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Abstract In this paper we present a class of regime switching diffusion models
described by a pair (X(t), Y(t)) ∈ R

n × S , S = {1, 2, . . . , N}, Y(t) being a Markov
chain, for which the marginal probability of the diffusive component X(t) is a given
mixture. Our main motivation is to extend to a multivariate setting the class of
mixture models proposed by Brigo and Mercurio in a series of papers. Furthermore,
a simple algorithm is available for simulating paths through a thinning mechanism.
The application to option pricing is considered by proposing a mixture version for
the Margrabe Option formula and the Heston stochastic volatility formula for a plain
vanilla.
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1 Introduction

The need of considering price dynamics alternative to the classical Black-Scholes
model for derivatives pricing is widely known. The stochastic variability of market
parameters and in particular the empirical evidence of non constant surfaces of im-
plied volatility in real markets require more realistic models for the assets dynamics.
In the past years many new models have been proposed, each aiming to relax some of
the restrictive assumption implied by the log-normal dynamic of the Black–Scholes
model. These modifications typically consider explicit models for the local volatility,
the addition of jump components and/or the introduction of stochastic volatility in
the underlying diffusive dynamic.
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In a series of papers Brigo and Mercurio (2000, 2002) and Brigo et al. (2003)
proposed a class of one-dimensional diffusion models characterized by a local volatil-
ity function which implies a mixture distribution for the asset price. In particular,
the case of log-normal mixtures has been considered and applied to various pricing
problems. The main advantages of their model are i) that analytical formulas for
European derivatives are readily available together with the corresponding Greeks
and ii) an improved flexibility for the calibration to real market data. Furthermore,
the explicit analytical form of the local volatility makes available Monte Carlo simu-
lation to price path-dependent derivatives, through simple discretization schemes.

Our main contribution is to develop a mixture dynamic in a regime-switching
diffusion framework in order to extend the class of mixture models proposed by
Brigo and Mercurio. In fact, the main feature of our approach is twofold: it can
be easily applied to multivariate processes and for important models sample paths
can be exactly simulated. Furthermore, the (marginal) sample paths of our process
may exhibit abrupt changes in their behavior nevertheless maintaining a mixture
distribution for the diffusive component.

Regime switching process were introduced by Hamilton (1989, 1990) in a financial
econometric context. The main idea consists in introducing a discrete and in general
unobservable Markov chain which generates switches among a finite set of `̀ regimes´́ :
each regime characterizes a particular parameter set for the dynamic model. Indeed,
empirical studies demonstrated that markets may randomly switch between low-
volatility/high growth and/or high-volatility/low growth regimes. Correspondingly,
there is a practical interest to develop methods for pricing and hedging options
for regime switching underlying models. There has been a considerable progress in
the case of standard European and/or American style options: see e.g Naik (1993),
Di Masi et al. (1994), Bollen (1998), Guo (2001), Hardy (2001), Duan et al. (2002),
Buffington and Elliott (2002), Guo and Zhang (2004), Liu et al. (2006), Yao et al.
(2006), Jobert and Rogers (2006). Comparatively few results are available for exotic
options: see Boyle and Draviam (2007) and the recent Elliott et al. (2007) who
considered the pricing of volatility swaps in a regime-switching version of the Heston
stochastic volatility model. Finally, switching Lévy processes have been considered
in Elliott and Osakwe (2006).

In many of these applications the Markov chain is independent from the dif-
fusive component and its generator is characterized by constant elements. In this
paper we consider instead a state dependent regime-switching framework to get an
explicit mixture dynamic. Mathematically the model we consider is described by
the pair (X(t), Y(t)) ∈ R

n × S , S = {1, 2, . . . , N}. The first component represents a
“controlled diffusion” process since its drift and diffusion coefficients depend on the
state of the second discrete component Y(t). On the other hand Y(t) is a “controlled
Markov Chain” with finite state space and a generator depending on the continuous
component X(t). These kind of processes appear naturally in many engineering
applications where the system under study may show abrupt changes in its structure
and parameters (see e.g. Ghosh et al. 1993, 1997). Theoretical properties of these
dynamical systems have been recently studied in Khasminskii et al. (2007). Our main
result is a characterization of the Markov chain generator to get a target mixture
marginal distribution for the diffusive component X(t). This choice provides a class
of models for which expected values can be evaluated as convex combinations of
the expectations with respect to the components of the mixture. On the other hand,
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the state dependent generator makes the regime-switching diffusion model difficult
to work with computationally. Therefore a simulation scheme recently proposed for
a general jump-diffusion process by Glasserman and Merener (2004) and based on
a state dependent thinning mechanism has been adapted to our model. Numerical
solution of switching (jump-)diffusions has been largely considered for constant
Markov chain generators (see e.g. Yin et al. 2005; Mao et al. 2007).

The paper is organized as follows. In Section 2 the class of Regime Switching
Diffusion models is introduced and the corresponding Kolmogorov Forward (or
Fokker Planck) equation is used to obtain the target mixture probability. In Section 3
the problem of pricing a European plain vanilla option under our regime switching
diffusion is presented. A simulation scheme for sampling paths is proposed together
with illustrative examples involving log-normal mixtures. As a concrete application
to option pricing models we extend two well-known formulas to our setting: the first
one consider the Margrabe (or Exchange) Option and the second a plain vanilla
under the Heston stochastic volatility model. Section 4 concludes the paper.

