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Abstract

In this paper we characterize the probability measures, on Rd, with
square summable support, in terms of their associated preservation op-
erators and the commutators of the annihilation and creation operators.

1 Introduction

A program of expressing properties of a probability measure on Rd, having fi-
nite moments of any order, in terms of their annihilation, creation, and preser-
vation operators, was initiated in [1]. There, it was proved that a probability
measure is polynomially symmetric if and only if all of its preservation oper-
ators vanish. The notion of “polynomially symmetry” is a weak form of the
notion of “symmetry” from the classic Measure Theory, in the sense that a
probability measure µ, on Rd, is called symmetric if, for any Borel subset B of
Rd, µ(B) = µ(−B), where −B := {−x | x ∈ B}, while µ is called polynomially
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symmetric if for any monomial xi1
1 xi2

2 · · ·xid
d , such that i1 + i2 + · · ·+ id is odd,

we have
∫
Rd xi1

1 xi2
2 · · ·xid

d µ(dx) = 0, where x = (x1, x2, . . ., xd) ∈ Rd.
It was also proved in [1], that a probability measure µ on Rd, having finite

moments of any order, is polynomially factorisable, if and only if, for all 1 ≤
i < j ≤ d, any operator from the set {a−(i), a0(i), a+(i)} commutes with any
operator from the set {a−(j), a0(j), a+(j)}, where, for any k ∈ {1, 2, . . ., d},
a−(k), a0(k), and a+(k), denote the annihilation, preservation, and creation
operators of index k, respectively. Again the notion of “polynomial factoris-
ability” is a weak form of the notion of “product measure” from Measure The-
ory, since it does not necessarily mean that µ is a product measure of d prob-
ability measures µ1, µ2, . . ., µd on R, but only the fact that, for any monomial
xi1

1 xi2
2 · · ·xid

d ,
∫
Rd xi1

1 xi2
2 · · ·xid

d µ(dx) =
∫
Rd xi1

1 µ(dx)
∫
Rd xi2

2 µ(dx) · · · ∫Rd xid
d µ(dx).

In [2], it was proved that two probability measures µ and ν, on Rd, having
finite moments of any order, have the same moments, if and only if they have
the same preservation operators and the same commutators between the anni-
hilation and creation operators. The domain of these operators is understood
to be the space of all polynomial functions of d real variables x1, x2, . . ., xd,
with complex coefficients. Thus the whole information about the moments
of a probability measure is contained in two families of operators, namely the
preservation operators and the commutators between the annihilation and cre-
ation operators. Hence, rather than considering the annihilation and creation
operators separately, we can study properties of probability measures, having
finite moments of any order, by looking at the joint action of these operators,
expressed in terms of their commutators.

In this paper we continue the program started in [1], in the spirit of [2],
by characterizing the probability measures, on Rd, with square summable sup-
port, in terms of their preservation operators and the commutators between
the annihilation and creation operators. We regard the result, from this pa-
per, as an example of the interesting applications of quantum probabilistic,
more precisely interacting Fock space, techniques, to the classical probability
theory. We have included a minimal background about the notions of anni-
hilation, preservation, and creation operators in section 2. The definition of
the probability measures with square summable support and the main result
of this paper are presented in section 3.

2 Background

Let µ be a probability measure defined on the Borel sigma field B of Rd, where
d is a fixed positive integer. Throughout this paper, we assume that µ has
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finite moments of any order, which means that for any i ∈ {1, 2, . . ., d} and
any p > 0,

∫
Rd |xi|pµ(dx) < ∞, where xi denotes the ith coordinate of the

d−dimensional vector x = (x1, x2, . . ., xd) ∈ Rd. For any non-negative integer
n, we denote by Fn, the space of all polynomial functions p(x1, x2, . . ., xd), of
d real variables x1, x2, . . ., xd, with complex coefficients, and of total degree
less than or equal to n. In Fn, two polynomials p and q, that are equal µ−a.s.
(“a.s.” means “almost surely”), are considered to be the same, for all n ≥ 0.
Since µ has finite moments of any order, we have:

C = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ L2(Rd, µ).

For all n ≥ 0, Fn is a closed subspace of L2(Rd, µ), since Fn is a finite di-
mensional vector space. Let G0 := F0 = C and, for all n ≥ 1, let Gn :=
Fn ª Fn−1, i.e., Gn is the orthogonal complement of Fn−1 into Fn. This or-
thogonal complement is computed with respect to the inner product 〈f, g〉 :=∫
Rd f(x)g(x)µ(dx), for f , g ∈ L2(Rd, µ). We define now the Hilbert space

H := ⊕∞n=0Gn ⊂ L2(Rd, µ).

