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APPROXIMATION OF THE HELFRICH’S FUNCTIONAL VIA

DIFFUSE INTERFACES

GIOVANNI BELLETTINI AND LUCA MUGNAI

Abstract. We give a rigorous proof of the approximability of the so-called
Helfrich’s functional via diffuse interfaces, under a constraint on the ratio be-
tween the bending rigidity and the Gauss-rigidity.

1. Introduction

Let Ω ⊂ R3 be an open connected set with smooth boundary. Define

WHel(E) :=

∫

Ω∩∂E

[
κb

2
(H∂E −H0)

2 + κGK∂E

]
dH2, (1.1)

where E ⊂ Ω is open, bounded and with boundary ∂E of class C2 in Ω; H∂E , K∂E

are respectively the mean curvature and the Gaussian-curvature of ∂E (i.e. re-
spectively the sum and the product of the two principal curvatures of ∂E); H2

is the 2-dimensional Hausdorff-measure; κb, H0, κG are given constants. For our
purposes it is convenient to write WHel as

WHel(E) =
κb

2
H (E) + κGK (E),

where

H (E) :=

∫

Ω∩∂E

(H∂E −H0)
2
dH2, (1.2)

K (E) :=

∫

Ω∩∂E

K∂E dH2. (1.3)

The functional WHel was proposed by Helfrich as a surface energy for closed
biological membranes represented by a smooth boundaryless surface (see also [12,
25] and [8, Chapter 7]). Minimizers and critical points of WHel in the class of
subsets E ⊂ Ω satisfying a constraint on the area H2(Ω ∩ ∂E) and on the enclosed
volume L3(E ∩ Ω), are expected to describe approximately the shape of biological
membranes such as monolayers or lipid bilayers (see again [8] for an introduction to
the subject). Note that the term K (E) can be neglected when minimizing WHel(E)
under a topological constraint on E, since by the Gauss-Bonnet theorem it reduces
to a constant depending on the fixed topology. On the other hand K plays an
essential role in several recent related models (see e.g. [3, 6, 2]).

The constant κb > 0 is called the bending rigidity. The constant H0 is called the
spontaneous curvature. It is expected to be non zero when dealing with biological
membranes such as bilayers with chemically different interior and exterior layers,
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or when different enviroments inside and outside the membrane are source of asym-
metry. Observe that, when H0 6= 0, the functional H depends on the orientation of
∂E (and not only on the geometry of ∂E as in the case H0 = 0). The constant κG

is called the Gauss-rigidity. Although few experimental measurements for κG are
presently available, it is expected to be negative (see [42], [40], [37, Section 4.5.9],
[8, Section 7.2]). Moreover, at least in case of some monolayers (see [42, 40]), κb

and κG satisfy

− 1 <
κG

κb
< 0. (1.4)

In this paper we are concerned with the variational approximation of WHel, under
condition (1.4) and with H0 = 0; in Section 9 we briefly discuss how to relax these
two constraints. In this respect we note that, for any given H0 ∈ R, a condition
ensuring compactness and lower semicontinuity of WHel in a reasonable topology
(see Theorem 3.2 and Remark 3.4) is the existence of two positive numbers c and
λ such that

κb

2
(H∂E −H0)

2
+ κGK∂E ≥ c |B∂E |2 − λ,

where B∂E denotes the second fundamental form of ∂E. Such a condition is equiv-
alent to the constraint −2 < κG/κb < 0 (see Section 9.1), which is trivially satisfied
when (1.4) holds.

Recently several authors have used diffuse interfaces approximations in order to
develop efficient numerical simulations for a number of models involving WHel (e.g.
see [7, 18, 19, 21, 23, 22, 20, 10, 11, 17, 24, 26]). Analytical results have been carried
on, mainly by means of formal asymptotics, in [23, 18, 19, 46]. Most of the papers
cited above concentrate on the approximation of the term H which (up to minor
modifications) takes the form

Hε(u) :=
1

ε

∫

Ω

(
ε∆u− W ′(u)

ε
− ε|∇u|H0

)2

dx, (1.5)

where ε > 0 is a small parameter related to the width of the diffuse interface,
and W ∈ C2(R) is a double-well potential with two equal minima (from now on,
throughout the paper, we will make the choice W (s) := (1 − s2)2/4). Actually, in
the case H0 = 0, it was firstly conjectured in [14] that functionals similar to (1.5)
Γ-converge to σH as ε→ 0+, where σ is a suitable positive constant.

At least in the caseH0 = 0, the choice of the sequence in (1.5) can be heuristically
motivated with the fact that Hε represents a kind of (rescaled) squared “ L2-
gradient” of the functional Pε defined as

Pε(u) :=

∫

Ω

(
ε

2
|∇u|2 +

W (u)

ε

)
dx, if u ∈ H1(Ω),

and Pε(u) := +∞ elsewhere in L1(Ω). This, together with the well known results
that Pε approximate the perimeter functional as ε→ 0+ (see [32, 9]), and that the
“L2-gradient” of the perimeter is formally given by the mean curvature operator,
furnishes a (very) heuristic justification for the choice of Hε.

The aim of this paper is twofold: we want to propose a diffuse interface ap-
proximation of K which slightly differs from those proposed until now (see [22, 20]
and Remark 2.5). Moreover, we want to prove a rigorous convergence result for
our approximating sequence within the framework of Γ-convergence, under the as-
sumptions that H0 = 0, and provided the parameters κb, κG satisfy (1.4).
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In order to define the approximating functionals we need some notation. For
every u ∈ C2(Ω) we define the vector field νu ∈ L∞(Ω) by νu := ∇u/|∇u| whenever
∇u 6= 0 and νu := e on {∇u = 0}, where e is an arbitrary unit vector (to fix the
notation from now on we will choose e = e3, e3 being the third element of the
canonical basis of R

3). Then, denoting by | · | the norm of a matrix as defined in
(2.1), we propose to approximate K with the functionals Kε defined as

Kε(u) :=
1

2ε

∫

Ω

[(
ε∆u− W ′(u)

ε

)2

−
∣∣∣∣ε∇2u− W ′(u)

ε
νu ⊗ νu

∣∣∣∣
2
]
dx

=
1

ε

∫

Ω

∑

1≤i<j≤3

det

[
ε∇2u− W ′(u)

ε
νu ⊗ νu

]

ij

dx, (1.6)

when u ∈ C2(Ω) and +∞ elsewhere in L1(Ω), where, for a 3 × 3-matrix M , Mij

stands for its ij-th principal minor. Eventually, as an approximation of WHel, if Hε
is as in (1.5) with H0 = 0, we consider

W ε(u) :=
κb

2
Hε(u) + κGKε(u) (1.7)

=

∫

Ω

{
κb + κG

2ε

[
tr

(
ε∇2u− W ′(u)

ε
νu ⊗ νu

)]2
− κG

2ε

∣∣∣∣ε∇2u− W ′(u)

ε
νu ⊗ νu

∣∣∣∣
2
}
dx.

We can roughly summarize our main results as follows. Suppose that (1.4) holds,
that H0 = 0, and let {uε}ε ⊂ C2(Ω) satisfy

sup
0<ε<1

Pε(uε) < +∞, sup
0<ε<1

W ε(uε) < +∞. (1.8)

Then

(Compactness, see Theorems 4.1 and 4.4). Up to a (not relabelled) subsequence,
there exists a function u = 2χE − 1 ∈ BV (Ω, {−1, 1}) such that limε→0+ uε = u in
L1(Ω). Furthermore, the measures µuε

associated with the density of the functionals
Pε(uε) (see (2.14)) concentrate, as ε→ 0+, on a generalized surface M ⊇ Ω∩∂E, for
which a weak notion of second fundamental form is defined. Actually, for almost
every s ∈ (−1, 1) the oriented varifolds associated with the level sets {uε = s}
converge to the same limit.

(Lower bound, see Theorem 4.1). The lim infε→0+ W ε(uε) is bounded from below
by a suitable positive constant c0 times the value of (a suitable extension of) WHel

evaluated on M. In particular if E has C2-boundary in Ω we have

lim inf
ε→0+

W ε(uε) ≥ c0WHel(E). (1.9)

(Upper bound, see Theorem 4.2). For every bounded open set E ⊂ Ω with C2-
boundary there exists a sequence {uε}ε ⊂ C2(Ω) such that limε→0+ uε → 2χE − 1
in L1(Ω), and limε→0+ W ε(uε) = c0WHel(E).

(Γ(L1)-Limit on smooth points, see Corollary 4.3). By the L1(Ω)-lower semicon-
tinuity of WHel (see Theorem 3.2) we can conclude that if the bounded set E has
C2-boundary in Ω, then

Γ(L1) − lim
ε→0+
W ε(u) = c0WHel(E).

As we already said, in [22, 20] slightly different approximations of the Gauss-
ian curvature have been proposed and used in numerical experiments to retrieve



4 GIOVANNI BELLETTINI AND LUCA MUGNAI

topological informations for the diffuse interface. The functional Kε in (1.6) might
have some advantages, at least from the analytical point of view. Firstly W ε can be

expressed in terms of the trace and the norm of ε∇2u− W ′(u)
ε νu⊗νu, and for every

x0 ∈ Ω such that ∇u(x0) 6= 0, the matrix ε∇2u(x0)− W ′(u(x0))
ε νu(x0)⊗ νu(x0) has

an explicit relation with the second fundamental form of the level line {u = u(x0)}
times |∇u(x0)| (see (5.8)). Secondly, if (1.4) is satisfied, from (1.8) we can derive
the bound

sup
0<ε<1

1

ε

∫

Ω

∣∣∣∣ε∇2uε −
W ′(uε)

ε
νuε

⊗ νuε

∣∣∣∣
2

dx < +∞.

From this latter relation we can deduce two rather interesting further properties.
The first is that, as already stated above, the energy measures µuε

concentrate on
a generalized surface with second fundamental form in L2 (namely a Hutchinson’s
curvature varifold, see Lemmata 5.1 and 5.3). As a consequence we get better
regularity for the limit of the µuε

with respect to the case when only a uniform
bound on Hε(uε) is available; indeed, under this latter uniform bound, the mea-
sures µuε

concentrate on a rectifiable integral Allard’s varifold with squared inte-
grable generalized mean curvature (see [38, 45], and Appendix B for the definitions
of varifold and curvature varifold). The second property is an improved conver-
gence to zero of the discrepancies ξεuε

defined in (2.16). In fact, we obtain that

limε→0+ ‖ ε2 |∇uε|2 − W (uε)
ε ‖Lp(Ω) = 0, for every p ∈ [1, 3/2) (see Proposition 4.6).

Let us stress that the improved convergence of the discrepancies may indicate a
good behaviour of W ε in numerical experiments. Indeed, given {uε}ε ⊂ C2(Ω) such

that limε→0+ uε = 2χE − 1 in L1(Ω), the condition ε
2 |∇uε|2 − W (uε)

ε = O(ε) is
one of the characteristics for a sequence to be a “good” recovery sequence (like, for
example, the one constructed in Theorem 4.2). In other words, one of the prop-
erties that suggests a “good” convergence to the sharp interface functional is that
ε
2 |∇uε|2 −

W (uε)
ε vanishes rapidly enough as ε → 0+. In numerical applications, a

penalizing term of the form ‖ ε2 |∇uε|2 − W (uε)
ε ‖pLp(Ω) is often added to the diffuse

interface functional to force such a “fast” decay of |ξεuε
|.