2 The Model and the Main Result

Let (X(t), Y(t)) be a two-component Markov process on a complete probability
space (�,F , P) endowed with the natural filtration, such that the continuous compo-
nent X(t) takes values in R

n and its evolution is governed by the equation

dX(t) = μ(t, X(t), Y(t))dt + σ(t, X(t), Y(t))dW(t) (1)

where W(t) is a d-dimensional brownian motion, μ : R+ × R
n × S → R

n, σ : R+ ×
R

n × S → R
n×d, with σ(t, x, i)σ (t, x, i)T = a(t, x, i) and Y(t) is a jump process with

values in a finite state space S that we model as a marked point process (MPP).
We briefly recall here (see e.g. Runggaldier 2003) that a MPP can be characterized

as a random measure m(dz, dt) for which
∫ t

0

∫
E

H(z, s)m(dz, ds) =
Nt∑

n=1

H(Zn, Tn)

where {Tn} is a univariate point process on R
+ and {Zn} is a sequence of random

variables on a given measurable space (E, E), Nt being the counting process. The
corresponding stochastic intensity for m is a measure-valued process υ(dz, dt) for
which ∫ t

0

∫
E

H(z, s)(m(dz, ds) − υ(dz, ds))

is a martingale for each predictable process H. This setting has been introduced in
the financial literature by Bijork et al. (1997).

We can now specify our jump process. Let E = {(i, j) ∈ S × S : i �= j}, E = 2E

be the finite mark space (E, E) and consider the MPP ν(dt, dx) with the following
stochastic intensity:

υ(dt, dz) = λ(t, X(t), Y(t), dz)dt =
∑
i �= j

qij(t, X(t))1(Y(t−)=i)δ(i, j)(dz)dt, (2)
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δ(i, j)(dz) being the Dirac measure. The functions qij(t, x) are positive and such that∑N
j=1, j�=i qij(t, x) = −qii(t, x), for i = 1, . . . , N and all t and x. In other words, we are

considering a continuous-time and finite space Markov Chain (MC). The functions qij

represent the elements of the intensity matrix of the MC: notice that we are allowing
for a time and state dependent intensity. By defining for z ∈ E the function ε(z) =
ε((i, j)) = j − i, the dynamic of Y(t) can be represented as

dY(t) =
∫

E
ε(z)ν(dt, dz).

meaning that, if τ is a jump time and Y(τ−) = i, then Y(τ ) = Y(τ−) + ( j − i) = j
with probability qij(τ, X(τ )).

Using the above notation, the dynamic of the R
n × S-valued process (X(t), Y(t))

is given by the following SDE

dX(t) = μ(t, X(t), Y(t))dt + σ(t, X(t), Y(t))dW(t)

dY(t) = ∫
E ε(z)ν(dt, dz)

(3)

where W(t) is a standard d-dimensional Wiener process and ν(dt, dx) is the MPP on
(E, E) having compensator (2). We call Eq. 3 a Regime-Switching (RS) diffusion.

From now on we assume that the coefficients of our model satisfy the usual
regularity conditions to ensure for any t > 0 the existence of 1) a strong solution and
2) a probability density function (pdf) for (X(t), Y(t)) on R

n × S w.r.t. the standard
reference measure (see Skorohod 1989 for details). Furthermore we assume the
following initial condition at t = 0: Y(0) = Y0, where Y0 is a random variable on S
having probability mass function λk = P{Y0 = k}, k ∈ S and X(0) = z ∈ R

n, in such
a way

P(X(t) ∈ A, Y(t) = i) =
N∑

k=1

λk

∫
A

p0,z,k(t, x, i)dx ≡
∫

A
ρ0(t, x, i)dx,

for all A ∈ B(R) and i ∈ S where ρ0(t, x, i) = ∑N
k=1 λk p0,z,k(t, x, i). Consequently,

due to the Markov property, we have for a suitable integrable function � : R
n ×

S −→ R

E0[�(X(t), Y(t))] =
N∑

i=1

∫
Rn

�(x, i)ρ0(t, x, i)dx.

For any function F(·, ·, i) ∈ C1,2, the generator of the process is

Lt F(t, x, i)= ∂

∂t
F(t, x, i) + 1

2

∑n

j,h=1
a jh(t, x, i)

∂2

∂x j∂xh
F(t, x, i)

+
∑n

j=1
μj(t, x, i)

∂

∂x j
F(t, x, i)+

∑
j�=i

qij(t, x)(F(t, x, j)−F(t, x, i)).

