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ROBUST M-TESTS 

FRANCO PERACCHI 
New York University 

This paper investigates the local robustness properties of a general class of mul- 
tidimensional tests based on M-estimators. These tests are shown to inherit the 
efficiency and robustness properties of the estimators on which they are based. 
In particular, it is shown that small perturbations of the distribution of the 
observations can have arbitrarily large effects on the asymptotic level and power 
of tests based on estimators that do not possess a bounded influence function. 
An asymptotic 'admissibility' result is also presented, which provides a justi- 
fication for tests based on optimal bounded-influence estimators. 

1. INTRODUCTION 

The problem of the robustness of a test, that is, the stability of its level and 
power under small changes in the underlying probability distribution of the 
observations, has received considerable attention in the statistical literature, 
mainly with reference to one-dimensional tests or the linear model (Rieder 
[18], Schrader and Hettmansperger [22], Lambert [14], Rousseeuw and Ron- 
chetti [21], Kent [12], Ronchetti [19], Wang [25], and Hampel et al. [7]), but 
has been largely ignored by econometricians. This paper investigates the lo- 
cal robustness properties of a broad class of multidimensional tests, called 
M-tests because they are based on M-estimators. This class of tests includes 
most common tests in econometrics, such as Wald, score and Hausman tests. 

We study the asymptotic properties of M-tests under small perturbations 
of the assumed probability distribution of the observations. The particular 
kind of perturbations that we consider are "contamination models" where 
the assumed distribution is contaminated, with small but positive probabil- 
ity, by some extraneous distribution. This is a convenient way of represent- 
ing the fact that an econometric model is at best an approximation to the true 
data-generation process, and this approximation may be adequate for the 
majority but not all the observations. Our approach builds on earlier work 
of Rieder [18], Rousseeuw and Ronchetti [21], Ronchetti [19], and Wang [25] 
for one-dimensional, one-sided tests, and on results of Hampel et al. [7] for 
the linear model. We show that contamination of the assumed model can 
have very serious effects, leading to tests that are biased and inconsistent. 

This paper is based on a chapter of my dissertation at Princeton University. I am very grateful to my advi- 
sors, Angus Deaton, Whitney Newey, and Elvezio Ronchetti, for their generous guidance. I also thank Roger 
Koenker, Quang Vuong, and two anonymous referees for helpful comments. An earlier version of this pa- 
per was presented to the 1988 North American Summer Meetings and the 1988 European Meetings of the 
Econometric Society. 
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However, contamination may also increase the power of a test against alter- 
natives that are in the same direction as the asymptotic bias of the statistic 
on which the test is based. 

An M-test is called locally robust if a small amount of contamination has 
only a small effect on its asymptotic level and power. We show that local ro- 
bustness is guaranteed whenever the estimator on which the test statistic is 
based has a bounded influence function. This provides a further justification 
for the use of bounded-influence estimators, since not only point estimates 
but also inference are relatively unaffected by a small amount of contami- 
nation. 

For the one-dimensional case, Ronchetti [19] showed that optimal 
bounded-influence estimators lead to tests that are most powerful in the class 
of locally robust tests. In the multidimensional case, tests based on optimal 
bounded influence estimators cannot be shown to have maximal power 
against all directions, but we can prove an asymptotic "admissibility" result 
that provides a justification for their use. 

The rest of this paper is organized as follows. Section 2 contains defini- 
tions and basic assumptions. Section 3 examines the asymptotic properties 
of M-tests under sequences of contaminated local alternatives. Section 4 il- 
lustrates with the example of testing linear restrictions in a linear regression 
model subject to gross-errors. Section 5 characterizes the class of locally ro- 
bust M-tests. Section 6 contains the asymptotic "admissibility" result. 

The following notation will be used: Fo denotes the true distribution func- 
tion (d.f.) of a single observation and EO denotes expectations taken with re- 
spect to Fo. Expectations taken with respect to a member F0 of a parametric 
family of d.f.'s are denoted by E0. Expectations taken with respect to any 
other d.f. F are denoted by EF. 

2. THE STATISTICAL MODEL AND THE CLASS 
OF M-ESTIMATORS 

For simplicity, we shall consider the case when the observations Z1, .. ., ZN 

are randomly drawn from some unknown probability distribution, identified 
with its cumulative distribution function. 

Assumption A. 1. Z1, .. . ,ZN are independently and identically distributed 
random vectors with values in Z c IR' and common d.f. Fo. 

Typically, Fo is unknown, but a priori knowledge, convenience, or sim- 
ply, custom may suggest restricting Fo to some family 3f of d.f.'s on Z. 