The Hilbert space H can be understood in two ways: either as the orthogonal
sum of the countable family of finite dimensional Hilbert spaces {Gn}n≥0 or as
the closure of the space F , of all polynomial functions of d real variables, with
complex coefficients, in the space L2(Rd, µ). We would like to mention again
that, in F , two polynomial functions that are equal µ−a.s., are considered to
be identical. We also define F−1 := {0} and G−1 := {0}, where {0} denotes
the null space.

For any i ∈ {1, 2, . . ., d}, we denote the multiplication operator by the
variable xi, by Xi. The domain of this operator is considered to be the space
F described above. Thus, if p(x1, x2, . . ., xd) is a polynomial function, we
have

Xip(x1, x2, . . . , xd) = xip(x1, x2, . . . , xd). (2.1)

We can see that, for any i ∈ {1, 2, . . ., d}, Xi maps F into F , and since
F is dense in H, Xi is a densely defined linear operator on the Hilbert space
H. Let us also observe that Xi maps Fn into Fn+1, for all 1 ≤ i ≤ d and n ≥ 0.

If f , g ∈ L2(Rd, µ), such that 〈f, g〉 = 0, we say that f and g are orthogonal
and denote this fact by f⊥g.

For all n ≥ 0, let Pn denote the orthogonal projection of H onto Gn. If k
and n are two non-negative integers such that k ≥ n + 2, then since Pn maps
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H onto Gn, Gn ⊂ Fn, and Xi maps Fn into Fn+1, we can see that XiPn maps
H into Fn+1. Since n + 1 < k, we have Gk⊥Fn+1, and because Pk projects all
polynomial functions into Gk, we conclude that:

PkXiPn = 0, (2.2)

for all 1 ≤ i ≤ d and all k ≥ n + 2. Taking the adjoint in both sides of the
equality (2.2), we obtain:

PnXiPk = 0, (2.3)

for all 1 ≤ i ≤ d and all k ≥ n + 2. Thus, we conclude that, for all r and s
non-negative integers, such that |r − s| ≥ 2, and for all 1 ≤ i ≤ d, we have:

PrXiPs = 0. (2.4)

Let I be the identity operator of H. Since I =
∑

n≥0 Pn, it follows from (2.4)
that, for all 1 ≤ i ≤ d,

Xi = IXiI

=

( ∞∑

k=0

Pk

)
Xi

( ∞∑

n=0

Pn

)

=
∑

|k−n|≤1

PkXiPn

=
∞∑

n=1

Pn−1XiPn +
∞∑

n=0

PnXiPn +
∞∑

n=0

Pn+1XiPn. (2.5)

For all i ∈ {1, 2, . . ., d}, we define the following three operators:

a−(i) =
∞∑

n=1

Pn−1XiPn, (2.6)

a0(i) =
∞∑

n=0

PnXiPn, (2.7)

and

a+(i) =
∞∑

n=0

Pn+1XiPn. (2.8)

Let us observe that, for any n ≥ 0, the restrictions of these three operators to
the space Gn, are:

a−(i)|Gn = Pn−1XiPn : Gn → Gn−1, (2.9)
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a0(i)|Gn = PnXiPn : Gn → Gn, (2.10)

and

a+(i)|Gn = Pn+1XiPn : Gn → Gn+1. (2.11)

We call a−(i), a0(i), and a+(i) the annihilation, preservation (neutral), and
creation operators of index i, respectively. We can now rewrite the formula
(2.5) as:

Xi = a−(i) + a0(i) + a+(i), (2.12)

for all i ∈ {1, 2, . . ., d}. The domain of the operators Xi, a−(i), a0(i), and
a+(i), involved in formula (2.12), is considered to be the space F .

For any two linear operators A and B densely defined on the same Hilbert
space H, we define the commutator [A, B], as:

[A,B] := AB −BA.

It is clear that, if K is a subspace of H, such that K is contained in both
domains of A and B, AK ⊂ K, and BK ⊂ K, then K is contained in the
domain of the commutator [A, B].

Since Fn = G0⊕G1⊕· · ·⊕Gn, using (2.9), (2.10), and (2.11), we conclude
that the space Fn is invariant under the action of the operators a0(i) and
[a−(j), a+(k)], i.e., a0(i)Fn ⊂ Fn and [a−(j), a+(k)]Fn ⊂ Fn, for all n ≥ 0
and all i, j, k ∈ {1, 2, . . ., d}. We denote by a0(i)|Fn and [a−(j), a+(k)]|Fn

the restrictions of these operators to the finite dimensional space Fn.