(4)
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Notice that
∑

j�=i qij(t, x)(F(t, x, j) − F(t, x, i)) = ∑N
j=1 qij(t, x)F(t, x, j). Standard

stochastic calculus (see the Appendix for a sketch of the derivation) gives the
Kolmogorov forward equation (KFE) for the density ρ0(t, x, i):

∂

∂t
ρ0(t, x, i) = 1

2

∑n

j,h=1

∂2

∂x j∂xh
(a jh(t, x, i)ρ0(t, x, i))

−
∑n

j=1

∂

∂x j
(μ j(t, x, i)ρ0(t, x, i)) +

∑N

j=1
q ji(t, x)ρ0(t, x, j). (5)

We now prove the following

Theorem 2.1 For any i ∈ S let f (i)
(0,z)(t, x) be density functions satisfying

∂

∂t
f (i)
(0,z)(t, x) = 1

2

n∑
j,h=1

∂2

∂x j∂xh
(a jh(t, x, i) f (i)

(0,z)(t, x)) −
n∑

j=1

∂

∂x j
(μ j(t, x, i) f (i)

(0,z)(t, x))

(6)

f (i)
(0,z)(0, x) = δz(x), x ∈ R

n and let

qij(t, x) = α f ( j)
(0,z)(t, x)λ j, j �= i, qii(t, x) = −

∑
j�=i

qij(t, x), (7)

α > 0 being an arbitrary constant. Then

(i) p0(t, x, i) = λi f (i)
(0,z)(t, x) is the joint pdf of (X(t), Y(t));

(ii) for any integrable function � : R
n × S −→ R we have

E0[�(X(t), Y(t)] =
N∑

i=1

λiE
(i)
0 [�(X(t), i)].

Proof The joint density of the solution (X(t), Y(t)) of Eq. 3 must satisfies the
Kolmogorov Forward Eq. 5. By inserting the pdf p0(t, x, i) in Eq. 5 we have

λi

(
∂

∂t
f (i)
(0,z)(t, x) − 1

2

∑n
j,h=1

∂2

∂x j∂xh
(a jht, (x, i) f (i)

(0,z)(t, x))

+ ∑n
j=1

∂

∂x j
(μ j(t, x, i) f (i)

(0,z)(t, x))

)
− ∑N

j=1 q ji(t, x) f ( j)
(0,z)(t, x)λ j = 0,

which clearly follows from the condition (6) and since from Eq. 7 we have for any i

N∑
j=1

q ji(t, x) f ( j)
(0,z)(t, x)λ j =

N∑
j=1, j�=i

α f (i)
(0,z)(t, x)λi f ( j)

(0,z)(t, x)λ j + qii f (i)
(0,z)(t, x)λi

= α f (i)
(0,z)(t, x)λi

N∑
j=1, j�=i

f ( j)
(0,z)(t, x)λ j

− f (i)
(0,z)(t, x)λi

N∑
j=1, j�=i

α f ( j)
(0,z)(t, x)λ j = 0.
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Furthermore

E0[�(X(t), Y(t)] =
N∑

i=1

∫
Rn

�(x, i)p0(t, x, i)dx =
N∑

i=1

λi

∫
Rn

�(x, i) f (i)
(0,z)(t, x)dx (8)

from which (ii) follows. ��

Let us notice that the proof is unchanged for a non-constant multiplicative factor
α ≡ α(t, x).

By summing over i in the Eq. 5 we get

∂

∂t

N∑
i=1

ρ0(t, x, i) = 1

2

N∑
j,h=1

∂2

∂x j∂xh

N∑
i=1

a jh(t, x, i)ρ0(t, x, i)

−
N∑

j=1

∂

∂x j

N∑
i=1

μ j(t, x, i)ρ0(t, x, i), (9)

since
∑N

i=1

∑N
j=1 q ji(t, x)ρ0(t, x, j) = 0. On the other hand, for any SDE with drift

μ̃ j(t, x) and diffusion coefficient ã jk(t, x), j, k = 1, . . . , N, the corresponding pdf
ρ̃0(t, x) must satisfy

∂

∂t
ρ̃0(t, x) = 1

2

n∑
j,h=1

∂2

∂x j∂xh
(ã jh(t, x)ρ̃0(t, x)) −

n∑
j=1

∂

∂x j
(μ̃ j(t, x)ρ̃0(t, x)). (10)

Therefore, by comparing Eqs. 9 and 10, if

ã jh((t, x) = ∑N
i=1

a jh(t, x, i)ρ0(t, x, i)∑N
�=1 ρ0(t, x, �)

μ̃ j(t, x) = ∑N
i=1

μ j(t, x, i)ρ0(t, x, i)∑N
�=1 ρ0(t, x, �)

and provided ρ̃0(t, x) = ∑N
i=1 ρ0(t, x, i) we get a mixture pdf for the solution X (t) of

the SDE

dX (t) = μ̃(t,X (t))dt + σ̃ (t,X (t))dW(t),

σ̃ (t, x)σ̃ T(t, x) = ã(t, x).
Now let d = n = 1. Under the hypothesis of Theorem 2.1 we get the mixture

pm(t, x) = ∑N
i=1 λi f (i)

(0,z)(t, x) as the pdf of the solution of the SDE

dX (t) =
N∑

i=1

μ(t,X (t), i)λi f (i)
(0,z)(t,X (t))∑N

�=1 λ� f (�)

(0,z)(t,X (t))
dt +

√√√√ N∑
i=1

σ 2(t,X (t), i)λi f (i)
(0,z)(t,X (t))∑N

�=1 λ� f (�)

(0,z)(t,X (t))
dW(t)

(11)

as in Brigo and Mercurio (2000, 2002) (with μ(t, x, i) ≡ μ—see also Brigo et al. 2003).
Clearly the conditions for the existence and uniqueness of the solution of the SDE
(11) depend on the densities f (i)’s.
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It is worth noting that even if the (marginal) probability of the two continuous
processes is the same mixture, their pathwise properties are very different.

