PBW THEOREMS AND FROBENIUS STRUCTURES FOR QUANTUM MATRICES

FABIO GAVARINI

Università di Roma "Tor Vergata" – Dipartimento di Matematica Via della Ricerca Scientifica 1, I-00133 Roma – ITALY e-mail: gavarini@mat.uniromal.

(Received 2 November, 2006; revised 31 March, 2007; accepted 24 May, 2007)

Abstract. Let $G \in \{Mat_n(\mathbb{C}), GL_n(\mathbb{C}), SL_n(\mathbb{C})\}$, let $\mathcal{O}_q(G)$ be the quantum function algebra – over $\mathbb{Z}[q, q^{-1}]$ – associated to G, and let $\mathcal{O}_{\varepsilon}(G)$ be the specialisation of the latter at a root of unity ε , whose order ℓ is odd. There is a quantum Frobenius morphism that embeds $\mathcal{O}(G)$, the function algebra of G, in $\mathcal{O}_{\varepsilon}(G)$ as a central Hopf subalgebra, so that $\mathcal{O}_{\varepsilon}(G)$ is a module over $\mathcal{O}(G)$. When $G = SL_n(\mathbb{C})$, it is known by [3], [4] that (the complexification of) such a module is free, with rank $\ell^{\dim(G)}$. In this note we prove a PBW-like theorem for $\mathcal{O}_q(G)$, and we show that – when G is Mat_n or GL_n – it yields explicit bases of $\mathcal{O}_{\varepsilon}(G)$ over $\mathcal{O}(G)$. As a direct application, we prove that $\mathcal{O}_{\varepsilon}(GL_n)$ and $\mathcal{O}_{\varepsilon}(M_n)$ are free Frobenius extensions over $\mathcal{O}(GL_n)$ and $\mathcal{O}(M_n)$, thus extending some results of [5].

2000 Mathematics Subject Classification. Primary 20G42. Secondary 81R50.

1. The general setup. Let G be a complex semisimple, connected, simply connected affine algebraic group. One can introduce a quantum function algebra $\mathcal{O}_q(G)$, a Hopf algebra over the ground ring $\mathbb{C}[q,q^{-1}]$, where q is an indeterminate, as in [7]. If ε is any root of 1, one can specialize $\mathcal{O}_q(G)$ at $q = \varepsilon$, which means taking the Hopf \mathbb{C} -algebra $\mathcal{O}_{\varepsilon}(G) := \mathcal{O}_q(G)/(q-\varepsilon)\mathcal{O}_q(G)$. In particular, for $\varepsilon = 1$ one has $\mathcal{O}_1(G) \cong \mathcal{O}(G)$, the classical (commutative) function algebra over G. Moreover, if the order ℓ of ε is odd, then there exists a Hopf algebra monomorphism $\mathfrak{F}: \mathcal{O}(G) \cong \mathcal{O}_1(G) \longrightarrow \mathcal{O}_{\varepsilon}(G)$, called *quantum Frobenius morphism for G*, which embeds $\mathcal{O}(G)$ inside $\mathcal{O}_{\varepsilon}(G)$ as a central Hopf subalgebra. Therefore, $\mathcal{O}_{\varepsilon}(G)$ is naturally a module over $\mathcal{O}(G)$. It is proved in [4] and in [3] that such a module is free, with rank $\ell^{\dim(G)}$. In the special case of $G = SL_2$, a stronger result was given in [8], where an explicit basis was found. We shall give similar results when G is GL_n or $M_n := Mat_n$; namely we provide explicit bases of $\mathcal{O}_{\varepsilon}(G)$ as a free module over $\mathcal{O}(G)$, where in addition everything is defined replacing $\mathbb C$ with $\mathbb Z$. The proof is via some (more or less known) PBW theorems for $\mathcal{O}_q(M_n)$ and $\mathcal{O}_q(GL_n)$ – and $\mathcal{O}_q(SL_n)$ as well – as modules over $\mathbb Z[q,q^{-1}]$.

Let $M_n := Mat_n(\mathbb{C})$. The algebra $\mathcal{O}(M_n)$ of regular functions on M_n is the unital associative commutative \mathbb{C} -algebra with generators $\overline{\iota}_{i,j}$ $(i,j=1,\ldots,n)$. The semigroup structure on M_n yields on $\mathcal{O}(M_n)$ the natural bialgebra structure given by matrix product – see [6], Ch. 7. We can also consider the semigroup-scheme $(M_n)_{\mathbb{Z}}$ associated to M_n , for which a like analysis applies: in particular, its function algebra $\mathcal{O}^{\mathbb{Z}}(M_n)$ is a \mathbb{Z} -bialgebra, with the same presentation as $\mathcal{O}(M_n)$ but over the ring \mathbb{Z} .

Now we define quantum function algebras. Let R be any commutative ring with unity, and let $q \in R$ be invertible. We define $\mathcal{O}_q^R(M_n)$ as the unital associative R-algebra with generators $t_{i,j}$ $(i,j=1,\ldots,n)$ and relations

$$\begin{aligned} t_{i,j}t_{i,k} &= qt_{i,k}t_{i,j}, & t_{i,k}t_{h,k} &= qt_{h,k}t_{i,k} & \forall \quad j < k, i < h, \\ t_{i,l}t_{j,k} &= t_{j,k}t_{i,l}, & t_{i,k}t_{j,l} - t_{j,l}t_{i,k} &= \left(q - q^{-1}\right)t_{i,l}t_{j,k} & \forall \quad i < j, k < l. \end{aligned}$$

It is known that $\mathcal{O}_q^R(M_n)$ is a bialgebra, but we do not need this extra structure in the present work (see [6] for further details – cf. also [1] and [12]).