3 Probability measures with square summable sup-
port

In this section, we will present the main result of this paper.

Definition 3.1 A probability measure µ on Rd is said to have a square summable
support if

µ =
∞∑

n=1

pnδx(n) , (3.13)

for some sequence {pn}n≥1, of non-negative real numbers, such that

∞∑

n=1

pn = 1,
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and some sequence {x(n)}n≥1, of vectors in Rd, such that

∞∑

n=1

|x(n)|2 < ∞, (3.14)

where | · | denotes the euclidian norm of Rd and δx the Dirac delta measure at
x, for any point x in Rd.

The following lemma will be useful in proving the main result of the paper.

Lemma 3.2 For any i ∈ {1, 2, . . ., d}, and any n ≥ 0,

Tr([a−(i), a+(i)]|Fn) = ‖ a+(i)|Gn ‖2
HS = ‖ a−(i)|Gn+1 ‖2

HS , (3.15)

where Tr([a−(i), a+(i)]|Fn) denotes the trace of the restriction of [a−(i), a+(i)]
to the space Fn, and ‖ a+(i)|Gn ‖HS and ‖ a−(i)|Gn+1 ‖HS the Hilbert-Schmidt
norms of the restrictions of a+(i) to Gn and a−(i) to Gn+1, respectively.

Proof. Let i ∈ {1, 2, . . ., d} and n ≥ 0 be fixed. For all k ≥ 0, let
{e(k)

u }1≤u≤rk
, be an orthonormal basis of the space Gk. For all 1 ≤ u ≤ rk,

since e
(k)
u ∈ Gk, we have:

a+(i)e(k)
u = Pk+1Xie

(k)
u

=
rk+1∑

v=1

〈Xie
(k)
u , e(k+1)

v 〉e(k+1)
v

and

a−(i)e(k)
u = Pk−1Xie

(k)
u

=
rk−1∑

w=1

〈Xie
(k)
u , e(k−1)

w 〉e(k−1)
w .

Thus, for all k ≥ 0, we have:

rk∑

u=1

〈[a−(i), a+(i)]e(k)
u , e(k)

u 〉

=
rk∑

u=1

〈a−(i)a+(i)e(k)
u , e(k)

u 〉 −
rk∑

u=1

〈a+(i)a−(i)e(k)
u , e(k)

u 〉

=
rk∑

u=1

rk+1∑

v=1

〈Xie
(k)
u , e(k+1)

v 〉〈a−(i)e(k+1)
v , e(k)

u 〉

−
rk∑

u=1

rk−1∑

w=1

〈Xie
(k)
u , e(k−1)

w 〉〈a+(i)e(k−1)
w , e(k)

u 〉
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=
rk∑

u=1

rk+1∑

v=1

〈Xie
(k)
u , e(k+1)

v 〉〈Xie
(k+1)
v , e(k)

u 〉

−
rk∑

u=1

rk−1∑

w=1

〈Xie
(k)
u , e(k−1)

w 〉〈Xie
(k−1)
w , e(k)

u 〉

=
rk∑

u=1

rk+1∑

v=1

〈Xie
(k)
u , e(k+1)

v 〉〈e(k+1)
v , Xie

(k)
u 〉

−
rk∑

u=1

rk−1∑

w=1

〈e(k)
u , Xie

(k−1)
w 〉〈Xie

(k−1)
w , e(k)

u 〉

=
rk∑

u=1

rk+1∑

v=1

| 〈Xie
(k)
u , e(k+1)

v 〉 |2 −
rk−1∑

w=1

rk∑

u=1

| 〈Xie
(k−1)
w , e(k)

u 〉 |2 . (3.16)

Summing in formula (3.16), from k = 0 to k = n, and using the fact that, for
k = 0,

∑rk−1

w=1

∑rk
u=1 | 〈Xie

(k−1)
w , e

(k)
u 〉 |2= 0 (since G−1 = {0}), we obtain:

Tr([a−(i), a+(i)]|Fn) =
n∑

k=0

rk∑

u=1

〈[a−(i), a+(i)]e(k)
u , e(k)

u 〉

=
rn∑

u=1

rn+1∑

v=1

| 〈Xie
(n)
u , e(n+1)

v 〉 |2 (3.17)

=
rn∑

u=1

rn+1∑

v=1

| 〈a+(i)e(n)
u , e(n+1)

v 〉 |2

=
rn∑

u=1

‖ a+(i)e(n)
u ‖2

= ‖ a+(i)|Gn ‖2
HS .