Let us conclude by remarking the fact that, although an approximation via
diffuse interfaces seems to be reasonable for numerical purposes, our result does
not establish any physical derivation of the Helfrich’s energy as a mesoscale limit,
as for example it has been recently done in [36].

The paper is organized as follows. In Section 2 we fix some notation, recall some
basic definitions from differential geometry and briefly comment on the definition
of W ε, as well as on the relation of Kε with [22, 20]. In Section 3 we summarize
the main results proved in [38], that represent one of the pillars on which our
paper rests. In Section 4 we state our main results. The proofs are postponed to
Sections 5-8. In Section 9 we collect some additional results, and we show how the
assumptions on the parameters κb, κG, can be weakened; we briefly discuss the
possibility of proving a full Γ-convergence result and the problems arising in the
case H0 6= 0. Eventually in Appendices A-B we collect some definitions and results
on measure-function pairs and geometric measure theory, needed in the proofs of
the main results.

2. Notation
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2.1. Linear algebra. We endow the space of the (3 × 3) matrices M = (mij) ∈
R3×3 (resp. 33 tensors T = (tijk) ∈ R33

) with the norm

|M |2 := tr(MTM) =

3∑

i,j=1

(mij)
2


resp. |T |2 :=

3∑

i,j,k=1

(tijk)
2


 , (2.1)

where MT is the transposed of M .
If M ∈ R3×3 is symmetric, O = (oil) ∈ O(3) and D = diag(d11, d22, d33) are

such that M = OTDO, then |M |2 = tr(OTD2O) =
∑3

l=1(dll)
2
∑3

i=1(oli)
2 =∑3

l=1(dll)
2. Moreover, still for a symmetric matrix M ∈ R3×3, we have

1
2

[
(tr(M))2 − tr(MTM)

]
=
∑

1≤i<j≤3 det(Mij), where Mij is the ij-principal mi-
nor of M .

Remark 2.1. If P ∈ R3×3 is a (symmetric) orthogonal projection matrix onto
some subspace of R

3 and M is symmetric, then

|PTMP |2 ≤ |M |2. (2.2)

Indeed

|PTMP |2 =

3∑

j=1

3∑

i=1

(
3∑

l=1

pil

(
3∑

k=1

mlkpkj

))2

=

3∑

j=1

∣∣∣P (MP )
(j)
∣∣∣
2

, (2.3)

where the column vector (MP )
(j) ∈ R3 has components

(
∑3

k=1m1kpkj ,
∑3
k=1m2kpkj ,

∑3
k=1m3kpkj), and | · | on the right hand side

of (2.3) is the euclidean norm of a vector. Since P is an orthogonal projection we
have

|PTMP |2 ≤
3∑

j=1

∣∣∣(MP )
(j)
∣∣∣
2

=

3∑

i,j=1

(
3∑

k=1

mikpkj

)2

=

3∑

i=1

∣∣∣(M)(i) P
∣∣∣
2

,

where (M)(i) = (mi1,mi2,mi2) ∈ R3. Using again the fact that P is a projection

we have

|PTMP |2 ≤
3∑

i=1

(
(M)(i)

)2

=

3∑

i=1

3∑

j=1

(mij)
2

= |M |2.

By G2,3 (resp. G0
2,3) we denote the Grassmannian of the unoriented 2-planes in

R3 (resp. the Grassmannian of the oriented 2-planes in R3).
We denote by q the standard 2-fold covering map q : G0

2,3 → G2,3. We often

identify G0
2,3 with the set of simple unit 2-vectors τ ∈ Λ2(R

3). Moreover

⋆ : Λ1(R3) → Λ2(R
3)

denotes the Hodge operator. Often vectors and covectors will be identified. For
every τ ∈ G0

2,3 we define ντ ∈ R3 ≃ Λ1(R3) as the unique unit vector such that
⋆ντ = τ .

We endow G2,3 with the distance induced by the norm |S|, where S is the matrix
associated with the orthogonal projection of R3 onto S ∈ G2,3. Moreover, for every
open set Ω ⊆ R3 we let G2(Ω) := Ω ×G2,3, endowed with the product distance.

In the same way, we endow G0
2,3 with the distance induced by |τ |, where τ is

the simple unit 2-vector associated with τ ∈ G0
2,3. Moreover, for every open set

Ω ⊆ R
3 we let G0

2(Ω) := Ω×G0
2,3, endowed with the product distance. Finally, we
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let S2 := {ξ ∈ R3 : |ξ| = 1}, and we denote by △ the symmetric difference between
sets.

2.2. Differential Geometry. Let Σ be a smooth, compact oriented surface with-
out boundary embedded in R3. If x ∈ Σ, we denote by PΣ(x) the orthogonal
projection onto the tangent plane TxΣ to Σ at x. Often we identify the linear oper-
ator PΣ(x) with the symmetric (3× 3)-matrix Id− νx⊗ νx where x→ νx ∈ (TxΣ)⊥

is a smooth unit covector field orthogonal to TxΣ.
Let us recall that, when Σ is given as a level surface {v = t} of a smooth function

v such that ∇v 6= 0 on {v = t}, we can take at x ∈ {v = t}

νx =
∇v(x)
|∇v(x)| , PΣ(x) = Id − ∇v(x) ⊗∇v(x)

|∇v(x)|2 .

The second fundamental form BΣ of Σ has the expression

BΣ =
(
PTΣ

∇2v

|∇v|PΣ

)
⊗ ∇v

|∇v| ,

where PTΣ = (PΣ)T . The definition of BΣ depends only on Σ and not on the
particular choice of the function v. Moreover BΣ(x), if restricted to TxΣ and
considered as a bilinear map from TxΣ×TxΣ with values in (TxΣ)⊥, coincides with
the usual notion of second fundamental form. By

HΣ(x) = (H1(x), H2(x), H3(x)) = tr
(
PTΣ

∇2v

|∇v|PΣ

)
νx,

we denote the mean curvature vector of Σ at x ∈ Σ. We define the (scalar) mean
curvature of Σ at x with respect to νx as

HΣ(x) := HΣ(x) · νx.
Notice that HΣ does not depend on the choice of ν, while the sign of HΣ does.
Observe also that HΣ is the sum of the two principal curvatures of Σ: sometimes
HΣ is also referred to as the total curvature. When Σ = ∂E, where E ⊂ R3

is open and bounded, we define ν∂E to be the interior normal to ∂E = Σ and
H∂E := H∂E · ν∂E , which turns out to positive on convex surfaces.

Let us also define AΣ(x) := (AΣ
ijk(x))1≤i,j,k≤3 ∈ R

33

as

AΣ
ijk = δΣi PΣjk on Σ, (2.4)

where δΣi := PΣij
∂
∂xj

.

To better understand definition (2.4), it is useful to recall the links netween BΣ

and AΣ (see [31, Proposition 2.3]).

Proposition 2.2. Set A = AΣ, B = BΣ and H = HΣ. For i, j, k ∈ {1, 2, 3} the
following relations hold:

Bkij = PjlAikl, (2.5)

Aijk = Bkij +Bjik, (2.6)

Hi = Ajij = Bjji +Bijj . (2.7)

The next proposition shows some of the relations between the curvatures of Σ
and the derivatives of the signed distance function from Σ itself.
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Proposition 2.3. Let E be a bounded open subset of R3 with C2-boundary. Then
there exists an open neighborhood U of ∂E such that, denoting by d : U → R the
signed distance from ∂E positive inside E, we have d ∈ C2(U) and, for y ∈ U and
π(y) := y − d(y)∇d(y) ∈ ∂E the unique orthogonal projection point of y on ∂E,

∆d(y) = H∂E(π(y)) + o(d(y)) (2.8)
∑

1≤i<j≤3

det
(
[∇2d(y)]ij

)
= K∂E(π(y)) + o(d(y)), (2.9)

where o(t) → 0 as t→ 0.

Proof. It is well known (see for example [27]) that d is of class C2 in a suitable
tubular neighborhood U of ∂E where π is single valued, and moreover that, for
every y ∈ U , the eigenvalues of ∇2d(y) are

λ1(y) =
k1(π(y))

1 − d(y)k1(π(y))
, λ2(y) =

k2(π(y))

1 − d(y)k2(π(y))
, λ3(y) = 0,

where k1(x), k2(x) are the principal curvatures of ∂E at x. Then (2.8) follows, and

∑

1≤i<j≤3

det
(
[∇2d(y)]ij

)
=

(
tr(∇2d(y))

)2

− |∇2d(y)|2

2

=λ1(y)λ2(y) = K∂E(π(y)) + o(d(y)).

�

2.3. The Helfrich’s Functional WHel. Throughout the paper Ω ⊆ R3 is an open
connected set with smooth boundary (Ω = R3 is allowed). If E ⊆ R3, χE is the
characteristic function of E equal to 1 on E and 0 elsewhere. Let E ⊆ Ω be an open
set. We say that E has Ck-boundary in Ω (k ∈ N ∪ {∞}) if for every x ∈ Ω ∩ ∂E
the set Ω∩∂E can be written, locally around x, as the graph of a Ck function, and
Ω ∩ E is locally the subgraph of the same function.

By assumption (1.4) it follows that κb−κG

κb+κG
is a positive real number. We set

l2 := (H0)
2
κb

κb − κG

2(κb + κG)
. (2.10)

We claim that, whenever E is bounded with smooth boundary in Ω, then

WHel(E) ≥ −l2H2(Ω ∩ ∂E).

To prove the claim, write

WHel(E)

=

∫

Ω∩∂E

[
−κG

2
|B∂E |2 +

(
κb + κG

2

)
(H∂E)2 + κbH0H∂E +

κb

2
(H0)

2

]
dH2.

If α := κb+κG

2 > 0, β := κbH0, and γ := κb
(H0)2

2 , since αt2 + βt+ γ ≥ α
2 t

2 − l2 for

any t ∈ R and l2 = β2

2α − γ, we have the inequality

WHel(E) ≥
∫

Ω∩∂E

[
−κG

2
|B∂E |2 +

(κb + κG)

4
(H∂E)2 − l2

]
dH2. (2.11)

Thanks to (1.4), the first two addenda inside the integral on the right hand side of
(2.11) are nonnegative, hence the claim follows.
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2.4. Definitions of µεu, µ̃
ε
u, ξ

ε
u, R

ε
u, Bu, A

u, V εu , V 0,ε
u , fεu, B

ε
u and Hε

u. We set

W (r) :=
1

4
(1 − r2)2, r ∈ R,

and

c0 :=

∫ 1

−1

√
2W (s)ds. (2.12)

If γ(s) := tanh(s) we have γ̈ = d
ds(W (γ)),

∫

R

|γ̇|2 ds =

∫

R

2W (γ) ds = c0,

and

c0 = min

{∫

R

( |v̇|2
2

+W (v)

)
ds : v ∈ H1

loc(R), lim
s→±∞

v(s) = ±1

}
. (2.13)

For u ∈ C2(Ω) and L3 the Lebesgue measure in R3, we define the following Radon
measures:

µεu :=

(
ε

2
|∇u|2 +

W (u)

ε

)
L3 Ω, (2.14)

µ̃εu := ε|∇u|2L3 Ω, (2.15)

ξεu :=

(
ε

2
|∇u|2 − W (u)

ε

)
L3 Ω, (2.16)

where is the restriction. ξεu is usually called discrepancy measure, while µεu is
the density of the Allen-Cahn functional Pε. With a small abuse of notation,
when necessary we still denote by ξεu the density of the discrepancy measure, i.e.,

ξεu = ε
2 |∇u|2 −

W (u)
ε . Note that

∇ξεu = ε∇2u∇u− W ′(u)

ε
∇u. (2.17)

For u ∈ C2(Ω) define Rεu : G2(Ω) → R3 as

Rεu(x, S) = Rεu(x) :=
1

ε|∇u(x)|2∇ξ
ε
u(x), (2.18)

with the convention that Rεu := 0 on the set {∇u = 0}.
Let u ∈ C2(Ω). We will often look at geometric properties of the ensemble of

the level sets of u. We define

νu :=
∇u
|∇u| , Pu := Id − νu ⊗ νu, Puij = δij − (νu)i(νu)j , (2.19)

on {∇u 6= 0} and νu := e3, P
u := Id − e3 ⊗ e3 on {∇u = 0}. Moreover we define

the second fundamental form of the ensemble of the level sets of u by

Bu =
(Pu)T∇2uPu

|∇u| ⊗ νu, (2.20)

on {∇u 6= 0} and Bu := ⊗3e3 on {∇u = 0}. Similarly we define

Auijk := −Puil
[
∂l((νu)j(νu)k)

]
, (2.21)

on {∇u 6= 0} and Au := ⊗3e3 on {∇u = 0}.
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It will be convenient to consider Bu and Au as defined on G2(Ω) (resp. onG0
2(Ω))

by Bu(x, S) := Bu(x), A
u(x, S) := Au(x) (resp. Bu(x, τ) := Bu(x), A

u(x, τ) :=
Au(x) ).

