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Abstract
In the present paper we extend the notion of quantum time shift, and

the related results obtained in [9], from representations of current algebras
of the Heisenberg Lie algebra to representations of current algebras of the
Oscillator Lie algebra.
This produces quantum extensions of a class of classical Lévy processes
much wider than the usual Brownian motion. In particular this class
processes includes the Meixner processes and, by an approximation pro-
cedure, we construct quantum extensions of all classical Lévy processes
with a Lévy measure with finite variance. Finally we compute the explicit
form of the action, on the Weyl operators of the initial space, of the gen-
erators of the quantum Markov processes canonically associated to the
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above class of Lévy processes. The emergence of the Meixner classes in
connection with the renormalized second order white noise, is now well
known. The fact that they also emerge from first order noise in a simple
and canonical way, comes somehow as a surprise.

Keywords: Markovian semigroup, Lévy process, Oscillator algebra, Quantum
shift, Weyl algebra, White noise, Wiener process.
MSC (2000): primary 60J65; secondary 60J45, 60H40.

1 Introduction and Notations
The usual time shift v◦t in Wiener space is the unique endomorphism of the
associated algebra of measurable functions given by the map

v◦t (Ws) := Ws+t.

The time shift u◦t on the corresponding increment process is the unique endo-
morphism of the associated algebra of measurable functions given by the map

u◦t (Ws −Wr) := Ws+t −Wr+t.

Denoting jt the restriction of the Wiener time shift on the time zero algebra,
we see that v◦t is uniquely determined by the pair (jt, u◦t ) through the identity

v◦t (Ws) := Ws+t = Wt + (Ws+t −Wt) = jt (W0) + u◦t (Ws −W0)

Taking exponentials we find, for z ∈ C

v◦t
(
ezWs

)
= jt

(
ezW0

)
u◦t

(
ez(Ws−W0)

)
= (jt ⊗ u◦t )

(
ezW0 ⊗ ez(Ws−W0)

)
By continuity and the endomorphism property v◦t is uniquely determined by the
above relations. On the other hand, in the quantum formulation of the classical
Wiener process, u◦t is the white noise time shift, and the increment Wt −W0 is
the momentum

Pχ(0,t] = Wt −W0.

Therefore the usual time shift v◦t in Wiener space is the unique endomorphism
of the associated algebra of measurable functions satisfying

v◦t (Ws) = jt(W0) + u◦t
(
Pχ(0,s]

)
= W0 + Pχ(0,t] + Pχ(t,s+t] = W0 + Pχ(0,s+t]

or, in exponential formulation:

v◦t (ezWs) = jt
(
ezW0

)
u◦t

(
e
zPχ(0,s]

)
= (jt ⊗ u◦t )

(
ezW0 ⊗ ezPχ(0,s]

)
= (jt ⊗ u◦t ) e

z(W0+Pχ(0,t] )

Denoting
X(s,t] = Pχ(s,t] , (1)

we see that
X(0,t] ∈̂ 1H0 ⊗ B

(
Γ(L2((0, t])

)
in this case we say that (s, t] 7→ X(s,t] is a pure noise operator process localized
on the interval (0, t]. This process has the following properties:
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• u◦-covariant
u◦r(X(s,t]) = X(s+r,t+r];

• additive

X(r,s] +X(u,t] = X(r,s]∪(u,t] if (u, t) ∩ (r, s) = ∅;

• normal
[X(0,t], X

+
(0,t]] = 0;

• classical
[X(r,s], X(u,t]] = 0 if (u, t] ∩ (r, s] = ∅,

where, here and in the following, [ · , · ] denotes the commutator.
Finally the operator process {(W0 + X(0,t]),Φ} is isomorphic to the Wiener
process so that, in particular, {(X(s,t]),Φ} is isomorphic to the stationary in-
dependent increment process associated to the Wiener process, i.e. the white
noise process.
The choice (1) is not the only one leading to this conclusion. For example the
choice

X(s,t] = Qχ(s,t] (2)

leads to the same conclusion. This leads to the following definition.

Definition 1 An operator valued measure (X(s,t]) is called a classical time shift
for the Wiener process if the operator process {(W0 + X(s,t]),Φ} is isomorphic
to the Wiener process.

Now choose H0 := L2(R) with the Schrödinger representation

[a0 , a
+
0 ] = 1; (3)

a0 + a+
0 = q0 (multiplication by the coordinate x)

A natural quantum generalization of the above definition is the following.

Definition 2 A quantum time shift for the quantum Brownian motion is de-
fined by a pair of operator valued measures

(
X+

(s,t]

)
,
(
X−(s,t]

)
such that the

operator process {(
a0 +X−(s,t]

)
,
(
a+

0 +X+
(s,t]

)
,Φ
}

is isomorphic to the quantum Wiener process.

A weaker notion is the following.

Definition 3 Denote

E0] := ı0 ⊗ 〈Φ, ( . )Φ〉 : B(H0)⊗ B → B(H0) ∼= B(H0)⊗ 1

and define jt on the Weyl operators on H0 by:

jt(W0(z)) := jt(exp i(za+
0 + z+a0)) = (4)
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= e
i(za+

0 +z+a0)+i(zX+
(0,t]+z

+X−(0,t]) = W0(z)ei(zX
+
[0,t]+z

+X−(0,t])

The pair of operator valued measures (X+
(s,t]), (X−(s,t]) is called a quantum time

shift for the quantum Brownian motion if the map W0(z) 7→ jt(W0(z)) is a
∗-homomorphism and the 1-parameter family

P t0 := E0](jt(a0)) , a0 ∈ B(H0)

is a quantum Markov semigroup whose restriction to the algebra L∞(q0) is the
usual heat semigroup.

If the operator process X+
[0,t] = X−(0,t] = X(s,t] is either Qχ(s,t] (see (2)) or Pχ(s,t]

(see (1)) then (4) takes the form

jt(W0(z)) = W0(z)ei2Re(z)X[0,t] .

and jt can be extended to a ∗-homomorphism from W (H0) to W (H0 ⊗ B(Γ)).
In this sense we get a quantum extension of the classical time shift.
If X+

[0,t] 6= X−(0,t] then we get a truly quantum time shifts.
If f is a smooth function and f(q0) is multiplication by f in L2(R), then with
the identification p = 1

i
∂
∂x one has

[p, f(q0)] =
1
i
M( ∂∂x f)

hence
−[p, · ]2(f(q0)) = −[p, [p, f(q0) ] ] = M

( ∂
2

∂x2
f)

(5)

which gives the right answer when we restrict our attention to the classical
Wiener process. Denoting p the momentum operator in the initial space one
has

p =
1
i
√

2
(a0 − a+

0 )

This implies that

1
2

[p, · ]2 =
1
2

[a0 − a+
0 , · ]2 =

[ 1√
2

(
[a0, · ] + [a+

0 , · ]
)]2

(6)

From (3) we deduce that

[a0, · ] =
∂

∂a+
0

, [a+
0 , · ] = − ∂

∂a0

therefore, since
W0(z) = exp i(za+

0 + z+a0)

we find
∂

∂a+
0

W0(z) = (iz)W0(z) ,
∂

∂a0
W0(z) = (iz+)W0(z)
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hence ( ∂

∂a+
0

+
∂

∂a0

)
W0(z) = i(2<z)W0(z)

and therefore [ 1√
2

( ∂

∂a+
0

+
∂

∂a0

)]2
W0(z) = −(2Rez)2W0(z)

This implies that the generator

L :=
[ 1√

2

( ∂

∂a+
0

+
∂

∂a0

)]2
=

1
2

[p, · ]2

generates the quantum Markov semigroup on the Weyl algebra given by

P t0 = exp tL.

Given the identity (5) the semigroup P t0 is a quantum extension, on the
whole Weyl algebra, of the classical heat semigroup.

1.1 Notations
Let us denote

− Γ(L2(R) the boson Fock space over the one-particle space L2(R);

− E = {ψ(f) : f ∈ L2(R)} the set of exponential vectors in Γ(L2(R);

− Φ = ψ(0) the vacuum state in Γ(L2(R);

− Γ(χ[0,t]) the orthogonal projector defined by

Γ(χ[0,t])ψ(f) = ψ(χ[0,t]f);

− Φt] := Γ(χ[0,t])Φ ; Φ[t := Γ(χ[t,∞))Φ;

− the Weyl operators W (f), f ∈ L2(R), characterized by the property

W (f)ψ(g) = e−
‖f‖2

2 −〈f,g〉ψ(f + g).