3 Application to Option Pricing Models

The main advantages of considering convex linear combinations of densities as mod-
els for asset prices are easily summarized (see Brigo and Mercurio 2000): 1) analytical
formulas for European derivatives are readily available for basic models together
with the corresponding Greeks; 2) a potentially very large numbers of parameters to
improve the flexibility for calibration to real market data. Furthermore, the explicit
analytical form of the model dynamic makes available Monte Carlo simulation to
price path-dependent derivatives, through simple discretization schemes.

The class of models introduced in the previous section, when considered as
candidate price dynamics, according to Theorem 2.1 certainly shares these features,
in a very general setting. Notice that the market we consider is incomplete in general
and hence there is more than one pricing measure. Therefore in the following we
assume that Eq. 3 characterize the dynamic of the factors driving the asset prices S(t)
under a given risk-neutral pricing measure Q, where ν(dt, dz) is the MPP on (E, E)

with intensity

λ(t, X(t), Y(t), dz) =
∑
j�=i

α f ( j)(t, X(t))λ j1(Y(t−)=i)δ(i, j)(dz) (12)

and the f ( j)(t, x) are the pdf of the solution of dX(t) = μ(t, X(t), j)dt +
σ(t, X(t), j)dW(t), {λ j} j=1,...,N being the probability mass function of Y0. Here, along
with asset prices the vector X(t) can include also latent factors, as we will see in
the last example, i.e. X(t) = (S1(t), . . . , SK(t), XK+1(t), . . . , Xn(t)). As a consequence
of the risk-neutrality assumption, we can restrict the drift term of the asset price
component to be of the form μ(t, s, i) = μs, where the parameter μ is specified by
the pricing measure Q (μ = r − q, where r is the risk-free rate and q the continuous
dividend yield, μ = r − r f , r f the foreign risk-free rate, for underlyings that are
exchange rates—see Brigo et al. 2003). Finally, let �(s) be the integrable payoff of
the derivative maturing at time T. Then, from Theorem 2.1, its price at time t = 0 is
simply given by

c(0, T) = e−rT
E0[�(S(T)] =

N∑
i=1

λici(0, T), (13)

where

ci(0, T) = e−rT
E

(i)
0 [�(S(T))]

is the time t = 0 price of the derivative according to the i-th state of the chain.
The case of one-dimensional log-normal mixture dynamics has been considered by

Brigo and Mercurio (2000, 2002) and Brigo et al. (2003) and fully exploited for pricing
European call/put options. In the following we present firstly a simulation scheme for
RS diffusions to improve the classical discretization approach for generating sample
paths from Eq. 11. Secondly, we propose two specific applications of the dynamic
mixture model which permit to extend well-known option pricing formulas: the first
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one consider the Margrabe (or Exchange) Option and the second extend the Heston
stochastic volatility model to our setting.

3.1 Simulation

The state dependent intensity makes the RS diffusion model difficult to work with
computationally. Glasserman and Merener (2004) proposed a class of discretization
schemes for jump diffusion processes in which the jump component is modelled as
a MPP with state-dependent intensity. Their main motivation relies on the fact that
the change of measure technique for option pricing can introduce state dependent
intensity when passing from objective to risk-neutral probability in a jump-diffusion
model.

The main idea of their schemes is to enlarge the mark space and to “embed” the
state-dependent jump component into a Poisson random measure on the enlarged
mark space through a state dependent thinning mechanism. The Poisson random
measure can be easily simulated and the thinning function accepts or rejects the
generated marks with a probability depending on the state of the system.

To be definite, for our dynamic (3) characterized by the intensity (2), let p(dz ×
du, dt) be the Poisson random measure with mark space E∗ = E × (0, 1) and in-
tensity vP(z, u, t) = λ0h(z), z ∈ E, u ∈ (0, 1): h(z) = ∑

z∈E hijδ(ij)(dz) is a probability
mass function on E (hij > 0,

∑
z∈E hij = 1) and λ0 the arrival rate. The parameters hij

and the rate λ0 must be chosen in such a way

qij(t, x) < λ0hij, (i, j) ∈ E. (14)

for every t > 0 and x ∈ R
n. The thinning function is then defined as

θ(t, x, y, z, u) =

⎧⎪⎪⎨
⎪⎪⎩

1 if u <
qij(t, x)1(y=i)

λ0hij

0 otherwise.

(15)

As in Glasserman and Merener (2004), it can be proved that the process

dỸ(t) =
∫

E

∫ 1

0
ε(z)θ(t, X(t−), Y(t−), z, u)p(dz × du, dt) =

∫
E

ε(z)m(dz, dt),

where m(dz, dt) = ∫ 1
0 θ(t, x, y, z, u)p(dz × du, dt) is equivalent to the one defined in

Eq. 3.
The Euler simulation scheme (see e.g. Kloeden and Platen 1999), on the time

interval [0, T] for our RS dynamic proceed as follows. Let {τk}k be a discrete set of
times obtained as the superposition of the Poisson jump times and a deterministic
grid on [0, T]. The value of the process (X(τk), Y(τk)) is iteratively computed using

X(τk+1) = X(τk) + μ(X(τk), Y(τk))�τk

+ σ(τk, X(τk), Y(τk))(W(τk+1) − W(τk)) (16)

Y(τk+1) = Y(τk) +
∫

E
ε(z)m(dz, dt) (17)