By Vu (resp. V 0
u ) we denote the varifold (resp. oriented varifold)

V εu (φ) = c−1
0

∫
φ(x, Pu) dµ̃εu ∀φ ∈ C0

c (G2(Ω)), (2.22)

V 0,ε
u (φ) = c−1

0

∫
φ(x, ⋆νu) dµ̃

ε
u ∀φ ∈ C0

c (G
0
2(Ω)), (2.23)

see Appendix B.
We also set

fεu := ε∆u− W ′(u)

ε
. (2.24)

Definition 2.4. Let u ∈ C2(Ω) and x ∈ Ω. We define

Bεu(x) :=





1

ε|∇u(x)|

(
ε∇2u(x) − W ′(u(x))

ε
νu(x) ⊗ νu(x)

)
if ∇u(x) 6= 0,

0 otherwise,

(2.25)

Hε
u(x) := tr

(
Bεu(x)

)
=





fεu(x)

ε|∇u(x)| if ∇u(x) 6= 0,

0 otherwise.
(2.26)

We can informally think of Bεu ⊗ νu and Hε
uνu as the approximate second fun-

damental form and the approximate mean curvature vector of the level sets of u,
respectively.

Note that

Rεu = Bεu
∇u
|∇u| on {∇u 6= 0}.

2.5. The functionals W ε. We recall that our approximating sequences of func-
tionals is defined in (1.7), where Hε, Kε are as in (1.5), (1.6).

Observe that ∫
(Hε

u)
2 dµ̃εu ≤ Hε(u),

with equality if L3({fεu 6= 0} ∩ {∇u = 0}) = 0, and

∫

Ω

|Bεu|2 dµ̃εu ≤ 1

ε

∫

Ω

∣∣∣∣ε∇2u− W ′(u)

ε
νu ⊗ νu

∣∣∣∣
2

dx,

with equality if

L3

({
ε∇2u− W ′(u)

ε
νu ⊗ νu 6= 0

}
∩ {∇u = 0}

)
= 0.

Moreover

∫

Ω

(Hε
u)

2 − |Bεu|2
2

dµ̃εu =

∫

{∇u6=0}

3∑

1≤i<j≤3

det
(
[Bεu]ij

)
dµ̃εu,
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where [Bεu]ij is the ij-th principal minor of Bεu, and

det
(
[Bεu]ij

)
=

1

ε2|∇u|2

[(
ε∂2
iiu− W ′(u)

ε

(∂iu)
2

|∇u|2
)(

ε∂2
jju− W ′(u)

ε

(∂ju)
2

|∇u|2
)

−
(
ε∂2
iju− W ′(u)

ε

∂iu∂ju

|∇u|2
)2
]
.

(2.27)

Remark 2.5. Let us notice that

(Hε
u)

2 − |Bεu|2
2

=
(fεu)

2 − tr[(ε∇2u− 1
εW

′(u)νu ⊗ νu)
2]

2ε2|∇u|2

=
1

2ε2|∇u|2
(

(fεu)
2 − tr

[
ε2(∇2u)2 − 2W ′(u)∇2u νu ⊗ νu +

(W ′(u))2

ε2
νu ⊗ νu

])

=
ε2
{
(∆u)2 − tr[(∇2u)2]

}
− 2W ′(u)(∆u− ∂2

νuνu
u)

2ε2|∇u|2

=
1

2ε2|∇u|2
{
ε2div(∆u∇u−∇2u∇u) − 2W ′(u)tr

[
(Id − νu ⊗ νu)∇2u)

]}
,

where we used

div(∇2u∇u) = tr[(∇2u)2] + ∇u · ∇(∆u).

Suppose that Ω ⊂⊂ R3 is open, and u ∈ C2(Ω) verifies ∇u ≡ 0 on Ω \Ω′, for some
Ω′ ⊂⊂ Ω. By Sard’s Lemma we can find a sequence of tk ∈ R+ such that tk → 0
as k → ∞, and, setting Nk := {|∇u| > tk} we have

∂Nk ⊆ {|∇u| = tk} is a smooth, embedded surface,

lim
k→∞

L3
(
{∇u 6= 0} \Nk

)
= 0.

Thus we have∣∣∣∣∣

∫

{∇u6=0}

div(∆u∇u−∇2u∇u) dx
∣∣∣∣∣ = lim

k→∞

∣∣∣∣∣

∫

Nε
k

div(∆u∇u−∇2u∇u) dx
∣∣∣∣∣

= lim
k→∞

∣∣∣∣
∫

∂Nk

(∆u∇u−∇2u∇u) · ν∂Nε
k
dH2

∣∣∣∣

≤ lim
k→∞

‖u‖C2H2(∂Nk)tk = 0.

Hence
∫

(Hε
u)

2 − |Bεu|2
2

dµ̃εu

=
1

2ε

∫

{∇u6=0}

(
ε2div(∆u∇u−∇2u∇u) − 2W ′(u) tr

[
(Id − νu ⊗ νu)∇2u)

] )
dx

= −
∫

{∇u6=0}

W ′(u)

ε
tr
[
Pu∇2u

]
dx.

When uε(x) = γε(d(x)) + gε(x), where γε is as in Section 6 and gε ∈ C2(Ω) is such
that ‖gε‖C2(Ω) = O(ε), this formula coincides (up to an error of order O(ε)) with
the one proposed in [20] in order to approximate K .
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3. Preliminary known results

In this section we recall some recent results about a modified conjecture of De
Giorgi concerning the variational approximation of the Willmore functional (see
[14]). More precisely, the so-called Γ − lim sup inequality has been proved in [5]
in any dimension on smooth boundaries; in [4] the Γ − lim inf inequality has been
proved in any dimension, under a rather strong ansatz on the uε (namely uε = vε(d),
where d is the signed distance from the boundary of the limit set). An ansatz-free
proof of the Γ− lim inf inequality has been given in dimension 2 and 3 in [38], and
independently, but only in two-dimensions, in [45] (by means of a different proof
which makes use of generalized varifolds introduced in [34]).

The following theorem has been proved in [38] and is one of the key ingredients
in the proofs of our results.

Theorem 3.1. Let {uε} ⊂ C2(Ω) be a sequence such that

sup
0<ε<1

{
µεuε

(Ω) +
1

ε

∫

Ω

(
ε∆uε −

W ′(uε)

ε

)2

dx

}
< +∞.

Then there exists a subsequence (still denoted by {uε}) converging to u = 2χE − 1
in L1(Ω), where E is a finite perimeter set. Moreover

(A) µεuε
⇀ µ as ε→ 0+ weakly∗ in Ω as Radon measures and µ verifies

µ ≥ c0H2 ∂E.

In addition

lim
ε→0+

|ξεuε
| = 0 as Radon measures, (3.1)

where |ξεuε
| denotes the total variation of the measure ξεuε

, and hence

µ = lim
ε→0+

µεuε
= lim
ε→0+

µ̃εuε
= lim

ε→0+

2W (uε)

ε
L3 Ω as Radon measures. (3.2)

(B) The sequence {V εuε
} converges in the varifolds sense to an integral-rectifiable

varifold V ∈ IV2(Ω) with generalized mean curvature HV ∈ L2(µ) and such
that µV = c−1

0 µ.
(C) For any Y ∈ C1

c (Ω; Rn) we have

c0 lim
ε→0+

δV εuε
(Y ) = lim

ε→0+
−
∫

Ω

fεuε
∇uε · Y dx = −

∫

Ω

HV · Y dµ, (3.3)

and

c0

∫

Ω

|HV |2 dµV ≤ lim inf
ε→0+

1

ε

∫

Ω

(
ε∆uε −

W ′(uε)

ε

)2

dx. (3.4)

An important point in order to establish the Γ(L1(Ω))-convergence of W ε to WHel

is the lower-semicontinuity of WHel on smooth sets. This is the aim of the following
theorem, which is a consequence of [16, Theorem 5.1].

Theorem 3.2. Let H0 ∈ R and suppose that (1.4) holds. Let E ⊂ Ω be a bounded
open set with smooth boundary in Ω. Let {Eh} be a sequence of bounded open
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subsets of Ω with smooth boundary in Ω, such that

sup
h∈N

H2(Ω ∩ ∂Eh) < +∞, (3.5)

lim
h→∞

L3(Ω ∩ (Eh△E)) = 0. (3.6)

Then
WHel(E) ≤ lim inf

h→∞
WHel(Eh). (3.7)

Remark 3.3. Theorem 3.2 holds under the weaker assumption −2 < κG/κb < 0.

Remark 3.4. The bound (3.5) is necessary in order to gain sufficient compactness
on the sequence {∂Eh}, since the bound suphWHel(Eh) < +∞ alone does not imply
any uniform control on the area of ∂Eh. This is seen with the following example:
Ω = R3, H0 = 2, Eh the union, over n ∈ {1, . . . , h}, of the balls of radius 1 and
centered at (2n, 0, 0), so that WHel(Eh) = 4π2κGh < 0.

4. Statements of the main results

We can now state our Γ-convergence results.

Theorem 4.1 (Equicoercivity and Γ-liminf inequality). Let H0 = 0 and suppose
that (1.4) holds. Let {uε} ⊂ C2(Ω) be a sequence satisfying (1.8). Then there
exists a (not relabelled) subsequence satisfying the theses of Theorem 3.1. More-
over, the varifold V in Theorem 3.1 is a curvature varifold with generalized second
fundamental form BV in L2 (see Definition B.3), and

lim
ε→0+

(V εuε
, Auε) = (V,AV ) (4.1)

as measure-function pairs on G2(Ω) with values in R33

. Eventually

lim inf
ε→0+

W ε(uε) ≥ c0

∫ [
κb

2
|HV |2 +

κG

2
(|HV |2 − |BV |2)

]
dV. (4.2)

Theorem 4.2 (Γ-limsup inequality). Let H0 = 0 and E ⊂ Ω be a bounded open set
with boundary of class C2. Then there exists a sequence {uε} ⊂ C2(Ω) such that

lim
ε→0+

uε = 2χE − 1 in L1(Ω), (4.3)

lim
ε→0+

µεuε
= c0H2 ∂E as Radon measures, (4.4)

lim
ε→0+
W ε(uε) = c0WHel(E). (4.5)

As a consequence of Theorems 4.2, 4.1 and 3.2 we obtain the following

Corollary 4.3 (Γ-limit on smooth sets). Let H0 = 0 and suppose that (1.4) holds.
Let E ⊂ Ω be a bounded open set with boundary of class C2. Then

[
Γ(L1(Ω)) − lim

ε→0+
W ε

]
(2χE − 1) = c0WHel(E). (4.6)

Next theorem shows that actually from the hypotheses of Theorem 4.1 we can
prove a stronger compactness result, since the oriented varifold (see Appendix B)
associated with almost every level line converge to the same limit.