It follows also from (3.17) that:

Tr([a−(i), a+(i)]|Fn) =
rn∑

u=1

rn+1∑

v=1

| 〈Xie
(n)
u , e(n+1)

v 〉 |2

=
rn+1∑

v=1

rn∑

u=1

| 〈Xie
(n+1)
v , e(n)

u 〉 |2

=
rn+1∑

v=1

rn∑

u=1

| 〈a−(i)e(n+1)
v , e(n)

u 〉 |2

=
rn+1∑

v=1

‖ a−(i)e(n+1)
v ‖2

= ‖ a−(i)|Gn+1 ‖2
HS .
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Hence the lemma is proved.

The following theorem characterizes the probability measures, with a square
summable support, in terms of their preservation and commutators between
the annihilation and creation operators.

Theorem 3.3 A probability measure µ on Rd has a square summable support
if and only if it has finite moments of any order and, for all i ∈ {1, 2, . . . , d},
the sequence {Tr((a0(i)|Fn)2)}n≥0 is bounded and

∞∑

n=0

Tr([a−(i), a+(i)]|Fn) < ∞. (3.18)

Proof. Part 1: Necessity

Let us assume that µ has a square summable support. Then

µ =
∞∑

n=1

pnδx(n) ,

with
∑∞

n=1 |x(n)|2 < ∞.
Let R2 :=

∑∞
n=1 |x(n)|2 < ∞. It is clear that µ is a discrete measure

with compact support contained in the ball B[0, R] := {x ∈ Rd | |x| ≤ R}.
Since µ has compact support, it has finite moments of any order. From the
compactness of the support of µ it also follows that the space F , of all poly-
nomial functions of d variables: x1, x2, . . ., xd, is dense in L2(Rd, µ). Thus
H = ⊕∞n=0Gn = L2(Rd, µ). Moreover, for all i ∈ {1, 2, . . . , d}, the operator Xi,
of multiplication by the variable xi, is a bounded operator from L2(Rd, µ) to
L2(Rd, µ).

Since µ =
∑∞

n=1 pnδx(n) , {en}n≥1 is an orthonormal basis for L2(Rd, µ),
where en := 1√

pn
1{x(n)}, for all n ≥ 1, such that pn > 0 (it is possible that

the measure µ has a finite support, in which case, all the pn’s are zero, except
finitely many of them). For all n ≥ 1 and i ∈ {1, 2, . . . , d}, we denote the ith

component of the vector x(n) by x
(n)
i . We also denote the norm of the space

L2(Rd, µ) by ‖ · ‖. For all i ∈ {1, 2, . . . , d}, we have:

‖Xi‖2
HS =

∑

n≥1

‖Xien‖2

=
∑

n≥1

‖x(n)
i en‖2

=
∑

n≥1

(x(n)
i )2‖en‖2
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=
∑

n≥1

(x(n)
i )2

≤
∑

n≥1

|x(n)|2

< ∞.

Thus Xi is a Hilbert-Schmidt operator, for all i ∈ {1, 2, . . . , d}.
For each n ≥ 0, let {e(n)

u }1≤u≤rn be an orthonormal basis for Gn. Let

U = {e(0)
u }1≤u≤r0

⋃
{e(1)

u }1≤u≤r1

⋃
{e(2)

u }1≤u≤r2

⋃
· · · .

Then U is an orthonormal basis for H. For any i ∈ {1, 2, . . . , d}, any n ≥ 0,
and any u ∈ {1, 2, . . . , rn}, since a+(i)e(n)

u ∈ Gn+1, a0(i)e(n)
u ∈ Gn, a−(i)e(n)

u ∈
Gn−1, and the spaces Gn+1, Gn, and Gn−1 are orthogonal, we have:

‖Xi‖2
HS

=
∞∑

n=0

rn∑

u=1

‖Xie
(n)
u ‖2

=
∞∑

n=0

rn∑

u=1

‖a+(i)e(n)
u + a0(i)e(n)

u + a−(i)e(n)
u ‖2

=
∞∑

n=0

rn∑

u=1

(
‖a+(i)e(n)

u ‖2 + ‖a0(i)e(n)
u ‖2 + ‖a−(i)e(n)

u ‖2
)

=
∞∑

n=0

rn∑

u=1

‖a+(i)e(n)
u ‖2 +

∞∑

n=0

rn∑

u=1

‖a0(i)e(n)
u ‖2 +

∞∑

n=0

rn∑

u=1

‖a−(i)e(n)
u ‖2

= ‖a+(i)‖2
HS + ‖a0(i)‖2

HS + ‖a−(i)‖2
HS .

Since ‖Xi‖HS < ∞, we get ‖a+(i)‖HS < ∞ and ‖a0(i)‖HS < ∞, for all
i ∈ {1, 2, . . . , d}.

