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Abstract The present review reports the research carried
out during last 9 years on biosensors based on cholinester-
ase inhibition for nerve agents, organophosphorus and
carbammic insecticides, and aflatoxin B1 detection. Rela-
tive applications in environmental and food areas are also
reported. Special attention is paid to the optimization of
parameters such as enzyme immobilization, substrate
concentration, and incubation time in the case of reversible
inhibition by aflatoxin B1 or irreversible inhibition by
organophosphorus and carbamic insecticides, and nerve
agents in order to optimize and improve the analytical
performances of the biosensor. Evaluation of selectivity of
the system is also discussed.
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Introduction

It is well known that in the measurement of analytes by
means of biosensors two different approaches can be
carried out: i) if the enzyme metabolises the analyte, the

analyte can be determined measuring the enzymatic
product; ii) if the analyte inhibits the enzyme, the decrease
of the enzymatic product formation can be measured and
correlated to the analyte concentration. In the latter case,
this type of biosensor is called “biosensor based on enzyme
inhibition”. The first biosensor based on cholinesterase
(ChE) inhibition for detection of nerve agents was
developed by G.Guilbaut in 1962 [1] and from this one, a
lot of ChE biosensors were developed for several com-
pounds such as heavy metals [2, 3], organophosphorus and
carbammic insecticides [4–8], toxins [9, 10], glycoalkaloids
[11, 12], drugs [13–15], fluoride [16, 17], cocaine [18, 19]
and nicotine [20, 21]. In details, during the last 9 years
more than 100 papers were published on the ChE
biosensors. As reported in the Fig. 1 the 78% of the papers
reports ChE biosensors for insecticide detection ( ), 3% for
drugs ( ), 3% for nerve agents ( ), 2% for heavy
metals ( ), 5% for glycoalkaloids ( ), 4% for toxins
such as aflatoxin B1 (AFB1) ( ) and the last part for
other inhibitors such as fluoride, nicotine and cocaine
measurement. This trend is due to several factors:

The lower percentage of papers based on ChE biosensor
for measurement of:

i) Heavy metals is due to the low sensitivity towards this
type of inhibitor (ppm levels)

ii) AFB1 is owing to the very recent discovery of the
AFB1 power to inhibit the acetylcholinesterase (AChE)

iii) Nerve agents are ascribed to the high level of safety
required to measure them

iv) Drugs because the ChE biosensor can be used as
screening analysis of them but for quality drugs
measurement the U.S. Food and Drug Administration
requires high selective methods

v) Glycoalkaloids because are toxic compounds found
only in Solanaceae plant family such as potato

F. Arduini (*) :D. Moscone :G. Palleschi
Dipartimento di Scienze e Tecnologie Chimiche,
Università di Roma Tor Vergata,
Via della Ricerca Scientifica,
00133 Rome, Italy
e-mail: fabiana.arduini@uniroma2.it

F. Arduini :D. Moscone :G. Palleschi
Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”,
Viale Medaglie d’Oro 305,
00136 Rome, Italy

A. Amine
Faculté des Sciences et Techniques,
B.P.146, Mohammadia, Morocco

Microchim Acta (2010) 170:193–214
DOI 10.1007/s00604-010-0317-1



The higher percentage of the papers based on ChE
biosensors reports measurements of insecticides owing to
the very high sensitivity towards these compounds (ppb
levels) because of their simple procedure for safety
manipolation than nerve agents, also their wide use and
thus their presence in food and environment.

Nowadays, several reviews based on ChE inhibition
biosensors have been published. Taking in consideration
the papers published from 2000, six reviews appeared
focused on ChE biosensors. In 2006 Andreescu and Marty
[22] wrote an interesting review published on Biomolecular
Engineering Journal based on ChE inhibition, principally
related to organophosphorus and carbammic compounds
detection. The review reports the research efforts over the
last 20 years in AChE biosensors showing also the different
configurations and fabrication techniques, particularly those
based on low-cost electrochemical sensors. In 2008
Pohanka et al. wrote a short review in Protein and Peptide
Letters, focusing it on ChEs immobilization and on the
ways of converting ChE activity into an output signal [23].
In the 2009, the same research group has reviewed in
Current Medicinal Chemistry Journal AChE and butyryl-
cholinesterase (BChE) biosensors for the detection of

various compounds such as organophosphorus and carbam-
mic insecticides and nerve agents [24]. In the latter case, it
was highlighted the possibility of using the ChE biosensor
as a tool in medicinal chemistry and toxicological research.
The use of ChE based amperometric biosensors for the
assay of anticholinergic compounds was also reviewed by
the same authors on Interdisciplinary Toxicology Journal
[25]. The same year, the use of esterase enzymes for
detection of chemical neurotoxic agents was reported in
Proteins and Peptide Letters by Manco et al. reviewing the
biosensors based on ChE or carboxylesterase [26]. The last
review on ChE biosensor was reported in 2009 on Sensor
journal by Periasamy et al. [27]. This interesting review
reports a recent research work on ChE biosensor using
nanomaterials for organophosphorus insecticides detection.

In order to avoid overlappings and repetitions of already
existing reviews we attempted to concentrate this paper on
the biosensors based on ChE inhibition for organophos-
phorus and carbammic insecticides, nerve agents and
aflatoxin B1 underlying the different types of inhibition
(reversible or irreversible). Our purpose was focused on
how to optimise the analytical performance of ChE
biosensor such as reaching the lowest detection limit or
reducing the interferences by the diagnosis of the inhibition
type.

Biosensor based on cholinesterase inhibition

In order to develop a biosensor based on enzyme inhibition,
in our view, it is relevant to know the structure of ChE
enzyme and the mechanism of inhibition in order to better
optimise several parameters which affect the degree of
inhibition such as enzyme loading, incubation time,
reaction time, concentration of substrate, pH and immobi-
lisation method. In this way, a briefly description of the
structure of ChE enzyme and its kinetic will be reported
and correlated to the target analytes of this review
(organophosphorus and carbammic insecticides, nerve
agents and AFB1).

Cholinesterase enzymes

The principal biological role of AChE is the termination of
the nervous impulse transmission at cholinergic synapses
by rapid hydrolysis of the neurotransmitter acetylcholine.