Theorem 4.4 (Enhanced compactness). Let H0 = 0 and suppose that (1.4) holds.
Let {uε} ⊂ C2(Ω) be a sequence satisfying (1.8). Then there exists a (not relabelled)
subsequence such that
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(A) the sequence {V 0,ε
uε

} converges in the sense of oriented varifolds to an ori-

ented varifold V 0 ∈ IV0
2(Ω) such that q♯V

0 = V , where V ∈ IV2(Ω) is as
in Theorem 4.1.

(B) For every ψ ∈ C1
c (Ω × S2) the sequence {gψε } ⊂W 1,1((−1, 1)), defined by

gψε (s) :=

∫

{uε=s}

ψ(y, νuε
(y)) ε|∇uε(y)| dH2(y),

converges strongly in W 1,1((−1, 1)) to the function gψ(s) :=√
2W (s)V 0(ψ). Moreover, for L1-almost every s ∈ [−1, 1] we have

lim
ε→0+

v ({uε = s}, ⋆νuε
, ε|∇uε|) = lim

ε→0+
v
(
{uε = s}, ⋆νuε

,
√

2W (s)
)

=
√

2W (s)V 0
(4.7)

as oriented varifolds in Ω.

Remark 4.5. We can adapt the proof of Theorem 4.4 to show that, under the
weaker assumption that the hypothesis of Theorem 3.1 hold, the sequence gψε con-

verges strongly to gψ in W 1,1
loc ((−1, 1)) as ε→ 0+ for every ψ ∈ C1

c (Ω).

The next proposition shows that a stronger convergence to zero of the discrep-
ancies ξεuε

defined in (2.16) holds, assuming the bounds in (1.8). Similar estimates
have been obtained in [35], when uε is a local minimizer for Pε.

Proposition 4.6 (Improved convergence of the discrepancies). Suppose that
{uε} ⊂ C2(Ω) is such that (1.8) holds. Then there exists a (not relabelled) sub-
sequence such that

∇ξεuε
L3 ⇀ 0 as Radon measures on Ω, (4.8)

lim
ε→0+

‖ξεuε
‖Lp(Ω) = 0 for every p ∈ [1, 3/2). (4.9)

5. Proof of Theorem 4.1

The present section is organized as follows. We start by proving two technical
lemmata, namely Lemma 5.1 and Lemma 5.3. Then in Section 5.1 we prove that
V := limε→0 V

ε
uε

is a curvature varifold with generalized second fundamental form

in L2, we show (4.1) and inequality (4.2).

Lemma 5.1. Suppose that {uε} ⊂ C2(Ω) is such that

sup
0<ε<1

{
µεuε

(Ω) +
1

ε

∫

Ω

∣∣∣∣ε∇2uε −
W ′(uε)

ε
νuε

⊗ νuε

∣∣∣∣
2

dx

}
< +∞. (5.1)

Then there exists a (not relabelled) subsequence such that

lim
ε→0+

(V εuε
, Rεuε

) = (V, 0) (5.2)

as measures function pairs on G2(Ω) with values in R3, where the varifold V is
defined in Theorem 3.1 (B).

Proof. Since fεuε
= tr

(
ε∇2uε − 1

εW
′(uε)νuε

⊗ νuε

)
, we have

1

ε

∫

Ω

(fuε
)2 dx ≤ 3

ε

∫

Ω

∣∣∣∣ε∇2uε −
W ′(uε)

ε
νuε

⊗ νuε

∣∣∣∣
2

dx.
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Hence, by (5.1), we can apply Theorem 3.1, and select a (not relabelled) subse-
quence such that V εuε

→ V as ε→ 0+ in the sense of varifolds, with V = v(M, θ) ∈
IV2(Ω). Since on {∇uε 6= 0} we have

Rεuε
=

∇ξεuε

ε|∇uε|2
= Bεuε

∇uε
|∇uε|

, (5.3)

we conclude that

c0

∫
|Rεuε

|2 dV εuε
=

∫ ∣∣∣∣
∇ξεuε

ε|∇uε|2
∣∣∣∣
2

dµ̃εuε
≤ 3

∫
|Bεuε

|2 dµ̃εuε
,

which is uniformly bounded with respect to ε in view of (5.1). By Theorem A.4 (i),
we can select a further (not relabelled) subsequence such that (V εuε

, Rεuε
) converge

weakly as measure-function pairs on G2(Ω) with values in R3 to (V,R), for a certain
R ∈ L2(V,R3). In order to prove (5.2) we closely follow [43, page 10]. Let φ ∈ C1

c (Ω)
and Ri (resp. Rεuε,i

) be the i-th component of R (resp. of Rεuε
). By (3.1) we have

c0

∫
Ri(x, S)φ(x) dV (x, S) = lim

ε→0+

∫
Rεuε,iφdµ̃

ε
uε

= − lim
ε→0+

∫
∂iφdξ

ε
uε

= 0, (5.4)

where in the two last equalities we used (5.3), (2.17) and (3.1) respectively.
From (5.4), using that V εuε

→ V = v(M, θ) ∈ IV2(Ω) as varifolds, it follows

∫
Ri(x, S)φ(x) dV (x, S) = 0 =

∫

M

Ri(x, TxM)φ(x) θ(x)dH2(x).

This implies that R(x, TxM) = 0 for µV = θH2 M -a.e. x, and (5.2) follows. �

Remark 5.2. We need to consider Rεu as a function on G2(Ω) and not just on Ω
because Rεu appears in the “ε-formulation” of (B.1) (see (5.12)), which characterizes
Hutchinson’s curvature varifolds via an “integration by parts” formula involving test
functions in C1

c (G2(Ω)).

The following lemma shows that if (5.1) holds then the varifold V limit of the
V εuε

is a curvature varifold with generalized second fundamental form in L2.

Lemma 5.3. Suppose that (5.1) holds. Then

sup
0<ε<1

∫
|Buε

|2 dVuε
< +∞. (5.5)

Moreover the varifold V in Lemma 5.1 is a curvature varifold with generalized
second fundamental form BV in L2 and, up to a subsequence,

lim
ε→0+

(Vuε
, Auε) = (V,AV ), (5.6)

lim
ε→0+

(Vuε
,Buε

) = (V,BV ), (5.7)

as measure-function pairs on G2(Ω) with values in R33

.
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Proof. From the definitions of Buε
and Bεuε

given in (2.20) and (2.25) respectively,
we have

|Buε
|2 =

3∑

i,j,k=1

[(
(Puε)T∇2uεP

uε

|∇uε|

)

ij

]2(
∂kuε
|∇uε|

)2

=
3∑

i,j=1

[(
(Puε)T∇2uεP

uε

|∇uε|

)

ij

]2

=

∣∣∣∣
(Puε)T∇2uεP

uε

|∇uε|

∣∣∣∣
2

(5.8)

=

∣∣∣∣∣∣

(Puε)T
[
ε∇2uε − 1

εW
′(uε)∇uε ⊗∇uε/|∇uε|2

]
Puε

ε|∇uε|

∣∣∣∣∣∣

2

≤ |Bεuε
|2,

where in the last inequality we use (2.2). Integrating (5.8) with respect to dVuε

(see (2.22) and (2.16)) and using (5.1), we conclude that (5.5) holds. Notice that
by (5.1) the conclusions of Theorem 3.1 hold.

By (2.21) and (5.1) we obtain also

sup
0<ε<1

∫
|Auε |2 dVuε

< +∞.

This latter estimate together with sup0<ε<1 µ
ε
uε

(Ω) < +∞, enables us to apply

Theorem A.4 and conclude that, passing to a subsequence, there is Â ∈ L2(V,R33

)
such that

lim
ε→0+

(Vuε
, Auε) = (V, Â) (5.9)

as measure-function pairs on G2(Ω) with values on R33

.

Now we want to prove that actually Â(x, S) verifies equation (B.1) and hence
that V is a curvature varifold with generalized second fundamental form in L2, and

Â = AV . In doing this we closely follow [43, Proposition 2].
Fix 1 ≤ i ≤ 3 and φ ∈ C1

c (Ω). Multiply equation (2.24) by φ∂iuε. Integrating
by parts we firstly obtain
∫

Ω

[
ε

2
|∇uε|2∂iφ− ε∂iuε∂juε∂jφ+

W (uε)

ε
∂iφ

]
dx =

∫

Ω

fεuε
φ ∂iuε dx. (5.10)

Hence∫

Ω

[
(∂iφ− (νuε

)i(νuε
)j∂jφ) ε|∇uε|2 + φ∂iξ

ε
uε

]
dx =

∫

Ω

fεuε
φ ∂iuε dx. (5.11)

Let now ϕ ∈ C1
c (Ω × R3×3), σ > 0, and define φσ ∈ C1

c (Ω) by

φσ(x) := ϕ

(
x, Id − ∇uε(x) ⊗∇uε(x)

σ2 + |∇uε(x)|2
)
, x ∈ Ω.

Using φσ in place of φ in (5.11) and letting σ → 0+ we obtain
∫

Ω

[
Puε

ij

(
∂jϕ− ∂j [(νuε

)l(νuε
)k]Dm

lk
ϕ
)
− fεuε

ε|∇uε|
∂iuε
|∇uε|

ϕ

]
dµ̃uε

= −
∫

Ω

ϕ∂iξ
ε
uε
dx.

(5.12)

In (5.12) the integration is only on the subset of Ω where ∇uε 6= 0, the function ϕ
is evaluated at (x, Id− νuε

(x)⊗ νuε
(x)), and Dm

lk
ϕ is the derivative of ϕ(x, ·) with
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respect to its lk-entry variable. Next we notice that, by the definition of fεuε
and

Auε in (2.21) we have

fεuε

ε|∇uε|
∂iuε
|∇uε|

=div

( ∇uε
|∇uε|

)
∂iuε
|∇uε|

+
1

ε|∇uε|2
[
ε∇2uε∇uε · ∇uε − ε−1W ′(uε)|∇uε|2

|∇uε|2
]
∂iuε

=Auε

jij(x, P
uε) +

1

ε|∇uε|2
(
∇ξεuε

νuε
⊗ νuε

)
i
.