The operators W (f) are unitary operators on H satisfying the CCR

W (f)W (g) = ei=(〈f,g〉)W (f + g);

− the annihilation, creation and number (or gauge or conservation ) fields
A , A+ , N defined on E by the relations:

A(f)ψ(g) = 〈f, g〉ψ(g)

A+(f)ψ(g) =
d

dt
|t=0ψ(g + tf)

Ntψ(g) =
d

ds
|s=0ψ(esχ[0,t]g)
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− ft] = χ[0,t]f ; f[t = χ[t,∞]f ;

− H0 a complex Hilbert space , called the initial space;

− H = H0 ⊗ Γ(L2(R);

− Ht] = H0 ⊗ Γ(L2([0, t])⊗ Φ[t;

− B = B(H) = B
(
H0 ⊗ Γ(L2(R)

)
= B

(
H0

)
⊗ B

(
Γ(L2(R)

)
;

− Bt] = B(H0 ⊗ Γ(L2([0, t]))⊗ 1[t = B(H0)⊗ B(Γ(L2([0, t]))⊗ 1[t;

− B[t = B(1H0 ⊗ 1t] ⊗ Γ(L2([t,∞)) = B(1H0)⊗ 1t] ⊗ B(Γ(L2([t,∞)).

2 Shift on the Lie algebra

2.1 Current algebras
Let L be a complex ∗-Lie algebra. Let

{X+
α , X

−
α , X

0
β , α ∈ I, β ∈ I0}

where I, I0 are disjoint sets, be set of generators of L satisfying the following
conditions:

(X0
β)∗ = X0

β , ∀β ∈ I0 ; (X+
α )∗ = X0

α , ∀α ∈ I

We assume that there is a single central element, denoted E or 1, among the
generators and that it is of X0-type (i.e. self-adjoint).
We denote Cγα,β(ε, ε′, ε′′) the structure constants of L with respect to the gen-
erators (Xε

α), i.e., with α ∈ I, β ∈ I0, ε, ε
′, ε′′ ∈ {+,−, 0}, and assuming

summation over repeated indices:

[Xε
α, X

ε′

β ] = Cγα,β(ε, ε′, ε′′)Xε′′

γ =

=
∑
γ∈I0

Cγα,β(ε, ε′, 0)X0
γ +

∑
γ∈I

Cγα,β(ε, ε′,+)X+
γ +

∑
γ∈I

Cγα,β(ε, ε′,−)X−γ (7)

In the following we will consider only locally finite Lie algebra, i.e., those such
that, for any pair α, β ∈ I ∪ I0 only a finite number of structure constants
Cγα,β(ε, ε′, ε′′) is different from zero.
To the set of generators {Xε

α ; α ∈ I ∪ I0, ε = 0,+,−} one associates the set of
skew adjoint generators defined by:

{X+
α −X−α , i(X+

α +X−α ), iX0
β ; α ∈ I, β ∈ I0}

The real vector subspace Lsk of L, generated by this set, coincides with the real
sub-Lie algebra consisting of all the skew-adjoint elements of L. Denoting by
Lsa the real vector subspace consisting of the self-adjoint elements of L, one has
the relation Lsk = iLsa.
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Definition 4 Let be given a ∗-Lie algebra L with a canonical set of generators

{Xε
α ; ε ∈ {+,−, 0}, α ∈ I ∪ I0}

with Lie-brackets as in (7). Let (S,B) be a measurable space and C ⊂ L∞C (S,B)
be a ∗-sub-algebra. The current algebra over S of {L, Xε

α} is the ∗-Lie algebra
L(S, C) defined as the vector space obtained by algebraic linear span of the family

{Xε
α(f) ; f ∈ C, ε ∈ {+,−, 0}, α ∈ I0 ∪ I}

such that:

◦ the generators are independent in the sense that∑
ε, α

Xε
α(fε, α) = 0 ⇐⇒ fε, α = 0 , ∀ε, α

◦ the map f 7→ Xε
α(f) is linear for ε = +, 0 and anti-linear for

ε = −
◦ the Lie-brackets are defined by

[Xε
α(f), Xε′

β (g)] = Cγα,β(ε, ε′, ε′′)Xε′′

γ (fεgε
′
)

where, for a test function f , we use the notation{
fε = f if ε = +, 0
fε = f if ε = −

◦ the involution is defined by

(Xε
α(f))∗ := Xε∗

α (f̄)

with +∗ := − , −∗ := + , 0∗ := 0.

Definition 5 A unitary representation of a real Lie algebra L is a triple {H, π,D}
where H is a complex Hilbert space, D ⊆ H is a total subset of H which is a
core for each π(a), a ∈ L;

π : L → La(D) (adjointable linear maps from lin-span(D)→ H)

π(a)+, i.e., the H-adjoint of π(a), is defined on D and π(a)+ = −π(a);

π([a, b]) = [π(a), π(b)] , ∀ a, b ∈ L

where the identity is meant weakly on D.

Definition 6 Let L be a real or complex ∗-Lie algebra with center C(L). A
central decomposition of L is a direct sum of vector spaces

L = C(L)⊕ L0

where L0 is a sub-Lie algebra of L.
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Let L and G be real or complex ∗-Lie algebras and Φ : L → G be a ∗-
isomorphism of Lie algebras. Clearly if L has a central decomposition

L = C(L)⊕ L0

then G has the central decomposition

G = Φ(C(L))⊕ Φ(L0).

2.2 Lie algebra shifts
Let be given a complex ∗-Lie algebra LS with scalar center C(LS) = C1S , a
skew-adjoint sub-algebra LskS of LS with central decomposition

LskS = iR1S ⊕ Lsk0,S

and a space of test function C. Let LS(Rd, C) denotes the current algebra of LS
over Rd with a scalar center C(LS(Rd, C)). We assume the existence of a uni-
tary representation of the skew-adjoint sub-algebra LskS ⊂ LS on some Hilbert
space HS , and a unitary representation of the skew-adjoint current sub-algebra
LskS (Rd, C) ⊂ LS(Rd, C) on a Hilbert space HN .
In the following all the above Lie algebras are identified with their images un-
der the corresponding unitary representations and these are omitted from the
notations.

Definition 7 In the above notations, a Lie algebra shift is a family of unitary
homomorphisms of ∗-Lie algebras

ĵI : LskS → LskS ⊗ 1 + 10 ⊗ LskS (I, CI)

parameterized by the Borel subsets of Rd and with the following structure:

ĵI(X) := TSI (X)⊗ 1 + 10 ⊗ TI(X)

with the property that the exponential map exist and the map j◦I , defined by

j◦I (eiX) := eiĵI(X) , X ∈ Lsa0,S (8)

extends to a ∗-homomorphism of the Von Neumann algebra generated by the set

{eiX ; X ∈ LsaS }

and for each X ∈ LsaS , the map t ∈ R 7→ eitX ∈ LsaS is strongly continuous.

Remark 1 Remark

1. For I ⊂ Rd, the test function space CI denotes the space of test function
in C with support in I.
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2. The maps TSI : LskS → LskS and TI : LskS → LskS (I, CI) in the above defini-
tion must be ∗-Lie algebra homomorphisms.

3. The maps TSI and TI can be extended, by complex linearity, to ∗-Lie algebra
morphism of the whole Lie algebra LS. The corresponding extension of the
Lie algebra shift ĵI will be still denoted ĵI .

4. If it is given a family {Xα ; α ∈ F}, of generators of LS, and {Xα(ϕ) ; α ∈
F, ϕ ∈ CI} denotes the corresponding family of generators of LS(I, CI),
the action on the generators of the Lie algebra time shift is given by:

ĵI(Xα) := T γαXγ ⊗ 1 + 10 ⊗
∑
β

Xβ(χIϕα,β)

with ϕα,β ∈ C and (T γα ) is a finite matrix. In fact the set F of the index
α is finite.

5. We want that the map ĵI to be injective then, the matrix (T γα ) must be
invertible.

6. To prevent confusions, if L is the Lie algebra of a Lie group G and the
elements of L are realized as operators acting on some Hilbert space, in
the following, for any element Y ∈ Lsk, we will denote exp(Y ) ∈ G the
exponential of Y in the sense of Lie algebra theory and eY the exponential
of Y in the given representation, defined by the spectral theorem or by the
exponential series on some domain.

In the following we will produce several examples of unitary homomorphism of
∗-Lie algebras ĵI such that the map j◦I , defined by (8), does not extend to a Von
Neumann algebra homomorphism.

Example 1 Example (Heisenberg Lie algebra)
Let LS = {a+, a−, 1S} be the Heisenberg Lie algebra with the commutation
relation [a−, a+] = 1S where 1S is the central element. The map TSI is given by:

TSI a
+ = T+

+ a
+ + T−+ a

− + T01S

TSI a
− = T−+ a

+ + T+
+ a
− + T01S

TSI 1S = (|T+
+ |2 − |T−+ |2)1S

where the complex numbers T±± and T0 may depend on I ⊆ C.

The case T−+ = T0 = 0 and T+
+ = 1, which corresponds to the case

TSI (X) = X , ∀X ∈ LS (9)

has been studied in the paper [9]. In this paper we will consider the oscilla-
tor algebra Losc := {a+, a, a+a, 1} and the class of shifts satisfying the same
condition (9).
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3 Time shift on the oscillator algebra

3.1 The oscillator algebra
In the present section we recall some known facts on the operators associated
to the Fock representation of the CCR and we use the notations of subsection
1.1.