DEFINITION 1. The assumed statistical model is a triple (f, 0, 6), where 
3f is a set of d.f. 's on Z, 0 is a nonempty subset of RP, and 0 is a functional 
that maps 3f onto 0. U 

The pair (0,0) defines the parameterization of the model. The model is 
parametric if the functional 0 is one-to-one, and is semiparametric otherwise. 
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To allow for model misspecification we do not require that Fo belong to i. 
The set consisting of Fo and I will be denoted by %0. 

DEFINITION 2. An M-estimator associated with the criterion function 
PN, where PN is a real function defined on Z x 0, is a global maximum ON 

of Inl PNp(Zn,G0) U 

The class of M-estimators contains most common econometric estimators, 
such as least squares, maximum-likelihood (ML), and generalized method of 
moments estimators (see, e.g., Hansen [8]). To guarantee that ON exists as- 
ymptotically and converges to some limit, we make the following assump- 
tions: 

Assumption A.2. The parameter space 0 is an open subset of IRP. 

Assumption A.3. 

(a) There exists a real function p, defined on Z x 0 and integrable with respect to 
any F E lo, and an open neighborhood cN c 0 such that N N1 N= I PN(Zn, 0) 
converges almost surely-F, uniformly on A, to EFP (Z, 0). 

(b) VF E ao, EFP (Z, * ) has a unique global maximum on A\. 
(c) Vz E Z, p (z, ) is continuous on A and its right derivative, denoted by ( *(z), 

exists everywhere on A and is square integrable with respect to any F E 30. 
(d) VFe %0, EFP(Z, ) is differentiable on Al and (a/0f)EFp(Z,*) = EFn(Z,). 

We shall associate with the "score" 7(z, 0) a functional 0(.): 0 -\ A, im- 
plicitly defined by the "asymptotic first-order condition" EF77(Z, 0(F)) = 0, 
where 0(F) is the unique root that corresponds to the global maximum of 
EFP(Z,0). The functional 0 is assumed to be "regular" in the following 
sense: 

Assumption A.4. 

(a) 0 can be extended to some convex set i*. containing 1o and all empirical d.f.'s 
on Z. 

(b) 0 is Fisher-consistent, that is, 0 (F) = 6(F), VF C a. 
(c) VFe E:, EF-q(Z, -) is differentiable on Al and the matrix P(F) =-(a/aG') 

EF?1(Z, 0(F)) exists and is positive definite for all FE ao. 
(d) There exists a function if, defined on Z x 150 and integrable with respect to 

any G E i*, such that lime,0[0((l - c)F+ EG) - 0(F)]/e exists and is equal 
to EG TI(Z,F) for all F E 30. 

(e) O(FN) - 0(Fo) = N-1UEN1 'I(Zn,FO) + op(N -12). 

Assumption A.4(a) justifies replacing ON by the asymptotically equivalent 
functional 0(FN), where FN denotes the empirical d.f. of the observations. 
Convexity of i*. is needed because 0 is to be evaluated at "e-contamination 
models" of the form (1 - e)F + cG, where c e [0, 1]. Assumption A.4(b) and 
the weak convergence of FN to FO imply that 0(FN) is consistent for 0(Fo) 
whenever the model is correctly specified and 0 is sufficiently smooth. As- 
sumptions A.4(c)-(d) provide the necessary smoothness conditions. Finally, 
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the asymptotic linearity assumption A.4(e) implies that 0(FN) is J-consis- 
tent and asymptotically normal. This set of assumptions is satisfied by most 
M-estimators, including regular ML and GMM estimators (see, e.g., Serfling 
[23] and Fernholz [2]). 

Even if an estimator is consistent at the assumed model, slight violations 
of the model assumptions may result in a bias. As a quantitative measure of 
local robustness, Hampel [7] and Rousseuw [20] proposed the supremum of 
the asymptotic bias of 0, as an estimator of 0(F), under an arbitrarily small 
contamination of the d.f. F by a point mass. 

DEFINITION 3. Let 0 be a functional defined on i* and let A Z,) be the 
d.f. with mass concentrated at z C Z. Then the influence function (IF) of 6 
at the d.f F E 9F* is defined by 

IF(z,6,F) = lim [6((1 - E)F+ EA(Z))) - (F)]/E, 

provided that the limit exists. If IF(z, 6,F) exists for all z C Z, then 
ey*(6,F) = supze IzjIF(z, 0,F)Il, where 11 .1 denotes some norm on RP, is 
called the (gross-error) sensitivity of 6. If y *(O6, F) < oo, then 0 is called 
B- (bias-) robust at F E 

Given Assumption A.4(d), IF(z, 0,F) exists for all z EE Z and FE 90 and 
is equal to I(z,F). Assumption A.4(c) then implies that IF( ,O,F) = 

P(F)1( * ,(F)) (see, e.g., Serfling [23]). Thus, 6 is B-robust at F if and 
only if its score function is bounded. Further, since 

EFIF(Z, 6, F)IF(Z, 6,F)' = P(F)-1 Q(F) (P(F)-1), 

where Q(F) = EFq(Z,6(F))-q(Z,d(F))', Assumption A.4(e) implies that 
N1'2[6(FN) - 0(Fo)] -4 N(0,P&-QoPo- 1), where PO = P(FO), Qo = Q(Fo), 
and -4 denotes convergence in distribution as N-* oo. 