Now, let us observe that a0(i)|Fn is self-adjoint with respect to inner prod-
uct 〈·, ·〉 of the space L2(Rd, µ), for all n ≥ 0. Therefore, we can see that:

‖a0(i)‖2
HS = sup

n≥0
‖a0(i)|Fn‖2

HS

= sup
n≥0

n∑

k=0

rk∑

u=1

〈a0(i)e(k)
u , a0(i)e(k)

u 〉

= sup
n≥0

n∑

k=0

rk∑

u=1

〈
(a0(i))2e(k)

u , e(k)
u

〉

= sup
n≥0

Tr
(
(a0(i)|Fn)2

)
.
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This implies that the sequence {Tr((a0(i)|Fn)2)}n≥0 is bounded, for all i ∈
{1, 2, . . . , d}.

On the other hand, from Lemma 3.2, we know that,

‖a+(i)|Gn‖2
HS = Tr([a−(i), a+(i)]|Fn),

for all i ∈ {1, 2, . . . , d}. Thus

‖a+(i)‖2
HS =

∞∑

n=0

‖a+(i)|Gn‖2
HS

=
∞∑

n=0

Tr([a−(i), a+(i)]|Fn).

Hence
∑∞

n=0 Tr([a−(i), a+(i)]|Fn) < ∞, for all i ∈ {1, 2, . . . , d}.

Part 2: Sufficiency

Let us suppose that µ is a probability measure on Rd, with finite moments
of any order, such that, for all i ∈ {1, 2, . . . , d},

∞∑

n=0

Tr([a−(i), a+(i)]|Fn) < ∞

and the sequence {Tr((a0(i)|Fn)2)}n≥0 is bounded.
We have seen before that

‖a+(i)‖2
HS =

∞∑

n=0

Tr([a−(i), a+(i)]|Fn).

It also follows from Lemma 3.2, that

‖a−(i)‖2
HS =

∞∑

n=0

Tr([a−(i), a+(i)]|Fn).

Thus a+(i) and a−(i) are Hilbert-Schmidt operators from the Hilbert space H
to itself, for all i ∈ {1, 2, . . . , d}.

We have also seen before that the fact that the sequence
{
Tr

(
(a0(i)|Fn)2

)}
n≥0

is bounded is equivalent to the fact that a0(i) is a Hilbert-Schmidt operator
from H to H. Thus, it follows, as before, that

‖Xi‖2
HS = ‖a+(i)‖2

HS + ‖a0(i)‖2
HS + ‖a−(i)‖2

HS < ∞.
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Hence the multiplication operator Xi is a Hilbert-Schmidt operator from H
to H, for all i ∈ {1, 2, . . . , d}. Being a Hilbert-Schmidt operator, Xi is also a
bounded operator on H, for all i ∈ {1, 2, . . . , d}. Let Ri := ‖Xi‖H,H be the
operator norm of Xi on H. Hence for any polynomial function g of d variables,
we have ‖Xig‖ ≤ Ri‖g‖. We denote by E[·] the expectation with respect to
µ.

Let ε > 0 be fixed and let Bi = {(x1, x2, . . . , xd) ∈ Rd | |xi| ≥ Ri + ε}.
Then for all n ≥ 1,

(Ri + ε)2nµ(Bi) ≤ E[x2n
i 1Bi ]

≤ E[x2n
i 1]

= ‖Xn
i 1‖2

≤
(
‖Xn

i ‖H,H · ‖1‖
)2

≤
(
‖Xi‖n

H,H · 1
)2

= R2n
i .

Thus we obtain µ(Bi) ≤ R2n
i /(Ri + ε)2n, for all n ≥ 1, and letting n →∞, we

conclude that µ(Bi) = 0, for all ε > 0. Hence the support of µ is contained in
the set

Ci := {(x1, x2, . . . , xd) ∈ Rd | |xi| ≤ Ri},
for all i ∈ {1, 2, . . . , d}. Therefore, µ has compact support contained in the set
∩d

i=1Ci. Since µ has compact support, the space F of all polynomial functions
is dense in L2(Rd, µ) and thusH = L2(Rd, µ). Therefore, Xi is Hilbert-Schmidt
and, in particular, bounded from L2(Rd, µ) into L2(Rd, µ). Xi is also a self-
adjoint operator on L2(Rd, µ), for all i ∈ {1, 2, . . . , d}.