ð1Þ

Fig. 1 Inhibitor distributions in enzymatic cholinesterase biosensor
investigations. Inhibitor: insecticides ( ), drugs ( ), nerve agents
( ), heavy metals ( ), glycoalkaloids ( ), toxins ( ) and last
part for other inhibitors such as fluoride, nicotine and cocaine
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Early kinetic studies indicated that the active site of
AChE contains two sub-sites, the esteratic and anionic sub-
sites, corresponding respectively, to the catalytic site and
choline-binding pocket [28]. The esteratic site contains a
serine residue which reacts with the substrate and, also,
with the organophosphates (insecticides and nerve agents)
and carbamates (insecticides). This site is similar in the
multiple forms of AChE (Electrophorus, Torpedo, rat and
chicken) and it is also located in the BChE enzyme. For this
reason, it is possible to use several species of AChE and
BChE enzymes to develop a ChE biosensor for insecticides
and nerve agent detection. The AChE enzyme is also
peculiarly characterized by a deep and narrow gorge that
penetrates halfway into the enzyme and widens out close to
its base where there is the active site [29]. The substrate can
arrive to the active site penetrating into the gorge.
Dougherty et al. [30] presented theoretical considerations
as well as the experimental data on the aromatic character
of the gorge which plays a key role for the detection of
AFB1. As reported recently by Hansmann et al. [31] the
AFB1 inhibits AChE by binding at the peripheral site,
located at the entrance of the active site (at the tryptophane
residue). This behaviour is peculiar of AChE enzyme; for
this reason, as reported below, the AChE is more sensitive
than BChE for AFB1 detection [31, 32]. The knowledge of
the structure of ChE enzyme can be an instrument to
understand which type of ChE should be used in order to
develop a biosensor with increasing selectivity; in fact, if it
is required to measure insecticides in a food sample in
which can be present both AFB1 and insecticides, the
insecticides could be measured using BChE, in order to
reduce the interference of AFB1.

Enzyme inhibition

Biosensors based on enzyme inhibition have found wide
application for detection of toxic analytes that inhibit the
normal enzyme function. The detection of the analyte is
simply based on the determination of the difference in
enzyme activity in the presence and absence of inhibitor,
according to the following the Eq. 2:

I% ¼ ½ A0 � AiÞ A0= � � 100ð ð2Þ

where A0 is the activity in absence of inhibitor, and Ai in
presence of inhibitor. Important parameters are defined as:
“incubation time”, the time of contact between enzyme and
inhibitor, “reaction time”, the time of the reaction between
substrate and enzyme. The linear range is usually com-
prised between 20% and 80% of inhibition and the
detection limit is usually defined as the amount of inhibitor
which gives the decrease 20% of inhibition [33].

The formula reported above is used by both reversible and
irreversible inhibition biosensors, but there is a substantial
difference between these two kind of systems. Irreversible
inhibition (i.e. nerve agents) is characterised by covalent
bonding between the ChE enzyme and the inhibitor, and thus
requires either a new biosensor after the inhibitor measure-
ment or a reactivation of the biosensor in use. Reversible
inhibition, on the other hand, is characterised by non-
covalent interaction between inhibitor (AFB1) and AChE
enzyme with the consequent restoration of the initial activity
after the inhibitor measurement. We can summarise the
inhibitor of ChE investigated in this review as:

– Irreversible inhibitors (organophosphorus insecticides
and nerve agents)

– Pseudo-irreversible inhibitor (carbammic insecticides)
– Reversible inhibitors (AFB1)

However in the case of carbamate, the acylated interme-
diate is slowly hydrolysed to reactivate the enzyme, usually
their half life is in order of hours [34, 35] and, because in
the biosensor field the times of analysis have to be short
(less than 1 h), we can consider also carbamates as
irreversible inhibitors.

Cholinesterase biosensors for insecticides and nerve
agents detection (irreversible inhibitors)

Organophosphorus, carbammic insecticides and nerve
agents

The detection of pesticide residues in food, water and soil is
one of the major issues for the analytical chemistry.
Pesticides are, in fact, among the most important environ-
mental pollutants because of their increasing use in agricul-
ture. For this reason, most countries have established
maximum residue levels (MRL) in food products [36].
Among the pesticides, organophosphorus and carbammic
insecticide species are the most used, due to their insecticidal
activity and relatively low persistence in environment.

The fact that nerve agents belong to organophosphorus
compounds is due to the accidentally discover of these
compounds in 1936 by Dr. Gerhard Schrader, working for
IG Farben in order to develop new types of insecticide.
Schrader experimented numerous fluorine-containing com-
pounds that lead to the preparation of Tabun. After, Sarin,
Soman and Cyclosarin were also synthesised (nerve agents
G series). The G-series are named labelling Tabun as GA
(German Agent A), Sarin as GB, Soman as GD, and
Cyclosarin as GF. The V-series is the second family of
nerve agents: VE, VG, VM, VR and VX.

To detect the organophosphorus and cabammic com-
pounds chromatographic methods such as High Performance
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Liquid Chromatography (HPLC) or Gas Chromatography
(GC) usually coupled to mass spectrometry (MS) [37–40] are
used as reference methods, but they present strong drawbacks
such as complex and time-consuming treatments of the
samples, i.e. extraction of pesticides, extract cleaning, solvent
substitution etc. [41–43]. Moreover, the analysis usually has
to be performed in a specialised laboratory by skilled
personnel and it is not suitable for “in situ application”.
ChE-based biosensors are considered as one of the best
alternatives for the detection of these compounds [44, 45].

Measurement protocol of insecticides solution

The inhibitory effect of insecticides on ChE was evaluated by
determining the enzymatic activity after and before the

exposure of the biosensor to the inhibitor. To do this, the
measurement can be carried out using three different protocols.

In the first one, that in this context we called protocol A,
the measurement can be performed by means a single step.
In details, the biosensor was immersed in a buffer solution,
the substrate was then added and the signal registered, after,
the inhibitor was added in the same solution and a decrease
of current was observed (Fig. 2, protocol A). The
concentration of insecticide is then calculated measuring
the enzymatic activity before and after the addition of
inhibitor in solution [46]. This method is not so often
adopted because the absence of incubation time allows to
reach a higher detection limit.

In the second protocol (called protocol B) the measure-
ment is carried out using two steps: the biosensor is

Fig. 2 Description of measure-
ment protocols and response
using a single step (protocol A),
two steps (protocol B) and three
steps (protocol C) mode for
insecticides detection
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immersed in a buffer solution, the substrate is then added
and the signal registered (step 1). The ChE biosensor is
then immersed in the insecticide solution for a certain
period (incubation time) and after, in the same insecticide
solution, the substrate is added and the residual activity
measured registering the signal (step 2). The concentration
of insecticide is then calculated applying the Eq. 2 (Fig. 2,
protocol B) [47]. In this protocol is possible also to add in
the working solution both insecticide and substrate (in the
step 2) but as reported by Nikolelis et al., this system is less
sensitive then the previous reported (protocol B) [48].