Testable hypotheses concerning the data are often defined by a set of 
smooth but possibly nonlinear restrictions on the parameter of interest. 

Hypothesis 3C0. Fo C I' and h(6(Fo)) = 0, where h: :0 -* Rq is a contin- 
uously differentiable function with Jacobean matrix of full rank q c p. 

Often attention focuses on a subset of 0. If 0 is partitioned as (/3', ')', where 
/ is the parameter of primary interest and -y is a nuisance parameter, our 
setup covers the case when IC0 only places restrictions on ,3, as in Holly 
[10]. It also covers the case when the restrictions are in either "mixed" or "ex- 
plicit" form, as in Gourieroux and Monfort [5]. 

Under our set of assumptions, imposing 3Co in estimation gives two func- 
tionals, 00 and X0, implicitly defined on i* by the "asymptotic first-order 
conditions" 

EFV7(Z,6o(F)) - [(a/aO)h(0o(F))]xo(F) = 0 (1) 

h(0o(F)) = 0 (2) 
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where 0O(F) corresponds to the restricted M-estimator of 0(F), and XO(F) 
corresponds to the Lagrange multiplier associated with the constraint. We 
also consider three other functionals defined on i*, namely 

h(F) = h(0(F)) 

go(F) = S-EF7i(z, oO(F)) 

A(F) =D. [0(F) - (fl] 

where S is some r x p matrix with rank r < p, and D is some k x p matrix 
with rank k < p. These functionals represent the basis for Wald, score, and 
Hausman-type tests, respectively. First we derive expressions for the IF of 
these functionals. All proofs are gathered in the Appendix. 

Proposition 1. If Assumptions A.1-A.4 hold and F satisfies 3C0, then 

IF(z, h,F) = H(F) * IF(z, 0,F) 

IF(z,90,F) = S[H(F)'R(F)H(F)] IF(z, 0,F) 

IF(z, A,F) = D[P(F)'-H(F)'R(F)H(F)] IF(z, 0,F), 

where H(F) = (a/a0')h (0(F)) and R(F) = [H(F)P(F)-1H(F)'] -1. 

Thus, if t is any of the functionals h, go, or A0, the IF of t at a distribution 
F which satisfies 3C0 is a (possibly singular) linear transformation of the IF 
of the unrestricted estimator 0, and so t inherits both the asymptotic normal- 
ity and the robustness properties of 0. In particular, if 0 is B-robust at F, then 
t is also B-robust at F Further, if Fo satisfies 3C0, then N 12F(FN) A 
N(O, AV (t, Fo)), where AV (t, Fo) = To P6-1 Qo PO- 1 To and To is the matrix de- 
fining the linear mapping from IF( ,0,Fo) to IF(- ,F0). Notice that 
AV( i,FO) may be singular even if PJ-'QoPO`7 is positive definite. In the case 
of go, this typically occurs when r > q, and in the case of A when k > q. 

3. M-TESTS AND THEIR ASYMPTOTIC PROPERTIES 

Any of the functionals h, go, or A can be used to construct tests of the hy- 
pothesis 3C0 against the alternative that Fo E i but h (0(Fo)) ? 0. 

DEFINITION 4. An M-test statistic is a quadratic form 

N = Ni tANiN 

where tN = i(FN), t is any of the functionals h, go, or A, and AN is an esti- 
mate of the generalized (g-) inverse of AV(tF,Fo). A test that rejects JCo for 
large values of .N is called an M-test. a 

The use of a g-inverse of AV(i,FO), denoted by -, is necessary because the 
asymptotic variance of F may be singular. When t is equal to h one obtains 
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the Wald test statistics. When i is equal to go one obtains a test statistic 
based on some linear combination of the elements of the score vector, such 
as the classical score test statistic and Neyman's C( a)-test statistic (Neyman 
[16]). Finally, when i is equal to A one obtains the test statistic proposed, 
among others, by Hausmann [9]. The class of M-tests, therefore, contains 
most common tests in econometrics, with the only exception being likelihood 
ratio-type tests, such as the robust tests proposed by Ronchetti [19] for the 
linear model. These tests are excluded because their asymptotic distribution 
may involve mixtures of x2 variates (Foutz and Srivastava [4], Holly [10], 
and Basawa and Koul [1]), in which case computation of tail probabilities 
is complicated. 