As to specialisations, set $\mathbb{Z}_q := \mathbb{Z}[q, q^{-1}]$, let $\ell \in \mathbb{N}_+$ be odd, let $\phi_\ell(q)$ be the ℓ -th cyclotomic polynomial in q, and let $\varepsilon := \overline{q} \in \mathbb{Z}_\varepsilon := \mathbb{Z}_q/(\phi_\ell(q))$, so that ε is a (formal) primitive ℓ -th root of 1 in \mathbb{Z}_ε . Then

$$\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n) = \mathcal{O}_q^{\mathbb{Z}_q}(M_n) / (\phi_{\ell}(q)) \mathcal{O}_q^{\mathbb{Z}_q}(M_n) \cong \mathbb{Z}_{\varepsilon} \otimes_{\mathbb{Z}} \mathcal{O}_q^{\mathbb{Z}_q}(M_n).$$

It is also known that there is a bialgebra isomorphism

$$\mathcal{O}_{1}^{\mathbb{Z}}(M_{n}) \cong \mathcal{O}_{q}^{\mathbb{Z}_{q}}(M_{n})/(q-1)\mathcal{O}_{q}^{\mathbb{Z}_{q}}(M_{n}) \hookrightarrow \mathcal{O}^{\mathbb{Z}}(M_{n}), \quad t_{i,j} \operatorname{mod}(q-1)\mathcal{O}_{q}^{\mathbb{Z}_{q}}(M_{n}) \mapsto \overline{t}_{i,j}$$

and a bialgebra monomorphism, called *quantum Frobenius morphism* (ε and ℓ as above).

$$\mathfrak{Fr}_{\mathbb{Z}} \colon \mathcal{O}^{\mathbb{Z}}(M_n) \cong \mathcal{O}_1^{\mathbb{Z}}(M_n) \hookrightarrow \longrightarrow \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n), \quad \overline{t}_{i,j} \mapsto t_{i,j}^{\ell} \big|_{q=\varepsilon}$$

whose image is central in $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$. Thus $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n) := \mathbb{Z}_{\varepsilon} \otimes_{\mathbb{Z}} \mathcal{O}^{\mathbb{Z}}(M_n)$ becomes identified – via $\mathfrak{Fr}_{\mathbb{Z}}$, which clearly extends to $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$ by scalar extension – with a central subbialgebra of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$, so the latter can be seen as an $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$ -module. By the result in [4] and [3] mentioned above, we can expect this module to be free, with rank ℓ^{n^2} .

All the previous framework also extends to GL_n and to SL_n instead of M_n . Indeed, consider the *quantum determinant* $D_q := \sum_{\sigma \in \mathcal{S}_n} (-q)^{\ell(\sigma)} t_{1,\sigma(1)} t_{2,\sigma(2)} \cdots t_{n,\sigma(n)} \in \mathcal{O}_q^R(M_n)$, where $\ell(\sigma)$ denotes the length of any permutation σ in the symmetric group S_n . Then D_q belongs to the centre of $\mathcal{O}_q^R(M_n)$, hence one can extend $\mathcal{O}_q^R(M_n)$ by a formal inverse to D_q , i.e. defining the algebra $\mathcal{O}_q^R(GL_n) := \mathcal{O}_q^R(M_n)[D_q^{-1}]$. Similarly, we can define also $\mathcal{O}_q^R(SL_n) := \mathcal{O}_q^R(M_n)/(D_q - 1)$. Now $\mathcal{O}_q^R(GL_n)$ and $\mathcal{O}_q^R(SL_n)$ are Hopf R-algebras, and the maps $\mathcal{O}_q^R(M_n) \hookrightarrow \mathcal{O}_q^R(GL_n)$, $\mathcal{O}_q^R(GL_n) \longrightarrow \mathcal{O}_q^R(SL_n)$, (the third one being the composition of the first two) given by $t_{i,j} \mapsto t_{i,j}$ are epimorphisms of R-bialgebras, and even of Hopf R-algebras in the second case. The specialisations

$$\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_{n}) = \mathcal{O}_{q}^{\mathbb{Z}_{q}}(GL_{n}) / (\phi_{\ell}(q)) \mathcal{O}_{q}^{\mathbb{Z}_{q}}(GL_{n}) \cong \mathbb{Z}_{\varepsilon} \otimes_{\mathbb{Z}} \mathcal{O}_{q}^{\mathbb{Z}_{q}}(GL_{n})$$

$$\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(SL_{n}) = \mathcal{O}_{q}^{\mathbb{Z}_{q}}(SL_{n}) / (\phi_{\ell}(q)) \mathcal{O}_{q}^{\mathbb{Z}_{q}}(SL_{n}) \cong \mathbb{Z}_{\varepsilon} \otimes_{\mathbb{Z}} \mathcal{O}_{q}^{\mathbb{Z}_{q}}(SL_{n})$$

enjoy the same properties as above, namely there exist isomorphisms $\mathcal{O}_1^{\mathbb{Z}}(GL_n) \cong \mathcal{O}^{\mathbb{Z}}(GL_n)$ and $\mathcal{O}_1^{\mathbb{Z}}(SL_n) \cong \mathcal{O}^{\mathbb{Z}}(SL_n)$ and there are quantum Frobenius morphisms

$$\mathfrak{Ft}_{\mathbb{Z}}: \mathcal{O}^{\mathbb{Z}}(GL_n) \cong \mathcal{O}_{\mathbb{I}}^{\mathbb{Z}}(GL_n) \longrightarrow \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n), \\ \mathfrak{Ft}_{\mathbb{Z}}: \mathcal{O}^{\mathbb{Z}}(SL_n) \cong \mathcal{O}_{\mathbb{I}}^{\mathbb{Z}}(SL_n) \longrightarrow \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(SL_n)$$

described by the same formulæ as for M_n . Moreover, $D_q^{\pm 1} \operatorname{mod}(q-1) \mapsto D^{\pm 1}$ in the isomorphisms and $D^{\pm 1} \cong D_q^{\pm 1} \operatorname{mod}(q-1) \mapsto D_q^{\pm \ell} \operatorname{mod}(q-\varepsilon)$ in the quantum Frobenius morphisms for GL_n (which extend those of M_n). In addition, all these isomorphisms and quantum Frobenius morphisms are compatible (in the obvious sense) with the natural maps which link $\mathcal{O}_q^{\mathbb{Z}_q}(M_n)$, $\mathcal{O}_q^{\mathbb{Z}_q}(GL_n)$ and $\mathcal{O}_q^{\mathbb{Z}_q}(SL_n)$, and their specialisations, to each other.