Lemma 1 Lemma (see [9] and [3]) Let H be an Hilbert space and u ∈ H. De-
noting A+(u), A(u), respectively, the creation and annihilation operators acting
on the Fock space Γ(H). Then, the operators eA

+(u), eA(u) are well defined by
the exponential series which converges strongly on the maximal algebraic do-
main. Moreover, for any self-adjoint operator T , on H, the operator Λ(T ) is
uniquely defined by the identity

eitΛ(T ) = Γ(eitT ) , t ∈ R

and eiΛ(T ) maps the maximal algebraic domain into it self.

Let H = L2(R) be the Hilbert space of square integrable complex valued func-
tions. A real valued function ψ ∈ K := L2(R) ∩ L∞(R) will be considered
as multiplication operator on the space H, which is bounded and self-adjoint
operator.

Definition 8 We define a generalized Weyl operator on the Fock space Γ(H) to
be the unitary operator given by

W (φ, ψ) = ei(A
+(φ)+A(φ)+Λ(ψ)) , ψ ∈ K , φ ∈ H (10)

The norm closure, in Γ(H), of the algebra generated by them, denoted Wg(H),
will be called the oscillator algebra over H.

Lemma 2 Lemma (see [7]) Let H be an Hilbert space, u, v ∈ H and X ∈ B(H).
Then we have the relations:

eA
+(u)+Λ(X)+A(v)+α = eA

+(ũ)eΛ(X)eA(ṽ)eα̃ (11)

eΛ(X)eA
+(u)e−Λ(X) = eA

+(eX ·u) (12)

eA(u)eA
+(v) = e〈u,v〉eA

+(v)eA(u) (13)

where

ũ =
∞∑
n=1

Xn−1

n!
u = e1(X)u , ṽ =

∞∑
n=1

(X∗)n−1

n!
v = e1(X∗)v

α̃ = α+
∞∑
n=2

1
n!
〈v,Xn−2u〉 = α+ 〈v, e2(X)u〉

with

e1(x) :=
∞∑
n=1

xn−1

n!
, e2(x) :=

∞∑
n=2

xn−2

n!
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Theorem 1 In the notation (10), for all φj ∈ H and real valued function
ψj ∈ K with norm

‖ψj‖ < π , j = 1, 2

the generalized Weyl CCR holds

W (φ1, ψ1)W (φ2, ψ2) = eiγW (φ, ψ)

where ψ, φ and γ are given by the relations:

ψ = ψ1 + ψ2 (14)

e1(iψ)φ = e1(iψ1)φ1 + eiψ1e1(iψ2)φ2 (15)

〈φ, e2(iψ)φ〉 − iγ = 〈φ1, e2(iψ1)φ1〉+ 〈φ2, e2(iψ2)φ2〉+ 〈e1(−iψ1)φ1, e1(iψ2)φ2〉

Proof: We start by the fact that the function

x 7→ e−1(x) =
1

e1(x)

is analytic with convergence radius equal to 2π.
Note that the norm of ψ as multiplication operator ψ ≡ Mψ is equal to ‖ψ‖∞.
It follow that for all operator ψ ∈ K with norm ‖ψ‖ < 2π, we have e1(ψ) is
invertible in K with inverse equal to e−1(ψ).
Using formula (11) in Lemma 2, for j = 1, 2, we can write

W (φj , ψj) = eA
+(iφj)+Λ(iψj)+A(−iφj) = eA

+(φ̃j)eΛ(iψj)eA(ϕ̃j)eα̃j

where

φ̃j = e1(iψj)iφj , ϕ̃j = −e1(−iψj)iφj , α̃j = −〈φj , e2(iψj)φj〉

Using the identities (12) and (13) in the Lemma (??), we deduce

W (φ1, ψ1)W (φ2, ψ2) = eA
+(φ̃1)eΛ(iψ1)eA(ϕ̃1)eα̃1eA

+(φ̃2)eΛ(iψ2)eA(ϕ̃2)eα̃2

= eA
+(φ̃1+eiψ1 φ̃2)eΛ(iψ1)eΛ(iψ2)eA(ϕ̃2+e−iψ2 ϕ̃1)eα̃1+α̃2+〈ϕ̃1,φ̃2〉

= eA
+(φ̃)eΛ(iψ1)eΛ(iψ2)eA(ϕ̃)eγ̃

= eA
+(φ̃)eΛ(iψ)eA(ϕ̃)eγ̃

where ψ = ψ1 + ψ2 and

φ̃ := φ̃1 + eiψ1 φ̃2 , ϕ̃ := ϕ̃2 + e−iψ2 ϕ̃1 , γ̃ := α̃1 + α̃2 + 〈ϕ̃1, φ̃2〉

The condition ‖ψj‖ < π , j = 1, 2, implies that ‖ψ‖ = ‖ψ1 +ψ2‖ < 2π and this
implies that e1(iψ) is invertible. Therefore there exists φ ∈ H such that the
vector

φ̃ = φ̃1 + eiψ1 φ̃2 = e1(iψ1)iφ1 + eiψ1e1(iψ2)iφ2
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can be written in the form
φ̃ = e1(iψ)iφ

We look for a ϕ ∈ H satisfying

ϕ̃ = e1(−iψ)iϕ

Using the relation
e1(−ψ) = e−ψe1(ψ) , ∀ψ ∈ K

we obtain

ϕ̃ := ϕ̃2 + e−iψ2 ϕ̃1

= −
[
e1(−iψ2)iφ2 + e−iψ2e1(−iψ1)iφ1

]
= −e−iψ2 [e1(iψ2)iφ2 + e1(−iψ1)iφ1]
= −e−iψ2e−iψ1

[
eiψ1e1(iψ2)iφ2 + e1(iψ1)iφ1

]
= −(eiψ1eiψ2)−1

[
eiψ1e1(iψ2)iφ2 + e1(iψ1)iφ1

]
= −e−iψe1(iψ)iφ
= −e1(−iψ)iφ.

Since e1 is invertible, this gives ϕ = −φ.
The above definitions of φ, ϕ and ψ give

W (φ1, ψ1)W (φ2, ψ2) = eA
+(φ̃)eΛ(iψ)eA(ϕ̃)eγ̃

= eA
+(iφ)+Λ(iψ)+A(iϕ)+iγ

= ei(A
+(φ)+A(φ)+Λ(ψ))+iγ

= eiγW (φ, ψ)

with γ being a scalar such that γ̃ = iγ + 〈−iφ, e2(iψ)iφ〉.
The relation γ̃ = α̃1 + α̃2 + 〈ϕ̃1, φ̃2〉 gives the result.

Lemma 3 Lemma LetW := {W (φ, ψ) , φ ∈ H, ψ ∈ K} be the set of generalized
Weyl operators. Then W is a self-adjoint linearly independent set.

Proof: We have

[W (φ, ψ)]∗ = e−i(A
+(φ)+A(φ)+Λ(ψ)) = ei(A

+(−φ)+A(−φ)+Λ(−ψ)) = W (−φ,−ψ) ∈ W.

This gives that W is self-adjoint set.

Let λj , j = 1, · · · , n such that
n∑
j=1

λjW (φj , ψj) = 0. By the formula (11) we

obtain〈
e(tu),

n∑
j=1

λje
A+(φ̃j)eΛ(iψj)eA(ϕ̃j)eγ̃je(sv)

〉
= 0 , ∀φ ∈ H, ψ ∈ K.
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This gives ∑
j

λje
γ̃jet〈u,φ̃j〉+s〈ϕ̃j ,v〉+st〈u,e

iψj v〉 = 0.

Denote µj = λje
γ̃j , aj = 〈u, φ̃j〉, bj = 〈ϕ̃j , v〉 and cj =

〈
u, eiψjv

〉
. By using the

property:

for all j, k = 1, · · · , n , (aj , bj , cj) = (ak, bk, ck) =⇒ (φj , ψj) = (φk, ψk),

and the independence of the set

B := {κ(a,b,c) : R2 3 (s, t) 7−→ eat+bs+cst ∈ C , (a, b, c) ∈ C3},

we can conclude the statement.

3.2 Lie algebra morphisms of the oscillator algebra
Definition 9 The infinite dimensional oscillator algebra is the complex ∗-Lie
algebra Losc with linearly independent generators a0(φ), a+

0 (φ), n0(φ), 10 (cen-
tral element) and relations:

[a0(φ), a+
0 (ψ)] = 〈φ, ψ〉10,

[n0(φ), a+
0 (ψ)] = a+

0 (φψ) , [n0(φ), a0(ψ)] = −a0(φψ),

[n0(φ), n0(ψ)] = [a0(φ), a0(ψ)] = [a+
0 (φ), a+

0 (ψ)] = 0,

a∗0(φ) = a+
0 (φ) , n∗0(φ) = n0(φ).

The test function algebra is chosen to be the space

KS = L∞(R) ∩ L2(R)

and the localization is defined by the bounded intervals in R.
The maps φ 7→ a+

0 (φ) , n0(φ) are linear in φ while φ 7→ a0(φ) is anti-linear.

