mathematical model capturing relationships between 
chosen PMCs and measured system power. Other PMC­
based power models use counters chosen a priori [22], [24]. 
Instead, we formalize the relationship between observed 
counter activity and measured system power with statistical 

analysis, choosing PMCs that correlate most strongly with 
measured power. We find that the best set of counters 
is unique to each system. We sample those PMCs while 
running micro benchmarks to exercise the microarchitecture 
and then develop a linear regression model to fit collected 
data to measured power values. We produce a verifiable 
system power estimate by adding the "uncore" power (from 

components external to the cores) to the per-core estimates. 

Note that hardware performance counters have limitations. 
For instance, most Intel platforms only support concurrent 

sampling of two counters. We multiplex counters, sampling 
two counters during each half of the time slice. A similar 
time-slicing strategy would be necessary were we to employ 
more counters than can be sampled concurrently on any 
architecture. Many counters report aggregate events at the 

chip level and not per core, thus they are not suited to our 

approach. The PC of the instruction triggering a counter 
overflow is often not the one reported. In some contexts 
this sample skid can be problematic, but in time-based 

sampling (used to create our models) precision with respect 
to instructions causing events is unimportant. 

A. Choosing PMCs 

Current systems include a variety of event counters. We 

identify those most relevant to our purposes, rank them, 
evaluate our choices, and create a formal model mapping 
observed events to measured system power. 

Identifying Candidates. To choose appropriate PMCs, 
we consider common events that represent the heavily used 

parts of a core's microarchitecture. For instance, monitoring 

last-level cache misses allows us to track the most power­
hungry memory hierarchy activity. Monitoring instructions 
retired along with their types allows us to follow power us­

age in the FPUs and integer units. Tracking total instructions 
retired gives information on overall performance and power. 
We expect out-of-order logic to contribute to power usage, 
as well. Even though no counter gives such information 
directly, monitoring resource stalls can provide insight. Stalls 

from issue logic may reduce power, but CPU stalls from 
full reservation stations, load-store queues, or reorder buffers 

may increase power, since the hardware attempts to extract 
instruction-level parallelism from the instruction stream. For 
example, if a fetched instruction stalls, the out-of-order 

logic tries to find another to execute, examining reservation 
stations to check each new instruction's dependences and 
using more dynamic power. We separate available PMCs into 

the smallest set that covers these contributions to dynamic 
power, deriving four categories (a reasonable starting place, 
since our systems monitor two or four counters simultane­
ously): FP Units, Memory, Stalls, and Instructions Retired. 

Ranking Counters. We create microbenchmarks to ex­
ercise different parts of the machine. We use no code from 
test benchmark suites, since the model must be application 

independent. We explore the space spanned by the four 

categories and attempt to cover common cases as well as 
extreme boundaries. The resulting counter values have large 

variations ranging from zero to several billion. For example, 
CPU-bound benchmarks have few cache misses, and integer 

benchmarks have few FP operations. The microbenchmarks 
have large for loops and case statements branching to 
different code nests. We compile the microbenchmarks with 
no optimization to prevent redundant code removal, and run 
them simultaneously on each core. All behaviors should 
fall within the space defined by our categories, making the 

approach applicable to both current and future applications. 
While running the microbenchmarks (once, at system 

startup), we collect power, and performance data for the 
PMCs in the four categories. We use a Watts Up Pro power 

meter to measure system power! and pfmon [13] to collect 
PMC data. We order PMCs according to Spearman's rank 
correlation to measure the relationship between each counter 

and power, selecting the top counter per category. 
Even though we select event categories that attempt to 

capture different kinds of micro architectural activity, we're 

analyzing a cohesive hardware component for which all 
counters track inter-related events. This means that all 

counters chosen will necessarily contribute some redundant 
information. To assess this, we select several top-ranked 
PMCs in each category, and analyze the correlations among 

the PMCs themselves. If the top-ranked counters correlate 
strongly with other counters, we investigate counters that 

1 Note that we leave the meter plugged in to gauge model accuracy during 
normal operation, but when not testing accuracy, the meter is no longer 
required once the model is formed. 



correlate less strongly with both power and other candidate 
counters, and evaluate accuracy of several alternate models. 
For the systems we study here, correlation of observed 
event rates and measured power is the strongest criterion for 
choosing PMCs: alternative models that try to leverage less 
redundant information (but perhaps less information overall) 
yield poorer models. In the absence of a mathematical 

formula for evaluating information redundancy versus power 
contributions of a set of events, this sanity check helps 
ensure that we're generating high quality models. 