The third one (protocol C called also “medium exchange
method”) is performed in three steps: The biosensor is
immersed in a buffer solution, the substrate is then added
and the signal registered (step 1). After, the ChE biosensor
is immersed in the insecticide solution for a certain period
(incubation time) (step 2). After that, the biosensor is rinsed
several times with distillate water. The biosensor is then
immersed in a new solution of buffer and the substrate
added, thus residual activity was measured (step 3) (Fig. 2,
protocol C). The concentration of insecticide is then
calculated applying the Eq. 2 [49, 50]. Using the “medium
exchange method” is possible to avoid both i) electrochem-
ical and ii) enzymatic interferences. The electrochemical
interferences, which can be present in the real sample
tested, were eliminated because the residual enzymatic
activity was measured in a new substrate phosphate buffer
solution in absence of real sample. The enzymatic interfer-
ences such as reversible inhibitors [51, 52] as well as
detergents [53, 54] are avoided because after the incubation
step the biosensor is washed with distilled water and, in this
way, only the inhibitor covalently linked to the enzyme
(organophosphorus and carbammic compounds) is mea-
sured. The need for adopting a medium exchange method
in the protocol for insecticide measurements has been
demonstrated in literature [50]. In details, using the
medium exchange method in presence of 200 ppb of
sodium dodecyl sulfate (SDS), the limit value for waste
waters, no inhibition was observed while in the case of
measurement of the enzymatic activity following the
protocol B an inhibition of 88% was observed. With this
procedure, the enzyme acts as a high affinity capture agent
for the insecticide, and, because of the irreversibility of the
inhibition, the successive enzymatic reaction can be
carried out in a fresh buffer solution, thereby circum-
venting the effect of reversible inhibitors such as also the
AFB1 present in real samples.

Measurement protocol of nerve agent gases

For nerve agents measurement in gas phase using BChE
biosensor the following procedure was reported using a
portable system [55]: the drop of buffer containing

butyrylthiocholine was placed onto the BChE biosensor,
the potential applied and the signal recorded. After the
incubation time, the surface of the working electrode was wet
with phosphate buffer, and then the biosensor was exposed to
Sarin gas. After, the residual activity was measured (step 3).
The concentration of nerve agents is then calculated applying
the Eq. 2. Using this procedure it was possible to detect the
Sarin at the concentration of 0.1 mg·m−3 as reported in the
Fig. 3 [55].

Transducers for cholinesterase biosensor development

ChE biosensors used for irreversible inhibitors such as
nerve agents or organophosphorus and carbammic insecti-
cides can be classified regarding the type of transducer
adopted. As reported in the Fig. 4, the type of transducer
most used is the electrochemical one for several reasons
and among them: cost-effective (especially in the case of
screen printed electrodes), fast response, miniaturisable and
used also in the case of coloured solutions. In literature it is
also reported the use of piezoelectric, fiber optic and
surface plasmon resonance (SPR) transducer. A briefly
description of these biosensors is described below in order
to have an overview of ChE biosensors developed in
function of the transducer utilised.

Electrochemical biosensors

The electrochemical biosensors can be classified as bi-
enzymatic in which the ChE is coupled to choline oxidase
(ChOx) enzyme and mono-enzymatic system in which only
ChE is used as biocomponent.

Before the exposure 

After exposure to 0.1 mg/m3 of Sarin 

Buffer 

After exposure to 0.5 mg/m3 of Sarin

Fig. 3 Original recording obtained using BChE biosensor. Signal
recorded in phosphate buffer (a) and in a solution of butyrylthiocho-
line (5 mM) before the exposure of the biosensor to Sarin gas (b) and
after 1 min exposure to 0.1 mg/·m−3 (c) and to 0.5 mg·m−3 (d) of Sarin
gas (reproduced with permission of Arduini et al. [55])
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Bi-enzymatic systems

The bi-enzymatic ChE biosensor is constructed using:
AChE, that hydrolyses the substrate acetylcholine to
choline and acetic acid (or butyrylcholine in the case of
BChE) and ChOx that oxidises the choline to betaine with
the production of H2O2. The use of ChOx is necessary in
the case of amperometric biosensors because the enzymatic
products of the reaction (Eq. 1, choline and acetic acid) are
not electroactive.

The enzymatic activity can be detected by means the O2

decrease measurement using Clark’s electrode [56] or the
increase of H2O2. In the latter case, the enzymatic product

H2O2 is measured amperometrically at around +600 mV vs
Ag/AgCl using a platinum electrode [57] or in order to
reduce the applied potential, by means of the use of redox
mediators such as ferophthalocyanine [58], Prussian Blue
[59] or ii) by adopting novel materials such as carbon
nanotubes [60].

Monoenzymatic systems

In a monoenzymatic system the reaction monitored is the
one reported in Eq. 1. In this case the enzymatic activity
can be measured by means of different electrochemical
transducers:

i) potentiometric: the reaction can be monitored by the
measurement of the pH variation using a pH electrode
[61], ISFETs [62, 63], and electrodes modified with
polymers [64–66]. A BChE based light addressable
potentiometric sensor was developed by Mourzina et
al. [67]. Recently current driven ion fluxes of a
polymeric membrane ion-selective electrode for BChE
potentiometric biosensing was published on Journal of
American Chemical Society [68].

ii) conductimetric: the reaction can be monitored by
measurement of conductivity variation [69, 70]

iii) amperometric: for the monoenzymatic amperometric
biosensors, a synthetic substrate must be used; in fact,
acetylthiocholine was adopted instead of acetylcho-
line. The enzymatic reaction hydrolyses the acetylth-
iocholine to acetic acid and thiocholine (Eq. 3) and the
thiocholine, being electrochemically active, can be
measured.

ð3Þ

The monoenzymatic biosensor was developed using a
platinum working electrode on which the AChE was
immobilised and measuring the thiocholine at +450 mV
vs Ag/AgCl [71]. In order to reduce the applied potential
and the electrochemical interferences, two approaches can
be followed: I) the use of redox mediators such as cobalt
phthalocyanine (CoPc) [72], Prussian Blue [73], Tetracya-
noquinodimethane (TCNQ) [74], Cobalthexacyanoferrate
[75], Potassium ferrycyanide [76] or ii) the use of novel
materials [77, 78] such as carbon nanotubes.

Optical biosensor

An optical transducer was also utilised to detect insecticides
[79, 80]. A fiber-optic photometer based on the use of
solid-state opto-electronic components was developed by
the researcher group of prof. Wolfbeis [81]. A sol-gel based
fiber optic biosensors were developed using pH sensitive
fluorescent indicators [82, 83]. The ChE activity was also
measured by spectrophotometric detection [84] or via
chemiluminescent reaction [85] in a flow injection system.

electrochem optical piezoel SPR
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Fig. 4 Distribution of transducers used for the design of ChE
biosensors for the detection of insecticides, nerve agents and aflatoxin
B1 (electrochem = electrochemical, piezoel = piezoelectric, SPR =
surface plasmon resonance)
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Piezoelectric biosensor

The insecticides can be measured also by means of
piezoelectric biosensors [86, 87]. The paraoxon was
immobilised on the sensing surface pre-incubating with
BChE. In the presence of diisopropylfluorophosphate
(DFP), the binding of BChE to the surface-bound paraoxon
decreased proportionally to the DFP present in the sample
[88]. The detection of organophosphate and carbamate was
also carried out measuring the precipitation of an enzymatic
reaction product over quartz crystal microbalance (QCM)
[89, 90].

Surface plasmon resonance (SPR) biosensor

Recently, ChE biosensors using a SPR were reported in
literature. The AChE was immobilised on SPR biosensor
chip surface and in presence of insecticides a changing of
intensity SPR angles was observed [91, 92].

Immobilisation

After the choice of transducer, the enzyme immobilisation
is an important step in the biosensor design. Several types
of immobilisation were investigated in order to obtain
sensitive and stable ChE biosensors.