In order to study the local robustness properties of M-tests, we first de- 
rive the asymptotic distribution of the statistic 6N under a sequence of con- 
taminated local alternatives of the null hypothesis 3C0. 

DEFINITION 5. Let FO satisfy 3CO, and let [ FON } be a sequence of d.f. 's 
in iY converging to FO and such that G(FON) = 0(FO) + N-126. A sequence 
of contaminated local alternatives I G N is a sequence of d.f. 's in i* such 
that F,,N,c= (1 -CN)FON + ENG, where EN= N- 12C, e C [0,1]. E 

This formalizes the notion that the assumed model may be adequate for the 
majority but not all the observations. In particular, putting G = A(Z) gives 
a way of modeling the occurrence of outliers and gross-errors. Notice that 
contamination is allowed to vanish asymptotically at the same rate with 
which #(FON) converges to 0(FO). This is a standard way to prevent its ef- 
fects from becoming negligible or dominating completely as the sample size 
increases (see, e.g., Rieder [18], Wang [25], and Ronchetti [19]). When e = 
0 we have a standard sequence of local alternatives. When e > 0 and 6 = 0 
the common d.f. of the observations is in a shrinking neighborhood of the 
set of d.f.'s specified by 3CO. 

Proposition 2. Let Assumptions A. 1-A.4 hold. Further assume that AN 

converges in probability to AV(t ,Fo)- under the sequence of contaminated 
local alternatives [FJ,N,G J. Then, for any choice of g-inverse of AV(i,FO), 
the asymptotic distribution of 6N under the sequence of contaminated local 
alternatives is a noncentral x2 with number of degrees of freedom equal to 
the rank of AV(i,Fo) and noncentrality parameter 

v (6, , G) = o'To AV(t ,Fo)- To0p, 

where s? = 6 + EEGIF(Z, 0,FO). Moreover, the noncentrality parameter is in- 
variant for any choice of g-inverse of AV(i,FO), and is equal to zero if and 
only if To0p = 0. 

When e = 0 (no contamination) or EGIF(Z, 0,FO) = 0, Proposition 2 con- 
tains as special cases a number of well-known results, including the ones of 
Newey [15], Gourieroux and Monfort [5], and Holly [10]. When e > 0, the 
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effect of asymptotically vanishing contamination is only to modify the non- 
centrality parameter of the asymptotic X2 distribution of N* 

Let Ta be an asymptotic a-level M-test defined by the rejection region 
6(-N R +: N > XA 1, where Xa\< denotes the upper a th quantile of a central 

X2 distribution with it = rankAV(i,FO) degrees of freedom. By Proposi- 
tion 2, the nominal asymptotic local power of T, against a specific alter- 
native 6 is given by vr(6) = 1 2- G)(Xa), where x 2, denotes the 
noncentral x2 d.f. with yt degrees of freedom and noncentrality parameter 
v. Under the sequence of contaminated local alternatives IF, N,G the ac- 
tual asymptotic local power of Tar against a specific alternative 6 is given by 
ir(6,e,G) = 1 - X,2v(6,,E,G)(Xa) and its actual asymptotic level by a (E,G) = 
7r (O, c, G). In general, 7r (6,c, G) will differ from -r (6), and ca (e, G) from oa. 
We now consider the relationship between the actual asymptotic level and 
power of Toe and the robustness properties of t. 

Proposition 3. If the conditions of Proposition 2 are satisfied, then un- 
der the sequence of contaminated local alternatives IFe,N,G: 

(a) ca (e, G)-as. 
(b) SupGea* a ( E, G) < 1 only if t is B-robust. 
(c) infGC 7rr(6,E,G) = a. 

Parts (a) and (b) assert, respectively, that the actual asymptotic level of Tat 

can be greater than the nominal level a, and that B-robustness of i is suffi- 
cient to guarantee that the actual probability of Type I error is bounded away 
from one. Part (c) asserts that there are alternatives against which the test 
has no power under model contamination. 

Proposition 4. If the conditions of Proposition 2 are satisfied, then un- 
der the sequence of contaminated local alternatives LF, N,G I: 

(a) The actual asymptotic local power of T, is smaller than the nominal one 
against any alternative 6 such that (COS K) I To6 IIAV < -(E/2)IIEG IF(z, i,FO)II, 
where the (pseudo) norm 1. - II and the angle K between the vectors To6 and 
EG IF(z, i,FO) are defined in the metric of AV (i,Fo)-. 