Note that model accuracy depends on the PMCs available 
on a given platform. If available PMCs do not sufficiently 
represent the microarchitecture, model accuracy will suffer. 

For example, the AMD Opteron 8212 supports no single 
counter giving total floating point operations. Instead, sepa­

rate PMCs track different types of floating point operations. 
We therefore choose the one most highly correlated with 

power. Model accuracy would likely improve if a single 

PMC reflecting all floating point operations were available. 

B. Forming the Machine Model 

Having identified events that contribute significantly to 
consumed power, we create a formalism to map observed 
microarchitectural activity and measured temperatures to 
measured power draw. We re-run the microbenchmarks 

sampling just the chosen PMCs, collecting power and tem­
perature data at each sampling interval. We normalize each 

time-sampled PMC value, ei, to the elapsed cycle count 
to generate an event rate, ri o We then map rise in core 
temperature, T, and the observed event rates, ri, to core 
power, PeaTe, via a piece-wise model based on multiple 
linear regression, as in Equation 1. We apply linear weights 
to transformations of event rates, as in Equation 2. 

if condition else 

where ri = €i/(cycle count), T = Tcurrent - Tidle 

(1) 

Fn = Po + Pi * gi(rd + ... + Pn * gn(rn) + Pn+i * T (2) 

We use transformations to increase linearity or to achieve 
constant variance in the regression equation (to make the 

model more amenable to linear regression and to improve 

estimation accuracy). Since Spearman's rank correlation is 
independent of frequency distributions, transformations can 
be linear, inverse, logarithmic, exponential, or square root. 
We choose a piece-wise linear function because we observe 

significantly different behavior for low PMC values. This 
lets us retain the simplicity of linear regression and to 
capture more detail in the core power function. We examine 
counter values plotted against power measurements to find 
opportunities for transformations, as well as to identify 
candidate locations for splitting the data to form the piece­
wise model. For example, for the (hypothetical) data in 

----data 
-linear function 
-exponential function 

(a) Best-Fit Continuous 
-data 
-piecewise function 

(b) Piece-Wise 

Figure 1. Examples of Poor Continuous and Better Piece-Wise 
Approximation Functions 

Figure 1 (a), neither a linear nor exponential transformation 
fits well. By breaking the data into parts, we create the 

better-fitting piece-wise combination in Figure 1 (b). 

We use a least squares estimator to determine weights for 

function parameters, yielding the piece-wise linear model in 
Equation 3 (Figure 2). The first part of the equation estimates 
power when the L2 counter is very low, and the second 
estimates power for the rest of the space. 

C. Applying the Model 

System power is based on measuring the power supply's 
current draw from the power outlet when the machine is idle. 

When we cannot find published values for idle processor 
power, we sum power draw when powered off and power 
saved by turning off cdrom, floppy, and hard disk drives; 

removing all but one memory DIMM; and disconnecting 
fans. We subtract idle core power from idle system power to 
get uncore (baseline without processor) power. Change in the 
uncore power itself (due to DRAM or hard drive accesses, 
for instance) is included in the model estimations. Including 
temperature as a model input accounts for variation in uncore 

static power. We always run in the active power state (CO): 
experimenting with other power states is future work. 