Like for M_n , the image of the quantum Frobenius morphisms are central in $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n)$ and in $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(SL_n)$. Thus $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(GL_n) := \mathbb{Z}_{\varepsilon} \otimes_{\mathbb{Z}} \mathcal{O}^{\mathbb{Z}}(GL_n)$ identifies to a central Hopf subalgebra of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n)$, and $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(SL_n) := \mathbb{Z}_{\varepsilon} \otimes_{\mathbb{Z}} \mathcal{O}^{\mathbb{Z}}(SL_n)$ identifies to a central Hopf subalgebra of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(SL_n)$; so $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n)$ is an $\mathcal{O}^{\mathbb{Z}}(GL_n)$ -module and $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(SL_n)$ is an $\mathcal{O}^{\mathbb{Z}}(SL_n)$ -module.

In § 2, we shall prove (Theorem 2.1) a PBW-like theorem providing several different bases for $\mathcal{O}_q^R(M_n)$, $\mathcal{O}_q^R(GL_n)$ and $\mathcal{O}_q^R(SL_n)$ as R-modules. As an application, we find (Theorem 2.2) explicit bases of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$ as an $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$ -module, which then in particular is free of rank $\ell^{\dim(M_n)}$. The same bases are also $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(GL_n)$ -bases for $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n)$, which then is free of rank $\ell^{\dim(GL_n)}$. Both results can be seen as extensions of some results in [4].

Finally, in § 3 we use the above mentioned bases to prove that $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$ is a free Frobenius extension of its central subalgebra $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$, and to explicitly compute the associated Nakayama automorphism. The same we do for $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n)$ as well. Everything follows from the ideas and methods in [5], now applied to the explicit bases given by Theorem 2.2.

2. PBW-like theorems.

THEOREM 2.1. (PBW theorem for $\mathcal{O}_q^R(M_n)$, $\mathcal{O}_q^R(GL_n)$ and $\mathcal{O}_q^R(SL_n)$ as R-modules) Assume (q-1) is not invertible in $R_q := \langle q, q^{-1} \rangle$, the subring of R generated by q and q^{-1} .

(a) Let any total order be fixed in $\{1, \ldots, n\}^{\times 2}$. Then the following sets of ordered monomials are R-bases of $\mathcal{O}_q^R(M_n)$, resp. $\mathcal{O}_q^R(GL_n)$, resp. $\mathcal{O}_q^R(SL_n)$, as modules over R:

$$B_{M} := \left\{ \prod_{i,j=1}^{n} t_{i,j}^{N_{i,j}} \middle| N_{i,j} \in \mathbb{N} \forall i, j \right\}$$

$$B_{GL}^{\wedge} := \left\{ \prod_{i,j=1}^{n} t_{i,j}^{N_{i,j}} D_{q}^{-N} \middle| N, N_{i,j} \in \mathbb{N} \forall i, j; \min \left(\{N_{i,i}\}_{1 \le i \le n} \cup \{N\} \right) = 0 \right\}$$

$$B_{GL}^{\vee} := \left\{ \prod_{i,j=1}^{n} t_{i,j}^{N_{i,j}} D_{q}^{Z} \middle| Z \in \mathbb{Z}, N_{i,j} \in \mathbb{N} \forall i, j; \min\{N_{i,i}\}_{1 \le i \le n} = 0 \right\}$$

$$B_{SL} := \left\{ \prod_{i,j=1}^{n} t_{i,j}^{N_{i,j}} \middle| N_{i,j} \in \mathbb{N} \forall i, j; \min\{N_{i,i}\}_{1 \le i \le n} = 0 \right\}.$$

(b) Let \leq be any total order fixed in $\{1, \ldots, n\}^{\times 2}$ such that $(i, j) \leq (h, k) \leq (l, m)$ whenever j > n+1-i, k = n+1-h, m < n+1-l. Then the following sets of ordered

monomials are R-bases of $\mathcal{O}_q^R(GL_n)$, resp. $\mathcal{O}_q^R(SL_n)$, as modules over R:

$$\begin{split} B_{GL}^{\wedge,-} &:= \left\{ \prod_{i,j=1}^n t_{i,j}^{N_{i,j}} D_q^{-N} \middle| N, N_{i,j} \in \mathbb{N} \forall i,j; \min(\{N_{i,n+1-i}\}_{1 \leq i \leq n} \cup \{N\}) = 0 \right\} \\ B_{GL}^{\vee,-} &:= \left\{ \prod_{i,j=1}^n t_{i,j}^{N_{i,j}} D_q^Z \middle| Z \in \mathbb{Z}, N_{i,j} \in \mathbb{N} \forall i,j; \min\{N_{i,n+1-i}\}_{1 \leq i \leq n} = 0 \right\} \\ B_{SL}^{-} &:= \left\{ \prod_{i,j=1}^n t_{i,j}^{N_{i,j}} \middle| N_{i,j} \in \mathbb{N} \forall i,j; \min\{N_{i,n+1-i}\}_{1 \leq i \leq n} = 0 \right\}. \end{split}$$

Proof. Roughly speaking, our method is a (partial) application of the diamond lemma (see [2]): however, we do not follow it in all details, as we use a specialisation trick as a shortcut.

If we prove our results for the algebras defined over R_q instead of R, then the same results will hold as well by scalar extension. Thus we can assume $R = R_q$, and then we note that, by our assumption, the specialised ring $\overline{R} := R/(q-1)R \neq \{0\}$ is non-trivial.

We begin with $\mathcal{O}_q^R(M_n)$. It is clearly spanned over R by the set of all (possibly unordered) monomials in the t_{ij} 's: so we must only prove that any such monomial belongs to the R-span of the ordered monomials. In fact, the latter are linearly independent, since such are their images via specialisation $\mathcal{O}_q^R(M_n) \longrightarrow \mathcal{O}_q^R(M_n)/(q-1)\mathcal{O}_q^R(M_n) \cong \mathcal{O}_q^R(M_n)$.