(b) T, is asymptotically biased against any alternative 6 such that 11TO611 < 
-2Ecos KIIEG IF(z, tF0)II. 

(c) Ta has no asymptotic power against any alternative 6 such that T06 = 
-CEG IF(z, i,Fo). 

This result establishes a relationship between the magnitude and the direc- 
tion of the asymptotic bias of t, and the set of departures from the null hy- 
pothesis against which rT, loses power under model contamination. In 
particular, Tat may lose power against alternatives that are in the opposite 
direction to the asymptotic bias of t, and is biased against alternatives that 
are in the opposite direction to the asymptotic bias of t but not too far from 
the null hypothesis. For alternatives that are in the same direction as the 
asymptotic bias of t, TaY is unbiased and has greater asymptotic power than 
nominal. 
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4. AN EXAMPLE 

As an example, let Z = (Y,X')' and consider the problem of testing for 
00 = 0 in the classical orthonormal linear regression model Y= X'0O + U, 
where the unobservable random variable U has an N(O, 1) distribution and 
EXX' = Ip. If the assumed model is correctly specified, optimal tests can be 
based on the ordinary LS estimator 6. The score and the IF associated with 
0 are both equal to x(y - x'O). Clearly, 0 does not have a bounded IF and 
so it is not B-robust. It is easily seen that all M-test statistics based on 6 are 
numerically the same, and their noncentrality parameter under a sequence 
of contaminated local alternatives {F, N,1A(Z) } is equal to 

v(6,E,A (Z)) = 6'6 + 2cub'x + E2u2x'x, 

where z = (y,x')' and u = y - x'00. 
We shall compare tests based on 0 with those based on the Huber estima- 

tor of regression 0 (see, e.g., Huber [11]). The score associated with 6 is equal 
to x*I'(y - x'f), where *I'(u) = min(c, max(-c, u)) and c is a finite, pos- 
itive constant. The IF of 6 at the assumed Gaussian model is therefore equal 
to [24(c) - ]-1x4x*(y -x'f), where 4' denotes the N(O,1) d.f. The M-test 
statistics based on 6 are not the same numerically, but under our sequence 
of contaminated local alternatives, they all have the same asymptotic x2 dis- 
tribution with noncentrality parameter 

(6,iE,,(Z,) = K(c) [6'6 + 2 ck6'x + 2 2a2x,x] 

where K(c) = [24(c) - 1]2/[E42I',(U)2] < 1 and iu = Ic(u)/[2I(c) - 1]. 
Let r and T denote two asymptotic a-level M-tests based, respectively, on 

6 and 6. The different asymptotic behavior of T and T under e-contamination 
depends on the differences between the IF's of the two estimators. This be- 
havior is summarized in Table 1. An illustration is provided in Figure 1. First 
consider the case when point-mass contamination occurs at a point (yl,x) 

TABLE 1. Asymptotic behavior of M-tests based on the LS and Huber 
regression estimators under sequences of e-contaminated local 

alternatives, with contamination at (y,x) 

Alternatives 
Asymptotic 

behavior LS Huber 

Loss of power l6:6'x < - (E/2)ux'xJ b6:6'x < - (E/2)uix'x) 

No power 6 = -cux 6 =-sux 

Biased test t6:6'xu < -(2E)'6'61 16:6'xii <-(2E) 6'6 

Note: u =y -x'00, u~ = '(u)/[24(c) -1]. 
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such that ul = Yi - x'60 = c. Let ?SLS and (3LS denote the set of alternatives 
against which r, based on the LS estimator, respectively, loses power and is 
biased, and let analogous sets SH and 63H be defined for X, based on the 
Huber estimator. In this case there are only small differences between T and 
T. In particular, since ul/li1 = 24?(c) - 1 < 1, ?H is slightly smaller than 
c?Ls and (6H is slightly larger than 6f3LS* 

Now consider the case when contamination occurs at a point (Y2,x) such 
that U2 = Y2 - x'O = 2c. Since i2 = ui, the behavior of ? does not change 
with respect to the first case. The behavior of r, however, is altered dramat- 
ically. In particular, since u2/iu2 = 2[24'(c) - 1] > 1, the set of alternatives 
against which r is biased is now much broader than for ?. The difference be- 
tween the two tests reflects the fact that while the Huber estimator is robust 
under this particular form of contamination, the LS estimator is not. 

5. LOCALLY ROBUST M-TESTS 

Clearly, what is crucial for a test is the effect of contamination on the deci- 
sion of rejecting or not rejecting the null hypothesis. This leads quite natu- 
rally to a definition of local robustness in terms of the effects of a small 
amount of contamination on the asymptotic level and power of a test. Re- 
lated approaches include Lambert [19], where robustness is defined in terms 
of the p-value of a test, and Field and Ronchetti [3], where robustness is de- 
fined in terms of the finite sample tail area of a test. 

