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Abstract: We consider the two-dimensional (2D) Hubbard model on the honeycomb
lattice, as a model for a single layer graphene sheet in the presence of screened Coulomb
interactions. At half filling and weak enough coupling, we compute the free energy, the
ground state energy and we construct the correlation functions up to zero temperature in
terms of convergent series; analyticity is proved by making use of constructive fermionic
renormalization group methods. We show that the interaction produces a modification
of the Fermi velocity and of the wave function renormalization without changing the
asymptotic infrared properties of the model with respect to the unperturbed non-inter-
acting case; this rules out the possibility of superconducting or magnetic instabilities in
the thermal ground state.

1. Introduction

The recent experimental realization of a monocrystalline graphitic film, known as graph-
ene [19], revived the interest in the low temperature physics of two–dimensional electron
systems on the honeycomb lattice, which is the typical underlying structure displayed
by single–layer graphene sheets. Graphene is quite different from most conventional
quasi–two dimensional electron gases, because of the peculiar quasi–particles disper-
sion relation, which closely resembles the one of massless Dirac fermions in 2 + 1
dimensions. This was already pointed out in [24] and further exploited in [23], where
the analogy between graphene and 2 + 1-dimensional quantum electrodynamics (QED)
was made explicit, and used to predict a condensed-matter analogue of the axial anomaly
in QED. From this point of view, graphene can be considered as a sort of testing bench
to investigate the properties of infrared QED in 2 + 1 dimensions. Recently, the experi-
mental observation of graphene greatly enhanced the study of the anomalous effects
induced by the pseudo-relativistic dispersion relation of its quasi particles, see [6] for
an up-to-date description of the state of the art. Among the most unusual and exciting
phenomena displayed by graphene, and already experimentally observed, let us mention
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the anomalous integer quantum Hall effect and the insensitivity to localization effects
generated by disorder. It is reasonable to guess that the unique properties of graphene
will have in the next few years several important applications in condensed matter and
in nano-technologies.

The main reason behind these anomalous effects lies in the geometry of the Fermi
surface, which at half filling is not given by a curve, as in usual 2D Fermi systems, but
is completely degenerate: it consists of two isolated points, as in one dimensional Fermi
systems. From a theoretical point of view, this fact completely changes the infrared
scaling properties of the propagator. It has been pointed out, see for instance [12] and
references therein, that, in the case of short-range electron-electron interactions, all the
operators with four or more fermionic fields are irrelevant in a Renormalization Group
(RG) sense; this suggests that the interaction should not affect too much the asymptotic
behavior of the model, at least at small coupling. It should be remarked however that
such RG analyses were performed only at a perturbative level, without any control on the
convergence of the expansion, and directly in the relativistic approximation, consisting
in replacing the actual dispersion relation by its linear approximation around the sin-
gularity; such approximation implies in particular the validity of a continuous Lorentz
U (1) symmetry that is not present in the original model.

The aim of this paper is to present the first rigorous construction of the low tempera-
ture and ground state properties of the 2D Hubbard model on the honeycomb lattice with
weak local interactions; this is achieved by rewriting the correlation functions in terms of
the resummed series, convergent uniformly in the temperature up to zero temperature, as
we prove by making use of the constructive fermionic renormalization group. We show
that indeed the interaction does not change the asymptotic infrared properties of the
model with respect to the unperturbed non-interacting case, but it produces a renormali-
zation of the Fermi velocity and of the wave function. Our result rules out the presence
of superconducting or magnetic instabilities at weak coupling; this is in striking con-
trast with the behavior of the 2D Hubbard model on the square lattice, where quantum
instabilities (corresponding to the magnetic or superconducting long range order that
are presumably present in the ground state) prevent the convergence of the perturbative
expansion in U for low enough temperatures.

2. The Model and the Main Results

2.1. The model. The grandcanonical Hamiltonian of the 2D Hubbard model on the
honeycomb lattice at half filling in the second quantized form is given by:

H� = −
∑

�x∈�
i=1,2,3

∑

σ=↑↓

(
a+
�x,σb−�x+�δi ,σ

+ b+
�x+�δi ,σ

a−�x,σ
)

+
U

3

∑

�x∈�
i=1,2,3

[(
a+
�x,↑a

−
�x,↑ −

1

2

)(
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�x,↓a

−
�x,↓ −

1

2

)

+

(
b+
�x+�δi ,↑b

−
�x+�δi ,↑ −

1

2

)(
b+
�x+�δi ,↓b

−
�x+�δi ,↓ −

1

2

)]
, (2.1)

where

1. � is a periodic triangular lattice, defined as � = B/LB, where L ∈ N and B is the
triangular lattice with basis �a1 = 1

2 (3,
√

3), �a2 = 1
2 (3,−

√
3).
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2. The vectors �δi are defined as

�δ1 = (1, 0), �δ2 = 1

2
(−1,
√

3), �δ3 = 1

2
(−1,−√3). (2.2)

3. a±�x,σ are creation or annihilation fermionic operators with spin index σ =↑↓ and
site index �x ∈ �, satisfying periodic boundary conditions in �x.