Thus, take any (possibly unordered) monomial in the t_{ij} 's, say $\underline{t} := t_{i_1,j_i}t_{i_2,j_2}\cdots t_{i_k,j_k}$, where k is the degree of \underline{t} : we associate to it its weight, defined as

$$w(\underline{t}) := (k, d_{1,1}, d_{1,2}, \dots, d_{1,n}, d_{2,1}, d_{2,2}, \dots, d_{2,n}, d_{3,1}, \dots, d_{n-1,n}, d_{n,1}, d_{n,2}, \dots, d_{n,n})$$

where $d_{i,j} := |\{s \in \{1, \dots, k\} | (i_s, j_s) = (i, j)\}| = \text{number of occurrences of } t_{i,j} \text{ in } \underline{t}$. Then $w(\underline{t}) \in \mathbb{N}^{n^2+1}$, and we consider \mathbb{N}^{n^2+1} as a totally ordered set with respect to the (total) lexicographic order \leq_{lex} . By a quick look at the defining relations of $\mathcal{O}_q^R(M_n)$, namely

$$t_{i,j}t_{i,k} = qt_{i,k}t_{i,j}, t_{i,k}t_{h,k} = qt_{h,k}t_{i,k} \forall j < k, i < h,$$

$$t_{i,l}t_{j,k} = t_{j,k}t_{i,l}, t_{i,k}t_{j,l} - t_{j,l}t_{i,k} = (q - q^{-1})t_{i,l}t_{j,k} \forall i < j, k < l.$$

one easily sees that the weight defines an algebra filtration on $\mathcal{O}_q^R(M_n)$.

Now, using these same relations, one can re-order the t_{ij} 's in any monomial according to the fixed total order. During this process, only two non-trivial things may occur, namely:

- -1) some powers of q show up as coefficients (when a relation in the first line is employed);
- -2) a new summand is added (when the bottom-right relation is used);

If only steps of type 1) occur, then the process eventually stops with an ordered monomial in the t_{ij} 's multiplied by a power of q. Whenever instead a step of type 2) occurs, the newly added term is just a coefficient $(q - q^{-1})$ times a (possibly unordered) monomial in the t_{ij} 's, call it \underline{t} ': however, by construction $w(\underline{t}') \nleq_{lex} w(\underline{t})$. Then, by induction on the weight, we can assume that \underline{t} ' lies in the R-span of the ordered

monomials, so we can ignore the new summand. The process stops in finitely many steps, and we are done with $\mathcal{O}_q^R(M_n)$.

Second, we look at $\mathcal{O}_q^R(GL_n)$. Let us consider $f \in \mathcal{O}_q^R(GL_n)$. By definition, there exists $N \in \mathbb{N}$ such that $fD_q^N \in \mathcal{O}_q^R(M_n)$; therefore, by the result for $\mathcal{O}_q^R(M_n)$ just proved, we can expand fD_q^N as an R-linear combination of ordered monomials, call them $\underline{t} = \prod_{i,j=1}^n t_{i,j}^{N_{i,j}}$. Thus, f itself is an R-linear combination of monomials $\underline{t}D_q^{-N}$, so the latter span $\mathcal{O}_q^R(GL_n)$.

Now consider an ordered monomial $\underline{t} = \prod_{i,j=1}^n t_{i,j}^{N_{i,j}}$ in which $N_{i,i} > 0$ for all i. Then we can re-arrange the $t_{i,i}$'s in \underline{t} so to single out a factor $t_{1,1}t_{2,2}\cdots t_{n-1,n-1}t_{n,n}$, up to "paying the cost" (perhaps) of producing some new summands of lower weight: the outcome reads

$$\underline{t} = q^{s} \underline{t}_{0} t_{1,1} t_{2,2} \cdots t_{n-1,n-1} t_{n,n} + l.t.$$
(2.1)

for some $s \in \mathbb{Z}$, with $\underline{t}_0 := \prod_{i,j=1}^n t_{i,j}^{N_{i,j}-\delta_{i,j}}$ having lower weight than \underline{t} , and the expression l.t.'s standing for an R-linear combination of some monomials \underline{t} such that $w(\underline{t}) \nleq_{lex} w(\underline{t})$. Then we re-write the monomial $t_{1,1}t_{2,2}\cdots t_{n-1,n-1}t_{n,n}$ using the identity

$$t_{1,1}t_{2,2}\cdots t_{n-1,n-1}t_{n,n} = D_q - \sum_{\substack{\sigma \in \mathcal{S}_n \\ \sigma \neq id}} (-q)^{\ell(\sigma)}t_{1,\sigma(1)}t_{2,\sigma(2)}\cdots t_{n,\sigma(n)} = D_q + l.t.$$
's (2.2)

and we replace the right-hand side of (2.2) inside (2.1). We get $\underline{t} = q^s \underline{t_0} D_q + l.t.$'s (for D_q is central!), where now $\underline{t_0}$ and all monomials within l.t.'s have strictly lower weight than t.

If we look now at $\underline{t}D_q^z$ (for some $z \in \mathbb{Z}$), we can re-write \underline{t} as above, thus getting

$$\underline{t}D_{q}^{z} = q^{s}\underline{t}_{0}D_{q}D_{q}^{z} + l.t.\dot{s} = q^{s}\underline{t}_{0}D_{q}^{z+1} + l.t.\dot{s}$$
(2.3)

where *l.t.*'s is an *R*-linear combination of monomials $\underline{\tilde{t}}D_q^{z+1}$ such that $w(\underline{\tilde{t}}) \leq_{lex} w(\underline{t})$. By repeated use of (2.3) as a reduction argument, we can easily show – by induction

By repeated use of (2.3) as a reduction argument, we can easily show – by induction on the weight – that any monomial of type $\underline{t}D_q^{-N}$ ($N \in \mathbb{N}$) can be expanded as an R-linear combination of elements of B_{GL}^{\wedge} or elements of B_{GL}^{\vee} . Thus, both these sets do span $\mathcal{O}_q^R(GL_n)$.

span $\mathcal{O}_q^R(GL_n)$.

To finish with, both B_{GL}^{\wedge} and B_{GL}^{\vee} are R-linearly independent, as their image through the specialisation epimorphism $\mathcal{O}_q^R(GL_n) \longrightarrow \mathcal{O}_1^{\overline{R}}(GL_n) \cong \mathcal{O}^{\overline{R}}(GL_n)$ are \overline{R} -bases of $\mathcal{O}^{\overline{R}}(GL_n)$.