DEFINITION 6. The IF of the asymptotic level and the IF of the asymp- 
totic local power of an M-test i at the d.f. F E i* are defined by 

IFL (Z, r,F) = (a2/a E2)I (0,E, A (z) )tO=0 

IFp(z, T,6,F) = 

provided that the appropriate limits exist. If IFL (z, T,F) and IFp(z, T,,F) 
exist for all z E Z, then yZ(7X, F) = supz I IFL (z, ,F)I and ey (r, F) = 

SupZEZ,6RERP I IFp(z, r, 6, F)I are called, respectively, the level- and power- 
sensitivity of r. An M-test r is called locally robust at the d.f. F if y ( T, F) 
and ryp( T, F) are both finite. U 

The definition of IFp is analogous to the one proposed by Ronchetti [19]. 
The definition of IFL is different, for it involves second derivatives. This 
is necessary because, for M-tests, the linear term in the expansion of 
lr(0,c-,A(z)) about e = 0 is equal to zero. -y*(r,F) and -y(r,F) provide a 
quantitative measure of the local robustness properties of r. When r is lo- 
cally robust its asymptotic level and power change little under a small amount 
of contamination, and these changes can be approximated using IFp and 
IFL. The next result provides expressions for the IFL and IFp of an M-test 
T in terms of the IF of the statistic t on which the test is based. 



78 FRANCO PERACCHI 

0.2 T I l 
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a ~~~~~~~BLS 
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LS-Bias of the LS estimator 
H- Bias of the Huber estimator (with c= 1.5) 
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BH - Huber-test biased 
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a 

FIGURE 1. Asymptotic behavior of M-tests based on the LS and Huber regression 
estimators under sequences of 5Wo contaminated local alternatives. (a) Contamina- 
tion at (y,x) = (3.5,1). (Figure continued on facing page.) 

Proposition 5. Let r be an M-test based on the statistic t. Then, under the 
conditions of Proposition 2, 

IFL (Z, -,F) oc IF (z,t',F)'AV (t',F) -IF (z, t,F) 

lFp(z, 7-,6, F) oc IF (z, t, F)'AV (ti,F) -IF (z, t, F). 

This proposition, which generalizes the results obtained by Hampel et al. [7] 
for one-sided tests of a single restriction, implies that, for a small E, the di- 
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FIGURE 1 continued. Asymptotic behavior of M-tests based on the LS and Huber 
regression estimators under sequences of 50/o contaminated local alternatives. (b) Con- 
tamination at (y,x) = (5,1). (For legend, see Figure 1 (a).) 

vergence between the actual and the nominal asymptotic level and power of 
r are both proportional to the squared norm of the IF of t in the metric of 
AV(ti,F)-. Thus, both the level- and power-sensitivity of X are proportional 
to the square of the so-called self-standardized sensitivity of t (Krasker and 
Welsch [13]), and so r is locally robust at F if and only if i is B-robust. Fi- 
nally, Propositions 1 and 5 together imply that if 6 is B-robust at F, then any 
M-test based on 0 is locally robust at F This provides a formal justification, 
in terms of robustness, for using M-tests based on some B-robust estimator. 
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6. OPTIMAL LOCALLY ROBUST M-TESTS 

In general, one is interested in optimality as well as robustness of a statisti- 
cal procedure. We shall discuss optimality with reference to a parametric 
model I' = {FO,0 E 01, with likelihood score function s(z,0) and a finite 
positive definite Fisher information matrix. If i' is correctly specified, M-tests 
based on the ML estimator are known to be asymptotically locally most pow- 
erful invariant. However, since the likelihood score need not be bounded, 
these tests need not be robust in general. Thus, consider the following ques- 
tion: Given a class of asymptotic M-tests with the same nominal level and 
the same local robustness properties, can we find one which is locally most 
powerful invariant? 

Since M-tests inherit the efficiency and local robustness properties of the 
estimators on which they are based, it seems reasonable to consider tests 
based on B-robust estimators with maximal asymptotic precision. Given a 
p.d. matrix M and a finite, positive constant c, an estimator that minimizes 
the trace of [AV(6,FO)M] among those for which y*(O,Fo) < c, is called op- 
timal B-robust at i with respect to (M,c). In the one-dimensional case 
(p = 1), Ronchetti [19] showed that an optimal B-robust estimator does lead 
to robust tests that are locally most powerful invariant. We now show that 
his result does not extend to general M-tests. 