We consider the boson Fock representation of the oscillator algebra. We will
study the class of Lie algebra shifts on the oscillator algebra whose action on
the generators has the following form:

ĵt(a+
0 (φ)) = a+

0 (φ) +X
(1)
t (T1φ) = a+

0 (φ)⊗ 1 + 10 ⊗X(1)
t (T1φ) (16)

ĵt(a0(φ)) = a0(φ) +X
(2)
t (T2φ) = a0(φ)⊗ 1 + 10 ⊗X(2)

t (T2φ) (17)

ĵt(n0(φ)) = n0(φ) +X
(3)
t (T3φ) = n0(φ)⊗ 1 + 10 ⊗X(3)

t (T3φ) (18)

ĵt(10) = 10 +Rt = 10 ⊗ 1 + 10 ⊗Rt (19)

where the X(i)
t , i = 1, 2, 3, are given by

X
(i)
t (φ) = αiA

+
t (φ) + βiAt(φ) + γiNt(φ) (20)

αi, βi, γi ∈ C, Rt is a process acting on Γ(L2(R),KS) and Ti, i = 1, 2, 3, are
real linear operators acting on KS . To exclude trivial cases we assume that
there exists i ∈ {1, 2, 3}, such that (αi, βi, γi) 6= (0, 0, 0) and Ti 6= 0.
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Theorem 2 Theorem A real linear map ĵt, of the form defined by (16)-(20),
defines a 1-parameter family of homomorphism of ∗-Lie algebras if and only if
it belongs to one of the following five classes:

Class I.
ĵ

(1)
t (a+

0 (φ)) = a+
0 (φ)

ĵ
(1)
t (a0(φ)) = a0(φ)

ĵ
(1)
t (n0(φ)) = n0(φ) +A+

t (Tφ) +At(Tφ)

ĵ
(1)
t (10) = 1 = 10 + 1

with relations

T φ̄ = Tφ , 〈Tφ, Tψ〉 = 〈Tψ, Tφ〉 , ∀ψ, φ ∈ KS .

Class II.
ĵ

(2)
t (a+

0 (φ)) = a+
0 (φ)

ĵ
(2)
t (a0(φ)) = a0(φ)

ĵ
(2)
t (n0(φ)) = n0(φ) +Nt(Tφ)

ĵ
(2)
t (10) = 1

with the following relation

Tφ = Tφ , ∀φ ∈ KS .

Class III.
ĵ

(3)
t (a+

0 (φ)) = a+
0 (φ)

ĵ
(3)
t (a0(φ)) = a0(φ)

ĵ
(3)
t (n0(φ)) = n0(φ) + δA+

t (Tφ) + δAt(Tφ) +Nt(Tφ)

ĵ
(3)
t (10) = 1

with the following relation

Tφ = Tφ = Tφ , ∀φ ∈ KS .

Class IV.
ĵ

(4)
t (a+

0 (φ)) = a+
0 (φ) + λA+

t (Tφ)

ĵ
(4)
t (a0(φ)) = a0(φ) + λAt(Tφ)

ĵ
(4)
t (n0(φ)) = n0(φ) + λ0Nt(Tφ)

ĵ
(4)
t (10) = 10 + c|λ|2t 1

with relations

Tφ =
λ0

λ0
Tφ , 〈Tφ, Tψ〉 = c〈φ, ψ〉 , T (φψ) = λ0TφTψ , ∀ψ, φ ∈ KS .

(21)
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Class V.
ĵ

(5)
t (a+

0 (φ)) = a+
0 (φ) + λAt(Tφ)

ĵ
(5)
t (a0(φ)) = a0(φ) + λA+

t (Tφ)

ĵ
(5)
t (n0(φ)) = n0(φ) + λ0Nt(Tφ)

ĵ
(5)
t (10) = 10 − c|λ|2t 1

with relations

Tφ =
λ0

λ0

Tφ , 〈Tφ, Tψ〉 = c〈ψ, φ〉 , T (φψ) = −λ0TφTψ , ∀ψ, φ ∈ KS .

(22)

Here λ, δ, λ0 ∈ C , δ 6= 0, λ0 6= 0, c > 0 and T is an R-linear operator on KS.

Example 2 Example The following examples show that none of the above five
classes is empty.

Class I. We have

T φ̄ = Tφ , 〈Tφ, Tϕ〉 = 〈Tϕ, Tφ〉 ∀φ, ϕ ∈ KS .

Then T (i=(φ)) = 0 for all φ ∈ KS. This gives Tφ = T (<(φ)) and we can
choose as example T (φ) = Mψ<(φ) = ψ<(φ), where ψ is a real valued
function in KS.

Class II. The condition Tφ = T φ̄, ∀φ ∈ K implies that Tφ is a real valued
function if φ is it and it’s purely complex valued function if φ is it. We
can choose T as a multiplication operator T = Mψ where ψ is a real valued
function in KS.

Class III. Here we can choose T as in the first example.

Class IV. Here T verify the conditions (21) and we can choose the operator
Tα defined by:

Tα(φ)(s) =
1
λ0
φ

(
s

c|λ0|2
+ α

)
, α ∈ R.

Class V. We can show that if an operator T verify the relations (21), then the
operator −T verify the relations (22). It follow that the operator Tα can
be replaced by −Tα.

Proof of theorem 2. Since we want the ĵt to be ∗-map, the process Rt must
be self-adjoint. Moreover, the relations

[ĵt(a+
0 (φ)]∗ = ĵt([a+

0 (φ)]∗) = ĵt(a0(φ))

[ĵt(a0(φ)]∗ = ĵt([a0(φ)]∗) = ĵt(a+
0 (φ))
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give
α1T1φ = β2T2φ , α2T2φ = β1T1φ , γ2T2φ = γ1T1φ. (23)

On the other hand, from the relation

[ĵt(n0(φ))]∗ = ĵt([n0(φ)]∗) = ĵt(n0(φ))

one has
α3T3φ = β3T3φ, (24)

γ3T3φ = γ3T3φ. (25)

For any φ, ψ ∈ KS , the commutation relations give

[ĵt(a0(ψ)), ĵt(a+
0 (φ))] = [a0(ψ)), a+

0 (φ)]

+[α2A
+
t (T2ψ) + β2At(T2ψ) + γ2Nt(T2ψ), α1A

+
t (T1φ) + β1At(T1φ) + γ1Nt(T1φ)]

= 〈ψ, φ〉 10 + [α2A
+
t (T2ψ), β1At(T1φ)] + [α2A

+
t (T2ψ), γ1Nt(T1φ)]

+[β2At(T2ψ), α1A
+
t (T1φ)] + [β2At(T2ψ), γ1Nt(T1φ)]

+[γ2Nt(T2ψ), β1At(T1φ)] + [γ2Nt(T2ψ), α1A
+
t (T1φ)]

= 〈ψ, φ〉 10 + (β2α1 〈T2ψ, T1φ〉 − α2β1 〈T1φ, T2ψ〉) t1

+A+
t ((γ2α1 − γ1α2)T1φT2ψ) +At(γ1β2T2ψT1φ− γ2β1T1φT2ψ).

On the other hand, we have

ĵt([a0(ψ), a+
0 (φ)]) = ĵt(〈ψ, φ〉 10) = 〈ψ, φ〉 (10 +Rt).

Therefore, the commutation relations are preserved if and only if for any φ, ψ ∈
KS ,

〈ψ, φ〉Rt = (β2α1 〈T2ψ, T1φ〉 − α2β1 〈T1φ, T2ψ〉)t1

+A+
t ((γ2α1 − γ1α2)T1φT2ψ) +At(γ1β2T2ψT1φ− γ2β1T1φT2ψ).

This gives

〈ψ, φ〉Rt = (β2α1 〈T2ψ, T1φ〉 − α2β1 〈T1φ, T2ψ〉) t1, (26)

γ2α1T1φT2ψ = γ1α2T1φT2ψ , γ1β2T2ψT1φ = γ2β1T1φT2ψ.

In a similar way, the identities

[ĵt(n0(φ)), ĵt(a+
0 (ψ))] = ĵt

(
[n0(φ), a+

0 (ψ)]
)

[ĵt(n0(φ)), ĵt(a0(ψ))] = ĵt ([n0(φ), a0(ψ)])

give, for any φ, ψ ∈ KS ,

β3α1 〈T3φ, T1ψ〉 = β1α3 〈T1ψ, T3φ〉 ,
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α1T1φψ = (γ3α1 − γ1α3)T1ψT3φ, (27)

β1T1φψ = γ1β3 T1ψT3φ− γ3β1 T3φT1ψ, (28)

γ1T1ψφ = 0, (29)

β3α2 〈T3φ, T2ψ〉 = β2α3 〈T2ψ, T3φ〉 = α2T2φψ = (γ2α3 − γ3α2)T2ψT3φ, (30)

β2T2φψ = γ3β2 T3φT2ψ − γ2β3 T2ψT3φ,

γ2T2ψφ = 0. (31)

From the commutation relation

[ĵt(n0(φ)), ĵt(n0(ψ))] = 0,

we deduce that

|α3|2 (〈T3φ, T3ψ〉 − 〈T3ψ, T3φ〉) = 0 , φ, ψ ∈ KS . (32)

Observe that the conditions (T1 = 0, T2 6= 0), (T1 6= 0, T2 = 0) and (T1 =
T2 = 0) lead to the same conclusion. In fact, in such case we have

X
(1)
t (T1φ) = X

(2)
t (T2φ) = 0 , ∀φ ∈ KS .