The physical immobilisation such as adsorption is one of
the simple procedure to immobilise the biocomponent onto
the transducer [93, 94]. AChE was immobilised by
adsorption on screen printed electrodes modified with
multiwall carbon nanotubes (MWCNTs). In this way, some
μL of AChE solution were dropped on the MWCNT
modified electrode surface and allowed to dry at room
temperature under a current of air. The electrode was then
rinsed twice with buffer to remove the loosely adsorbed
enzyme molecules on MWCNTs [77]. This was an
important step to avoid the leakage of the enzyme during
the measurement. AChE was also physically adsorbed on
polyvinylpyrrolidone K 30 [95] or calcium carbonate-
chitosan composite [96]. One of the most sensitive
biosensors was obtained immobilising the AChE by
physical adsorption in nanostructured carbon matrix as
reported by Sotiropoulou and Chaniotakis [97]. This system
allows obtaining a very stable biosensor under continuous
operation conditions (L50>60 days) and very low detection
limit for dichlorvos at picomolar levels. This promising
result can be ascribed, as suggested by the authors, at i)
the properties of the activated carbon to preconcentrate
the insecticides and ii) the hyperactivity of enzyme
within the nanopores. In fact, it is possible to reach
lower detection limit using enzyme immobilised than
enzyme in solution if the matrix in which the enzyme is
immobilised is able to preconcentrate insecticides [98].

Another type of immobilisation is the enzyme entrap-
ment in matrix [99–103]. Andreescu et al. have reported the
immobilisation of ChE by encapsulation in sol-gel prepared
by TMSO (Tetramethoxysilane) and MTMSOS (Methyl-
trimethoxysilane) or by entrapment in poly(vinylalcohol)
bearing styrylpyridinium (PVA-SbQ) showing in both cases
a storage stability of several months [104]. Anitha et al.
have immobilised ChE in a thin sol-gel derived from TEOS
(tetraethoxysilane) [105]. Du et al. have developed a sol-gel
derived silicate network assembling gold nanoparticles that
provided a biocompatible microenvironment around the
enzyme allowing the storage stability of 3 weeks at 4°C
[106].

A novel recent approach to immobilise AChE consists in
the layer by layer electrostatic self assembly of AChE on
MWCNTs modified glassy carbon electrode [107]. The
CNT was initially NaOH treated in order to assume a
negative charge and then was dipped into a solution of
cationic poly(diallyldimethylammonium chloride) (PDDA)
which leads to the adsorption of positively charged
polycation layer (CNT-PDDA). After the negatively
charged AChE was adsorbed on CNT-PDDA to obtain
CNT-PDDA-AChE. Finally, in order to avoid the leakage
of AChE from the electrode surface, another PDDA layer
was absorbed resulting in sandwich structure of PDDA/
AChE/PDDA. This system allows a low detection limit of
paraoxon equal to 0.4×10−12 M. Carbon nanotubes were
also used to synthesise with gold a nanocomposite [108]
or combined with chitosan [109] for AChE biosensor
construction.

One of the most used types of enzyme immobilisation is
the chemical immobilisation by means of cross-linking with
glutaraldeyde. This method confers to the biosensor high
working stability even if there is usually a decrease of the
enzymatic affinity towards its substrate. This behaviour
owes to the distortion of the enzyme structure with
consequent KMapparent higher than KM obtained for ChE in
solution [50, 55, 110]. An example of chemical immobili-
sation is based on a non conducting polymer electro-
synthetised onto the electrode and after the enzyme was
immobilised by crosslinking with glutaraldehyde [111,
112]. Several immobilisations were carried out successfully
using ChE immobilised by cross-linking method with
glutaraldehyde vapour [113–117] or making an enzymatic
membrane onto the electrode with ChE, Nafion® and
glutaraldehyde [118, 119]. In the last case it was demon-
strated that the use of albumin bovine serum at 3%
increases the enzyme stability [50, 120].

Another interesting approach is the immobilisation of
ChE carried out by affinity methods using concanavalin A
[121, 122] or Ni-His affinity binding [123–125] which
allows to an oriented disposition of the enzyme on the
transducer. Andreescu et al., for example reported the
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possibility to immobilise AChE enzyme by a metal chelate.
The immobilisation has taken placed using a electrode
modified with nickel complex able to bind a histidine
present in an engineered AChE [123]. Recently Instamboulie
et al. have developed a highly sensitive detection of
organophosphorus insecticides using magnetic microbeads
and Ni-His affinity binding. This method, owing to the
absence of diffusion barriers, showed a lower detection limit
and a fast response time than a biosensor based on enzyme
immobilised by entrapment on azide. This system, however,
is characterised by not so high reproducibility [126].

Another type of immobilisation consists of the enzyme
immobilised close to the electrode surface with a high degree
of control over the molecular architecture of the recognition
interface by means of self assembled monolayer (SAM)
[127]. The affinity of thiols for some metal surfaces,
particularly gold, makes alkanethiols ideal for the preparation
of modified electrodes. Somerset et al. have developed a gold
electrode modified with mercaptobenzothiazole and either
poly(o-methoxyaniline) or poly(2,5-dimethoxyaniline) [128,
129]. An AChE based amperometric biosensor was devel-
oped by immobilisation of the enzyme onto a self assembled
modified gold electrode using as 3-mercaptopropionic,
glutaraldehyde and (N’-cyclohexy-N’-(2-morpholinoethyl)
carbodiimide methyl-p-toluenesulfonate by Pedrosa et al.
[130, 131]. The acetylcholinesterase biosensor was also
constructed by means of gold nanoparticles and cysteamine
assembled on glassy carbon paste [132] or by single walled
carbon nanotubes wrapped by thiol terminated single strand
oligonucleotide (ssDNA) on gold [133].

In order to increase the storage stability in a dry state,
which is a key point to commercialise the ChE biosensor,
the immobilisation should maintain the enzyme activity
also in a dry state for several days. For this purpose, several
stabilizer mixtures were employed for an additional
stabilization of enzyme as well as reported by Gibson’s
group [134–137]. For example, Vakurov et al. have
investigated different types of immobilisation using Dro-
sophila AChE. The enzyme non-covalently immobilized
onto polyethyleneimine modified screen-printed carbon
electrodes showed an improvement of stability when
compared to non-immobilized AChE, AChE covalently
immobilized onto dialdehyde and polyethyleneimine mod-
ified electrodes. Several stabilizer mixtures were also
employed for an additional stabilization of AChE, demon-
strating higher storage stability in the dry state with
dextran-sulphate/sucrose or polygalacturonic acid/sucrose
mixtures [138].

Reactivation

In the case of irreversible inhibition the inhibitor binds
covalently the active site. In order to have repeated

measurements, it was necessary to i) reactivate the ChE
biosensor or ii) employ microfrabrication technique which
allows the use of a small amount of the enzyme making the
measurement cost effective for a single use of the biosensor
with no reactivation of the inhibited ChE.