(5.13)

Inserting (5.13) into (5.12), and recalling the definition of V εuε
, Auε and Rεuε

given
in (2.22), (2.21) and (2.18) respectively, we have that equality (5.12) becomes

∫
(Sij∂jϕ+Auε

ijkDmjk
ϕ−Auε

jijϕ) dV εuε
(x, S)

= −
∫

(Rεuε
(x, S) S)iϕ(x, S) dV εuε

(x, S),

where ϕ on the left hand side is evaluated at (x, S). Passing to the limit as ε→ 0+,
by the convergence of {V εuε

} to V , (5.9) and Lemma 5.1, we get

∫ (
Sij∂jϕ+ ÂijkDmjk

ϕ− Âjijϕ
)
dV (x, S) = 0,

that is V is a curvature varifold with generalized second fundamental form in L2,

and AV = Â.
In order to get (5.7) we proceed as follows. Let V = v(M, θ). We define

Puε : G2(Ω) → R
3×3, (x, S) → Puε(x),

PV : G2(Ω) → R
3×3, (x, S) → PM(x),

where PM(x) is the orthogonal projection matrix of R3 onto the tangent plane
TxM ∈ G2,3 to M at x (recall that TxM is well defined H2 M-almost everywhere
by the 2-rectifiability of M, see [1]). By Remark B.2 we have that the convergence

of V εuε
to V as varifolds implies that (V εuε

, Puε) → (V, PV ) as ε → 0+ in the L2-

strong convergence as measure-function pairs on G2(Ω) with values in R
3×3. Hence,

by (2.5) and Lemma A.6 we obtain (5.7). �

Note that the left hand side of (5.10) can also be written as
∫
Ω T

ij
ε ∂jφ dx,

where T ijε is the so-called energy-momentum tensor, defined as T ijε :=(
ε
2 |∇u|2 + 1

εW (u)
)
δij − ε∂iu ∂ju.

5.1. Proof of (4.2). From the definition of W ε in (1.7) we have

W ε(uε) = −κG

2ε

∫

Ω

∣∣∣∣ε∇2uε −
W ′(uε)

ε
νuε

⊗ νuε

∣∣∣∣
2

dx +
κb + κG

2ε

∫

Ω

(fεuε
)2 dx.

(5.14)

From (1.4), (1.8) and (5.14) it follows that (5.1) holds. Hence by Lemma 5.3 we
can conclude that V is a curvature varifold with generalized second fundamental
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form BV in L2, and AV ∈ L2(µV ) and also that (4.1) is verified. In order to prove
the Γ − lim inf inequality (4.2) we observe that, by (5.8), we have

W ε(uε) ≥
∫ [−κG

2
|Buε

|2 +
κb + κG

2
(Hε

uε
)2
]
dµ̃εuε

=c0

∫ −κG

2
|Buε

(x, Puε)|2 dV εuε
+

∫
κb + κG

2
(Hε

uε
)2 dµ̃εuε

.

(5.15)

By (5.15), (5.7), and Theorem A.4, we have

lim inf
ε→0+

W ε(uε) ≥c0 lim inf
ε→0+

∫ −κG

2
|Buε

|2 dV εuε
+ lim inf

ε→0+

∫
κb + κG

2
(Hε

uε
)2 dµ̃εuε

≥c0
∫ [

κb

2
|HV |2 +

κG

2

(
|HV |2 − |BV |2

)]
dV,

which proves (4.2).

6. Proofs of Theorem 4.2 and of Corollary 4.3

We prove Theorem 4.2 in the case Ω = R3. The case of a bounded Ω can be
proved almost in the same way.

We will construct a sequence {uε} ⊂ H2(R3) satisfying the thesis. To conclude
the proof it is enough to mollify each uε and use a standard diagonal argument to
obtain a new sequence {ûε} ⊂ C2(R3) still satisfying (4.3), (4.4), (4.5).

We consider uε ∈ H2(R3) as in [5]. Let d(·) be the signed distance function from
∂E, as defined in Proposition 2.3, and let γ(s) := tanh(s). For any 0 < ε < 1 and
s ∈ R, let γε(s) := γ(s/ε) and γ̃ε be defined as follows: γ̃ε := γε in (0, ε| log ε|),
γ̃ε := pε in (ε| log ε|, s0ε), γ̃ε := +1 in (s0ε,+∞), and γ̃ε(s) := −γ̃ε(−s) if s < 0. Here,
pε is an arc of parabola on (ε| log ε|, s0ε) connecting the points (ε| log ε|, γε(ε| log ε|))
and (s0ε, 1), that is pε(s) := −aε(s− s0ε)

2 + 1, aε > 0. To find aε and s0ε, we impose
the condition γ̃ε ∈ H2(R), that gives s0ε = ε+ ε3 + ε| log ε| and aε = 2

(1+ε2)3 .

We define

uε(x) := γ̃ε(d(x)). (6.1)

Then (4.3) and (4.4) follow directly from [5], and it remains to prove only (4.5).
To this aim we notice that, since ∇2uε = γ̃′ε(d)∇2d+ γ̃′′ε (d)∇d ⊗∇d, we have

- in Uε := {−ε| log ε| < d(x) < ε| log ε|}

Bεuε
=
γ′(d/ε)∇2d+ ε−1

(
γ′′(d/ε) −W ′(γ(d/ε))

)
∇d⊗∇d

|γ′(d/ε)| = ∇2d, (6.2)

Hε
uε

= ∆d; (6.3)

- in Vε := {ε| log ε| < |d(x)| < s0ε}

Bεuε
= ∇2d+

1

εp′ε(d)

(
εp′′ε (d) −

W ′(pε(d))

ε

)
∇d⊗∇d, (6.4)

Hε
uε

= ∆d+
1

εp′ε(d)

(
εp′′ε (d) −

W ′(pε(d))

ε

)
. (6.5)
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Let us now derive some estimates in Vε. Let x ∈ Vε; then 1 ≥ uε(x) ≥ pε(ε| log ε|) =

1 − 2ε2

1 + ε2
. Hence |W ′(uε(x))| = |4uε(x)(1 − uε(x))(1 + uε(x))| ≤

16ε2

1 + ε2
, so that

ε−1W ′(uε) = O(ε). Moreover εp′′ε (d) = O(ε), so that

− εp′′ε (d) +
W ′(uε)

ε
= O(ε). (6.6)

Moreover since ε|p′ε(s)|2 = 8ε(s−ε−ε3−ε| log ε|)2

(1+ε2)6 , making the change of variable σ =

s− ε| log ε|, it follows

∫ ε+ε3+ε| log ε|

ε| log ε|

ε|p′ε(s)|2 ds =
32ε

(1 + ε2)6

∫ ε+ε3

0

(τ − ε− ε3)2 dτ = O(ε4), (6.7)

as ε→ 0+

By [5] it follows that

lim
ε→0+
Hε(uε) = c0

∫

∂E

(H∂E)2 dH2. (6.8)

Eventually we have

lim
ε→0+
Kε(uε) = lim

ε→0+

{∫

Uε

∑

1≤i<j≤j

det([Bεuε
]ij) ε|∇uε|2dx+

∫

Vε

(Hε
uε

)2 − |Bεuε
|2

2
ε|∇uε|2dx

}

= lim
ε→0+

{∫

Uε

∑

1≤i<j≤3

det([∇2d]ij)
1

ε
|γ′(d/ε)|2 dx

+
1

2ε

∫

Vε

[
εp′ε∆d+

(
εp′′ε (d) −

W ′(pε(d))

ε

)]2
dx

− 1

2ε

∫

Vε

∣∣∣∣εp
′
ε∇2d+

(
εp′′ε (d) −

W ′(pε(d))

ε

)
∇d⊗∇d

∣∣∣∣
2

dx

}

= lim
ε→0+



∫

Uε

∑

1≤i<j≤3

det([∇2d]ij)
1

ε
|γ′(d/ε)|2 dx +O(ε)




=c0

∫

∂E

K∂E dH2,

(6.9)

where in the last equality we use Proposition 2.3. Hence, by (6.8) and (6.9) we
deduce that (4.5) holds.

6.1. Proof of Corollary 4.3. If E has smooth boundary in Ω, as in the proof of
Theorem 3.2, we can use the locality of the generalized second fundamental form
for Hutchinson’s curvature varifolds (see [31]) together with

c0H2 ∂E ≤ µ = c0µV as Radon measures,

to conclude that

c0

∫ [
κb

2
|HV |2 +

κG

2

(
|HV |2 − |BV |2

)]
dV ≥ c0WHel(E).

The thesis is then a direct consequence of Theorems 4.1, 4.2 and 3.2.



APPROXIMATION OF THE HELFRICH’S FUNCTIONAL VIA DIFFUSE INTERFACES 19

7. Proof of Theorem 4.4

Firstly we notice that we can assume (up to selecting a subsequence) that V εuε

converge as varifolds to the curvature varifold V ∈ IV2(Ω) and that (4.1) holds.
Moreover, since V 0,ε

uε
(G0

2(Ω)) = µεuε
(Ω), by (1.8), we can extract a further subse-

quence such that V 0,ε
uε

converge as Radon measures to a Radon measure V 0 on

G0
2(Ω), and also that q♯V

0 = V (notice that for the moment V 0 is rectifiable but
not necessarily integral). Eventually, without loss of generality, we can also assume
that

lim inf
ε→0+

W ε(uε) = lim
ε→0+
W ε(uε) < +∞.

The present section is organized as follows. We firstly prove Lemma 7.1, from
which Theorem 4.4-(B) follows. Then, in Proposition 7.3, we conclude the proof of
Theorem 4.4-(A) showing that V 0 ∈ IV0

2(Ω).

Lemma 7.1. Let uε ∈ C2(Ω) be such that (5.1) holds and lim infε→0+ µεuε
(Ω) > 0.

Suppose V 0 is such that limε→0+ V 0,ε
uε

= V 0 as oriented varifolds. Then there exists

a (not relabelled) subsequence of {uε} such that for L1-almost every s ∈ [−1, 1] we
have

lim
ε→0+

v ({uε = s}, ⋆νuε
, ε|∇uε|) = lim

ε→0+
v
(
{uε = s}, ⋆νuε

,
√

2W (s)
)

=
√

2W (s)V 0
(7.1)

as oriented varifolds on Ω.

Remark 7.2. When lim infε→0+ µεuε
(Ω) > 0, by [13, Lemma 4.4] (see also [38,

Proposition 3.4]) we can conclude that, up to a subsequence, {uε = s} 6= ∅ for
every s ∈ (−1, 1).

Proof. Let us firstly remark that on one hand for ψ ∈ C0
c (Ω × S

2) we can define
ψ∗ ∈ C0

c (G
0
2(Ω)) as ψ⋆(x, τ) := ψ(x, ντ ). On the other hand for φ ∈ C0

c (G
0
2(Ω)) we

can define φ⋆ ∈ C0
c (Ω×S2) as φ⋆(x, ξ) := φ(x, ⋆ξ). This means that the convergence

as oriented varifolds of v({uε = s}, ⋆νuε
, 1) is equivalent to the convergence of

H2 {uε = s} ⊗ δνuε
as measures on Ω × S2. Moreover for a given ψ ∈ C1

c (Ω × S2)

we can find ψ ∈ C1
c (Ω × R3) such that ψ(x, ξ) = ψ(x, ξ) for every ξ ∈ S2, and

‖ψ‖L∞(Ω×R3) ≤ ‖ψ‖L∞(Ω×S2).

Let ψ ∈ C1
c (Ω × S2) and define gψε : R → [0,+∞) as in the statement, i.e.,

gψε (s) :=

∫

{uε=s}

ψ(y, νuε
(y)) ε|∇uε(y)| dH2(y).