III. EXPERIMENTAL RESULTS 

We evaluate our models by estimating per-core power for 
the SPEC 2006 [29], SPEC-OMP [28], [4], and NAS [6] 
benchmark suites. We use gcc 4.2 to compile our bench­
marks for a 64-bit architecture with optimization flags 

enabled, and run all benchmarks to completion. We use 
the pfmon utility from the perjmon2 library [l3] to access 

hardware performance counters. Table I gives system details. 
Idle processor temperature is 36°C for both the Intel Q6600 
and AMD Phenom platforms. Idle system power is 141.0W 

for the Intel Q6600, and 84.1 W for the AMD Phenom. We 
subtract 38.0W [1] idle processor power to obtain an uncore 
power of 103W for the Q6600, and subtract 20.1 W [2] 
idle processor power to obtain an uncore power of 64.0W 



Peore = { 7.699 + 0.026 * log(rl) + 8.458 * r2 + -3.642 * r3 + 14.085 * r4 + 0.183 * T, 
5.863 + 0.114 * log(rl) + 1.952 * r2 + -1.684 * r3 + 0.110 * log(r4) + 1.044 * T, (3) 

where ri = e;/2200000000 (Is = 2.2B cycles), T = Teurrent - Tidle 
Figure 2. Piece-Wise Linear Function for Core Power 

for the Phenom. Idle processor temperature for the Intel 
E5430 system is 45°C, and uncore power is 122.0W. Idle 
processor temperature for the AMD 8212 is 33°C, and 

uncore power is 90W. Table II lists chosen counters. We use 
the sensors utility from the 1m-sensors library to obtain core 
temperatures, and we use a Watts Up Pro power meter [12] 
to gather power data. This meter is accurate to within 0.1 W, 
and it updates once per second. We can thus only verify our 
power estimates at the granularity of one second. 

We test our models for both multithreaded and single­

threaded applications on our four platforms. We assess 
model error by comparing our system power estimates to 
power meter output (which our power meter limits to a one­
second granularity). Then we incorporate the power model 
into a proof-of-concept, power-aware resource manager (a 
user-level meta-scheduler) designed to maintain a specified 

power envelope. The meta-scheduler manages processes 
non-invasively, requiring no modifications to the applications 
or as. It does so by suspending/resuming processes and, 

where supported, applying dynamic voltage/frequency scal­
ing (DVFS) to alter core clock rates. For these experiments, 
we degrade the system power envelope by 5%, 10%, or 
15%. Lower envelopes render cores inactive, and we do not 
consider them. Finally, we incorporate the model in a kernel 

scheduler, implementing a pseudo power sensor per core. 
The device does not exist in hardware, but is simulated by 

the power model module. Reads to a pseudo-device retrieve 
the power estimate computed most recently. 

A. Computation Overhead 

If computing the model is expensive, its use becomes 
limited to course timeslices. In this experiment we study 
the overhead of our power model in order to evaluate its 
use in an as task scheduler. The scheduler we use is 
specifically tailored to High Performance Computing (HPC) 
applications, which require that the as introduce little or 

no overhead. In most cases, it delivers better performance 
with better predictability, and it reduces as noise [8], [9]. 

The model's overhead depends on 1) the frequency with 
which the per-core power is updated, and 2) the complexity 

of the operations required to calculate the model. We cal­
culate overhead by measuring execution time for our kernel 
scheduler running with and without reading the PMCs and 

temperature sensors. We vary the sample period from one 
minute to 10 msec. We time applications for five runs and 
take the average (differences among runs are within normal 
execution time variation for real systems). Table III gives 

measured times for the scheduler with and without evaluat­
ing the model. These data show that computing the model 
adds no measurable overhead, even at lOms timeslices. 

B. Estimation Error 

In our experiments, we run multithreaded benchmarks 
with one thread per core, and single-threaded benchmarks 
with an instance on each core. Data are calculated per 
core, and errors are reported across all cores. Figure 3 
through Figure 6 show percentage error for the NAS, SPEC­
aMP, and SPEC 2006 applications on all systems. Figure 7 

through Figure 10 show standard deviation of error for each 
benchmark suite on the Intel Q6600, Intel E5430, AMD 
Phenom, and AMD Opteron platforms. The occasional high 

standard deviations illustrate the main problem with our 
current infrastructure: instantaneous power measurements 
once per second do not reflect continuous performance 
counter activity since the last meter reading. 