In the case of reactivation, this step is usually performed
with oximes by a nucleophilic attack at the phosphorylated
enzyme, enabling the release of insecticides from the
catalytic site of ChE [139]. AChE inhibited by organo-
phosphorus insecticides can be reactivated by means of
pralidoxime chloride [109, 140] or 2-pyridinealdoxime
methochloride [141]. Reactivation of the inhibited AChE
was investigated using both 2-PAM (Pyridine-2-aldoxime
methyliodide) [107] and TMB-4 (4-formylpyridinium bro-
mide dioxime). TMB-4 was found to be a more efficient
reactivator under repeated use, retaining more than 60% of
initial activity after 11 reuses, whereas in the case of 2-
PAM, the activity retention dropped to less than 50% after
only six reuses [142]. In another case of AChE inhibition,
the reactivation was carried out with repetitive injections of
substrate, if the concentration of insecticides is lower than 1
ppm [48] or adding 0.4 mM sodium fluoride [143].
Reactivation of inhibited AChE is dependent on both
amount of reactivator and the time of phophorylated
enzyme state; in fact if the enzyme is phoshorylated
(inhibited) and left for a period of time without exposing
it to the reactivator a phenomenon called “ageing” occurs.
In the ageing there is a molecular rearrangement of the
alkylphosphate groups attacked to the residue serine which
renders the inhibited enzyme more resistant to reactivation
becoming permanently inhibited [144]. However the ageing
changes in function of the inhibitor tested: Du et al. have in
fact observed that after 5 h of paraoxon exposing at 25 nM
the activity was restored at 90% [145] while the ageing of
Soman is very fast [146].

Effect of substrate, incubation time, enzyme loading
and pH

In the case of irreversible inhibition, the high substrate
concentration can be chosen in order to have a higher
output signal. For AChE biosensor a concentration of 1
acetylthiocholine mM was adopted [50]. Usually in the case
of AChE biosensor, the acetycholine or acetylthiocholine
was chosen and for BChE butyrylcholine or butyrulthiocho-
line. However the investigation of the effect of acetylcho-
line substrate using BChE biosensor or butyrylcholine in
the case of AChE biosensor was investigated. The results
obtained showed that neither AChE nor BChE biosensor is
entirely specific to its basic substrate; AChE catalysed
100% of its substrate and 15% of butyrylcholine, while
BChE 100% its natural substrate and 35% acetylcholine
[114]. In order to obtain higher sensitivity in the case of
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biosensor format for insecticides and nerve agents, acetyl-
choline or acetylthiocholine for AChE biosensor and
butyrylcholine or butyrylthiocholine for BChE biosensor
is highly suggested.

The incubation time is the reaction time of the enzyme
with the inhibitor. For irreversible inhibition it is possible to
achieve lower detection limits using longer incubation
times; in fact, usually the degree of the enzyme inhibition
increases with the incubation time [147] until reaching a
plateau [148]. The incubation time is usually chosen as
compromise between a sensitive measurement and a
measurement carried out in a reasonable time [149]. In
literature is possible found incubation times comprised
between few minutes (5 min [46], 10 min [120], 15 min
[119], 30 min [50], 40 min [111]) until 2 days [110]. In our
opinion, the incubation time should be not longer than 1
h because one of the biosensor advantage than i.e. HPLC
should be the short time of analysis. In addition, the
detection of carbamates using a long incubation time can
allow to the reactivation of the enzyme inhibited. In order
to increase the sensitivity of the biosensor, in our view it is
better varying the enzyme loading than to use the
incubation time longer than 1 h. In fact, for irreversible
inhibition the degree of inhibition depends of the enzyme
concentration. In details, the enzyme concentration should
be chosen taking in consideration that: i) the amount of
enzyme immobilised should give a measurable signal and
that ii) the lowest amount of enzyme is necessary to achieve
the lowest detection limit. In this context is very useful to
have a highly sensitive enzymatic product detector and an
enzyme immobilisation that does not decrease the enzy-
matic activity. An example can be the biosensor reported by
Sofiropoulou et al. in which they have used a very low
concentration of highly sensitive double mutant of the
Drosophila melanogaster immobilised in porous carbon
that allows the detection of dichlorvos down to 10−17 M
[150] or the sonochemically fabricated AChE micro-
electrode arrays that allows dichlorvos, paraoxon, parathion
and azinphos detection down the concentration of ∼1×
10−17 M, 1×10−17 M, ∼1×10−16 M and ∼1×10−16 M,
respectively [151]. The sensitivity can be also increased by
using the cholinesterase enzyme from different sources
[152–156].

For the selection of the pH, it should be considered that
certain enzymes have ionic groups on their active site and
these groups must be in a suitable form such as the serine
group in the catalytic site of ChE enzymes. As reported in
literature, the optimum pH for the free enzyme is pH=
8 while the pH can be shifted when the enzyme is
immobilised to pH=7 as in the case of AChE immobilised
onto Ca-alginate gel beads [157]. However the acid pH
should be avoided, in fact in the case of insecticide
detection during wine fermentation [118] or in orange juice

[158] it is necessary to adjust the pH towards neutral
value.

Measurement of insecticides and nerve agents in presence
of organic solvents

In general, the extraction of pesticides is carried out using
organic solvents as reported in the official methods for
pesticides detection (EPA) [43], but is important also the
choice of an appropriate organic solvent to reduce the
enzyme inactivation.

To understand the possibility to use the organic solvents
for insecticide detection with biosensor, their effect on ChE
activity was investigated. This effect has been shown to be
quite variable and dependent on the immobilisation used
and on the polarity of the organic solvent. The influence of
acetonitrile, methanol and ethanol on ChE immobilised into
polyvinyl alcohol functionalised with methyl pyridinium
methyl sulfate (PVA-SbQ) has been reported showing an
increase of the output current in 5% of acetonitrile and 10%
in ethanol [159–161]. The influence of ethanol was
investigated also by Wilkins et al. using ChE immobilised
by polyethylenimine and glutaraldehyde [162]. The biosen-
sor constructed by SAM immobilisation was employed to
diazinon and fenthion in acetone-saline phosphate buffer
solution or ethanol-saline phosphate buffer solution with
satisfactory results [163]. Generally the amount of organic
solvent should be not higher than 5%, as also reported by
Pohanka et al., suggesting that convenient solvents were
propan-1,2-diol and isopropanol [71]. An interesting ap-
proach was reported by Arduini et al. [164] and Schulze et
al. [165]. They demonstrated that organic solvents, which
are completely insoluble in aqueous phase, such as hexane
or octanol in the first case, or octanol in the second case,
caused only a marginal reduction of enzyme activity (less
than 5%) and can be used for the extraction and
measurement of insecticides without effect on enzyme
activity. However it has been also demonstrated that
concentrations of hydrophilic solvents higher than 10%
can influence the enzymatic activity [164] or the enzymatic
kinetics [159].

A different method was chosen by Campanella et al.,
demonstrating the suitability of a bi-enzymatic biosensor
(BChE + ChOx) to work in the organic phase (chloroform-
n-hexane 1:1 mixture) [166].