From the general form of the self-adjoint Hilbert-Schmidt operators on
a Hilbert space, we know that the spectrum of Xi is discrete and coincides
with the point spectrum. That means, for all i ∈ {1, 2, . . . , d}, there exist
a sequence of real numbers {λ(i)

n }n≥1 and an orthonormal basis {f (i)
n }n≥1 for

L2(Rd, µ), such that, for all h ∈ L2(Rd, µ),

Xih =
∞∑

n=1

λ(i)
n 〈h, f (i)

n 〉f (i)
n . (3.19)

Moreover,

∞∑

n=1

(λ(i)
n )2 = ‖Xi‖2

HS < ∞. (3.20)
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For all n ≥ 1, we have Xif
(i)
n = λ

(i)
n f

(i)
n . This means (xi − λ

(i)
n )f (i)

n = 0,
µ-a.s.. Since ‖f (i)

n ‖ = 1, we know that f
(i)
n cannot be equal to zero µ-a.s..

Thus the hyperplane π
(i)
n := {(x1, x2, . . . , xn) ∈ Rd | xi = λ

(n)
i } has a positive

probability, i.e., µ(π(i)
n ) > 0. On the complement of this hyperplane f

(i)
n (x) =

0, µ-a.s.. This means that f
(i)
n 1(π

(i)
n )c = 0, µ-a.s., where 1(π

(i)
n )c denotes the

characteristic function of the complement of π
(i)
n . Let g

(i)
n := f

(i)
n 1

π
(i)
n

. Then

f (i)
n = f (i)

n 1
π

(i)
n

+ f (i)
n 1(π

(i)
n )c

= g(i)
n + 0

= g(i)
n , µ− a.s..

Thus, we can replace the orthonormal basis {f (i)
n } by {g(i)

n }, in Equation (3.19),
to obtain the equality:

Xih =
∞∑

n=1

λ(i)
n 〈h, g(i)

n 〉g(i)
n ,

for all h ∈ L2(Rd, µ), where, for all n ≥ 1, the support of g
(i)
n is contained in

the hyperplane π
(i)
n . Since {g(i)

n }n≥1 is an orthonormal basis for L2(Rd, µ), we
have:

µ

([ ∞⋃

n=1

π(i)
n

]c)
= ‖1[∪∞n=1π

(i)
n ]c‖

2

=
∞∑

n=1

〈
1[∪∞n=1π

(i)
n ]c , g

(i)
n

〉2

= 0.

Hence, for all i ∈ {1, 2, . . . , d}, the support of µ is contained in the union of
the hyperplanes π

(i)
n , for n ≥ 1.

If λ is an eigenvalue of Xi, and λ 6= 0, then the eigenspace corresponding
to λ is finite dimensional, because of the condition

∑∞
n=1 (λ(i)

n )2 < ∞. That
means, if λ 6= 0, then the set {n ∈ N | λ(i)

n = λ} is finite.
Let i ∈ {1, 2, . . ., d} and λ = λ

(i)
n 6= 0, for some n ≥ 0, be fixed. If

k denotes the multiplicity of λ, as an eigenvalue of Xi, we conclude that,
for any sequence {Bl}l≥1, of disjoint Borel subsets of the hyperplane π :=
{(x1, x2, . . . , xd) | xi = λ}, there are at most k sets Bl1 , Bl2 , . . ., such that
µ(Bl1) > 0, µ(Bl2) > 0, . . ., since the characteristic functions 1Bl1

, 1Bl2
,

. . . are non-zero orthogonal eigenvectors of the multiplication operator Xi,
corresponding to the same eigenvalue λ.
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For all n ∈ N, let Cn be the family of cubes, of π, of the form

Kn,r = π ∩
{

(x1, . . . , xd) ∈ Rd | r1

2n
≤ x1 <

r1 + 1
2n

, . . . ,
rd

2n
≤ xd <

rd + 1
2d

}
,

where r = (r1, . . ., rd) ∈ Zd. It is clear that for all r 6= s, Kn,r∩Kn,s = ∅. Since
{Kn,r}r∈Zd is a partition of π composed of mutually disjoint Borel subsets, we
conclude that at most k of the sets {Kn,r}r∈Zd have a positive probability
measure µ. For all n ∈ N, let tn be the cardinality of the set An := {r ∈ Zd |
µ(Kn,r) > 0}. Then, for each n ∈ N, tn is a natural number less than or equal
to k. Let us observe that, since each cube Kn,r, from Cn, can be written as
a finite union of cubes Kn+1,s, from Cn+1, for each r ∈ An, there exists at
least one cube Kn+1,sr ∈ Cn+1, such that Kn+1,sr ⊂ Kn,r and µ(Kn+1,sr) > 0.
Thus sr ∈ An+1. For each r ∈ An, we choose one sr and fix it. If r1, r2 ∈ An,
such that r1 6= r2, we have Kn,r1 ∩Kn,r2 = ∅, and since Kn+1,sr1