We extend ψ to a function of class C1
c (Ω ×B), where B := {ξ ∈ R3 : 1

2 < |ξ| < 2},
and we still denote by ψ = ψ(x, ξ) such an extension. Fixed δ ∈ (0, 1/2] we set
Iδ := [−1 + δ, 1 − δ]. Let η ∈ C∞

c (Iδ). For fixed ε > 0 and σ 6= 0, we define
ψσ ∈ C1

c (Ω × R
3) as

ψσ(x) := ψ

(
x,

∇uε(x)
σ2 + |∇uε(x)|

)
,
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so that, since ψ ∈ C1
c (Ω × B), we obtain ψσ ≡ 0 on {∇uε = 0}. We then have,

using the coarea formula,
∫

R

η′gψ
σ

ε ds =

∫

Ω

εη′(uε)ψ
σ|∇uε|2 dx =

∫

Ω

εψσ∇(η(uε)) · ∇uε dx

= −
∫

Ω

εψση(uε)∆uε dx −
∫

Ω

εη(uε)∇ψσ · ∇uε dx.

Letting σ → 0 we obtain
∫

R

η′gψε ds = −
∫

Ωε

εη(uε) ψ∆uε dx

−
∫

Ωε

εη(uε)∇ψ · ∇uε dx−
∫

Ωε

εη(uε)Dξj
ψ(x, νuε

)∂k(ν
uε)j∂kuε dx,

(7.2)

where Ωε := Ω ∩ {∇uε 6= 0}.
Adding and subtracting the term

∫
Ωε
η(uε)ψ

W ′(uε)
ε dx, observing that the last

addendum on the right hand side of (7.2) can be written as

−
∫

Ωε

η(uε)Dξψ(x, νuε
)Puεε∇2uε

∇uε
|∇uε|

dx,

and since Puενuε
⊗ νuε

= 0, from (7.2) we obtain
∫

R

η′gψε ds =

∫

Ωε

η(uε)ψ

(
−ε∆uε +

W ′(uε)

ε

)
dx−

∫

Ωε

εη(uε)∇ψ · ∇uε dx

−
∫

Ωε

η(uε)Dξψ(x, νuε
)
(
Puε

(
ε∇2uε −

W ′(uε)

ε
νuε

⊗ νuε

)) ∇uε
|∇uε|

dx (7.3)

−
∫

Ωε

η(uε)ψ
W ′(uε)

ε
dx.

Since for every t ∈ Iδ we have |W ′(t)| = |t(1−t2)| ≤ 4(1−δ)
δ W (t), we can conclude

that∣∣∣∣
∫

R

η′gψε ds

∣∣∣∣ ≤‖η‖L∞(Iδ)‖ψ‖L∞(Ω×S2)‖fεuε
‖L1(Ω)

+ ε1/2‖η‖L∞(Iδ)‖∇ψ‖L∞(Ω×S2)

(∫

Ω

ε|∇uε|2 dx
)1/2

+ ‖η‖L∞(Iδ)‖Dξψ‖L∞(Ω×S2)

∫

Ω

∣∣∣ε∇2uε −
W ′(uε)

ε
νuε

⊗ νuε

∣∣∣ dx

+ ‖η‖L∞(Iδ)‖ψ‖L∞(Ω×S2)
4(1 − δ)

δ

∫

Ω

W (uε)

ε
dx.

From this inequality we can deduce that there exists gψ ∈ BVloc([−1, 1]) such
that gψε → gψ in L1

loc([−1, 1]) and L1-almost everywhere in [−1, 1].
Next, for any fixed ψ ∈ C1

c (Ω), we consider the functions ĝψε : R → [0,+∞)
defined as

ĝψε (s) :=
√

2W (s)

∫

{uε=s}

ψ(y, νuε
(y)) dH2(y),

and we claim that as ε → 0+ the sequence {ĝψε } converges in L1
loc([−1, 1]) and

L1-almost everywhere to gψ. In order to prove the claim, let δ > 0. By (3.2) we
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have

lim
ε→0+

∫

Iδ

∣∣∣ĝψε − gψ
∣∣∣ ds ≤ lim

ε→0+

(∫

Iδ

∣∣∣ĝψε − gψε

∣∣∣ ds+

∫

Iδ

|gψε − gψ| ds
)

= lim
ε→0+

(∫

Iδ

∣∣∣
∫

{uε=s}

ψ(
√

2W (s) − ε|∇uε|) dH2
∣∣∣ ds+O(ε)

)

≤ lim
ε→0+

∫

Iδ

∫

{uε=s}

∣∣∣ψ(
√

2W (s) − ε|∇uε|)
∣∣∣ dH2 ds

≤2‖ψ‖L∞(Ω×S2) lim
ε→0+

∫

Ω∩{uε∈Iδ}

∣∣∣∣∣

√
W (uε)

ε
−
√
ε

2
|∇uε|

∣∣∣∣∣

√
ε

2
|∇uε| dx

≤2‖ψ‖L∞(Ω×S2) lim
ε→0+

∫

Ω

∣∣∣∣∣

√
W (uε)

ε
−
√
ε

2
|∇uε|

∣∣∣∣∣

(√
ε

2
|∇uε| +

√
W (uε)

ε

)
dx

=2‖ψ‖L∞(Ω×S2) lim
ε→0+

∫

Ω

|ξεuε
| dx = 0,

which shows the claim. Since on Iδ we have
√

(2δ − δ2)/2 ≤
√

2W (s) ≤
√

2, we
can also conclude that the sequence of functions

hψε : R → [0,+∞), hψε (s) :=
ĝψε (s)√
2W (s)

=

∫

{uε=s}

ψ(y, νuε
(y))dH2(y),

is equibounded in L1
loc([−1, 1]) and converges in L1

loc([−1, 1]) to

hψ =
gψ√
2W

. (7.4)

Next we refine formula (7.2), by proving that, for every δ > 0, every ψ ∈ C1
c (Ω)

and η ∈ C∞
c (Iδ), we have

lim
ε→0+

∫

Iδ

η′gψε ds =

∫

Iδ

η
( d
ds

√
2W
)
hψ ds. (7.5)

To this aim we start noticing that

∣∣∣∣∣

∫

Ωε

η(uε)ψ
W ′(uε)

ε
dx−

∫

Ω

η(uε)ψ
W ′(uε)√
2W (uε)

|∇uε| dx
∣∣∣∣∣

≤‖η‖L∞(Iδ)‖ψ‖L∞(Ω×S2)

∫

Ω∩{uε∈Iδ}

|W ′(uε)|
ε1/2

√
W (uε)

∣∣∣∣∣

√
W (uε)

ε
−
√
ε

2
|∇uε|

∣∣∣∣∣ dx

≤‖η‖L∞(Iδ)‖ψ‖L∞(Ω×S2)
4(1 − δ)

δ

(∫

Ω

W (uε)

ε
dx

)1/2
∥∥∥∥∥

√
W (uε)

ε
−
√
ε

2
|∇uε|

∥∥∥∥∥
L2(Ω)

,



22 GIOVANNI BELLETTINI AND LUCA MUGNAI

which, by (3.1), vanishes as ε → 0+. Then, by the L1(Iδ) convergence of hψε , the
coarea formula and the Lebesgue’s Dominated Convergence theorem, we have

lim
ε→0+

∫

Ωε

η(uε)ψ
W ′(uε)

ε
dx = lim

ε→0+

∫

Ω∩{uε∈Iδ}

η(uε)ψ
W ′(uε)√
2W (uε)

|∇uε| dx

= lim
ε→0+

∫

Iδ

η

(
d

ds

√
2W

)
hψε ds =

∫

Iδ

lim
ε→0+

(
η

(
d

ds

√
2W

)
hψε

)
ds

=

∫

Iδ

η

(
d

ds

√
2W

)
hψ ds.

In order to obtain (7.5) it is then enough to plug the following estimates in (7.3):

∣∣∣∣
∫

Ω

η(uε)ψf
ε
uε
dx

∣∣∣∣ ≤ ε1/2‖η‖L∞(Iδ)‖ψ‖L∞(Ω×S2)

√
Ln(Ω)‖ε−1fεuε

‖L2(Ω),

∣∣∣∣
∫

Ω

εη(uε)∇ψ · ∇uε dx
∣∣∣∣ ≤ ε1/2‖η‖L∞(Iδ)‖∇ψ‖L∞(Ω×S2)

√
Ln(Ω)

(∫

Ω

ε|∇uε|2 dx
)1/2

,

and
∣∣∣∣
∫

Ω

η(uε)Dξψ(x, νuε
)

(
Puε

(
ε∇2uε −

W ′(uε)

ε
νuε

⊗ νuε

)) ∇uε
|∇uε|

dx

∣∣∣∣

≤‖η‖L∞(Iδ)‖Dξψ‖L∞(Ω×S2)ε
1/2‖Bεuε

‖L2(eµε
uε

).

We are now in a position to prove that the distributional derivative of the func-
tion hψ in (7.4) is zero in Iδ. In fact by (7.5), the definition of hψε and Lebesgue’s
Dominated Convergence Theorem we have

∫

Iδ

η′
√

2Whψ ds = lim
ε→0+

∫

Iδ

gψε ds = −
∫

Iδ

η

(
d

ds

√
2W

)
hψ ds,

that is, for every η ∈ C∞
c (Iδ) we have

∫

Iδ

d

ds

(
η
√

2W
)
hψ ds = 0. (7.6)

Since
√

2W ≥
√

2δ−δ2

2 on Iδ, from (7.6) we can conclude that the distributional

derivative of hψ is zero in Iδ. This means that there exists a real number β(ψ) such
that

hψ(s) = β(ψ), for L1 − a.e. s ∈ Iδ. (7.7)

Let Ω′ ⊂⊂ Ω, and select {ψi} ⊂ C1
c (Ω×S2) such that {ψi} is dense in C0(Ω′×S2).

Fix ψi, and choose ηδ ∈ C∞
c ([−1, 1]) such that 0 ≤ ηδ ≤ 1 on [−1, 1], ηδ ≡ 1 on

Iδ/2. Before proceeding any further, let us recall that, by [38, Proposition 3.4] (see
also [13, Lemma 4.4]) there exists δ0 > 0 independent of ε, such that if δ ≤ δ0

µεuε
(Ω ∩ {|uε| > 1 − δ}) ≤ Cδ,

where C depends on Ω′, but not on ε.
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We then have
∫ 1

−1

ηδ
√

2Wβ(ψi) ds =

∫ 1

−1

ηδ
√

2W lim
ε→0+

hψi
ε ds = lim

ε→0+

∫ 1

−1

ηδg
ψi
ε ds

= lim
ε→0+

∫

Ω∩{|uε|<1− δ
2
}

ψi
√

2W (uε)|∇uε| dx

+

∫

Ω∩{1− δ
2
<|uε|<1−δ}

ηδ(uε)ψi
√
W (uε)|∇uε| dx

+

∫

Ω∩{|uε|>1− δ
2
}

ψiε
√

2W (uε)|∇uε| dx−
∫

Ω∩{|uε|>1− δ
2
}

ψi
√
W (uε)|∇uε| dx

=c0

∫
ψi(y, ξ) dV

0(y, ⋆ξ) +O(δ)

=

∫ 1

−1

√
2W dsV 0(ψi) +O(δ) =

∫ 1

−1

ηδ
√

2WV 0(ψi) ds

+

(∫ −1+ δ
2

−1

(1 − ηδ)
√

2W ds+

∫ 1

1− δ
2

(1 − ηδ)
√

2W ds

)
V 0(ψi) +O(δ)

=

∫ 1

−1

ηδ
√

2WV 0(ψi) ds+O(δ).