Cholinesterase biosensor applications for nerve agents
measurement

Despite of the appearance of some papers reporting
biosensors for nerve agents, only few papers (summarised
in Table 1) have effectively tested nerve agent compounds
such as Sarin, Soman, Tabun and VX [55, 71, 167–171]; in
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many papers, in fact, model compounds such as paraoxon
or the diisopropylfluorophosphate (DFP) were analysed
[107, 172–175].

White et al. [167] demonstrated the application of AChE
based detection of Sarin using planar wave guide absor-
bance spectroscopy. Detection of levels of Sarin as low as
0.1 ppb in solution and 0.014 mg·m−3 (2.6 ppb) in vapour
are reported. Lee et al. have described an assay system
based on biotin-labeled ChE with streptavidin for nerve
agent detection in liquid samples. LODs for Soman and
Sarin were 0.018 ppb and 0.084 ppb, respectively, for 10
min assay. In addition the system was also employed to
detect spiked soil demonstrating that the method provided a
quick and reliable way to test the toxicity of contaminated
soil or surface [168]. Arduini et al. have developed a BChE
biosensor immobilising the enzyme on screen printed
electrodes modified with Prussian Blue. The system was
challenged towards two different concentrations of Sarin
gas (0.1 mg·m−3 and 0.5 mg·m−3) at different incubation
times (from 30 sec up to 10 min) demonstrating that it is
possible to detect the Sarin at the concentration of 0.1
mg·m−3 with only 30 sec of incubation time [55]. The
AChE biosensor was also developed by Pohanka et al.,
measuring Tabun, Sarin, Soman, Cyclosarin, and VX in
solution with detection limits equal to 5.88×10−10 M and
8.51×10−10 M for Sarin and VX, respectively [71]. The bi-
enzymatic biosensor AChE-ChOx was employed to detect
Sarin at nM levels [169]. All these results confirm the
possibility to use the ChE biosensor as a prompt system of
alarm for people security.

Cholinesterase biosensor for insecticides detection
and application in environmental and food safety

As reported recently by Amine at al. [33], despite the
elevated number of publications on biosensors based
enzyme inhibition, the majority of these systems are not
applied to real samples. Some papers which report the
applications of ChE biosensors in real samples are showed
in Table 2.

A portable fiber optic biosensor was employed to detect
real water samples (drinking water, bottle mineral water and
ground water) without sample preparation step. The
samples were spiked with carbaryl and dichlorvos obtaining
insecticide recovery ranges between 85% and 110% [176].
The bi-enzymatic AChE-ChOx based on Prussian Blue
screen printed electrodes was used to detect down to 2×
10−8 M chloropyrifos-methyl, 5×10−8 M coumaphos, and
8×10−9 M carbofuran in aqueous solution and grape juice.
The optimal conditions for grape juice pre-treatment were
determined to diminish interference from the sample matrix
[119]. The monoenzymatic AChE or BChE based on
Prussian blue screen printed electrode was employed by
Suprun et al. for monitoring the degradation of insecticides
in wine fermentation [118] and by Arduini et al. to detect
insecticides in waste water and river water samples. In the
former case, in order to decrease the matrix interferences
the electrolysis of grape juice and evaporation of ethanol
were carried out [50], in the second one the samples did not
require any treatment obtaining recovery range values
between 79% and 125%. In these cases the organo-
thiophoshate insecticides were electrochemically oxidised
before the analysis because, as largely reported in literature,
the oxidised form is able to inhibit the enzyme more
strongly [177]. This means that organothiophoshate insec-
ticides itself are weak inhibitors of ChE: in fact, only their
oxo form is toxic. However in literature (Table 2),
sometimes low detection limits using organothiophosphate
is shown, and this could be ascribed to i) a possible mistake
using parathion spontaneously oxidated to paraoxon ii) the
use of organothiophosphate coupled to chemical or electro-
chemical oxidation in order to have organophophate–oxo
iii) the use of a very sensitive biosensor [50, 177].

The omethoate residue was detected in cotton rose
hibiscus leaves by means of an amperometric biosensor
with a recovery comprised between 98.6% and 107.7%
[178]. Several real water samples obtained from Beilun
Seaport and the branch river of YangtzeJiang River
(Zhejiang province of China) were analysed by means of
a mediator free ChE amperometric biosensor in flow

Table 1 ChE biosensors for nerve agents detection

Transducer Enzyme Nerve agents detected in solution and relative
detection limit

Applications Ref

Amperometric, screen printed electrode
modified with Prussian Blue

BChE Sarin 12 ppb, VX 14 ppb Sarin in vapour
(0.1 mg/m3)

[55]

Potentiometric AChE (biotinilated) Soman 0.018 and Sarin 0.084 ppb Sarin in soil [168]

Amperometric, screen printed electrode AChE Tabun 1.48×10−8 M, Sarin 5.88×10−10 M,
Soman 1.07×10−8 M, Cyclosarin 9.12×10−9 M

– [71]

Amperometric, glassy carbon electrode
modified with gold-platinumNPs

AChE-ChOx Sarin 4×10−8 M [169]

Planar wave guide absorbance
spectroscopy

AChE Sarin 0.1 ppb Sarin in vapour
(0.014 mg/m3)

[167]
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injection analysis. The results are in agreement with the
results obtained by GC-MS [179]. A portable biosensor was
developed by Hildebrandt et al. for screening neurotoxic
agents in water samples without sample preparation and
processing [180]. The same authors have also applied the
portable system in seawater, ground and river water, tea,
orange juice and milk [181]. River water sample was also
tested by means of piezoelectric biosensor with a recovery
between 60.8% and 91% [182]. A highly sensitive and
rapid food screening test based on a disposable screen
printed AChE biosensor was developed by Schulze et al.
The analytical system was successfully validated and
applied to 26 fruit and vegetable samples and 23 samples
of processed infant food [158]. The organophosphorus and
carbammic insecticides were also measured in extract of
sheep wool [183], potable, river and lake water samples
[47, 133, 184], milk [185], grape and vine leaf samples
[186, 187], wheat and durum wheat [188–190], apple skin
[191], orange juice [165], garlic [192], lettuce, rice, onion
[193, 194], in samples of fruit, vegetable and dairy product
[48, 195] and directly in tomato [196]. In the last case, the
insecticides were measured without any previous manipu-
lation of the sample, in fact the biosensor was immersed
directly in the tomato pulp obtaining a recovery of 83.4%
and showing a very low interference of the matrix
components. The results reported have showed the real
possibility to detect organophosphorous and carbammic
insecticides in real sample. However, in our view it is very
important to stress the fact that the ChE biosensor can be
adopted as screening method to detect organophosphorous
and carbammic insecticides in real samples. In fact with a
portable instrument [176, 180, 181] and with a simple [165]
or even without any treatment of the real sample [196], a
measurement of these insecticides can be carried out.
However, as reported below, the resolution of mixture of
insecticides requires supplementary approachs. In our view,
the biosensor can be really useful in routine analysis to
detect the presence/absence of these insecticides. Then,
only the samples resulted positive will be submitted to
further analyses by sophisticated techniques such as HPLC
or GC-MS, in order to investigated in details which
insecticide is present. This approach can be really advan-
tageous in terms of cost and time of analysis.