As to $\mathcal{O}_q^R(SL_n)$, we can repeat the argument for $\mathcal{O}_q^R(GL_n)$. First, B_{SL} is linearly independent, for its image through specialisation $\mathcal{O}_q^R(SL_n) \longrightarrow \mathcal{O}_1^R(SL_n) \cong \mathcal{O}^{\overline{R}}(SL_n)$ is an \overline{R} -basis of $\mathcal{O}^{\overline{R}}(SL_n)$. Second, the epimorphism $\mathcal{O}_q^R(M_n) \longrightarrow \mathcal{O}_q^R(SL_n)(t_{i,j} \mapsto t_{i,j})$, and the result for $\mathcal{O}_q^R(M_n)$, imply that the R-span of $S_{SL} := \{\prod_{i,j=1}^n t_{i,j}^{N_{i,j}} | N_{i,j} \in \mathbb{N} \forall i,j\}$ is $\mathcal{O}_q^R(SL_n)$. Thus one is only left to prove that each monomial $\underline{t} = \prod_{i,j=1}^n t_{i,j}^{N_{i,j}} \in S_{SL}$ belongs to the R-span of B_{SL} : as before, this can be done by induction on the weight, using the reduction formula $\underline{t} = q^s \underline{t}_0 D_q + l.t.$'s (see above), and plugging into the relation $D_q = 1$.

Alternatively, we recall there is an isomorphism $\mathcal{O}_q^R(SL_n) \otimes_R R[x, x^{-1}] \cong \mathcal{O}_q^R(GL_n)$ (of *R*-algebras) given by $t_{i,j} \otimes x^z \mapsto D_q^{-\delta_{i,1}} t_{i,j} \cdot D_q^z$ (cf. [11]). This along with the result about B_{SL}^c clearly implies that also B_{SL} is an *R*-basis for $\mathcal{O}_q^R(SL_n)$, as claimed.

<u>Proof of (b)</u>: First look at $\mathcal{O}_q^R(GL_n)$. If $f \in \mathcal{O}_q^R(GL_n)$, as in the proof of (a) we expand $f\mathcal{D}_q^N$ as an R-linear combination of ordered (according to ≤) monomials of type $\underline{t} = \underline{t}^-\underline{t}\underline{t}^+$, with $\underline{t}^- := \prod_{j>n+1-i} t_{i,j}^{N_{i,j}}$, $\underline{t}^= := \prod_{j=n+1-i} t_{i,j}^{N_{i,j}}$ and $\underline{t}^+ := \prod_{j< n+1-i} t_{i,j}^{N_{i,j}}$. So f is an R-linear combination of monomials $\underline{t}^-\underline{t}\underline{t}^-\underline{t}^+\mathcal{D}_q^{-N}$, hence the latter span $\mathcal{O}_q^R(GL_n)$. We show that each (ordered) monomial $\underline{t}^-\underline{t}\underline{t}^-\underline{t}^+\mathcal{D}_q^{-N}$ belongs both to the R-span of

We show that each (ordered) monomial $\underline{t}^-\underline{t}^=\underline{t}^+D_q^{-N}$ belongs both to the *R*-span of $B_{GL}^{\wedge,-}$ and of $B_{GL}^{\vee,-}$, by induction on the (total) degree of the monomial $\underline{t}^=$. The basis of induction is $\deg(\underline{t}^=)=0$, so that $\underline{t}^==1$ and $\underline{t}^-\underline{t}^=\underline{t}^+D_q^{-N}=\underline{t}^-\underline{t}^+D_q^{-N}\in B_{GL}^{\wedge,-}\cap B_{GL}^{\vee,-}$.

As a matter of notation, let \mathcal{N}^- , resp. \mathcal{H} , resp. \mathcal{N}^+ , be the R-subalgebra of $\mathcal{O}_q^R(M_n)$ generated by the $t_{i,j}$'s with j > n+1-i, resp. j = n+1-i, resp. j < n+1-i. Note that \mathcal{H} is Abelian, and $\underline{t}^- \in \mathcal{N}^-$, $\underline{t}^+ \in \mathcal{H}$, $\underline{t}^+ \in \mathcal{N}^+$.

Now assume that all the exponents $N_{i,n+1-i}$'s in the factor $\underline{t}^=$ are strictly positive. As \mathcal{H} is Abelian, we can draw out of $\underline{t}^=$ (even out of $\underline{t}=\underline{t}^-\underline{t}^+\underline{t}^+$) a factor $t_{n,1}t_{n-1,2}\cdots t_{2,n-1}t_{1,n}$. Now recall that D_q can be expanded as $D_q=\sum_{\sigma\in\mathcal{S}_n}(-q)^{\ell(\sigma)}t_{n,\sigma(n)}t_{n-1,\sigma(n-1)}\cdots t_{2,\sigma(2)}t_{1,\sigma(1)}$ (see, e.g., [12] or [10]). Then we can re-write the monomial $t_{n,1}t_{n-1,2}\cdots t_{2,n-1}t_{1,n}$ as

$$t_{n,1}t_{n-1,2}\cdots t_{1,n} = (-q)^{-\ell(\sigma_0)}D_q - \sum_{\substack{\sigma \in \mathcal{S}_n \\ \sigma \neq \sigma_0}} (-q)^{\ell(\sigma)-\ell(\sigma_0)}t_{n,\sigma(n)}t_{n-1,\sigma(n-1)}\cdots t_{1,\sigma(1)}$$
(2.4)

where $\sigma_0 \in \mathcal{S}_n$ is the permutation $i \mapsto (n+1-i)$. Note also that we can reorder the factors in the summands of (2.4) so that all factors $t_{i,j}$ from \mathcal{N}^- are on the left of those from \mathcal{N}^+ .

Now we replace the right-hand side of (2.4) in the factor $\underline{t}^{=}$ within $\underline{t} = \underline{t}^{-}\underline{t}^{=}\underline{t}^{+}$, thus

$$t^-t^=t^+ = (-q)^{-\ell(\sigma_0)}t^-t_0^=D_at^+ + l.t.$$
's $= (-q)^{-\ell(\sigma_0)}t^-t_0^=t^+D_a + l.t.$'s.

Here $\underline{t}_0^= := \underline{t}^= (t_{n,1}t_{n-1,2}\cdots t_{2,n-1}t_{1,n})^{-1}$ has lower (total) degree than $\underline{t}^=$, and the expression l.t.'s stands for an R-linear combination of some other monomials $\underline{\hat{t}}^-\underline{\hat{t}}^=\underline{\hat{t}}^+$ (like $\underline{t}^-\underline{t}^=\underline{t}^+$ above) in which again the degree of $\underline{\hat{t}}^=$ is lower than the degree of $\underline{\hat{t}}^=$. In fact, this holds because when any factor $t_{i,\sigma(i)}\in\mathcal{N}^-$ is pulled from the right to the left of any monomial in $\underline{\check{t}}^=\in\mathcal{H}$ the degree of $\underline{\check{t}}^=$ is not increased. By induction on this degree, we can easily conclude that every ordered monomial $\underline{t}^-\underline{t}^=\underline{t}^+D_q^z$ (with $z\in\mathbb{Z}$) belongs to both the R-span of $B_{GL}^{\wedge,-}$ and the R-span of $B_{GL}^{\vee,-}$. That is, both sets span $\mathcal{O}_q^R(GL_n)$.