Sending δ → 0+ we obtain

∫ 1

−1

√
2W ds β(ψi) =

∫ 1

−1

√
2W ds V 0(ψi). (7.8)

Repeating the same argument for every ψi, by the density of {ψi} in C0(Ω′×S2)
and (7.8) we deduce that β = V 0 as measures on G0

2(Ω
′). �

Let ψ ∈ C1
c (Ω × S2). From the estimates on (d/ds)gψε obtained in the proof of

Lemma 7.1 we can conclude that gψε → gψ strongly in W 1,1
loc ((−1, 1)) as ε → 0+.

The proof of Theorem 4.4-(B) is complete.
We are now in a position to conclude the proof of Theorem 4.4-(A).

Proposition 7.3. There exists a (not relabelled) subsequence {V 0,ε
uε

} converging,

as oriented varifolds, to V 0 = v(M, τ, θ1, θ2) ∈ IV0
2(Ω), with q♯V

0 = V .

Proof. As we already noticed at the beginning of the present section, by (1.8), we
can extract a subsequence such that V 0,ε

uε
converge as Radon measures to a Radon

measure V 0 on G0
2(Ω), and also that q♯V

0 = V . Hence, in order to conclude it

remains to show that V 0 ∈ IV0
2(Ω). To this aim we will make use of Lemma 7.1.

Fix Ω′ ⊂⊂ Ω with smooth boundary. By Sard’s Lemma and Lemma 7.1 we can
find a subsequence {V 0,εk

uεk
}k and a subset J ⊂ [−1, 1], with L1(J) = 0, such that

for every s ∈ [−1, 1] \ J ,

{uεk
= s} is a smooth embedded surface and {uεk

= s} ∩ {∇uεk
= 0} = ∅,

∂Jv({uεk
= s}, ⋆νuεk

, 1)K(Ω′) = 0,

lim
k→∞

v({uεk
= s}, ⋆νuεk

, 1) = V 0 as oriented varifolds on Ω′.
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Next we fix δ > 0 and set Iδ := [−1 + δ, 1 − δ]. Since we have
∫

Iδ\J

∣∣∣δv({uεk
= s}, ⋆νuεk

, 1)
∣∣∣ (Ω′) ds =

∫

Iδ\J

∫

{uεk
=s}∩Ω′

∣∣∣div
(
νuεk

)∣∣∣ dH2ds

≤ 1

(2δ − δ2)

∫

Ω′

∣∣∣div
(
νuεk

)∣∣∣
√

2W (uεk
)|∇uεk

| dx ≤ 2

(2δ − δ2)

∫

Ω′

|Buεk
|
√

2W (uεk
)|∇uεk

| dx

≤ 2

(2δ − δ2)

(∫

Ω

|Buεk
|2 dµ̃εk

uεk

)1/2{[
µ̃εk
uεk

(Ω)
]1/2

+ 2
[
|ξεk
uεk

|(Ω)
]1/2}

,

by the choice of the εk, the set J and (5.1), we can conclude that there exists
s = sεk

∈ Iδ \ J such that

lim sup
k→∞

∣∣∣δv({uεk
= sεk

}, ⋆νuεk
, 1)
∣∣∣(Ω′) < +∞.

The thesis is then a direct consequence of the properties of {uεk
= sεk

} for s ∈ Iδ \J
and Theorem B.1. �

8. Proof of Proposition 4.6

As in Section 7, by (1.8) we deduce that (5.1) holds. Hence we can apply
Theorem 3.1 and conclude that, up to selecting a further subsequence, (3.1) holds.
In addition, the densities of the discrepany measures are uniformly bounded in
L1(Ω), and we have

∫

Ω

∣∣∇ξεuε

∣∣ dx =

∫

Ω

∣∣∣∣ε∇2uε∇uε −
W ′(uε)

ε
∇uε

∣∣∣∣ dx

=

∫

{∇uε 6=0}

∣∣∣∣
[
ε∇2uε −

W ′(uε)

ε

∇uε ⊗∇uε
|∇uε|2

]
∇uε

∣∣∣∣ dx

≤31/4

(
1

ε

∫

{∇uε 6=0}

∣∣∣∣ε∇2uε −
W ′(uε)

ε

∇uε ⊗∇uε
|∇uε|2

∣∣∣∣
2

dx

)1/2 (
µ̃εuε

(Ω)
)1/2

=31/4

(∫

Ω

|Bεuε
|2 dµ̃εuε

)1/2 [
µ̃εuε

(Ω)
]1/2 ≤ C,

where C is a positive constant independent of ε.
By the compactness theorem in BV (see [1]) and Theorem 3.1 we can select a

further subsequence such that ξεuε
⇀ 0 weakly in BV (Ω) as ε → 0+. Moreover

(4.9) holds by Rellich-Kondrachov compactness theorem (see [1]).

9. Final Comments

9.1. Relaxing the constraints on κb, κG. As already stated in Remark 3.3,
Theorem 3.2 still holds when replacing (1.4) with the more general constraint −2 <
κG/κb < 0. Although we cannot prove Theorem 4.1 (and hence Corollary 4.3) when
−2 < κG/κb < 0, we can relax condition (1.4) to

κG < 0 <
3

2
κb + κG. (9.1)

In fact, in this case we can still derive (5.1) using the inequality

(fεu)
2 = (tr(Bεu))

2 ≤ 3|Bεu|2.
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Hence, in particular, Theorem 4.1 holds for κb = −κG = 1, which gives the usual
isotropic bending energy

WHel(E) =
1

2

∫

Ω∩∂E

|B∂E |2 dH2,

W ε(u) =
1

2ε

∫

Ω

∣∣∣∣ε∇2u− W ′(u)

ε
νu ⊗ νu

∣∣∣∣
2

dx.

9.2. Full Γ-convergence and convergence of constrained minimizers.

Corollary 4.3 shows that the Γ-limit with respect to the L1-topology of W ε is given
by WHel on smooth points. However, since Γ-limits are always lower semicontinuous,
the natural candidate for a full Γ-convergence result is the L1-lower semicontinuous
envelope WHel of WHel defined by

WHel(E) := inf
{

lim inf
h→∞

WHel(Eh) : Eh ⊂ Ω bounded with ∂Eh ∈ C2,

lim
h→∞

χEh
= χE in L1(Ω)

}
.

Let us recall some facts about WHel (see for example [16]). Define

D :=
{
W ∈ IV2(Ω) : W = lim

h→∞
v(∂Eh, 1), Eh ⊂ Ω bounded with ∂Eh ∈ C2,

sup
h∈N

∫

Ω∩∂Eh

[
1 + |B∂Eh

|2
]
dH2 < +∞

}
,

and

A(E) :=
{
W ∈ D : W = lim

h→∞
v(∂Eh, 1), Eh ⊂ Ω bounded with ∂Eh ∈ C2,

lim
h→∞

χEh
= χE in L1(Ω)

}
.

Eventually, we recall that if W ∈ D then W ∈ A(EW ) where EW is an open,
bounded subset with finite perimeter in Ω, such that the essential boundary of E
coincides with the set of points of odd 2-density with respect to µW .

From [16, Corollary 5.4], we obtain

WHel(E) = min{WHel(V ) : V ∈ A(E)}.
Hence, if we would be able to prove that V = limε→0+ V εuε

∈ A(E), by (4.2) we
would have

lim inf
ε→0+

W ε(uε) ≥ c0WHel(V ) ≥ c0WHel(E),

which, together with WHel(E) = WHel(E) for E ⊂ Ω bounded with boundary of

class C2, would imply that Γ(L1(Ω)) − limε→0+ W ε = WHel. Although Theorem
4.4-(B) seems to represent a signicative step in this direction, in order to prove
that V ∈ A(E) we miss an estimate similar to the one proved in [43, Lemma 2],
[44, Theorem 1]. Actually, we are able to prove that V ∈ A(E) under the stronger
assumption

sup
0<ε<1

W̃ ε(uε) < +∞, (9.2)

W̃ ε(uε) := W ε(uε) +

∫

Ω

|Bεuε
|2W (uε)

ε
dx.
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Indeed, assuming that (9.2) holds, we have

sup
0<ε<1

∫ 1

−1

∫

{uε=s}

|B{uε=s}|2 dH2ds ≤ c−1
0 sup

0<ε<1
W̃ ε(uε) < +∞,

which, by Lemma 7.1, gives V ∈ A(E). Moreover, this means that we can conclude
that chosen ũε so that

W̃ ε(ũε) = min

{
W̃ ε(u) : Pε(u) = Λ1,

∫

Ω

1 + u

2
dx = Λ2

}

we have, up to a subsequence,

V εeuε
→ Ṽ ∈ D, uε → u = 2χ eE − 1 as ε→ 0+,

where

- Ṽ solves

min
{
WHel(V ) : V ∈ D, µV (Ω) = Λ1, L3(Ω ∩ EV ) = Λ2

}

- Ẽ ⊂ Ω solves

min
{
WHel(E) : ∀W ∈ A(E) we have µW (Ω) = Λ1, L3(Ω ∩E) = Λ2

}
.

- WHel(Ṽ ) = WHel(Ẽ).

9.3. The case of non-zero spontaneous curvature. As we already remarked
in the introduction, when H0 6= 0 the functional

∫

∂E∩Ω

(H∂E −H0)
2 dH2 (9.3)

not only depends on the surface ∂E but also on the orientation of ∂E. Moreover
such a functional is not lower semicontinuous with respect to the varifolds conver-
gence. In fact, as an example due to Karsten Große-Brauckmann shows (see [28],
[29] and [39]), there exists a sequence {Eh}h of smooth sets in Ω := B(0, 1), such
that for every h ∈ N the surface ∂Eh has constant (scalar) mean curvature equal
to 1, and at the same time the sequence of varifolds v(∂Eh, 1) converges to the
varifold v(〈e3〉⊥, 2) in Ω. Hence, assuming H0 = 1, we have

0 = lim
h→∞

∫

Ω∩∂Eh

(H∂Eh
−H0)

2 dH2 < 2π = 2

∫

〈e3〉⊥∩B(0,1)

(H0)
2 dH2.

However if we consider the complete Helfrich’s energy

WHel(E) =

∫

Ω∩∂E

[
κb

2

(
H∂E −H0

)2

+ κGK∂E

]
dH2, (9.4)

and assume (as in the case of zero spontaneous curvature) that −2 < κb/κG < 0,
the results of [16] still apply and Theorem 3.2 holds also in this case. More-
over the functional is lower semicontinuous with repect to the convergence of the
oriented varifolds and, whenever suph∈NWHel(Eh) < +∞, the oriented varifolds
v(∂Eh, ⋆ν∂Eh

, 1) converge (up to a subsequence) to an oriented curvature varifold
V 0 ∈ IV0

2(Ω) in the sense of [15].
Possible diffuse-interface approximating functionals for (9.3) are

1

ε

∫

Ω

(
fεu −H0ε|∇u|

)2

dx,
1

ε

∫

Ω

(
fεu −H0

√
2W (u)

)2

dx, (9.5)
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the latter being the one proposed in [18]. Consequently a natural candidate for the
diffuse-interface approximation of (9.4) is

Ŵ ε(u) :=
κb

2
Ĥε(u) + κGKε(u),

where Ĥε(u) is given by one of the two expressions in (9.5). If (1.4) is satisfied, by
a direct calculation we can show that (5.1) holds as soon as

sup
0<ε<1

(
µεuε

(Ω) + Ŵ ε(uε)
)
< +∞.