Cholinesterase biosensor and bioassay for aflatoxin B
detection (reversible inhibitors)

ChE enzyme biosensors can be used also to detect several
ChE reversible inhibitors such as glycoalkaloids, heavy
metals (Cu, Fe, Mn), nicotine, cocaine, fluoride, and drugs
(eserine, amitriptyline, bis(7)-THA, drofenine, 4-
aminoquinaldine, neostigmine, tacrine) as reported in our
recent work [197]. In this review we have focussed theT
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work on the reversible inhibition of ChE by AFB1, because
recently we have demonstrated the possibility to use the
ChE enzyme for AFB1 detection. In detail, we will describe
how to optimise the biosensor for AFB1 detection and how
to reduce the interferences owing to the possible presence
in the sample of organophosphorus and carbamic insecti-
cides. In addition, in this part will be mentioned biosensors
together with bioassays (in which the enzyme is in
solution), in order to have a wide and useful description
of this recent system.

Aflatoxins

The mycotoxin aflatoxins can be produced by several
species of the mould Aspergillus (Aspergillus flavus,
Aspergillus parasitucus and the rare Aspergillus nomius).
Their toxicity is due to the capacity of aflatoxins to
covalent binding DNA and proteins[198]. The aflatoxin
B1 (AFB1) is the most acutely and chronically toxic
member of the aflatoxin family. The legal limits set for
AFB1 or for total aflatoxins vary significantly from country
to country (e.g. for total aflatoxins from 0 to 50 ng·g−1)
[199]. Their documented impact on both human and animal
health and on economic aspects of international trade
involving food and animal feeds is reported [200] and for
these reasons useful analytical methods are necessary for its
detection.

The current reference methods are primarily chromato-
graphic, relying on methods such as high performance
liquid chromatography (HPLC) [201] or enzyme linked-
immunoassay (ELISA) as an alternative approach [202].
Recently the possibility to detect AFB1 by means of ChE
biosensor was reported with the advantage i) to be a cost
effective, miniaturized, easy to use analytical system in
respect of the chromatographic technique and ii) to avoid
the use specific antibodies and, indirectly, the use of
animals in order to produce these “receptors” respect of
ELISA system. In this part of the review will be described
the parameters that should be investigated in order to obtain
a ChE bioassay or biosensor for AFB1 detection.

Effect of enzyme sources, incubation time and enzyme
loading

The first work that has reported the ability to inhibit AChE
enzyme was published on Toxicology by Cometa et al.
[203]. In this work the inhibition of AChE extracted from
mouse brain by AFB1, was studied obtaining IC50 equal 10
ppm. In order to obtain an analytical system with higher
sensitivity an investigation of ChEs from various sources
such as AChE from electric eel, BChE from equine serum,
AChE from drosophila melanogaster wild type and
mutants [32], Human recombinant AChE [204], Human

BChE, AChE from Torpedo Californica [31] was reported
in literature demonstrating in all cases the best sensitivity of
the AChE from electric eel for AFB1 detection.

When an enzymatic system should be constructed, either
in the case of bioassay or biosensor, in our view it is very
important to know the type of inhibition. In the case of
AChE inhibition by AFB1 it is known that is a reversible
inhibition. A reversible inhibition allows that the degree of
inhibition is independent of the incubation time and of the
enzyme loading, which means that the time of analysis can
be made very shortly because no extended incubation time
is required. Furthermore, the amount of enzyme present can
be increased in order to obtain a high signal in a short
reaction time. The short response time represents an
important advantage for AFB1 detection if compared with
insecticides. In details, in fact the investigation of the
degree of inhibition at fixed concentration of AFB1 (60
ppb) using various concentrations of AChE (70 mU mL−1,
40 mU mL−1 and 7 mU mL−1) allows to obtain the same
degree of inhibition around 50%; and a similar result was
obtained in the study of the effect of incubation time (the
time of reaction between the AFB1inhibitor and AChE) on
the degree of inhibition [32]. Absence of incubation time is
usually chosen [32, 205].

In the case of reversible inhibition is also important to
know if the inhibition is competitive or not in nature. In the
case of AChE inhibition by AFB1, as reported in literature
[32], the degree of inhibition does not change with substrate
concentration indicating that the inhibition is not compet-
itive in nature; this means that the study of substrate is not
required to optimise the analytical system thus it is possible
to choose the concentration of substrate sufficiently high to
give a detectable signal in a short time.

In conclusion, in the case of bioassay or biosensor for
AFB1 detection can be used high concentration of
enzyme, no incubation time, sufficient high concentration
of substrate because is a reversible inhibition. This means
that knowing the type of inhibition is possible to optimise
the ChE biosensor for AFB1 without the investigation of
the effect of each parameter (incubation time, enzyme
loading and substrate concentration) on the degree of
inhibition.

Immobilisation

On the contrary of ChE biosensor for insecticides detection
in which a lot of immobilisations were investigated, in the
case of ChE biosensor only four immobilisations were
reported in literature. Hansmman et al. have developed a
AChE biosensor depositing 3 μL of 1:1 mixture of
polyvinylalcohol and the enzyme on cobalt-phthalocyanine
modified screen printed electrode and polymerised under
neon light at 44°C for 3 h. This sensor allows to detect a
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minimum concentration of 3 μM of AFB1 corresponding to
1 ppm [31]. The physical immobilisation of AChE to detect
AFB1 at ppb levels was investigated by Arduini et al. in
order develop an amperometric biosensor using AChE
immobilised on Prussian Blue-modified screen-printed elec-
trodes [206]. The AChE immobilised in a gelatine layer
allows obtaining a LOD of 100 ppb. Pohanka et al. have
developed a biosensor with gelatine layer using human
recombinant AChE and obtaining IC50=100 ppb [204]. n
our opinion the investigation of different types of
immobilisation should be carried out to reach a lower
detection limit comparable with the detection limit
obtained with the enzyme in solution. The presence of a
sensitive biosensor for AFB1 detection is more advanta-
geous than the ChE biosensor for insecticides, because a
reversible inhibition usually is characterised by the total
recovery of the enzyme activity after inhibitor measure-
ment by means of a simple washing of the biosensor with
an advantage in terms of time of analysis and cost-
effective of the system.

Effect of organic solvents

The AFB1 is normally extracted from many contaminated
agricultural samples using mixtures of organic solvents
such as methanol, acetonitrile, chloroform or acetone. In the
case of bioassays, the effect of methanol on the AChE
activity was evaluated. Arduini et al. [32] have investigated
first, the effect of methanol on enzymatic activity observing
that at 50% methanol, the AChE activity decreased by 30%
while the same percentage of methanol does not affect the
degree of inhibition This interesting result has demonstrated
that it is possible to determine AFB1 using a percentage of
methanol as high as 50%, that is diluting the AFB1

extracted from the sample only two fold.