⊂ Kn,r1 and
Kn+1,sr2

⊂ Kn,r2 , we conclude that Kn+1,sr1
∩Kn+1,sr2

= ∅. Thus sr1 6= sr2

and so, the mapping r 7→ sr is a one-to-one function from An to An+1. Hence
the cardinality of An does not exceed the cardinality of An+1, or equivalently
tn ≤ tn+1, for all n ∈ N. Therefore, t1 ≤ t2 ≤ t3 ≤ · · · ≤ k. Since {tn}n≥1 is a
bounded non-decreasing sequence of natural numbers, we conclude that it must
be stationary, i.e., there exists n0 ∈ N, such that tn0 = tn0+1 = tn0+2 = · · ·.
From the fact that, for each n ≥ n0, tn = tn+1, it follows that, for each r ∈ An,
there exists a unique sr ∈ An+1, such that Kn+1,sr ⊂ Kn,r. This uniqueness
property implies that µ(Kn+1,sr) = µ(Kn,r). Let An0 = {r1, r2, . . . , rtn0

}. For
any j ∈ {1, 2, . . ., tn0}, we can construct a decreasing sequence of cubes
{K(n)

j }n≥n0 , in the following way: K
(n0)
j := Kn0,rj , K

(n0+1)
j is the unique cube

from Cn0+1, that is contained is Kn0,rj and has a positive probability measure

µ, K
(n0+2)
j is the unique cube from Cn0+2 that is contained in K

(n0+1)
j and

has a positive probability measure µ, and so on. Thus, we obtain a decreasing
sequence of cubes: K

(n0)
j ⊃ K

(n0+1)
j ⊃ K

(n0+2)
j ⊃ · · · such that µ(K(n0)

j ) =

µ(K(n0+1)
j ) = µ(K(n0+2)

j ) = · · · > 0. Since the diameter of the cube K
(n)
j (i.e.,

the supremum of the distances between any two points of the cube) tends to
0, as n → ∞, we know that the intersection of all these cubes is either the
empty set or a set that contains only one point. By the monotone convergence
theorem, we have: µ(∩n≥n0K

(n)
j ) = limn→∞ µ(K(n)

j ) = µ(K(n0)
j ) > 0. Thus

∩n≥n0K
(n)
j 6= ∅. Consequently, for all j ∈ {1, 2, . . ., tn0}, there exists x(j) ∈ π,

such that ∩n≥n0K
(n)
j = {x(j)} and µ({x(j)}) = µ(K(n0)

j ) > 0. Hence, we have:

µ(π) = µ(∪r∈ZdKn0,r)

=
tn0∑

j=1

µ(K(n0)
j )
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=
tn0∑

j=1

µ({x(j)})

= µ({x(1), x(2), . . . , x(tn0 )}).

This implies that the restriction of the probability measure µ to the Borel
subsets of the hyperplane π is a finite combination of Dirac delta measures.
Therefore, for each λ

(i)
n 6= 0, there exist finitely many points y

(i)
1,n, y

(i)
2,n, . . .,

y
(i)
sn,i,n in π

(i)
n , such that, for any Borel subset C of π

(i)
n ,

µ(C) =
sn,i∑

u=1

p(i)
u,nδ

y
(i)
u,n

(C), (3.21)

where p
(i)
u,n := µ({y(i)

u,n}) > 0, for all u ∈ {1, 2, . . . , sn,i}. The number of these
points, sn,i, coincides with the multiplicity of the eigenvalue λ

(i)
n . Hence

‖Xi‖2
HS =

∞∑

n=1

(λ(i)
n )2

= ξi,

where ξi denotes the sum of the squares of the ith coordinates of y
(i)
u,n, for

n ≥ 1 and 1 ≤ u ≤ sn,i. The only eigenvalue of Xi that might have an infinite
dimensional eigenspace is λ = 0, eventually. Thus, at this moment, we do
not know the behavior of the probability measure µ on the Borel subsets of
the hyperplane {(x1, x2, . . . , xd) ∈ Rd | xi = 0}. We may call such a hyper-
plane a “bad” hyperplane. We should not forget though, that our conclusion,
regarding the fact that µ is a finite combination of delta measures, on each
hyperplane of equation xi = λ, for λ 6= 0, is true for all i ∈ {1, 2, . . . , d}. This
means that we know the behavior of µ everywhere, except on the intersection
of all the bad hyperplanes. Fortunately, we have

d⋂

i=1

{(x1, x2, . . . , xd) ∈ Rd |xi = 0} = {(0, 0, . . . , 0)}.