Hence we can conclude that also Lemma 5.1 and Lemma 5.3 apply and, with minor
modifications to the arguments of Sections 7-8, we can prove that Theorem 4.4 and

Proposition 4.6 hold also for Ŵ ε. Moreover we can use the same sequence {ûε}ε ⊂
C2(Ω) constructed in Section 6 to show that also an analog of Theorem 4.2 holds

for Ŵ ε. However, in order to prove that the lower bound estimate corresponding
to (4.2) holds, we should prove that

lim
ε→0+

∫

Ω

∇ξεuε
· νuε

dx = 0. (9.6)

Unfortunately we are not able to prove (9.6) unless additional hypothesis are made
on uε (for example if µεuε

→ 2c0|∇χE |, then (9.6) follows from (5.2), Theorem 4.4
and Lemma A.6). However, a possible strategy to obtain (9.6) might be trying to
use Proposition 4.6 on each of the “well-separated transition layers” that can be
obtained via an appropriate blow-up procedure (see [38, Proposition 5.3]), and then
conclude via a covering argument.

Appendix A. Measure-function pairs

Let D ⊂ Rl; we say that (µ, f) is a measure-function pair over D with values
in Rm, if µ is a positive Radon measure on D, f : D → Rm is defined µ-almost
everywhere and f ∈ L1

loc(µ).
Let us recall the definition of measure-function pairs convergence (see [30])

Definition A.1. Let (µk, fk), (µ, f) be measure-function pairs on D with values
in Rm for every k ∈ N. We say that (µk, fk) converge weakly to (µ, f) as measure-
function pairs as k → ∞ if

lim
k→∞

∫
fk · Y dµk =

∫
f · Y dµ ∀Y ∈ C0

c (D,R
m).

Definition A.2. We say that a function F : Rm → [0,+∞) is a standard integrand
provided F is strictly convex on Rm, and

g(|q|) ≤ F (q) ∀q ∈ R
m,

where g ∈ C0([0,+∞)) is non-negative, increasing and g(t) → +∞ as t→ +∞.

Definition A.3. Let (µk, fk) and (µ, f) be measure-function pairs over D with
values on Rm. Suppose µk ⇀ µ as k → ∞ as Radon measures. We say that
(µk, fk) converge to (µ, f) in the F -strong sense in D if

(i)
∫
F (fk) dµk < +∞ for every k ∈ N;
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(ii) setting Dkj := {y ∈ D : |fk(y)| ≥ j} we have

lim
k→∞

∫

Dkj

F (fk) dµk = 0,

uniformly in k ∈ N;
(iii) for every ψ ∈ C0

c (D × Rm) we have

lim
k→∞

∫
ψ(y, fk) dµk =

∫
ψ(y, f) dµ.

We say that a sequence of measure-function pairs converges Lp-strongly (p ∈
[1,∞)) if it converges strongly in the Fp-sense, with Fp(q) := |q|p.

The following result has been proved in [30, Theorem 4.4.2].

Theorem A.4. Let (µk, fk)k∈N be measure-function pairs over D with values in
R
m. Suppose that µ is a Radon measure on D and µk ⇀ µ in D as k → ∞. Let

F : Rm → [0,+∞) be a standard integrand. The following assertions hold.

(i) If

sup
k∈N

∫
F (fk) dµk < +∞, (A.1)

then there exists f ∈ L1
loc(µ) and a (not relabelled) subsequence {(µk, fk)}

such that

lim
k→∞

(µk, fk) = (µ, f), (A.2)

weakly as measure-function pairs on D with values on Rm.
(ii) If {(µk, fk)} and (µ, f) satisfy (A.1), (A.2), then

∫
F (f) dµ ≤ lim inf

k→∞

∫
F (fk) dµk. (A.3)

Remark A.5. We can adapt the notions and results proved until this point in
the present Appendix to the case where D is an open subset of a smooth manifold
embedded in Rm for some m ∈ N. In particular, in our applications we will often
consider D = G2(Ω) or D = G0

2(Ω).

The following lemma is a particular case of [33, Proposition 3.2].

Lemma A.6. Let (µk, gk) and (µ, g) be measure-function pairs on D with values
in Rm such that

sup
k∈N

‖gk‖L2(µk) < +∞,

and (µk, gk) weakly converge to (µ, g) as measure-function pairs.
Moreover let (µk, fk), (µ, f) be measure-function pairs on D with values in Rm

such that (µk, fk) converges L2-strongly to (µ, f). Then

lim
k→∞

(µk, fk · gk) = (µ, f · g),

weakly as measure-function pairs on D with values in R.
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Appendix B. Geometric Measure Theory: varifolds

Let us recall some basic fact in the theory of varifolds, the main bibliographic
sources being [41] and [30].

We call varifold (resp. oriented varifold) any positive Radon measure on G2(Ω)
(resp. on G0

2(Ω)). In this paper we are confined to surfaces, hence we use the terms
varifold and oriented varifold to mean a 2-varifold in Ω.

If V 0 is an oriented varifold then the push-forward q♯V
0 is the corresponding

unoriented varifold associated with V 0 by projection onto G2(Ω).
For any varifold (or oriented varifold) V we define µV to be the Radon measure

on Ω obtained by projecting V onto Ω.
Let M be a 2-rectifiable subset of R3 with finite H2-measure and let θ, θ1, θ2 :

M → R+ be H2 M-measurable functions. Suppose τ : M → G0
2,3 is H2 M-

measurable and q(τ(x)) = TxM for H2 M-almost everywhere x (τ is called an
orientation function on M). Then we define the rectifiable (unoriented and oriented
respectively) varifolds

V = v(M, θ), V 0 = v(M, τ, θ1) + v(M,−τ, θ2) =: v(M, τ, θ1, θ2),

by

V (φ) :=

∫

M

φ(x, TxM) θ(x)dH2 ∀φ ∈ C0
c (G2(Ω)),

V 0(ϕ) :=

∫

M

[
ϕ(x, τ(x))θ1(x) + ϕ(x,−τ(x))θ2(x)

]
dH2 ∀ϕ ∈ C0

c (G
0
2(Ω)).

With the notation v(M, τ, θ) we mean v(M, τ, θ, 0).
When θ (resp. θ1, θ2) take values in N we say that V = v(M, θ) (resp. V 0 =

v(M, τ, θ1, θ2)) is a rectifiable integer unoriented (resp. oriented) varifold and we
write V ∈ IV2(Ω) (resp. V 0 ∈ IV0

2(Ω)). If V 0 = v(M, τ, θ1, θ2) ∈ IV0
2(Ω) the

integral rectifiable 2-current JV 0K is defined as

JV 0K(ω) :=

∫

M

〈ω(x), τ(x)〉 (θ1(x) − θ2(x)) dH2(x) ∀ω ∈ C0(Ω,Λ2(R
3)).

As usual ∂JV 0K denotes the boundary of the current JV 0K, and |∂JV 0K| is the mass
of J∂V 0K (see [41]).

Let V be an unoriented varifold on Ω; we define the first variation of V as the
linear operator

δV : C1
c (Ω,R

3) → R, Y →
∫

tr(S∇Y (x)) dV (x, S).

We say that V has bounded first variation (resp. generalized mean curvature in
Lp, p > 1) if δV can be extended to a linear continuous operator on C0

c (Ω,R
3) (resp.

on Lp(µV ,R
3)). In this case |δV | denotes the total variation of δV . Whenever the

varifold V has bounded first variation we call the generalized mean curvature vector
of V the vector field

HV =
dδV

dµV
,

where the right-hand side denotes the Radon-Nikodym derivative.
By varifold convergence (resp. oriented varifold convergence) we mean the con-

vergence as Radon measures on G2(Ω) (resp. on G0
2(Ω)). The following compact-

ness theorem for oriented varifolds is proved in [30, Theorem 3.1].
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Theorem B.1. Let C > 0 and let {Ωi} be a sequence of open subsets with smooth
boundary invading Ω. The set

{
V 0 ∈ IV0

2(Ω) : ∀i ∈ N, µq♯(V 0)(Ωi) + |δ(q♯V 0)|(Ωi) + |∂JV 0K|(Ωi) ≤ C
}

is sequentially compact with respect to the oriented varifolds convergence.

Remark B.2. Let {Vh} be a sequence of varifolds converging to a varifold V , and
suppose that there exist µVh

-measurable maps Sh· and a µV -measurable map S·

such that

Vh(Ψ) =

∫
Ψ(x, Shx ) dµVh

(x) ∀Ψ ∈ C0
c (G2(Ω)), ∀h ∈ N

V (Ψ) =

∫
Ψ(x, Sx) dµV (x) ∀Ψ ∈ C0

c (G2(Ω)).

Then it can be checked that the measure function pair (µVh
, Sh· ) converge Lp-

strongly to (µV , S·) as measure function pairs on Ω with values in G2(Ω), for every
p ∈ (1,+∞).

Following [30] we define the notion of Hutchinson’s curvature varifold with gen-
eralized second fundamental form.

Definition B.3. Let V ∈ IV2(Ω). We say that V is a curvature varifold with

generalized second fundamental form in L2, if there exists AV = AVijk ∈ L2(V,R33

)

such that for every function φ ∈ C1
c (G2(Ω)) and i = 1, 2, 3,

∫

G2(Ω)

(Sij∂jφ+AVijkDmjk
φ+AVjijφ) dV (x, S) = 0, (B.1)

where Dm
jk
φ denotes the derivative of φ(x, ·) with respect to its jk-entry variable.

Moreover we define the generalized second fundamental form BV = (Bkij)1≤i,j,k≤3

of V as
Bkij(x, S) := SjlA

V
ikl(x, S). (B.2)

Remark B.4. Every curvature varifold V with generalized second fundamental
form in L2 has bounded first variation. Moreover

HV (x) = (Aj1j(x, TxµV ), Aj2j(x, TxµV ), Aj3j(x, TxµV )) ∈ L2(µV ,R
3), (B.3)

for µV almost every x ∈ Ω.

Remark B.5. If V = v(Σ, 1), where Σ is a smooth, compact surface without
boundary, the generalized second fundamental form as well as the mean curvature
and the tensor AV coincide with the classical quantities defined in Section 2.2,
and the same is true for the oriented varifold associated with Σ. Moreover the
generalized second fundamental form and the functions AVijk verify Proposition 2.2.

Next we give a definition of convergence for Hutchinson’s curvature varifolds.

Definition B.6. Let {Vh} be a sequence of curvature varifolds with generalized
second fundamental form in L2, and let V be a curvature varifold with generalized
second fundamental form in L2. We say that Vh converge as curvature varifolds to
V if

lim
h→∞

Vh = V as varifolds ,

lim
h→∞

(Vh, AVh
) = (V,AV ) as measure − function pairs .
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Remark B.7. By Remark B.2, Lemma A.6 and the definition of generalized second
fundamental form BVh

, we have that if Vh → V as curvature varifolds then

(Vh,BVh
) → (V,BV )

as measure-function pairs on G2(Ω) with values in R
33

.

As a consequence of Definition B.6 and Theorem A.4 we have the following

Proposition B.8. Let {Vh} ⊂ IV2(Ω) be a sequence of curvature varifolds with
generalized second fundamental form in L2 satisfying

sup
h∈N



µVh

(Ω) +

∫ 3∑

i,j,k=1

(AVh

ijk)
2 dVh < +∞



 .

Then {Vh} has a subsequence converging to V ∈ IV2(Ω) as curvature varifolds.
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