4. b±�x+�δi ,σ
are creation or annihilation fermionic operators with spin index σ =↑↓ and

site index �x + �δi ∈ � + �δ1, satisfying periodic boundary conditions in �x.
5. U is the strength of the on–site density–density interaction; it can be either positive

or negative.

Note that the Hamiltonian (2.1) is hole-particle symmetric, i.e., it is invariant under
the exchange a±�x,σ←→a∓�x,σ , b±�x+�δ1,σ

←→− b∓�x+�δ1,σ
. This invariance implies in particular

that, if we define the average density of the system to be ρ = (2|�|)−1〈N 〉β,�, with
N = ∑�x,σ (a+

�x,σa−�x,σ + b+
�x+�δ1,σ

b−�x+�δ1,σ
) the total particle number operator and 〈·〉β,� =

Tr{e−βH� ·}/Tr{e−βH�} the average with respect to the (grandcanonical) Gibbs measure
at inverse temperature β, one has ρ ≡ 1, for any |�| and any β.

Our goal is to characterize the low and zero temperature properties of the system
described by (2.1), by computing thermodynamic functions (e.g., specific free energy
and specific ground state energy) and a complete set of correlations at low or zero
temperatures. To this purpose it is convenient to introduce the notions of specific free
energy

fβ(U ) = − 1

β
lim|�|→∞ |�|

−1 log Tr{e−βH�}, (2.3)

of specific ground state energy e(U ) = limβ→∞ fβ(U ), and of Schwinger functions,
defined as follows.

Let us introduce the two component fermionic operators �±�x,σ =
(

a±�x,σ , b±�x+�δ1,σ

)

and let us write �±�x,σ,1 = a±�x,σ and �±�x,σ,2 = b±�x+�δ1,σ
. We shall also consider the oper-

ators �±x,σ = eHx0�±�x,σ e−Hx0 with x = (x0, �x) and x0 ∈ [0, β], for some β > 0; we

shall call x0 the time variable. We shall write �±x,σ,1 = a±x,σ and �±x,σ,2 = b±x+,σ , with

= (0, �δ1). We define

Sβ,�n (x1, ε1, σ1, ρ1; . . . ; xn, εn, σn, ρn) = 〈T{�ε1
x1,σ1,ρ1

· · ·�εn
xn ,σn ,ρn

}〉
β,�
, (2.4)

where xi ∈ [0, β] × �, σi =↑↓, εi = ±, ρi = 1, 2 and T is the operator of fermionic
time ordering, acting on a product of fermionic fields as:

T(�ε1
x1,σ1,ρ1

· · ·�εn
xn ,σn ,ρn

) = (−1)π�
επ(1)
xπ(1),σπ(1),ρπ(1) · · ·�επ(n)xπ(n),σπ(n),ρπ(n) , (2.5)

where π is a permutation of {1, . . . , n}, chosen in such a way that xπ(1)0 ≥ · · · ≥ xπ(n)0,
and (−1)π is its sign. [If some of the time coordinates are equal to each other, the arbi-
trariness of the definition is solved by ordering each set of operators with the same time
coordinate so that creation operators precede the annihilation operators.]

Taking the limit � → ∞ in (2.4) we get the finite temperature n-point Schwinger
functions, denoted by Sβn (x1, ε1, σ1, ρ1; . . . ; xn, εn, σn, ρn), which describe the prop-
erties of the infinite volume system at finite temperature. Taking the β → ∞ limit
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of the finite temperature Schwinger functions, we get the zero temperature Schwinger
functions, simply denoted by Sn(x1, ε1, σ1, ρ1; . . . ; xn, εn, σn, ρn), which by definition
characterize the properties of the thermal ground state of (2.1) in the thermodynamic
limit.