Eventually, both $B_{GL}^{\wedge,-}$ and $B_{GL}^{\vee,-}$ are linearly independent, as their image through the specialisation epimorphism $\mathcal{O}_q^R(GL_n) \longrightarrow \mathcal{O}_1^{\overline{R}}(GL_n) \cong \mathcal{O}^{\overline{R}}(GL_n)$ are \overline{R} -bases of $\mathcal{O}^{\overline{R}}(GL_n)$.

Second, we look at $\mathcal{O}_q^R(SL_n)$. As for claim (a), we can repeat again – *mutatis mutandis* – the argument for $\mathcal{O}_q^R(GL_n)$, which does work again – one only has to plug in the additional relation $D_q = 1$ too. Otherwise, as an alternative proof, we can note that the isomorphism $\mathcal{O}_q^R(SL_n) \otimes_R R[x, x^{-1}] \cong \mathcal{O}_q^R(GL_n)$ together with the result about $B_{GL}^{\vee,-}$ easily implies that B_{SL}^- too is an R-basis for $\mathcal{O}_q^R(SL_n)$, q.e.d.

REMARK 2.2. (1) Claim (a) of Theorem 2.1 for M_n only was independently proved in [12] and in [10], but taking a field as ground ring. In [10], claim (b) for GL_n only was proved as well. Similarly, the analogue of claim (b) for SL_n only was proved in [9], § 7, but taking as ground ring the field k(q) – for any field k of zero characteristic. Our proof then provides an alternative, unifying approach, which yields stronger results over R.

(2) We would better point out a special aspect of the basic assumption of Theorem 2.1 about q and R. Namely, if the subring $\langle 1 \rangle$ of R generated by 1 has prime characteristic (hence it is a finite field) then the condition on (q-1) is equivalent to q being trascendental over R_q or q=1. But if instead the characteristic of $\langle 1 \rangle$ is zero or positive non-prime, then (q-1) might be non-invertible in R_q even though q is algebraic (or even integral) over $\langle 1 \rangle$.

The end of the story is that Theorem 2.1 holds true in the "standard" case of trascendental values of q, but also in more general situations.

- (3) The argument used in the proof of Theorem 2.1 to get the result for $\mathcal{O}_q^R(SL_n)$ from those for $\mathcal{O}_q^R(GL_n)$, via the isomorphism $\mathcal{O}_q^R(SL_n) \otimes_R R[x, x^{-1}] \cong \mathcal{O}_q^{R}(GL_n)$, actually works both ways. Therefore, one can also prove the results directly for $\mathcal{O}_a^R(SL_n)$ – as we have sketched above – and from them deduce those for $\mathcal{O}_q^R(GL_n)$. Even more, as we have proved independently the results for $\mathcal{O}_q^R(GL_n)$ – i.e., B_{GL}^{\vee} and $B_{GL}^{\vee,-}$ are R-bases – and for $\mathcal{O}_q^R(SL_n)$ – i.e., B_{SL} and B_{SL}^- are R-bases – we can use them to prove that the algebra morphism $\mathcal{O}_q^R(SL_n) \otimes_R R[x,x^{-1}] \longrightarrow \mathcal{O}_q^R(GL_n)$ is in fact bijective. (4) The orders considered in claim (b) of Theorem 2.1 refer to a triangular
- decomposition of $\mathcal{O}_q^R(GL_n)$ and $\mathcal{O}_q^R(SL_n)$ which is opposite to the standard one. This opposite decomposition was introduced – and its importance was especially pointed out – in [10].

We are now ready to state and prove the main result of this paper:

THEOREM 2.3. (PBW theorem for $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G)$ as an $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ -module, for $G \in \{M_n, GL_n\}$) Let any total order be fixed in $\{1, \ldots, n\}^{\times 2}$. Then the set of ordered monomials

$$\mathbf{B}_{GL}^{M} := \left\{ \prod_{i,j=1}^{n} t_{i,j}^{N_{i,j}} \middle| 0 \le N_{i,j} \le \ell - 1, \forall i, j \right\}$$

thought of as a subset of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n) \subset \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n)$, is a basis of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$ as a module over $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$, and a basis of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n)$ as a module over $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(GL_n)$.

In particular, both modules are free of rank $\ell^{\dim(G)}$, with $G \in \{M_n, GL_n\}$.

Proof. When specialising, Theorem 2.1(a) implies that $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$ is a free \mathbb{Z}_{ε} -module with $B_M|_{q=\varepsilon} = \{\prod_{i,j=1}^n t_{ij}^{N_{ij}} | N_{ij} \in \mathbb{N} \forall i,j \}$ as basis – where, by abuse of notation, we write again t_{ij} for $t_{ij}|_{q=\varepsilon}$. Now, whenever the exponent N_{ij} is a multiple of ℓ , the power $t_{ij}^{N_{ij}}$ belongs to the isomorphic image $\mathfrak{Fr}_{\mathbb{Z}}(\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n))$ of $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$ inside $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$, hence it is a scalar for the $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$ -module structure of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$. Therefore, reducing all exponents modulo ℓ we find that \mathbf{B}_{GL}^M is a spanning set for the $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$ -module $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$. In addition, $\mathcal{O}^{\mathbb{Z}}(M_n)$ clearly admits as \mathbb{Z} -basis the set $\overline{B}_M = \{\prod_{i,j=1}^n \overline{t}_{ij}^{N_{ij}} | N_{ij} \in \mathbb{N} \forall i,j \}$. It follows that \overline{B}_M is also a \mathbb{Z}_{ε} -basis of $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$, so $\mathfrak{Fr}_{\mathbb{Z}}(\overline{B}_M) = \{\prod_{i,j=1}^n t_{ij}^{\ell N_{ij}} | N_{ij} \in \mathbb{N} \forall i,j \}$ is a \mathbb{Z}_{ε} -basis of $\mathfrak{Fr}_{\mathbb{Z}}(\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n))$. This last fact easily implies that B^M_{GL} is also $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$ linearly independent, hence it is a basis of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$ over $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_n)$ as claimed.