For concreteness and without any loss of generality, let T be the class of 
Wald tests with the same asymptotic level at the assumed model. The vari- 
ous tests in 9T differ with respect to the choice of the unrestricted M-estima- 
tor 6. Let (R C T be the subset of locally robust Wald tests with the same 
level- and power-sensitivity at the assumed model. By Proposition 5, a test 
belongs to (R if it is based on an estimator 0 such that -y*(O,Fo) < c, where 
c depends on the given sensitivity bound for the test. Let ?(.) = h(0(.)) 
and let To be the matrix defining the linear mapping from IF( 0, FO) to 
IF( *, i, FO). Then a test in 61 is most powerful invariant if C maximizes the 
noncentrality parameter 6'T4 [T0AV(0,F0)TJ ]-T06 for all directions 6 and 
all values of 0, or equivalently, if C is optimal B-robust with respect to (M, c) 
for all choices of M. It turns out that, for p > 1 and c < oo, an optimal B- 
robust estimator depends on the choice of the matrix M and the norm 
for the estimator's sensitivity. Thus, one can only prove the following: 

Proposition 6. Let X E (R be a locally robust test based on an estimator 
that is optimal B-robust with respect to (M, c), and let * ( () denote its as- 
ymptotic local power function at the assumed model W. Then, there exists 
no other robust test X- E 61, with asymptotic local power function 7r () at i, 
such that wr(6) 2 * (6) for all 6, and vr(6) > v (6) for some 6. 

This proposition, which generalizes the result obtained by Hampel et al. [7] 
[Proposition 5, Section 7.3] for tests of linear restrictions in the linear model, 
provides a formal justification for using M-tests based on some optimal B-ro- 
bust estimator. It shows that ? is asymptotically "admissible," that is, no 
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other robust test in 61 is asymptotically as powerful as X against all alterna- 
tives, and more powerful against some of them. As the proof makes it clear, 
T has maximal asymptotic local power in (R against some alternatives, but 
not against all. Thus, choosing a particular optimal B-robust estimator im- 
plicitly corresponds to choosing a set of alternatives against which the result- 
ing robust test has maximal power. 

7. CONCLUSIONS 

Since statistical models are at best an approximation to the true process gen- 
erating the data, it would be desirable that inference remained stable under 
small deviations from the model assumptions. Unfortunately, this is not nec- 
essarily the case for tests based on estimators whose IF is not bounded. We 
show that this result holds for a broad class of tests that includes most com- 
monly used tests in econometrics. On the other hand, tests based on B-ro- 
bust estimators enjoy desirable local robustness properties, for both their 
level and power remain stable under small, but otherwise quite general, de- 
partures from the assumed model. In addition, if the underlying estimator 
attains the best trade-off between robustness and efficiency, these tests also 
attain the best trade-off between robustness and power. 
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APPENDIX 

Proof of Proposition 1. Replacing F by (1 - )F + EA (z) in (I)-(2), differentiating 
with respect to E and evaluating at c = 0 gives 

O = -P-IF(z,0o,F) + 71(Z,d0o(F)) - H'IF(z,X0,F) 

O = H*IF(z,d,Fo), (3) 

where P = P(F), H= (a/aO')h(O(F)), and we used the fact that, if F satisfies 3%, 
then 60(F) = 60(F) and Xo0(F) = 0. Premultiplying (3) by P' and rearranging gives 
the equation system 

Ip P-'H'] IF(z, do,F) = (IF(z, 6,F) 

LH 0 J IF(z,X0,F) JO 

By the usual partitioned inverse formulae: 

IF(z,do,F) = (IP - P-1H'RH) .IF(z,O,F) 

IF(z,XO,F) = RH*IF(z,b,F) 

where R = (HP-'H')-l. Therefore, 

IF(z, h, F) = H IF(z,O,F) 

IF(z,A, F) = DP-'H'RH IF(z, O,F) 

and, since g0(F) = S.EF (zAo (F)) = S H(Oo(F))'ko(F) 

IF(z,30,F) = SH'RH-IF(z,O,F). U 
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Proof of Proposition 2. Consider the limiting distribution of the normalized dif- 
ference N"12 [6(FN) - 6(Fo)] under the sequence of contaminated local alternatives 
F N, G 1. The distribution of N 12[6(FN) - 6(Fe,N,G)] is asymptotically normal with 

mean zero and variance converging to P6-'Q0P6-1. By Assumption A.4(c), 

(F,,N,G) - (FON) - ENEG IF(Z, ,FON) = (N-1/2), 

and by Fisher consistency [A.4(b)], O(FON) - (FO) = N 1/26. Thus, N 1/2[o (Fe N, G)- 