It follow that Rt = 0 and T3 verify only the conditions (24), (25) and (32). Then
we must discuss separately the case T1 = 0 = T2 and the case T1 6= 0 6= T2.
Step 1. T1 = 0 = T2.
From (26) we have Rt = 0. Since we want ĵt to be a non trivial map then we
must assume that (α3, β3, γ3) 6= (0, 0, 0) and T3 6= 0 .
We distinguish two cases:

Case 1. γ3 = 0 and T := α3T3 6= 0.
Taking φ real in (24), we obtain α3 = β3 and Tφ = Tφ for all φ ∈ KS .
Moreover the condition (32) implies that

〈Tφ, Tψ〉 = 〈Tψ, Tφ〉 , φ, ψ ∈ KS

i.e., the restriction of the scalar product of KS on the range of T is real
valued. In this case ĵt = ĵ

(1)
t belongs to the Class I.

Case 2. γ3 6= 0 and T := γ3T3 6= 0.
In this case, the equation (25) implies that

Tφ = Tφ , ∀φ ∈ KS .

Taking φ real valued function in the equation (25), we deduce that β3 = ᾱ3.
Denoting δ = α3/γ3, the equation (24) implies that

δT φ̄ = δTφ , ∀φ ∈ KS .

This gives two cases :
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Case 2.1 α3 = 0.
In this case δ = 0 and then ĵt = ĵ

(2)
t belongs to the Class II.

Case 2.2 α3 6= 0.
In this case δ 6= 0 and then T φ̄ = Tφ, for all φ ∈ KS . In this case
ĵt = ĵ

(3)
t belongs to the Class III.

Step 2. T1 6= 0 6= T2.
Eqs. (29) and (31) imply that γ1 = 0 and γ2 = 0, from which (26) becomes

〈ψ, φ〉Rt = (β2α1 〈T2ψ, T1φ〉 − α2β1 〈T1φ, T2ψ〉) t1

=
(
|α1|2 〈T1ψ, T1φ〉 − |β1|2 〈T1ψ, T1φ〉

)
t1. (33)

where, in the last equalities, (23) has been taken into account.

Fact: α2 6= 0 is equivalent to α1 = 0.
Indeed, if α2 6= 0 then second Eq. (23) implies that β1 6= 0 and T2 =
(β1/α2)T1 = c2T with c2 := β1/α2 6= 0 and T := T1 6= 0. Moreover (30)
becomes

T2φψ = −γ3T2ψT3φ or equivalently Tφψ = −γ3TψT3φ (34)

and this implies γ3 6= 0 and T3 6= 0.
If α1 6= 0 (or equivalently, because of (23), β2 6= 0), then (34) becomes

Tφψ = −γ3TψT3φ , ∀φ, ψ ∈ KS , (35)

and (27) implies
Tφψ = γ3TψT3φ (36)

Then, from (36) we have
T3φ

Tφ
=
T3ψ

Tψ

which gives
T3φ = aTφ , ∀φ ∈ KS (37)

for some a ∈ C\{0}. Combining Eqs. (35), (36) and (37), we deduce that Tφ = 0
for each real valued φ. Thus T can be non zero only on purely imaginary valued
functions. Since the product of two such functions is real valued and since
γ3 6= 0, (36) implies that, for all real valued function φ ∈ K,

γ3(Tiφ)2 = −Tφ2 = 0.

Hence Tφ is also null for all purely complex valued function φ ∈ K. This leads
to T = 0 which is in contradiction with our assumption. We conclude that the
condition α2 6= 0 implies the condition α1 = 0. The converse statement can be
obtained by slight modification.
In view of the above fact, we distinguish two cases:
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Case 3. α2 6= 0 and α1 = 0, so that β1 6= 0 and β2 = 0.
Eqs. (28) and (25) give, respectively,

Tφψ = −γ3T3φTψ and T3φ =
γ3

γ3
T3φ.

It follows that T3φ = c3Tφ and therefore Tφψ = −λ0TφTψ, λ0Tφ = λ0Tφ
with λ0 = c3γ3, or equivalently

Tφψ = −λ0TφTψ , Tφ =
λ0

λ0

Tφ. (38)

Hence, (33) becomes Rt = −ct|β1|2 with c := 〈Tφ0,Tψ0〉
〈ψ0,φ0〉 being a positif

real number independent of φ0, ψ0 ∈ KS . On the other hand, combining
Eqs. (24) and (38), we deduce

α3c3
〈
Tψ, Tφ

〉
= 0

and then

α3c3
λ0

λ0

〈
Tψ, Tφ

〉
= 0.

Taking φ instead of φ in the above equation, we conclude that α3 = 0,
and therefore from (24) we have β3 = 0.
In conclusion, setting λ := β̄1, the map ĵt takes the form:

ĵ
(4)
t (a+

0 (φ)) = a+
0 (φ) + λAt(Tφ),

ĵ
(4)
t (a0(φ)) = a0(φ) + λA+

t (Tφ),

ĵ
(4)
t (n0(φ)) = n0(φ) + λ0Nt(Tφ),

ĵ
(4)
t (10) = 10 − c|λ|2t 1,

with relations

Tφ =
λ0

λ0

Tφ , 〈Tφ, Tψ〉 = c〈ψ, φ〉 , Tφψ = −λ0TφTψ.

Case 4. α2 = 0 and α1 6= 0, so that β1 = 0 and β2 6= 0.
A similar calculus as in the Case 3., we obtain

ĵ
(3)
t (a+

0 (φ)) = a+
0 (φ) + λA+

t (Tφ),

ĵ
(3)
t (a0(φ)) = a0(φ) + λAt(Tφ),

ĵ
(3)
t (n0(φ)) = n0(φ) + λ0Nt(Tφ)

ĵ
(3)
t (10) = 10 + c|λ|2t 1,

with relations

Tφ =
λ0

λ0
Tφ , 〈Tφ, Tψ〉 = c〈φ, ψ〉 , Tφψ = λ0TφTψ.
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Theorem 3 Theorem Let ĵt be a one of the classes defined in Theorem 2. De-
fine the map j◦t on the group operators by

j◦t (W (ψ,ϕ) = j◦t (ei(a
+
0 (ϕ)+a0(ϕ)+n0(ψ))) := eiĵt(a

+
0 (ϕ)+a0(ϕ)+n0(ψ)).

Then j◦t can be extended to a ∗-homomorphism still denoted j◦t of theW ∗-algebra
generated by the group operators of the oscillator algebra if and only if ĵt is one
of the first three classes in Theorem 2; i.e., only the maps ĵ(1)

t , ĵ(2)
t and ĵ(3)

t are
effectively a Lie algebra time shifts.

Proof: The ∗-map property is clear. For simplicity, we denote

Wj = W0(φj , ψj) , j = 1, 2

Because of Proposition 3, it is sufficient to verify the identity :

j◦t (W1W2) = j◦t (W1)j◦t (W2) (39)

for the five classes in the Theorem 2. By Theorem 1 we have

W1W2 = eiγW0(φ, ψ) = eiγei(a
+
0 (φ)+a0(φ)+n0(ψ)).

Class I. By direct computation we have

j◦t (W1W2) = j◦t (eiγW0(φ, ψ)) = eiγW0(φ, ψ)⊗ ei(A
+
t (Tψ)+At(Tψ))

= W1W2 ⊗ ei(A
+
t (Tψ)+At(Tψ))

On the other hand, we have

j◦t (W1)j◦t (W2) = W1W2 ⊗ ei(A
+
t (Tψ1)+At(Tψ1))ei(A

+
t (Tψ2)+At(Tψ2))

But the processes A+
t (Tψ1)+At(Tψ1) and A+

t (Tψ2)+At(Tψ2) commute. Then
we obtain

j◦t (W1)jt(W2) = W1W2 ⊗ ei(A
+
t (Tψ1)+At(Tψ1)+A+

t (Tψ2)+At(Tψ2))

= W1W2 ⊗ ei(A
+
t (Tψ)+At(Tψ)) = j◦t (W1W2)

In conclusion, equality (39) is verified by Class I.
Class II. and Class III. In this cases we have

j◦t (W1W2) = eiγj◦t (W (φ, ψ)) = eiγW (φ, ψ)⊗ ei(A
+
t (δTψ)+At(δTψ)+Nt(Tψ))

Where Class II. corresponds to δ = 0. On the other hand we have

j◦t (W1)j◦t (W2) = (W1 ⊗ ei(A
+
t (δTψ1)+At(δTψ1)+Nt(Tψ1)))

× (W1 ⊗ ei(A
+
t (δTψ2)+At(δTψ2)+Nt(Tψ2)))

= W1W2 ⊗ ei(A
+
t (δTψ1)+At(δTψ1)+Nt(Tψ1))

× ei(A
+
t (δTψ2)+At(δTψ2)+Nt(Tψ2)).
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But it is not difficult to verify that the processes A+
t (δTψ1) + At(δTψ1) +

Nt(Tψ1) and A+
t (δTψ2)+At(δTψ2)+Nt(Tψ2) commute in the two cases. Thus

we obtain

j◦t (W1)j◦t (W2) = W1W2 ⊗ ei(A
+
t (δT (ψ1+ψ2))+At(δT (ψ1+ψ2))+Nt(T (ψ1+ψ2)))

= W1W2 ⊗ ei(A
+
t (δTψ)+At(δTψ)+Nt(Tψ))

= j◦t (W1W2).