The new state of the chain Y(τk+1) is generated through the thinning mechanism
only if τk+1 is a point of the Poisson random measure, otherwise the jump term is
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zero. For the RS mixture dynamic characterized by the intensity (12) this amounts to
accept the switch from Y(t−) = i to Y(t) = j if

U <
α f ( j)

(0,z)(t, X(t))λ j

λ0hij
(18)

where U is a uniform r.v. on (0, 1). Clearly, other more sophisticated discretization
schemes can be used for sampling the continuous component X(t). We call the
iterations (16), (17) and (18) the Regime Switching Thinning Algorithm (RSTA).
In general, as proved in Glasserman and Merener (2004), under some conditions on
the coefficients of the jump-diffusion equation and the set of test functions, the weak
convergence order of this scheme is the same of the scheme used for the diffusive
component of the system.

Remark 3.1 It is important to notice that if the continuous component X(t) can be
sampled exactly in each time interval [τk, τk+1], the above scheme produces sample
paths without discretization errors. This is a clear advantage compared to the purely
diffusive representation (11) which requires approximation schemes for generating
paths.

In the practical implementation of the RSTA we have the freedom of choosing
the parameters α, λ0 and the probabilities hij. While these last can always be selected
to be the uniform law on E, i.e. hij = 1/|E|, in our experiments we set α ≡ α(t, x) =
(
∑N

k=1 λk f (k)

(0,z)(t, x))−1 and λ0 = maxi, j{λ j/hij} in order to ensure condition (14). With
such a choice of α(t, x), the RSTA resembles the Gibbs Sampler algorithm (see e.g.
Robert and Casella 2004) since the switch from regime i to regime j at a jump time τ

happens with probability (proportional to) the conditional probability of Y(τ ) given
X(τ ).

As an illustrative example, let us consider the following dynamic:

dX(t) = X(t)μ(Y(t)) + X(t)σ (Y(t))dW(t)

dY(t) = ∫
E ε(z)ν(dt, dz)

where Y(t) is a two-state Markov chain, i.e. E = {(1, 2), (2, 1)}, μ1, μ2 ∈ R and
σ1, σ2 > 0 are given parameters. For a given state i = 1, 2 of the chain, X(t) is a GBM
having a log-normal distribution

f (i)
(0,z)(t, x) = 1√

2πσ 2
i tx

exp

(
− (log(x) − mi)

2

2σ 2
i t

)
, x > 0

mi = log(z) + (μi − σ 2
i /2)t.

According to Theorem 2.1 we consider the stochastic intensity (2) defined by the
functions

qij(t, x) = α(t, x) f ( j)
(0,z)(t, x)λ j, i, j = 1, 2, i �= j, α(t, x) = 1∑2

k=1 λk f (k)

(0,z)(t, x)
.

The law of Y0 is P{Y0 = 1} = 1 − P{Y0 = 2} = 2/5 and X(0) = 1. Figure 1 shows
the time evolution of the mixture pdf. In Fig. 2 the empirical densities obtained
through the simulation scheme are compared with the pdf of X(t) for various times
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Fig. 1 Time evolution of the marginal pdf of X(t). Here z = 1, μ1 = .2, μ2 = .6, σ1 = 0.1, σ2 = .15
and T = 3

in the interval [0, T]. The intensity of the Poisson random measure is λ0 = 1 and the
marks are sampled uniformly on E.

We test the efficiency of the our sampling algorithm by evaluating the price of
a call option under a N = 2 component mixture of lognormals with parameters
σ = [.2 .5], λ = [.5 .5] and K = 100, T = 1, μ1 = μ2 ≡ r = .05, S0 = 100. The value of
the call is c = 16.1216. We compare the bias and the RMSE of the estimates obtained
with the RSTA to that obtained with the classical Euler-Maruyama dicretization
algorithm for the Brigo and Mercurio SDE (EM-SDE) (a sample path of each model
is depicted in Fig. 3):

dS(t) = S(t)

⎛
⎝rdt +

√√√√ 2∑
i=1

σiλi exp
(−(log(S(t)) − mi)2/

(
2σ 2

i t
))

∑2
�=1 λ� exp

(−(log(S(t)) − m�)2/
(
2σ 2

� t
))

/σ�

dW(t)

⎞
⎠ .

The algorithms were implemented in MatLab 6.5 (Release 13) by using the build-
in generators for all the random variables involved.

We briefly recall that if ĉ is an estimate of c = E[X], the bias is defined as
b = E[ĉ] − c and the RMSE is the quantity

√
b 2 + var(ĉ). Furthermore, we consider

the ratio of the computational times spent by the algorithms for generating all
the paths, rCT =CPUTIME(EM-SDE)/CPUTIME(RSTA). The results reported in
Table 1 appears encouraging.
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Fig. 2 Histograms of the sampled marginal process X(t) compared with the marginal mixture

pm(t, x) = ∑2
j=1 λ j

1√
2πσ 2

j tx
exp

(
− (log(x)−m j)