Estimation error ranges from 0.3% (leslie3d) to 7.1 % 
(bzip2) for the Intel Q6600 system, from 0.3% (ua) to 7.0% 
(hmmer) for the Intel E5430 system, from 1.02% (bt) to 

9.3% (xalancbmk) for the AMD Phenom system, and from 
1.0% (bt.B ) to 10.7% (soplex ) for the AMD Opteron 

8212 system. Our model exhibits median error of 1.6%, 
1.6%, and 1.1 % for NAS, SPEC-aMP, and SPEC 2006, 

respectively, on the Q6600. Corresponding errors per suite 
are 3.9%, 3.5%, and 2.8% on the E5430, 4.5% 5.2%, and 
3.5% on the Phenom, and 2.6%, 3.4%, and 4.8% on the 
8212. On the Intel Q6600, only five (out of 45) applications 

exhibit median error exceeding 5%; on the Intel E5430, 
only six exhibit error exceeding 5%; on the AMD Phenom, 

eighteen exhibit error exceeding 5%; and on the AMD 
Opteron 8212, thirteen exhibit error exceeding 5%. These 

errors are not excessive, but lower is better: identifying 
causes of error and refining the model are ongoing work. 
For instance, the Opteron 8212 temperature sensor data 

appear inaccurate: we measure different idle temperatures 
for different cores. We achieve good results despite the 
inaccuracies by underestimating idle temperature and using 
that value consistently for model training, testing, and dy­
namic calculation. Prediction errors are not clustered, but are 
spread throughout application execution. Monitoring PMCs 

at a finer granularity reveals that our meter's one-second 
resolution for delivering instantaneous power measurements 
prevents capturing counter activity between samples. 

Figure 11 shows model coverage via Cumulative Distri­
bution Function (CDF) plots for the suites. On the Q6600, 
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Inlel Q6600 Intel Xeon E5430 AMO Phenom 9500 AMD Opteron 8212 

Cores/Chips 4, dual dual-core 8, dual quad-core 4 8, quad dual-core 

Frequency (GHz) 2.4 2.0,2.66 1.1,2.2 2.0 

Process (nm) 65 45 65 90 

L 1 Instruction 32 KBB-way 32 KBB-way 64 KB 2-way 64 KB 2-way 

Ll Data 32 KB8-way 32 KB 8-way 64 KB 2-way 64 KB 2-way 

L2 Cache 4 MB 16-way shared 6 MB 16-way shared 512 KB a-way exclusive 1024 K6 16-way exclusive 

L3 Cache N/A N/A 2 MB 32-way shared N/A 

Memory Controller off-chip, 2 channel off-chip, 4 channel on-chip, 2 channel on-chip, 2 channel 

Main Memory 4 GB DDR2-800 8 GB DDR2-800 4 GB DDR2-800 16 GB DDR2-667 

Bus (MHz) 1066 1333 1100,2200 1000 

Max TDP(W) 105 80 95 95 

Linux Kernel 2.6.27 2.6.27 2.6.25 2.6.31 

Table I 
MACHINE CONFIGURATION PARAMETERS 

Category Intel 06600 Inlel ES430 AMD Phenom 9500 AMD Opteron 8212 

Memory l2 LINES IN lAST_lEVEL CACHE MISSES l2 CACHE_MISS DATA CACHE ACCESSES 

Instructions Executed UOPS RETIRED UOPS RETIRED RETIRED UOPS RETIRED INSTRUCTIONS 