In conclusion, both Class II. and Class III. verify the equality (39).
Class IV. For this class, we begin by proving that the map T of Theorem 2 is
a linear bounded operator of KS . In fact the condition T (φψ) = λ0TφTψ for
all ψ, φ ∈ KS , gives T (iφ)Tψ = T (iψ)Tφ for all ψ, φ ∈ KS . Then there is a
complex number α such that T (iφ) = αTφ for all φ ∈ KS . But we have

〈Tφ, Tψ〉 = c 〈φ, ψ〉 , ∀ψ, φ ∈ KS

which implies
〈Tφ, T (iψ)〉 = ci 〈φ, ψ〉 , ∀ψ, φ ∈ KS

On the other hand, we have

〈Tφ, T (iψ)〉 = c 〈Tφ, αTψ〉 = α 〈φ, ψ〉 , ∀ψ, φ ∈ KS

this gives α = i, and then

T ((a+ib)φ) = T (aφ)+T (ibφ) = aTφ+ibTφ = (a+ib)Tφ , ∀φ ∈ KS , a, b ∈ R

This proves the linearity of T . The equation

〈Tφ, Tψ〉 = c 〈φ, ψ〉 , ∀ψ, φ ∈ KS

proves that T is bounded.
In the next step we calculate j◦t (W1W2). In the present class we have

j◦t (W1W2) = eiγj◦t (W0(φ, ψ)) = eiγW0(φ, ψ)⊗ ei(A
+
t (λTφ)+At(λTφ)+Nt(λ0Tψ))

= W1W2 ⊗W0(φt, ψt) (40)

with
φt = χ[0,t]⊗λTφ and ψt = χ[0,t]⊗λ0Tψ. (41)

On the other hand we have

j◦t (Wj) = Wj ⊗W0(φ(j)
t , ψ

(j)
t ) , j = 1, 2

where φ(j)
t and ψ(j)

t are given as in (41). This gives

j◦t (W1)j◦t (W2) = W1W2 ⊗W0(φ(1)
t , ψ

(1)
t )W0(φ(2)

t , ψ
(2)
t ).
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Using Lemma 1, we obtain

j◦t (W1)j◦t (W2) = W1W2 ⊗ eiγtW0(φ′t, ψ
′
t) (42)

with φ′t and ψ′t given respectively as in Eqs.(15) and (14). Note that

ψ′t = ψ
(1)
t + ψ

(2)
t = χ[0,t] ⊗ λ0Tψ1 + χ[0,t] ⊗ λ0Tψ2 = χ[0,t] ⊗ λ0Tψ = ψt

and φ′t is given by

e1(iψ′t)iφ
′
t = e1(iψt)iφ′t = e1(iψ(1)

t )iφ(1)
t + eiψ

(1)
t e1(iψ(2)

t )iφ(2)
t . (43)

Taking the properties of the operator T into account, one can deduce the fol-
lowing:

e1(iψ(1)
t )iφ(1)

t + eiψ
(1)
t e1(iψ(2)

t )iφ(2)
t

= χ[0,t] ⊗
[
e1(iλ0Tψ1)iλTφ1 + eλ0Tiψ1e1(λ0Tiψ2)λTiφ2

]
= χ[0,t] ⊗ λ

[∑
n≥1

1
n!

(λ0Tiψ1)n−1Tiφ1 + eλ0Tiψ1
∑
n≥1

1
n!

(λ0Tiψ2)n−1Tiφ2

]
= χ[0,t] ⊗ λ

[∑
n≥1

1
n!
T ((iψ1)n−1iφ1) + eλ0Tiψ1

∑
n≥1

1
n!
T (iψ2)n−1iφ2)

]
= χ[0,t] ⊗ λ

[
T (e1(iψ1)iφ1) + eλ0Tiψ1T (e1(iψ2)iφ2)

]
= χ[0,t] ⊗ λ

[
T (e1(iψ1)iφ1) +

∑
n≥0

1
n!

(λ0Tiψ1)nT (e1(iψ2)iφ2)
]

= χ[0,t] ⊗ λ
[
T (e1(iψ1)iφ1) + T (eiψ1e1(iψ2)iφ2)

]
= χ[0,t] ⊗ λT (e1(iψ)iφ)

= χ[0,t] ⊗ λ
1
n!
T ((iψ)n−1iφ) = χ[0,t] ⊗

1
n!

(iλ0Tψ)n−1iλTφ

= χ[0,t] ⊗
1
n!

(iψt)n−1iφt = e1(iψt)iφt.

Combining the last result and (43), one can deduce φ′t = φt and from (42), we
deduce

j◦t (W1)j◦t (W2) = eiγtW0(φt, ψt). (44)

Comparing (44) and (40) we deduce that condition (39) is satisfied if and only
if the real γt = 0 for all t ≥ 0. Notice that γt can be rewritten as

〈φt, e2(iψt)φt〉 − iγt =
〈
φ

(1)
t , e2(iψ(1)

t )φ(1)
t

〉
+
〈
φ

(2)
t , e2(iψ(2)

t )φ(2)
t

〉
+

+
〈
e1(−iψ(1)

t )φ(1)
t , e1(iψ(2)

t )φ(2)
t

〉
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Similarly we obtain
iγt − ct|λ|2 〈φ, e2(iψ)φ〉

= ct|λ|2 [γ − 〈φ1, e2(iψ1)φ1〉 − 〈φ2, e2(iψ2)φ2〉 − 〈e1(−iψ1)φ1, e1(iψ2)φ2〉]

or equivalently

iγt − ct|λ|2 〈φ, e2(iψ)φ〉 = ct|λ|2 (γ − 〈φ, e2(iψ)φ〉) .

This implies γt = ct|λ|2γ which is null if and only if c|λ|2 = 0. This corresponds
to the trivial case. In conclusion, the Class IV. does’nt verify the identity (39).

Class V. The statement can be verified in a similar way as for Class IV.

Remark 2 In all cases the Lie algebra time shift on the oscillator algebra is of
the form

ĵt(x) = x⊗ 1 + 10 ⊗X[0,t](x) = x+X[0,t](x)

where X[0,t](x) is an independent increment process. The above Theorem shows
that the Lie algebra ∗-homomorphism is a Lie algebra time shift if and only if
the constant c|λ|2 = 0, in which case X[0,t](x) is a classical process. Therefore
the Lie algebra time shifts are in fact shifts along classical processes.

3.3 The associated semigroup
In this subsection ĵt is the stochastic process described in Theorem 3, Classes
I., II. and III. Define

jt : AS ⊗ 1[0,t] ⊗ B[t → A , t ≥ 0

as the unique ∗−homomorphism characterized by

jt(x⊗ 1) = j◦t (x) , jt(1⊗ a[t) = j◦t (1)⊗ a[t , x ∈ AS , a[t ∈ B[t. (45)

Each jt can be extended in an obvious way to the algebraic linear span of
elements x ⊗ Z[t where x ∈ AS , and Z[t is an operator on H[s, by the same
action described as in (45).

Lemma 4 Lemma j◦t is a Markovian cocycle.

Proof: We will check the property:

j◦t+s(e
x) = jt(u◦t (j

◦
s (ex)))
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We have

jt(u◦t (j
◦
s (ex))) = jt(u◦t (e

x ⊗ eX[0,s]))

= jt(ex ⊗ Γ(θ∗t )eX[0,s]Γ(θt)) = jt(ex ⊗ eX[t,t+s])

= jt((ex ⊗ 1) (1⊗ eX[t,t+s])) = jt(ex ⊗ 1) jt(1⊗ eX[t,t+s])

= j◦t (ex) (1⊗ eX[t,t+s]) = (ex ⊗ eX[0,t]) (1⊗ eX[t,t+s])

= ex ⊗ eX[0,t] ⊗ eX[t,t+s]) = ex ⊗ eX[0,t]+X[t,t+s]

= ex ⊗ eX[0,t+s] = j◦t+s(e
x).

By the quantum Feynman-Kac formula [1], the Markovian cocycle (j◦t ) defines
a Markovian semigroup on B(HS) given by P t = E0] ◦ j◦t .