2

2σ 2
j t

)
, m j = log(x0) + (μ j − σ 2

j /2)t

3.2 Log-normal Mixtures for the Margrabe Option

As a first application of the results obtained in the previous section, we consider the
following two-dimensional log-normal model

dS1
t = S1

t

(
rdt + σ1

(√
1 − ρ2dW1

t + ρdW2
t

))

dS2
t = S2

t

(
rdt + σ2dW2

t

)
,

(19)

as the extension of the standard B&S asset price dynamics, under a risk-neutral
measure. Here r is the risk-free rate, ρ is the correlation coefficient and (W1

t , W2
t )

is a two-dimensional Brownian motion. The Exchange option gives the holder the
right to exchange one asset for another: the corresponding payoff at the expiry time is
�(S1

T , S2
T) = (S1

T − S2
T)+. A pricing formula, under the previous dynamic, is obtained

through standard arguments (see e.g. Musiela and Rutkowski 2005) giving

c(t, T) = S1
0N (d1) − S2

0N (d2),
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Fig. 3 Sample paths of the regime switching mixture model model (blue line) and the Brigo Mercurio
model (red line)

known as Fisher–Margrabe Formula, where

d1,2 = log S1
0/S2

0 ± � · (T − t)/2√
� · (T − t)

, � = σ 2
1 − 2ρσ1σ2 + σ 2

2 .

Without loss of generality we can assume that r = 0. The formula strongly resembles
the classical Black and Scholes formula where the correlation between assets gets
incorporated in the volatility. Now, we can consider the Mixture Regime Switching
dynamic by assuming stochastic volatilities σ1(Y(t)), σ2(Y(t)) and a stochastic corre-

Table 1 Estimated bias, (RMSE) and computational time rCT for the Monte Carlo estimates of the
call price. The time step length �t for the Euler discretization scheme was chosen as �t = M−1/2

50000 100000 150000 200000

RSTA 0.0987 (0.1721) 0.0533 (0.1130) 0.0350 (0.0886) 0.0128 (0.0714)
Euler 0.1652 (0.2180) 0.0821 (0.1081) 0.0238 (0.0914) 0.0169 (0.0827)

rCT = 5.1991 rCT = 4.0101 rCT = 2.3539 rCT = 2.0377
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lation ρ(Y(t)), taking values in the finite sets {σ1(1), . . . , σ1(N)}, {σ2(1), . . . , σ2(N)}
and {ρ(1), . . . , ρ(N)}, respectively, as follows:

dS1
t = S1

t σ1(Y(t))
(√

1 − ρ2(Y(t))dW1
t + ρ(Y(t))dW2

t

)

dS2
t = S2

t σ2(Y(t))dW2
t

dY(t) = ∫
ε(z)ν(dt, dz),

(20)

where Y(t) has generator (12), the f j’s being two-dimensional log-normal

densities. In particular, the bivariate r.v.
(

log
(
S1

t

)
log

(
S2

t

)
)

under regime i is nor-

mally distributed with expected value

(
log

(
S1

0

) − σ 2
1 (i)
2 t

log
(
S2

0

) − σ 2
2 (i)
2 t

)
and covariance matrix

(
σ 2

1 (i) σ1(i)σ2(i)ρ(i)
σ1(i)σ2(i)ρ(i) σ 2

2 (i)

)
t. According to Theorem 2.1, if Y(t) is the Markov

chain with intensity (12), the resulting price is

cM(0, T) =
N∑

i=1

λiE
(i)
0

[(
S1

T − S2
T

)+] =
N∑

i=1

λi

(
S1

0N (d1(i)) − S2
0N (d2(i))

)
(21)

where

d1,2(i) = log S1
0/S2

0 ± �(i) · (T − t)/2√
�(i) · (T − t)

, �(i) = σ 2
1 (i) − 2ρ(i)σ1(i)σ2(i) + σ 2

2 (i).

It is worth noting that other kind of two-asset options, like the Chooser Option or
some FX (quantos) options (see e.g. Musiela and Rutkowski 2005), can be treated in
the same way.

3.3 Heston Stochastic Volatility Mixtures

Let us consider the Heston Stochastic Volatility (SV) model

dS(t) = μS(t) + σ(t)S(t)dW(1)(t)

dv(t) = κ(θ − v(t))dt + γ
√

v(t)
(
ρdW(1)(t) + √

1 − ρ2dW(2)(t)
)
, σ 2(t) = v(t)

(22)

where
(
W(1)(t), W(2)(t)

)
is a standard 2-dim Wiener process and ρ ∈ [−1, 1] is their

correlation coefficient.
The involved parameters are the initial volatility σ(0) > 0, the mean reversion rate

κ > 0, the long run variance θ > 0, the volatility of the variance (or volvol) γ > 0
and the correlation ρ. If 2κθ > γ 2 (known as Feller condition), the variance process
is always positive and cannot reach zero.