Floating Point X87 OPS_RETIRED X87 OPS RETIRED RETIRED_MMX-.AND FP INSTRUCTIONS DISPATCHED FPU:OPS�UlTIPlY 

Stalls RESOURCE_STAllS RESOURCE_STAllS DISPATCH_STAllS D E CODER EMPTY 

Table II 
P MCs SELEC TED FOR EACH P LATFORM 

Benchmark baseline model (10msee) model (1 OOmsee) model (lsee) 

ep.A serial 35.68 35.57 36.04 35.59 

ep.AOMP 4.84 4.89 4.77 4.74 

ep.AMPI 4.77 4.72 4.73 4.75 

eg.A serial 5.82 5.83 5.83 5.83 

eg.AOMP 1.95 1.95 1.95 1.95 

cg.AMPI 2.19 2.20 2.20 2.20 

ep.S serial 146.53 146.52 145.52 146.77 

ep.80MP 19.45 19.33 19.35 19.54 

ep.BMPI 18.95 19.41 19.12 19.18 

eg.S serial 559.58 560.50 560.11 560.10 

eg.8 OMP 91.29 92.64 96.90 89.92 

eg.B MPI 79.11 79.18 79.18 79.05 

Table III 
SCHEDULER BENCHMARK TIMES FOR SAMPLE NAS ApPLICATIONS ON THE AMD OPTERON 8212 (SEC) 

(a) NAS 

I I I I I I 
0> .� "" ,� ,<\:i�� <f>o, <Jl "," 

(a) NAS 

g 

] 
w 
c '" 
'g 

I I I ::; 
'" I I 

(b) SPEC-OMP 

Figure 3. Median Estimation Error for Intel Q6600 system 
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Figure 4_ Median Estimation Error for Intel E5430 system 

(C) SPEC 2006 



(a) NAS (b) SPEC-OMP (c) SPEC 2006 

Figure 5. Median Estimation Error for the AMD Phenom 9500 
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Figure 6. Median Estimation Error for the AMD Opteron 8212 

85% of estimates have less than 5% error, and 98% have 
less than 10%. On the E5430, 73% have less than 5% error, 

and 99% less than 10%. On the Phenom, 59% have less than 
5% error, and 92% less than 10%. On the 8212, 37% have 

less than 5% error, and 76% have less than 10%. The vast 
majority of estimates exhibit very small error. 

Figure 12 through Figure 15 compare measured to es­
timated power for our experimental platforms. Values are 
calculated as the mean of power over an application's exe­
cution. These data show that our models do not consistently 

under- or over-estimate power across benchmark suites. 
Figure 16 shows that estimates closely follow measured data 
throughout gcc execution on the Intel Q6600, illustrating 
why the model underestimates power by 0.7W on average 
for this application. We validate by running identical work­

loads on all cores, so errors on individual cores are likely to 
be similar and cumulative (instead of canceling each other). 

C. Live Power Management 

We use per-process power estimates to enforce a given 
power budget for multi programmed workloads on each 
CMP. Table IV presents three sets of multiprogrammed 
workloads exhibiting varying levels of computational inten­

sity, or the ratio of instructions retired to cache misses. 

We experiment with two example policies for our meta­
scheduler. The policies themselves are not particularly in­
teresting, but they try to optimize for different goals, and 

together they provide a proof of concept with respect to the 
use of our power models in resource management. When 

the power envelope is breached on a system supporting 
DVFS, the meta-scheduler reduces the frequency of the core 
running the process selected by the policy. When DVFS 
is unavailable or exhausted, the meta-scheduler suspends 

the selected process. When there is power slack, the meta­
scheduler resumes the process selected by the policy, or if all 
processes are running and DVFS is supported, it increases 
the frequency of the core running the selected process. The 
max instlwatt policy attempts to achieve the most energy­

efficiency under a given power envelope by selecting the 
process with the fewest instructions committed per watt of 
power consumed when the power budget is exceeded, and 
the one with the most instructions committed per watt when 
there is slack. The per-core fair policy tries to allocate 

available power equitably per core. When the envelope is 
breached, the policy selects the process with highest average 
consumed power. When there is slack, the policy selects the 

process with lowest average consumed power. 