0(Fo)] = 6 + EEGIF(z,6,FON) + o(1), and so 

lim N "2[ 6(Fe, N,G) -(Fo)] = 6 + EEGIF(Z,06, FO) 

since FON -+ FO as N oo. Therefore, N2[ 0(FN - (Fo)] N(so, Po-1 QoP-,l) un- 
der the sequence of contaminated local alternatives. Because N"12 tN has the same as- 
ymptotic distribution as N/2 To[0 (FN) - 0(Fo)], it follows that under the sequence 
of contaminated local alternatives, N 1'2tN N(T0s, AV( i,Fo)). Since AV( i,F0) = 

TOP,' QoPo-'To, the column space of To is contained in the column space of 
AV(i,FO), and so Tosa is contained in the column space of AV (i,FO) for any so E IRP. 
The conclusions then follow from Theorem 1 of Vuong [24]. E 

Proof of Proposition 3. By Proposition 2, 7r (6, c, G) is a strictly increasing function of 
the noncentrality parameter v(6,c, G) = [Toa + EEG IF(z,j,Fo)]'AV(i,Fo)-[To + 
EEGIF(z,(i,Fo)]. Then a (E,G) 2( a, because a (E,G) = 7r(0,c,G) and v(O,E,G) is 
non-negative. The second part of (a) follows from the fact that v (0, E, G) need not be 
finite if t is not B-robust. Part (b) follows from the fact that v(6,c,G) = 0 if 6 = 

-EcEG IF(z, 0,Fo). 
Proof of Proposition 4. The actual asymptotic power of T is smaller than the nom- 

inal whenever 

p'T AV(i,FO)-To p < a'T AV(i,FO) T0a 

2 2E6'To AV(i,Fo)-EG IF(z, f,FO) 

+ E 2EG IF(z, t^,FO)'AV(t,FO)-EG IF(z, it,FO) < 0 

2e cos K || To0l l EG IF(z, i,Fo)lI + E2 l1EG IF(z, i,Fo)1l2 < 0 

(cos K)||1 To 6 1 <- (E/2) 11EG IF (z, t^ Fo) 11, 

where the (pseudo) norm 11 11 and the angle K between the two vectors T06 and 
EG IF(z, i,FO) are both defined in the metric of AV (i,FO)7 

Finally, r is asymptotically biased whenever 

so'T5 AV(t^,F0-T0os < E2EG IF(z, i,F0)' AV(i,F)-EG IF(z, ^,FO) 

A V'To AV(i,Fo)-To + 2c6'To AV(i,FO)-EG IF(z, i,FO) < 0 

|IToal2 + 2EcosKIITo6llIlEGIF(z, ,FO)ll < O 

||To6 11 <-2,E cos K 11 EG IF(z, t^Fo)jl. 

i- has no power whenever io'T,AV(t,Fo)- To0p = 0, or, equivalently, T06 = 

-,EG IF(z, i,FO). F 

Proof of Proposition 5. Immediate from the fact that the asymptotic local power 
of an M-test is a strictly increasing, continuously differentiable function of the non- 
centrality parameter. - 
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Proof of Proposition 6. The existence of an optimal test in 6R is equivalent to the 
existence of an M-estimator whose score function solves the following problem 

min E6n(Z,6)'Mq(Z,0) (4) 
-(, 8 ) ESJ 

s.t. E0o-(Z,O) =0 (5) 

E0 T1(Z, 0 )s(Z,O) = Ip (6) 

sup 11 I (Z, 0 ? 1 ' c (7) 
zeZ 

for a given c < cc, all 0 E 0, and all p.d. matrices M. The set SC is the set of func- 
tions that are square integrable with respect to all F E i. The objective functional 
(4) is the asymptotic mean squared error (MSE) criterion. Constraint (5) requires an 
estimator to be Fisher-consistent, (6) is a normalization condition under which the 
IF and the score function of an estimator are identical, and (7) is the B-robustness 
condition. Problems (4)-(7) are the same as the minimum norm problem in Perac- 
chi [17]. It follows from his results that when c = oo, that is, the robustness constraint 
is vacuous, a solution always exists, is invariant to the choice of the matrix M, and 
is equal to the likelihood score for the assumed parametric model. When c is finite, 
a solution exists if c is sufficiently large, but is invariant to the choice of M only if 
p = 1. When p > 1, the solution depends on M and the norm 11 * 11 for the estimator's 
sensitivity. Therefore, the estimator 0 that solves (4)-(7) is optimal only in a weak 
sense, namely with respect to a given MSE criterion. In turn, this implies that tests 
based on 6 are locally most powerful only against the set of alternatives implicitly de- 
fined by the matrix M. The conclusions of the proposition then follow from the fact 
that if A and B are p x p matrices, and trace AM < traceBM for some p.d. matrix 
M, then A - B is not a positive semidefinite matrix. A 
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