For this model the joint pdf of (S(t), v(t)) (in particular of the log-returns R(t) =
log(S(t)/S(0)) and v(t)) has been exactly derived by Dragulescu and Yakovenko
(2002) by solving the corresponding Fokker–Planck equation, in terms of its Fourier
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transform. We can consider the Mixture Regime Switching version of this model
specified by the SDE

dS(t) = rS(t) + σ(t)S(t)dW(1)(t)

dv(t) = κ(Y(t))(θ(Y(t)) − v(t))dt + γ (Y(t))
√

v(t)(ρ(Y(t))dW(1)(t)

+√
1 − ρ(Y(t))2dW(2)(t)), σ 2(t) = v(t)

dY(t) = ∫
ε(z)ν(dt, dz)

(23)

where Y(t) is the Markov chain with intensity (12). The complete set of parame-
ters for the model are therefore κ(i), θ(i), γ (i) (assumed to satisfy the conditions
2κ(i)θ(i) > γ 2(i)), ρ(i) and λi, i = 1 . . . , N. According to Eq. 13 the value of an
European call option with strike price K is simply

c(0, T) = e−rT)
E0

[
(S(T) − K)+

] =
N∑

i=1

λie−rT
E

(i)
0

[
(S(T) − K)+

] =
N∑

i=1

λic
(i)
H (0, T)

(24)
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Fig. 4 Implied volatility curves for a mixture with two components and varying weights λ1, λ2
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where (see Heston 1993 or Gatheral 2005)

c(i)
H (0, T) = 1

2

(
S0 − e−rT K

) + 1

π

∫ +∞

0

(
erT f1(u) − K f2(u)

)
du,

with

f (i)
1 (u)=Re

(
exp(−i log K)φ(i)(u − i, T)

iu exp(rT)

)
, f (i)

2 (u)=Re
(

exp(−i log K)φ(i)(u, T)

iu

)
,

i stands for the imaginary units and φ(i)(u, T) is the characteristic function of the
logarithm of the stock price process at time T for the i-th model given by

φ(i)(u, T) = exp(iu(log S0 + rT))

× exp(k(i)θ(i)γ (i)−2

×
(

(k(i) − ρ(i)γ (i)ui+ d(i))T − 2 log

(
1 − g(i)e−d(i)T

1 − g(i)

))

× exp

(
σ 2

0 γ (i)−2(k(i) − ρ(i)γ (i)ui+ d(i))
1 − ed(i)T

1 − g(i)ed(i)T

)
,

d(i) =
√

ρ(i)γ (i)ui+ γ (i)2(ui− u2)

g(i) = (k(i) − γ (i)ρ(i)ui− d(i))/(k − γ (i)ρ(i)ui+ d(i)).

0
0.5

1
1.5

2

80859095100105110115120
0.13

0.14

0.15

0.16

0.17

0.18

0.19

T

θ
1
=0.01, θ

2
=0.1

Strike

Im
pl

ie
d 

V
ol

at
ili

ty

0
0.5

1
1.5

2

80859095100105110115120
0.135

0.14
0.145

0.15
0.155

0.16
0.165

0.17
0.175

0.18

T

σ
1
=0.5, σ

2
=0.1

Strike

Im
pl

ie
d 

V
ol

at
ili

ty

0

1

2

80859095100105110115120
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

T

ρ
1
=–0.9, ρ

2
=– 0.1

Strike

Im
pl

ie
d 

V
ol

at
ili

ty

0
0.5

1
1.5

2

80859095100105110115120
0.135

0.14
0.145

0.15
0.155

0.16
0.165

0.17
0.175

0.18

T

κ
1
=1.5, κ

2
=0.5

Strike

Im
pl

ie
d 

V
ol

at
ili

ty

Fig. 5 Implied volatility surfaces for mixture with two components and weights λ1 = .6, λ2 = .4
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Fig. 6 Calibration results for the mixture with two components. On the left we show the calibrated
put prices vs. the observed ones, on the right the implied volatilities. The mean absolute errors for the
three models �1, �2 and �3 with respect to mid-prices and mid implied volatilities are (7.5845e−5,
1.1366e−5), (1.1579e−4, 9.9096e−6) and (9.7139e−5, 9.6943e−6) respectively

The impact of the mixture modeling over the option prices can be valued through
the implied volatility curves. In Fig. 4 we generate prices according to the mixture of
Heston SV models by varying only one parameter at time and fixing all the others
in the convex combination. We consider mixtures with two components for different
set of weights. The two values of the parameter which is varied in the mixture are
reported on the top of each plot. The other fixed values are: S(0) = 90, v(0) = 0.0175,
r = 0.05, T = 1 and κ = 1.15, θ = 0.04 σ = 0.39, ρ = −0.1. As it can be seen, a large
variety of shapes can be obtained. Similarly, in Fig. 5, implied volatility surfaces are
plotted for a 2-components mixture with weights λ1 = .6, λ2 = .4.

As a simple example of calibration of the model in a real setting, we use the same
market data as in Brigo and Mercurio (2000) (a set of put options bid - ask implied
volatilities on the MIB30 equity index). We calibrate a N = 2 components mixture
of Heston stochastic volatility models through a non-linear least square algorithm
over the put mid-prices. We choose to calibrate three slightly different mixtures: the
full model with parameters �1 = (κ , θ , σ1, σ2, ρ1, ρ2, λ, v1

0 , v2
0) and two reduced ones

with parameters �2 = (κ , θ , σ , ρ1, ρ2, λ, v1
0 , v2

0) and �3 = (κ , θ , ρ, σ1, σ2, λ, v1
0 , v2

0)
respectively. The results obtained were very similar in terms of the mean absolute
errors with respect to both the put mid-prices and the mid-implied volatilities (see
Fig. 6). In particular we get �̂1 = 0.5587, 0.2822, 0.8999, −0.9998, 0.5789, −0.7776,

0.0323, 0.4521, 0.0504) for the full model, �̂2 = (0.6188, 0.3239, 0.6065, −0.9998,

−0.7371, 0.0302, 0.4999, 0.0493) and �̂3 = (0.5493, 0.2887, 0.8999, −0.7767, 0.5843,

0.0293, 0.4999, 0.0506) for the reduced ones.