We perform two sets of experiments. For the first set, we 

use the 2.2 GHz AMD Phenom and 2.4 GHz Intel Q6600 
systems. We selectively suspend/resume processes to remain 
within the system power envelope. For the second set, we use 
the AMD Phenom and Intel E5430 systems, using DVFS to 
vary frequencies between 1.1 and 2.2. GHz, and between 2.0 
and 2.67 GHz, respectively. We form separate power models 

for the lower frequencies. The power manager can thus better 
implement policy decisions by estimating power for either 
frequency. Since the E5430 platform supports DVFS per 
(quad-core) chip, and not per core, we independently vary 
frequencies among the two chips. If all core frequencies 
have been reduced but the power envelope is still breached, 
we suspend processes to reduce power. We compare against 
runtimes with no enforced power envelope. 

Figure 17 and Figure 18 show examples of the two 
policies with different power envelopes for the Intel Q6600 
and AMD Phenom systems. Measured and estimated power 

correlate well. We follow the power envelope, and we do so 
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Figure 7. Standard Deviation of Error for Intel Q6600 system 

(b) SPEC-OMP 

Figure 8. Standard Deviation of Error for Intel E5430 system 
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Figure 9. Standard Deviation of Error for the AMD Phenom 9500 
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Figure 10. Standard Deviation of Error for the AMD Opteron 8212 
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Each System 

Benchmark Set Intel 06600 and AMD Phenom Intel E5430 

CPU bound ep, gamess, namd, povray calculix, ep, gamess, gromacs, h264ref, namd, perlbench, povray 
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Table IV 
EXPERIMENTAL MULTI PROGRAMMED WORKLOADS 
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Figure 12. Estimated VS. Measured Error for Intel Q6600 system 
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Figure 13. Estimated VS. Measured Error for Intel E5430 system 
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Figure 14. Estimated VS. Measured Error for the AMD Phenom 9500 
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Figure 15. Estimated VS. Measured Error for the AMD Opteron 8212 
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Figure 16. Detail of Estimated VS. Measured Error for gee on the Intel Q6600 
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Figure 17. Estimation Error for Different Workloads and Envelopes on the Intel Q6600 
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Figure 18. Estimation Error for Different Workloads and Envelopes on the AMD Phenom 
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Figure 19. Runtimes for Workloads on the Intel Q6600 
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Figure 20. Runtimes for Workloads on the AMD Phenom 

entirely on the basis of our estimation-based power manager. 
This obviates the need for a power meter, and is a useful 

tool for software control of total system power. Figure 19 
and Figure 20 show normalized runtimes for the two sample 
policies and all power envelopes on both systems. This meta­
scheduler only suspends/resumes processes. Performance 

sometimes improves for the 95% and 90% power envelopes, 
since with no power envelope, all processes compete for 

cache and memory bandwidth. When power envelopes are 
enforced, the meta-scheduler throttles processes to conserve 

power, making more cache and memory bandwidth available 
to the executing processes. This can speed application ex­
ecution. This effect disappears for the 85% envelope: even 
though there is less competition, processes cannot execute 
at maximum speed without breaching the power envelope. 

For the second set of experiments we vary power usage 
by choosing between frequencies of 1.1 and 2.2 GHz on 

the AMD Phenom system and between 2.0 and 2.67 GHz 

on the Intel 5430 system. If DVFS is insufficient, the meta­
scheduler suspends processes. Figure 21 and Figure 22 show 

normalized runtimes for the two policies and all power 
envelopes on the AMD Phenom and E5430 systems. Note 
the different scales of the y axes: performance losses for 

shrinking power envelopes on the Phenom are much smaller 
with DVFS. For that machine, the performance-oriented 

policy maintains performance in all cases. On the Intel 
E5430, we lose under 4% performance for all but the CPU­
bound workload under the strictest power envelope. The 
performance differences for the policies shows that DVFS 
alone does not maintain the power envelope (except in the 



case of the memory bound workloads), and that the policies 
obviously suspend different processes for the CPU-bound 

and moderate workloads. Memory-bound workloads benefit 

most from the policy that tries to allocate power equally 
among cores. Likewise, those same workloads suffer little or 
no performance loss with stricter power budgets when DVFS 
and scheduling are used to enforce power budgets. Lower 
frequency slows computation, but since it does not impact 
memory performance, the non-CPU-bound workloads suffer 
little (and sometimes benefit). 