Theorem 4 Theorem Let P t = etL be the Markovian semigroup, with genera-
tor L, defined via Feynman-Kac formula as above. Then the generalized Weyl
operators are eigenvectors of L. More precisely, denote L(I), L(II) and L(III),
the generator of P t associated to the classes I., II. and III., respectively. For
any test functions φ ∈ L2(R) , ψ ∈ KS, one has

L(I)(W (φ, ψ)) =
1
2
|Tψ|2W (φ, ψ)

L(II)(W (φ, ψ)) = 0

L(III)(W (φ, ψ)) = |δ|2ε(eTψ − Tψ − 1)W (φ, ψ)

Proof: For x = x(φ, ψ) = a+
0 (φ) + a0(φ) + n0(ψ) ∈ Losc, we have

P t(ex) = E0](ex ⊗ eX[0,t]) =
〈
Φ, eX[0,t]Φ

〉
ex

Then if we write ex = W (φ, ψ), we obtain

P t(W (φ, ψ)) =
〈
Φ, eX[0,t]Φ

〉
W (φ, ψ)

Classe I. In this class we have X[0,t] = A+
t (Tψ) +At(Tψ). Therefore, we get〈

Φ, eX[0,t]Φ
〉

= e
1
2 t|Tψ|

2

Classe II. Here we have X[0,t] = Nt(Tψ). Then〈
Φ, eX[0,t]Φ

〉
= 1

from which the desired statement follows.
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Classe III. In this class we read

X[0,t] = δA+
t (Tψ) +Nt(Tψ) + δAt(Tψ)

Then 〈
Φ, eX[0,t]Φ

〉
= et|δ|

2〈Tψ,e2(Tψ)Tψ〉 =

= t|δ|2
∫

(Tψ)2(x)e2(Tψ)(x)dx = t|δ|2
∫

(eTψ(x) − Tψ(x)− 1)dx =

= t|δ|2ε(eTψ − Tψ − 1)

This completes the proof of the theorem.

Remark 3 In view of the above Theorem, in the first class the generator L(I)

is nothing but the quantum Laplacian, denoted ∆Q, obtained in Ref. [9], while
the third class corresponds to Poisson processes.

4 Lie algebra time shift and IIP
In this section we identify the classical stochastic processes corresponding to the
Lie algebra time shifts studied in the previous sections.
One of the basic tenets of quantum probability is the fact that, if (At)t∈I is a self-
adjoint family of commuting operators acting on a some Fock space Γ(H) with
Vacuum Φ, then, under additional analytical conditions which are automatically
satisfied in the cases we are considering, there exists a classical stochastic process
(Ỹt)t∈I on some probability space (Ω,F ,P) such that, for all bounded complex
valued Borel functions ϕ1, ϕ2, · · · , ϕn , n ∈ N, one has

E
(
ϕ1(Ỹt1)ϕ2(Ỹt2) · · · ϕn(Ỹtn)

)
= 〈Φ, ϕ1(At1)ϕ2(At2) · · ·ϕn(Atn)Φ〉

In particular, the characteristic function of (Ỹt)t∈I is given by

E(eizỸt) =
〈
Φ, eizAtΦ

〉
We will apply the above general statement to the case in which

At = ĵt(x) = x⊗ 1 + 10 ⊗Xt(x) ; t ≥ 0

where x belongs to a self-adjoint commutative sub-algebra Lsaa of the oscillator
algebra L0 acting on the Fock space Γ(KS) and the process (Xt(x))t≥0 acts
on the noise space Γ(L2(R+,H)). Then ĵt(Lsaa ) is a commutative self-adjoint
family of operators acting on the Fock space

Γ(KS)⊗ Γ(L2(R+,H)) = Γ(KS ⊕ L2(R+,H))

Then the process (ĵt(x) = x+Xt(x))t≥0, with respect to the vacuum vector, can
be identified to an independent increment operator process with initial operator
x = x⊗ 1 and its characteristic function is given by

E(eizĵt(x)) = E(eizx+izXt(x)) = E(eizx)E(eizXt(x)) =: eizΨt(x)
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where, in obvious notations, the cumulant function Ψt(z) is given by

Ψt(z) = ψ0(z) + ψt(z)

We begin by finding the self-adjoint commutative sub-algebras Lsaa of the oscil-
lator algebra. To this goal it is convenient to introduce the notion of complex
Hilbert space with real structure.
Let H be a complex Hilbert space. A real structure of H is determined by a
real Hilbert subspace Hr of H, with real valued scalar product, characterized
by the condition

〈f, ig〉H = i 〈f, g〉Hr , f, g ∈ Hr
and an identification

H = Hr ⊕ iHr
where the sum is direct, but not orthogonal.
In the following lemma, we take H = L2(R).

Lemma 5 Let Losc be the oscillator algebra as in definition 9.
Then the self-adjoint commutative sub-algebras of Losc have the form:

Lβ := {a+
0 (φ) + a0(φ) + n0(βφ) + α10 , φ ∈ H , =(φ) = 0 , α ∈ R}

for some non zero real valued function β.

Proof: Let be given

x(φ, ϕ, ψ, α) = a+
0 (φ) + a0(ϕ) + n0(ψ) + α10 ∈ Losc.

Then x(φ, ϕ, ψ, α) is self-adjoint if and only if

a+
0 (φ) + a0(ϕ) + n0(ψ) + α10 = a0(φ) + a+

0 (ϕ) + n0(ψ) + α10.

This gives ϕ = φ, =(ψ) = 0 and α ∈ R. Denote

x(φ, ψ, α) = a+
0 (φ) + a0(φ) + n0(ψ) + α10.

We want to find the spaces Hφ and Hψ of test functions φ and ψ, respectively,
such that

[x(φ, ψ, α), x(φ′, ψ′, α′)] = 0 , ∀φ, φ′ ∈ Hφ , ∀ψ, ψ′ ∈ Hψ.

This last identity is equivalent to

2i=(〈φ, φ′〉)10 + a+
0 (ψφ′ − φ′ψ) + a0(φψ′ − ψ′φ) = 0,

or equivalently

=(〈φ, φ′〉) = 0 and
ψ

φ
=
ψ′

φ′
, ∀φ, φ′ ∈ Hφ , ∀ψ, ψ′ ∈ Hψ.
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HenceHφ = Hr and ψ = βφ for some β ∈ H with ψ being a real valued function.
But the function β is the same for all functions φ, so β must be a real valued
function, and then Hψ = βHφ.
Remark. We distinguish two cases:
(I) β 6= 0. In this case the functions φ must be real valued and

x(φ, ψ, α) = a+
0 (φ) + a0(φ) + n0(βφ) + α10 , φ ∈ Hr , =(φ) = 0 , α ∈ R

(II) β = 0. In this case

x(φ, ψ, α) = a+
0 (φ) + a0(φ) + α10 , φ ∈ Hr , α ∈ R

Proposition 1 Let ĵt be the stochastic process as class I. Then, for all

x = xβ(φ, α) := a+
0 (φ) + a0(φ) + n0(βφ) + α10,

the stochastic process ĵt(x) is gaussian with mean zero and variance |T (βφ)|2t
(i.e. a classical BM).

Proof: Let ĵt(x) = x+Xt(x) , x ∈ Lβ . Taking x = xβ(φ, α) = a+
0 (φ) + a0(φ) +

n0(βφ) + α10, we have

izXt(x) = A+
t (izTβφ) +At(−izTβφ) , ∀ z ∈ R

This gives

eizXt(x) = eA
+
t (izT (βφ))eAt(−izT (βφ))e−

1
2 [A+

t (izT (βφ)),At(−izT (βφ))]

= eA
+
t (izT (βφ))eAt(−izT (βφ))e−

1
2 z

2t|T (βφ)|2 .

Therefore
E(eizXt) =

〈
Φ, eizXt(x)Φ

〉
= e−

1
2 z

2t|T (βφ)|2 .

Hence the characteristic exponent is given by ψ(z) = − 1
2z

2|T (βφ)|2.

Proposition 2 Proposition Let ĵt(xβ(φ)) be the stochastic process as in The-
orem 3, classes II. and III. Then the characteristic exponent of ĵt is given
by

ψ(z) = |δ|2
∫

R
(eizϕ(x) − izϕ(x)− 1)dx

with
ϕ := T (βφ)

Proof: In the conditions and notations of Theorem 2 we have

izXt(x) = A+
t (izδT (βφ)) +At(−izδT (βφ)) +Nt(izT (βφ))

Therefore
eizXt(x) = eA

+
t (φ1)eNt(ψ)eAt(φ2)eαt
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with

αt = 〈−izδT (βφ), e2(izT (βφ))izδT (βφ)〉 t = |δ|2tε
(
eizTβφ − izTβφ− 1

)
where, for any integrable function f , we denote

ε(f) =
∫

R
f(x)dx

Then we get

E(eizXt) =
〈

Φ, eizXt(x)Φ
〉

= e|δ|
2tε(eizT (βφ)−izT (βφ)−1)

Hence the characteristic exponent is given by

ψ(z) = |δ|2ε(eizT (βφ) − izT (βφ)− 1)

Remark 4 We define the measure ν by

ε(eizϕ − izϕ− 1) =
∫

R
(eizϕ(x) − izϕ(x)− 1)dx =

=
∫

R
(eizu − izu− 1)dϕ−1(u) =

∫
R

(eizu − izu− 1)ν(du)

i.e. ν is the ϕ–image of the Lebesgue measure λ given by

ν(A) := λ(ϕ−1(A))

Replacing the measure ν by ν/|δ|2 we can assume that

ψ(z) =
∫

R
(eizϕ(x) − izϕ(x)− 1)dx =

∫
R

(eizu − izu− 1)ν(du) (46)

We want to choose the function ϕ ∈ L2(R) ∩ L∞(R) so that the measure ν is a
Lévy measure of some classical Lévy process.
Then (see [21]) the function ϕ must be chosen so that the measure ν satisfies
the three following conditions:

(C1) ν({0}) = 0

(C2)
∫

R
(|x|2 ∧ 1)ν(dx) <∞

(C3)
∫
|x|>1

|x|ν(dx) <∞
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In the following to illustrate our development we shall discuss the class of
Meixner processes, where their associated Lévy measure verify the conditions
(C1), (C2) and (C3). In particular, according to the above discussion, we shall
explicit the function ϕ ∈ K = L2(R)∩L∞(R) giving the characteristic exponents
of their associated processes ĵ(3)

t .