Hence besides the set

D :=
d⋃

i=1

∞⋃

n=1

sn,i⋃

u=1

{y(i)
u,n}, (3.22)

the support of µ might contain eventually only one more point, namely 0, the
zero vector of Rd. There are many repetitions among the singleton sets {y(i)

u,n},
that participate in the unions from the right-hand side of (3.22). For example,
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if a point y
(i)
u,n has all the coordinates different from zero, then 1{y(i)

u,n} is a
non-zero eigenvector, corresponding to a non-zero eigenvalue, for each of the
multiplication operators Xj , 1 ≤ j ≤ d. However, if a point y

(i)
u,n is different

from all the points y
(j)
v,m, for a fixed j and all values of m and v, then the jth

coordinate of y
(i)
u,n is zero. Thus, when we compute the sum of the squares of

the jth coordinates of all the points from the support of µ, the point y
(i)
u,n does

not contribute with anything. This fact is very important in proving the square
summability of the support of µ. Let us rewrite the set ∪d

i=1 ∪∞n=1 ∪sn,i

u=1{y(i)
u,n}

as {x(n)}n≥1, where x(k) 6= x(l), for all k 6= l, and N could be a finite positive
integer or ∞. Then,

µ = p0δ0 +
N∑

n=1

pnδx(n) , (3.23)

where, for all n ≥ 0, pn ≥ 0 (if 0 is not in the spectrum of µ, then p0 = 0),
and

∑N
n=0 pn = 1. Thus, we have:

N∑

n=1

|x(n)|2 =
d∑

i=1

N∑

n=1

|x(n)
i |2

=
d∑

i=1

ξi

=
d∑

i=1

‖Xi‖2
HS

< ∞.

This proves that µ has a square summable support.

If d = 1 and Vn denotes the space of all polynomial functions, of one
real variable, with complex coefficients, of degree at most n, then, since the
algebraic codimension Vn into Vn+1 is 1, we conclude that the dimension of
Gn is at most 1, for all n ≥ 0. In fact the dimension of Gn is equal to 1,
for all n ≥ 0, if and only if the support of the measure µ is an infinite set,
in which case Fn = Vn, for all n ≥ 0 (we should remember that Fn is the
space Vn factorized to the equivalence relation given by the µ−almost sure
equality). In that case, since the dimension of Gn is 1, there exists a unique
polynomial fn in Gn that has the leading coefficient equal to 1, for all n ≥ 0.
Since we have only one multiplication operator X1, one annihilation operator
a+(1), one preservation operator a0(1), and one annihilation operator a−(1),
we can denote them simply by X, a+, a0, and a−, respectively. Also, sice
fn ∈ Gn and a− : Gn → Gn−1, there exists a unique real number ωn, such
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that a−fn = ωnfn−1, for all n ≥ 1 (for n = 0, sice G−1 = {0}, we can define
ω0 := 0 and f−1 := 0). Similarly, there exists a unique real number αn, such
that a0fn = αnfn, for all n ≥ 0. Since both fn+1 and Xfn have the leading
coefficient equal to 1, we conclude that a+fn = fn+1, for all n ≥ 0. Thus,
since X = a+ + a0 + a−, we obtain that, for all n ≥ 0,

Xfn = fn+1 + αnfn + ωnfn−1. (3.24)

The sequences {αn}n≥0 and {ωn}n≥1, are called the Szegö-Jacobi parameters
of µ. It is easy to see that [a−, a+]fk = (ωk+1 − ωk)fk, for all k ≥ 0, and thus
since ω0 = 0, if one considers the algebraic base {fk}0≤k≤n (or the normalized
orthogonal base {(1/ ‖ fk ‖)fk}0≤k≤n) of Fn, then

Tr([a−, a+]|Fn) =
n∑

k=0

(ωk+1 − ωk)

= ωn+1,

for all n ≥ 0. Similarly, since (a0)2fk = α2
kfk, for all k ≥ 0, we conclude that

Tr((a0|Fn)2) =
n∑

k=0

α2
k,

for all n ≥ 0. If the support of µ is a finite set, then we can still make sense
of the formula (3.24), by defining fn := 0, αn := 0, and ωn := 0, for n large
enough. Thus, from Theorem 3.3, we obtain the following corollary:

Corollary 3.4 Let µ be a probability measure on R having finite moments of
any order. Then µ has a square summable support if and only if both series∑∞

n=0 α2
n and

∑∞
n=1 ωn are convergent, where {αn}n≥0 and {ωn}n≥1 denote

the Szegö-Jacobi parameters of µ.
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