IV. RELATED WORK 

Much previous work leverages performance counters for 

power estimation. Most does not report model error, and 
none presents results as extensively as we do here. Our 
work is based on the approach of Singh et al. [27], [26]; 
we augment that work by incorporating temperature in the 
models, exploiting frequency scaling, and validating the 
models on several more platforms. 

Joseph and Martonosi [18] use PMCs to estimate power 
in a simulator (SimpleScalar [5]) and on real hardware (a 
Pentium Pro). Their hardware supports two PMCs, while 
they require twelve. They perform multiple benchmark runs 
to collect data, forming the model offline. Multiplexing 

twelve PMCs would require program behavior to be rel­
atively constant across the entire sampling interval. They 

cannot estimate power for 24% of the chip, and so they 
assume peak power for those structures. 

Contreras and Martonosi [10] use five PMCs to esti­

mate power for different frequencies on an XScale system 
(with an in-order uniprocessor). Like Joseph and Martonosi, 
they gather data from multiple benchmark runs. They de­

rive power weights for frequency-voltage pairs, and form 
a parameterized linear model. Their model exhibits low 
percentage error, like ours, but they test on only seven 

applications, and their methodology is only demonstrated 
for a single platform. This methodology, like that of Joseph 
and Martonosi, is not intended for on-line use. 

Economou et al. [11] use PMCs to predict power on 
a blade server. They profile the system using application­

independent microbenchmarks. The resulting model esti­
mates power for the CPU, memory, and hard drive with 

10% average error. Wu et al. [30] also use microbenchmarks 

to develop a model using a variable number of PMCs to 
estimate active power of Pentium 4 functional units. They 

measure CPU power with a clamp-on ammeter. Such inva­
sive approaches are neither applicable to systems in the field, 
nor scalable to HPC clusters. Rajamani et al. [24] develop 

online power and performance models on a Pentium M sys­
tem. They track a small number of PMCs (chosen a priori), 

and develop their model using existing kernels (as opposed 
to microbenchmarks specifically designed to exercise the 
counters). They present two power-management strategies 

(one targeting performance and the other power savings) 

that leverage their models for dynamic p-state control. Their 
policies are effective in meeting power and performance 
requirements. No percentage errors are reported. 

Merkel and Bellosa [22] use PMCs to estimate power 

per processor in an eight-way SMP, shuffling processes to 
reduce overheating of individual processors. They do not 
state which PMCs they use, nor how they are chosen. Their 

goal is not to reduce power, but to distribute it. Their 
estimation method suffers less than 10% error in a linux 
kernel implementation. 

Lee and Brooks [20] predict power via statistical infer­
ence models. They build correlations based on hardware 
parameters, using the most significant parameters to train 

their model. They profile their design space a priori, and 
then estimate power on random samples. This methodology 
requires training on the same applications for which they 

want to estimate power, and so their approach depends on 
having already sampled all applications of interest. 

Isci et al. [17] analyze power management policies for 
a given power budget, performing experiments on the Tu­

randot [23] simulator. They assume on-core current sen­
sors to obtain per-core power, while we propose a tech­

nique to model per-core power without additional hardware. 
They leverage per-core and domain-wide dynamic volt­
age/frequency scaling (DVFS) to retain performance while 

remaining within a power budget. Here we explore both 
suspending threads and adapting frequencies to make our 
approach applicable to more systems. 

Instead of applying DVFS per core, Rangan et al. [25] 
study thread placement and migration among independent 

voltage and frequency domains. This thread motion permits 
much finer-grain control over power management and deliv­
ers better performance than conventional DVFS for a given 
power budget. Grochowski et al. [15] study four methods to 

control energy per instruction (EPI), finding that a combina­
tion of VFS and asymmetric cores offers the most promising 

approach to balancing latency and throughput in an energy­
constrained environment. Annavaram et al. [3] leverage this 
work to throttle EPI by scheduling multithreaded tasks on 

an asymmetric CMP, using more EPI in periods of low 
parallelism to make better use of a fixed power budget. 