Example 3 Example(The Gamma process)
It is well Known [21] that the Lévy measure of the Gamma Process of order α
Γ(c, α) is

ν(dx) = c
e−αx

x
1(0,∞)(x)dx

Then, according to (46), the function ϕ should satisfy the equation

dϕ−1(x) = c
e−αx

x
1(0,∞)(x)dx (47)

If ϕ is a diffeomorphism from Supp(ϕ) onto the image ϕ(Supp(ϕ)), then (47)
becomes

1
ϕ′(x)

= c
e−αϕ(x)

ϕ(x)
1(0,∞)(ϕ(x))

Thus ϕ should be positive on its support and verify the differential equation

y′ =
1
c
yeαy

The solutions of this equation are given by the relation

%(−αy) =
x

c
+ k , k ∈ R, (48)

where % is the function defined on R∗ by %(x) =
∫ x

−∞

et

t
dt.

Notice that the restriction of % on the interval (−∞, 0) is strictly decreasing
C1-diffeomorphism from (−∞, 0) to (−∞, 0).
Combining (48) with the condition

y(x) = ϕ(x) > 0 ; ∀x ∈ Supp(ϕ)

we get x
c + k < 0 for all x ∈ Supp(ϕ). Hence Supp(ϕ) ⊂ (∞,−ck) and we have

ϕ(x) =
−1
α
%−1(

x

c
+ k) , x ∈ Supp(ϕ).

But we want the function ϕ to be in L∞(R), then |ϕ(x)| ≤M for some positive
real number M ; or equivalently

x ≤ c0 = c(Ei(−αM)− k) < −ck

Therefore, a possible solution is

ϕ(x) =
−1
α
%−1(

x

c
+ k)1(∞,c0)(x)
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Next we will show that ϕ ∈ L2(R).
We have ∫

ϕ(x)2dx =
1
α2

∫ c0

−∞
(%−1(

x

c
+ k))2dx

=
c

α2

∫ c0
c +k

−∞
(%−1(u))2du

=
c

α2

∫ %−1(
c0
c +k)

0

z2%′(z)dz

=
c

α2

∫ −αϕ(c0)

0

zezdz <∞.

From (48) and the positivity of ϕ, we should have ϕ(c0) = +∞ and then c0 =
−ck. Consequently, ϕ can not be a solution in L2(R) ∩ L∞(R). To avoid this
constraint, we consider an approximating sequence (cn) of c0 and then a sequence
of solutions ϕn ∈ L2(R) ∩ L∞(R) defined by

ϕn(x) =
−1
α
%−1

(x
c

+ k
)

1(∞,cn)(x).

It is easy to verify that the sequence ϕn converge in L2(R) to the function

ϕ0 : x 7−→ −1
α
%−1

(x
c

+ k
)

1(∞,c0)(x)

for which the corresponding measure ν is the Gamma Lévy measure.

Example 4 Example(The Meixner process)
The Lévy measure of the Meixner process M(α, β, δ) is given by

ν(dx) =
δe

βx
α

xsh(πxα )
dx , α, δ > 0 , −π < β < π.

Then with the same assumptions as in the Gamma case, we easily verify that
the corresponding function φ satisfies the differential equation

y′ =
1
2δ
y(e

π−β
α x − e−

π+β
α x).

This equation has not a solution in the space L2(R) ∩ L∞(R). However, it is
possible to verify that the sequence ϕn ∈ L2(R) ∩ L∞(R) defined by

ϕn(x) =
α

π − β
%−1

( x
2δ

+ k
)

1(∞,−2δk− 1
n )(x)+

α

π + β
%−1

(
−x
2δ
− k
)

1(−2δk+ 1
n ,∞)(x),

converges in L2(R) to ϕ0 ∈ L∞(R), and the corresponding measure ν is the
Meixner Lévy measure.
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Example 5 Example(The Negative binomial process)
The Lévy measure of the negative binomial process, with parameters c > 0 and
0 < p < 1, is the measure defined on N by

ν({k}) =
c(1− p)k

k
, k ∈ N.

The corresponding function ϕ must verify the equation

ν({k}) = λ(ϕ−1({k})) (49)

where λ is the Lebesgue measure on R. Then if we denote

Ak = ϕ−1({k}) ∈ B(R),

the function ϕ is expressed by

ϕ(x) =
∞∑
k=1

k1Ak

Observe that the condition (49) implies λ(Ak) = c(1−p)k
k , from which it’s clear

that the function ϕ is in L2(R), but does not lies in L∞(R). Then, as in the
previous examples, we consider an approximating sequence of functions ϕn ∈
L2(R) ∩ L∞(R) converging in L2(R) to ϕ. Such sequence can be defined by

ϕn(x) =
n∑
k=1

k1Ak

The above discussion suggests that it is possible to obtain a larger class of clas-
sical Lévy processes as limits of sequences associated to the class ĵ(3)

t . The
following theorem shows that this conjecture is true and gives an explicit de-
scription of this class.

Theorem 5 Theorem Let ν be a non singular Lévy measure satisfying the four
conditions (C1), (C2), (C3) and∫

R
x2ν(dx) <∞ (50)

Then there exist a sequence ϕn ∈ L2(R) ∩ L∞(R) converging in L2(R) to a
function ϕ such that ν is the ϕ-image of the Lebesgue measure λ.

Proof:
Step I. Suppose in this step that the measure ν has a positive continuous
density f . We will choose the function ϕ to be a C1-diffeomorphism on it’s
support Iϕ. The condition ν(A) = λ(ϕ−1(A)) gives 1

ϕ′(x) = f(ϕ(x)) and then ϕ
is a solution of the differential equation

y′ =
1

f(y)
, x ∈ Iϕ. (51)
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This implies that the ϕ-image of the support of ϕ is in the support If of f .
Denoting (a, b) = Iϕ and (α, β) = If , we obtain

ϕ((a, b)) ⊂ (α, β) , a, b, α, β ∈ R.

The solution of (51) is expressed by

ϕ(x) = F−1(x+ k) , x ∈ (a, b)

where F is a primitive of f and k is a real number. Since F is strictly increasing
continuous function, F−1 is well defined on (α, β).
We have ∫ +∞

−∞
ϕ(x)2dx =

∫ b

a

(F−1(x+ k))2dx

=
∫ b+k

a+k

(F−1(t))2dt

=
∫ ϕ(b)

ϕ(a)

u2f(u)du <∞,

which proves that ϕ is in L2(R) but it is not in L∞(R).
We have ϕ((a, b)) ⊂ (α, β). So, if the function f has a finite support, then we
can choose ϕ as a solution of our problem, and if not, we can choose a sequence
of intervals (an, bn) converging to (a, b) so that ϕn(·) = F−1(· + k)1(an, bn)
provides a solution of oue problem.
Step II. If the Lévy measure ν has a negative density f we can replace ν by
−ν and the result is still true.
Step III. If ν is a non singular and non discrete measure then it’s a finite sum
of a disjoint supports measures of the type as in the steps I. and II., the result
is still true.
Step IV. Suppose that ν is a discrete measure. Then we can assume that it has
a support in Z. Denoting Ak = ϕ−1({k}) ∈ B(R), the function ϕ is expressed
by

ϕ(x) =
+∞∑

k=−∞

k1Ak .

It’s clear that ϕ is in L2(R). In fact we have∫ +∞

−∞
(ϕ(x))2λ(dx) =

+∞∑
k=−∞

k2λ(ϕ−1({k})) =
+∞∑

k=−∞

k2ν(Ak) <∞,

where the condition (50) is taken inti account. On the other hand,since ϕ
is not necessarily in L∞(R), we can consider a sequence of functions ϕn ∈
L2(R) ∩ L∞(R) converging in L2(R) to ϕ. Such sequence can be defined by

ϕn(x) =
k=n∑
−n

k1Ak .
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Step V. Every non singular measure is a finite sum of measures as in steps III.
and IV. Hence the result can be obtained by simple embedding arguments.
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