The effect of methanol was also evaluated using an
electrochemical system in which AChE was present in
solution coupled with an amperometric ChOx biosensor. In
this case a biosensor response decrease of 15% was
observed with only 5% of methanol (v/v) [207]. This high
effect was ascribed by the authors to methanol i) onto the
AChE enzymatic activity ii) on stability of enzymatic ChOx
membrane. The serious effect of methanol for assay based
on AChE was also highlighted by Pohanka et al. [205].
These results showed the need to check every time the effect
of organic solvents used to extract the AFB1 on AChE
activity in order to avoid a wrong overestimation of the AFB1.

Cholinesterase bioassay for AFB1 detection for food safety

The applications of the analytical system based on AChE
inhibition for AFB1 detection in food up to now are limited
to the bioassay systems (Table 3). A bioassay with the
spectrophotometric detection was applied to detect the
AFB1 in barley samples with a recovery values comprised
between 98% and 101% [32]. The bioassay using a ChOx
biosensor was applied to detect AFB1 in olive oil obtaining
recovery values higher than 75% [207]. These results seem
to confirm the applicability of this system to real samples.

How to improve the selectivity of cholinesterase biosensor

In order to give a complete overview of ChE biosensors is
important to stress that in the case of real samples the ChE
biosensor is not a selective system because organophos-
phorus and carbamic insecticides and some other com-
pounds have an inhibition effect on ChE. In fact often is
reported the total cholinesterase inhibitors [208] and for this
reason Luque de Castro and Herrera in their review
mentioned that the inhibition biosensor as questionable

Table 3 AChE biosensors and bioassays for AFB1 detection

Transducer Enzyme/immobilisation Detection limit
or IC50

Applications in
real samples

Ref

Biosensor

Amperometric, screen printed electrode modified
with Prussian Blue

AChE/entrapment in gelatine
layer

100 ppb [206]

Amperometric, screen printed electrode AChE/entrapment in gelatine
layer

IC50=100 ppb [204]

Amperometric, screen printed electrode modified
with CoPc

AChE entrapment by PVA 1 ppm [31]

Bioassay

Optical (Ellman’s method) AChE in solution 10 ppb Barley [32]

Eelectrochemical, creen printed electrode modified
with Prussian Blue

AChE in solution /ChOx
biosensor

10 ppb Olive oil [207]

Electrochemical, screen printed electrode AChE in solution 4.8 ppb [205]
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device [209]. This behaviour can be a disadvantage because
other techniques are required in order to evaluate which
inhibitor is present. However this aspect can be also an
advantage taking in consideration that this system is a
screening method. In this way, a relevant example was
reported by Dzyadevych et al. [210]. The authors have
investigated the photodegradation of methyl parathion and
the toxicity assessment of the resulting mixture including
the main degradation photoproducts. The monitoring of
photodegradation by means of HPLC and ChE biosensor
has showed that the inhibition effect with biosensor
increases dramatically as soon as the photodegradation
begins. In addition the toxicity curve does not exactly
follow the curve of appearance of methyl paraoxon which
is more toxic than the initial insecticides methyl parathion
[210]. These results suggested that some intermediate
products can be more toxic than the insecticide itself and
the toxicity can be revealed with biosensor but not i.e. with
GC-MS or HPLC. This means that biosensors can be very
useful tool to understand the presence of possible toxic
compounds able to inhibit the ChE, and only the samples in
which the inhibition is observed will be measured by the
reference method with a relevant saving in terms of time
and cost of analysis.

However to improve the selectivity of the system an
interesting approach is reported in literature using ChE
enzymes sensitive and selective towards a specific insecti-
cide coupled with chemometric calculations [211–213]. In
fact, as reported in an interesting review [214], recombinant
AChEs have been undertaken to increase the sensitivity of
AChE to specific organophosphates and carbamates using
site-directed mutagenesis and employing the enzyme in
different assay formats. For example, an amperometric
biosensor array has been developed to measure insecticides
mixture of dichlorvos and methylparaoxon. This system is
composed by three screen printed electrodes that incorpo-
rate three different AChE enzymes: AChE from electric eel
and two different genetically modified Drosophila mela-
nogaster enzymes. The triplet inhibition responses were
then modelled using Artificial Neural Network as process-
ing tool, allowing the resolve of the insecticides mixture
[213].

The selectivity was investigated by Korpan et al. by
adding the ethylenediamine tetraacetate in the working
solution in order to decrease the interferences of heavy
metals and also to co-immobilise phosphotriesterase to
render the biosensor insensitive to organophosphorus
insecticides [215].

The selectivity between reversible (AFB1) and irrevers-
ible inhibitors (insecticides) can be also improved using a
kinetic approach [207]. Taking in consideration that for the
irreversible inhibition (insecticides) a certain incubation
time and a low concentration of the enzyme are necessary,

and on the contrary, for the AFB1 (reversible inhibitors) the
degree of inhibition is independent of the enzyme loading
and of the incubation time, it is possible suppose that the
high concentration of the enzyme adopted for example in
the AFB1 bioassay together with no incubation time allow
avoiding the interferences due to the insecticides eventually
present in real samples.

This hypothesis was then confirmed in the case of AFB1

determination in olive oil samples [207]. In this case, the
authors in order to evaluate the effect of the insecticide
interferences have tested some insecticides at 50 pbb level.
Keeping in mind the different types of inhibition in the case
of insecticides and AFB1 i) no incubation time was taken ii)
the reaction time was decreased to 1 min iii) the enzyme
concentration was increased up to 40 mU·ml−1 and
optimising the protocol for the AFB1 extraction from olive
oil, no inhibition by insecticides was observed. The results
obtained demonstrated that the selection of experimental
conditions for sample treatment and measurement should be
taken into consideration to avoid interferences from the
presence of insecticides in samples during the AFB1

measurement.

Conclusion

This review highlighted the analytical parameters that
should be investigated in order to increase the assay
sensitivity using inhibition biosensors. In fact in the case
of ChE biosensor for nerve agent and insecticide detection
high incubation time and low enzyme loading allows to
detect these inhibitors at a very low concentration. Different
approaches should be applied in the case of ChE biosensor
for AFB1 detection where no incubation time is required
and the degree of inhibition is almost independent of the
enzyme loading with a consequent fast analysis time. The
knowledge of the type of inhibition allows thus to optimize
in a fast way the biosensor in order to increase the
performance of the system and also to reduce the
interferences, however current efforts in ChE biosensor
are directed towards the development of more reliable
systems with increase selectivity.

The review reports also a survey of many examples of
ChE biosensors for organophosphorus and carbammic
insecticides, nerve agents and AFB1 underlying the
application of these biosensors in real samples. Even if
in this paper the applications in real samples are not so
much reported the results obtained have showed good
recovery values allowing also some applications in the
field as screening procedures. So the ChE biosensors in
our opinion can be considered a valid screening system
able to detect a toxic compounds behaving as a “family
doctor”.
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