Banikazemi et al. [7] present a power-aware meta­
scheduler. They exploit the built-in power monitoring hard­

ware on an IBM blade server with eight Intel Xeon 5345 
cores (four dual-core chips). They use PMC data to cal­
culate cache occupancy, miss ratios, and CPI, deriving a 

performance model from which they estimate system power. 

V. CONCLUSIONS AND FUTURE WORK 

We derive analytic, piece-wise linear power models map­

ping PMC values and temperature readings to power, and 
demonstrate their accuracy for the SPEC 2006, SPEC-aMP 
and NAS benchmark suites. We write micro benchmarks to 
exercise the PMCs in order to characterize the machine, and 
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� 

� 
'" 

] 
'i 
E 0 z 

1.05 

1.00 

--+- max inst/watt (DVFS) 
per-core fair (DVFS) � 

.� _ 1.05 
'" 

] 
'OJ 
§ 1.00 
z 

---+- max inst/watt (DVFS) 
� per-core fair (DVFS) � _ 1.05 

'" 

] 
� o 1,00 
z 

max inst/watt (DVFS) 
per-core fair (DVFS) 

85% 90% 95% 100% 
Power Envelope 

85% 90% 95% 100% 
Power Envelope 

85% 90% 95% 100% 
Power Envelope 

(a) CPU bound (b) Memory bound (c) Moderate 

Figure 22. Runtimes for Workloads on the Intel E5430 system (with DVFS) 

run those microbenchmarks with a power meter plugged in 
to generate data for building the models. We select the PMCs 
that correlate most strongly with measured power for our re­

gression models. Because they are built on microbenchmark 
data, and not actual workload data, the resulting models are 
application independent. We apply the models to 45 bench­
marks (including multithreaded applications) on four CMPs 
containing dual- or quad-core chips totaling four or eight 
cores. We omit data for Core2 Duo and Core i7 platforms: 
results are qualitatively and quantitatively similar. Previous 
work focuses largely on uniprocessor power models (that do 
not incorporate temperature), and each methodology targets 

a single architecture. In spite of our generality, estimation 
errors are consistently low across six different systems (data 

for four of which we include here). We observe overall 

median errors per machine between 1.2% and 4.4%. 

We leverage our power model to perform live power 

management on CMP systems with and without DVFS. 
We suspend and resume processes based on per-core power 
usage, ensuring that a given power envelope is not breached. 
Where supported, we also scale core frequencies to remain 
under the power envelope. Our power managers enforce 
power budgets with little or no performance loss. 

Estimating per-core power is challenging, since some 
resources are shared among cores (e.g., caches, the DRAM 
memory controller and off-chip memory). Current machines 
only permit sampling a few PMCs simultaneously per core, 

which necessitates multiplexing the counters for models 
requiring more inputs. This affects the size of the sampling 
interval for applying the model, something we have just 

begun to study. We have incorporated the model into an 
HPC Linux kernel scheduler, and are in the process of 

experimenting with different scheduling policies. Having a 

unified infrastructure permits a fair comparison of power­
aware thread scheduling with techniques like thread motion. 
Tracking PMC values at finer timeslices than that for which 
our meter can measure power emphasizes the need for 
accurate power sensors on chip: our model is sufficient to 
be useful, but much finer resource management would be 
enabled by making more hardware information available. 

As numbers of cores and power demands continue to 

grow, efficient computing requires better methods for man­
aging individual resources. The per-core power estimation 
methodology presented here extends previously published 
models in both breadth and depth, and represents a promis­

ing tool for helping meet those challenges, both by providing 
useful information to resource managers and by highlighting 
opportunities for improving hardware support for energy­
aware resource management. Such support is essential for 

fine-grained, power-aware resource management. 
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