4 Conclusions

In this paper we have presented a class of regime switching models described by a
pair (X(t), Y(t)) ∈ R

n × S , S = {1, 2, . . . , N}, Y(t) being a controlled Markov chain,
for which the marginal probability of the diffusive component X(t) is a given mixture.
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This regime switching framework permits to extend to a multidimensional setting the
one-dimensional mixture dynamics proposed by Brigo and Mercurio in a series of
papers. A simple simulation scheme for the trajectories of the process has been also
proposed, based on the MPP representation of the Markov chain. As an application
to the problem of pricing a European style option we have presented a log-normal
mixture model for the (two-dimensional) Margrabe option and the mixture version
of the Heston SV model. These models have never been considered in the literature,
at least to the author’s knowledge.

As a final comment for future research, we want to address two main points.
Firstly, from a statistical perspective, the calibration of these mixtures, in particular
the Heston SV mixture model, on real market data would be very interesting, both
from a cross-sectional and a time series point of view (see e.g. Frühwirth-Schnatter
2006). Empirical studies comparing the performances of alternative models for
option pricing are certainly of a great practical interest. More generally, the regime
switching framework introduced is general enough and can be applied to other
classes of financial problems. In particular, it would be interesting to explore the
application of mixture models for the pricing of more complex derivatives, also in an
interest rates setting, intensity based risk models, portfolio management and so on.

Appendix

Sketch of the derivation of the Kolmogorov Forward equation for the RS dyna-
mic (3).

From an appropriate version of Ito’s formula, we get for a suitable function F that

F(t, X(t), Y(t)) −
∫ t

0
(Ls F)(s, X(s), Y(s))ds

is a martingale. By taking the expectation and interchanging the order of integration
we get

E0[F(t, X(t), Y(t))] = E0[F(0, X(0), Y0)] +
∫ t

0
E[(Ls F)(s, X(s), Y(s))]ds

that is

N∑
i=1

∫
Rn

F(t, x, i)ρ0(t, x, i)dx =
N∑

k=1

λk F(0, z, k)

+
∫ t

0

(
N∑

i=1

∫
Rn

(Ls F)(s, x, i)ρ0(t, x, i)dx

)
ds.

Let L∗ be the differential operator satisfying

N∑
i=1

∫
Rn

(Lt f )(t, x, i)ρ0(t, x, i)dx =
N∑

i=1

∫
Rn

f (t, x, i)(L∗
t ρ0)(t, x, i)dx (25)
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for every suitable function f . Then we have

N∑
i=1

∫
Rn

F(t, x, i)ρ0(t, x, i)dx =
N∑

k=1

λk F(0, z, k)

+
∫ t

0

(
N∑

i=1

∫
Rn

F(s, x, i)(L∗
s ρ0)(s, x, i)dx

)
ds

which is the weak form of the equation

∂

∂t
ρ0(t, x, i) = (L∗

t ρ0)(t, x, i) (26)

usually named the Kolmogorov forward, or Fokker–Planck, equation. It remains to
determine L∗ from the condition (25). By defining

(L̃t f )(x, i) = ∂

∂t
f (t, x, i) + 1

2

n∑
j,k=1

a jk(t, x, i)
∂2

∂x j∂xk
f (t, x, i)

+
n∑

j=1

μ j(t, x, i)
∂

∂x j
f (t, x, i)

in such a way (Lt f )(x, i) = (L̃t f )(x, i) + ∑N
j=1 qij(t, x) f (t, x, j), we have

N∑
i=1

∫
Rn

(L̃t f )(x, i)ρ0(t, x, i)dx +
N∑

i=1

∫
Rn

N∑
j=1

f (t, x, j)qij(t, x)ρ0(t, x, i)dx

=
N∑

i=1

∫
Rn

f (t, x, i)(L̃∗
t ρ0)(t, x, i)dx +

N∑
j=1

∫
Rn

f (t, x, j)
N∑

i=1

qij(t, x)ρ0(t, x, i)dx

=
N∑

i=1

∫
Rn

f (t, x, i)(L̃∗
t ρ0)(t, x, i)dx +

N∑
i=1

∫
Rn

f (t, x, i)
N∑

j=1

q ji(t, x)ρ0(t, x, j)dx

=
N∑

i=1

∫
Rn

f (t, x, i)(L∗
t ρ0)(t, x, i)dx

where

(L∗
t ρ0)(t, x, i) = (L̃∗

t ρ0)(t, x, i) +
N∑

j=1

q ji(t, x)ρ0(t, x, j)

and (see e.g. Gardiner 1983)

(L̃∗
t ρ0)(t, x, i)= 1

2

n∑
j,h=1

∂2

∂x j∂xh
(a jh(x, i)ρ0(t, x, i)) −

n∑
j=1

∂

∂x j
(μ j(x, i)ρ0(t, x, i))
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for every i = 1, . . . , N. From Eq. 26, we finally get the Kolmogorov forward equation
of our process:

∂

∂t
ρ0(t, x, i) = (L̃∗

t ρ0)(t, x, i) +
N∑

j=1

q ji(t, x)ρ0(t, x, j). (27)
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