As to $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n)$, from definitions and the analysis in § 1 we get (with $D_{\varepsilon} := D_q|_{\varepsilon}$)

$$\begin{split} \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_{n}) &= \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_{n}) \big[D_{\varepsilon}^{-1} \big] = \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_{n}) \big[D_{\varepsilon}^{-\ell} \big] \\ &= \mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_{n}) [D^{-1}] \bigotimes_{\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_{n})} \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_{n}) = \mathcal{O}^{\mathbb{Z}_{\varepsilon}}(GL_{n}) \bigotimes_{\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(M_{n})} \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_{n}) \end{split}$$

thus the result for $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(GL_n)$ follows at once from that for $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(M_n)$.

3. Frobenius structures.

3.1 Frobenius extensions and Nakayama automorphisms. Following [5], we say that a ring R is a *free Frobenius extension* over a subring S, if R is a free S-module of finite rank, and there is an isomorphism $F: R \longrightarrow \operatorname{Hom}_S(R, S)$ of R - S-bi-modules. Then F provides a non-degenerate associative S-bilinear form $\mathbb{B}: R \times R \longrightarrow S$, via $\mathbb{B}(r,t) = F(t)(r)$. Conversely, one can characterise Frobenius extensions using such forms. When $S = \mathcal{Z}$ is contained in the centre of R, there is a \mathcal{Z} -algebra automorphism $v: R \longrightarrow R$, given by rF(1) = F(1)v(r) (for all $r \in R$), and such $\mathbb{B}(x,y) = \mathbb{B}(v(y),x)$. This is called the *Nakayama automorphism*, and it is uniquely determined by the pair $\mathcal{Z} \subseteq R$, up to Int(R).

Proposition 3.2. (cf. [5], § 2)

Let R be a ring, Z an affine central subalgebra of R. Assume that R is free of finite rank as a Z-module, with a Z-basis B that satisfies the following condition: there exists a Z-linear functional $\Phi: R \to Z$ such that for any non-zero $a = \sum_{b \in B} z_b b \in R$ there exists $x \in R$ for which $\Phi(xa) = uz_b$ for some unit $u \in Z$ and some non-zero $z_b \in Z$.

Then R is a free Frobenius extension of Z. Moreover, for any maximal ideal \mathfrak{m} of Z, the finite dimensional quotient $R/\mathfrak{m}R$ is a finite dimensional Frobenius algebra.

This result is used in [5] to show that many families of algebras – in particular, some related to $\mathcal{O}_{\varepsilon}(G)$, where G is a (complex, connected, simply-connected) semisimple affine algebraic group – are indeed free Frobenius extensions. But the authors could not prove the same for $\mathcal{O}_{\varepsilon}(G)$, as they did not know an explicit $\mathcal{O}(G)$ -basis of $\mathcal{O}_{\varepsilon}(G)$. Now, following their strategy and using Theorem 2.3, I shall now prove that $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G)$ is free Frobenius over $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ when G is M_n or GL_n .

THEOREM 3.3. Let G be M_n or GL_n . Then $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G)$ is a free Frobenius extension of $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$, with Nakayama automorphism v given by $v(t_{i,j}) = \varepsilon^{2(i+j-n-1)} t_{i,j}$ $(i,j=1,\ldots,n)$.

Proof. We prove that there is a suitable $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ -linear functional $\Phi: \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G) \longrightarrow \mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ as required in Proposition 3.2, so that this result applies to $R := \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G)$ and $\mathcal{Z} := \mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$.

Define Φ on the elements of the $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ -basis B^{M}_{GL} of $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}_{\varepsilon}(G)$ (see Theorem 2.3) by

$$\Phi\left(\prod_{i,j=1}^{n} t_{i,j}^{N_{i,j}}\right) := \prod_{i,j=1}^{n} \delta_{N_{i,j},\ell-1} = \begin{cases} 1, & \text{if } N_{i,j} = \ell - 1 \forall i, j \\ 0, & \text{if not} \end{cases}$$
(3.1)

(for all $0 \leq N_{i,j} \leq \ell - 1$), and extend to all of $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G)$ by $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ -linearity. In other words, Φ is the unique $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ -valued linear functional on $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G)$ whose value is 1 on

the basis element $\underline{t}^{\ell-1} := \prod_{i,j=1}^n t_{i,j}^{\ell-1}$ and is zero on all other elements of the $\mathcal{O}^{\mathbb{Z}_{\epsilon}}(G)$ -basis \mathbf{B}_{GI}^M .

We claim that Φ satisfies the assumptions of Proposition 3.2, so the latter applies and proves our statement. Indeed, let us consider any non-zero $a = \sum_{t \in \mathbf{B}_{GL}^M} z_{t} \underline{t} \in \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G)$, and let $\underline{t}_0 = \prod_{i,j=1}^n t_{i,j}^{N_{i,j}}$ in \mathbf{B}_{GL}^M be such that $z_{t_0} \neq 0$ and $w(\underline{t}_0)$ is maximal (w.r.t. \leq_{lex}). Then define $\underline{t}_0^{\vee} := \prod_{i,j=1}^n t_{i,j}^{N_{i,j}'} \in \mathbb{B}_{GL}^M$) with $N_{i,j}' := \ell - 1 - N_{i,j}$ for all $i,j=1,\ldots,n$. Quoting from the proof of Theorem 2.1(a), we know that $\underline{t}_0^{\vee}\underline{t}_0 = \varepsilon^s\underline{t}^{\ell-1} + l.t.'s$, where $s \in \mathbb{Z}$ and the expression l.t.'s now stands for an $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ -linear combination of monomials $\underline{t} \in \mathbb{B}_{GL}^M$ such that $w(\underline{t}) \leq_{lex} w(\underline{t}^{\ell-1})$; in particular, $\Phi(\underline{t}) = 0$ for all these \underline{t} , hence eventually $\Phi(\underline{t}_0^{\vee}\underline{t}_0) = \varepsilon^s\Phi(\underline{t}^{\ell-1}) = \varepsilon^s$. Similarly, if $\underline{t}' \in \mathbb{B}_{GL}^M$ is such that $w(\underline{t}') <_{lex} w(\underline{t})$, then $\underline{t}_0^{\vee}\underline{t}'$ is an $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ -linear combination of PBW monomials whose weight is at most $w(\underline{t}_0^{\vee}\underline{t}')$, hence $\Phi(\underline{t}_0^{\vee}\underline{t}') = 0$. As we chose \underline{t}_0 so that $w(\underline{t}_0)$ is maximal, we eventually find

$$\Phi(\underline{t_0}^{\vee}a) = \sum_{t \in \mathbf{B}_{GI}^{M}} z_{\underline{t}} \Phi(\underline{t}) = z_{\underline{t_0}} \Phi(\underline{t_0}) = \varepsilon^s z_{\underline{t_0}}$$

where ε^s is a unit in $\mathcal{O}^{\mathbb{Z}_s}(G)$. So Φ satisfies the assumptions of Proposition 3.2, as claimed.

As to the Nakayama automorphism $\nu: \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G) \longrightarrow \mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G)$, it is characterized (see § 3.1) by the property that $\mathbb{B}(x, y) = \mathbb{B}(\nu(y), x)$ for all $x, y \in R$. Here \mathbb{B} is a \mathbb{Z} -bilinear form as in § 3.1, which now is related to Φ by the formula $\mathbb{B}(x, y) = \Phi(xy)$ for all $x, y \in R$.

As Φ is an automorphism, and $\mathcal{O}_{\varepsilon}^{\mathbb{Z}_{\varepsilon}}(G)$ is generated – over $\mathcal{O}^{\mathbb{Z}_{\varepsilon}}(G)$ – by the $t_{i,j}$'s, the claim about ν is proved if we show that

$$\Phi\left(\prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}} \cdot t_{i,j}\right) = \Phi\left(\varepsilon^{2(i+j-n-1)} t_{i,j} \cdot \prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}}\right). \tag{3.2}$$

Now, our usual argument shows that the expansions of the product of a generator $t_{i,j}$ and a PBW monomial $\prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}}$ (in either order of the factors) as an $\mathcal{O}^{\mathbb{Z}_s}(G)$ -linear combination of elements of the $\mathcal{O}^{\mathbb{Z}_s}(G)$ -basis B_{GL}^M are of the form

$$\prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}} \cdot t_{i,j} = \varepsilon^{i+j-2n} \prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}+\delta_{r,i}\delta_{j,s}} + l.t.'s$$

$$t_{i,j} \cdot \prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}} = \varepsilon^{2-i-j} \prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}+\delta_{r,i}\delta_{j,s}} + l.t.'s.$$

This along with (3.1) gives

$$\Phi\left(\prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}} \cdot t_{i,j}\right) = \varepsilon^{i+j-2n} \Phi\left(\prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}+\delta_{r,i}\delta_{j,s}}\right) = \varepsilon^{i+j-2n} \quad \text{if } e_{r,s} = \ell - 1 - \delta_{r,i}\delta_{j,s}$$

$$\Phi\left(\prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}} \cdot t_{i,j}\right) = \varepsilon^{i+j-2n} \Phi\left(\prod_{r,s=1}^{n} t_{r,s}^{e_{r,s}+\delta_{r,i}\delta_{j,s}}\right) = 0 \quad \text{if not}$$

and similarly

$$\Phi\left(t_{i,j}\cdot\prod_{r,s=1}^{n}t_{r,s}^{e_{r,s}}\right) = \varepsilon^{2-i-j}\Phi\left(\prod_{r,s=1}^{n}t_{r,s}^{e_{r,s}+\delta_{r,i}\delta_{j,s}}\right) = \varepsilon^{2-i-j} \quad \text{if } e_{r,s} = \ell-1-\delta_{r,i}\delta_{j,s}$$

$$\Phi\left(t_{i,j}\cdot\prod_{r,s=1}^{n}t_{r,s}^{e_{r,s}}\right) = \varepsilon^{2-i-j}\Phi\left(\prod_{r,s=1}^{n}t_{r,s}^{e_{r,s}+\delta_{r,i}\delta_{j,s}}\right) = 0 \quad \text{if not.}$$

Direct comparison now shows that (3.2) holds, q.e.d.

ACKNOWLEDGEMENTS. The author thanks I. Gordon, Z. Skoda, C. Stroppel and the referee for several useful comments.

REFERENCES

- 1. H. H. Andersen, W. Kexin and P. Polo, Representations of quantum algebras, *Invent. Math.* **104** (1991), 1–59.
 - 2. G. M. Bergman, The diamond lemma for ring theory, *Adv. Math.* 29 (1978), 178–218.
- **3.** K. A. Brown and I. Gordon, The ramifications of the centres: quantised function algebras at roots of unity, *Proc. London Math. Soc.* (3) **84** (2002), 147–178.
- **4.** K. A. Brown, I. Gordon and J. T. Stafford, $\mathcal{O}_{\varepsilon}[G]$ is a free module over $\mathcal{O}[G]$ preprint http://arxiv.org/abs/math.QA/0007179 (2000), 3 pages.
- **5.** K. A. Brown, I. Gordon and C. Stroppel, Cherednik, Hecke and quantum algebras as free modules and Calabi-Yau extensions preprint http://arxiv.org/abs/math.RT/0607170 (2006), 31 pages.
- 6. V. Chari and A. Pressley, A guide to quantum groups (Cambridge University Press 1994).
- 7. C. De Concini and V. Lyubashenko, Quantum function algebra at roots of 1, *Adv. Math.* **108** (1994), 205–262.
- **8.** L. Dabrowski, C. Reina and A. Zampa, $A(SL_q(2))$ at roots of unity is a free module over A(SL(2)) Lett. Math. Phys. **52** (2000), 339–342.
- **9.** F. Gavarini, Quantum function algebras as quantum enveloping algebras, *Comm. Algebra* **26** (1998), 1795–1818.
- 10. H. T. Koelink, On *-representations of the Hopf *-algebra associated with the quantum group $U_q(n)$, Compositio Math. 77 (1992), 199–231.
- 11. T. Levasseur and J. T. Stafford, The quantum coordinate ring of the special linear group, *J. Pure Appl. Algebra* 86 (1993), 181–186.
- 12. B. Parshall and J. Wang, Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), no. 439.