2.2. The non interacting case. In the non–interacting case U = 0 the Schwinger func-
tions of any order n can be exactly computed as linear combinations of products of
two–point Schwinger functions, via the well–known Wick rule. The two–point Schwin-
ger function itself, also called the free propagator, for x �= y and x − y �= (±β, �0), is
equal to (see Appendix A for details):

Sβ,�0 (x − y)ρ,ρ′ ≡ Sβ,�2 (x, σ,−, ρ; y, σ,+, ρ′)
∣∣∣
U=0

= 1

β|�|
∑

k∈Dβ,L

e−ik·(x−y)

k2
0 + |v(�k)|2

(
ik0 −v∗(�k)
−v(�k) ik0

)

ρ,ρ′
, (2.6)

where

1. k = (k0, �k) and Dβ,L = Dβ ×DL ;
2. Dβ = {k0 = 2π

β
(n0 + 1

2 ) : n0 ∈ Z} and DL = {�k = n1
L
�b1 + n2

L
�b2 : 0 ≤ n1, n2 ≤

L−1}, where �b1 = 2π
3 (1,
√

3), �b2 = 2π
3 (1,−

√
3) are a basis of the dual lattice�∗;

3. v(�k) =∑3
i=1 ei �k(�δi−�δ1) = 1 + 2e−i3/2k1 cos

√
3

2 k2; its modulus |v(�k)| is the disper-
sion relation, given by

|v�k | =
√(

1 + 2 cos(3k1/2) cos(
√

3k2/2)
)2

+ 4 sin2(3k1/2) cos2(
√

3k2/2). (2.7)

At x = y or x − y = (±β, �0), the free propagator has a jump discontinuity,
see Appendix A. Note that Sβ,�0 (x) is antiperiodic in x0, i.e. Sβ,�0 (x0 + β, �x) =
−Sβ,�0 (x0, �x), and that its Fourier transform Ŝβ,�0 (k) is well–defined for any k ∈ Dβ,L ,
even in the thermodynamic limit L → ∞, since |k0| ≥ π

β
. We shall refer to this last

property by saying that the inverse temperature β acts as an infrared cutoff for our theory.
If we take β, L → ∞, the limiting propagator Ŝ0(k) becomes singular at

{k0 = 0} × {�k = �p±F }, where

�p ±F =
(

2π

3
,± 2π

3
√

3

)
(2.8)

are the Fermi points (also called Dirac points, for an analogy with massive QED2+1

that will become clearer below). Note that the asymptotic behavior of v(�k) close to the
Fermi points is given by v( �p±F + �k′) � 3

2 (ik
′
1 ± k′2). In particular, if ω = ±, the Fourier

transform of the 2-point Schwinger function close to the Fermi point �pωF can be rewritten
in the form:

Ŝ0(k0, �pωF + �k′) = 1

Z0

(
−ik0 −v(0)F (−ik′1 + ωk′2) + rω(�k′)

−v(0)F (ik′1 + ωk′2) + r∗ω(�k′) −ik0

)−1

,

(2.9)
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where Z0 = 1 is the free wave function renormalization and v(0)F = 3/2 is the free
Fermi velocity. Moreover, |rω(�k′)| ≤ C

∣∣�k′|2, for small values of �k′ and for some positive
constant C .

2.3. The interacting case. We are now interested in what happens by adding a local
interaction. In the case U �= 0, the Schwinger functions are not exactly computable any-
more. It is well–known that they can be written as formal power series in U , constructed
in terms of Feynmann diagrams, using as the free propagator the function S0(x) in (2.6).
Our main result consists in a proof of convergence of this formal expansion for U small
enough, after the implementation of suitable resummations of the original power series.
Our main result can be described as follows.

Theorem 1. Let us consider the 2D Hubbard model on the honeycomb lattice at half
filling, defined by (2.1). There exist a constant U0 > 0 such that, if |U | ≤ U0, the specific
free energy fβ(U ) and the finite temperature Schwinger functions are analytic functions
of U, uniformly in β as β →∞, and so are the specific ground state energy e(U ) and the
zero temperature Schwinger functions. The Fourier transform of the zero temperature

two point Schwinger function S(x)ρ,ρ′
de f= S2(x, σ,−, ρ; 0, σ,+, ρ′), denoted by Ŝ(k),

is singular only at the Fermi points k = p±F = (0, �p±F ), see (2.8), and, close to the
singularities, if ω = ±, it can be written as

Ŝ(k0, �p ω
F + �k′) = 1

Z

( −ik0 −vF (−ik′1 + ωk′2)−vF (ik′1 + ωk′2) −ik0

)−1 (
1 + R(k′)

)
,

(2.10)

with k′ = (k0, �k′), and with Z and vF two real constants such that

Z = 1 + O(U 2), vF = 3

2
+ O(U 2). (2.11)

Moreover the matrix R(k′) satisfies ||R(k′)|| ≤ C |k′|ϑ for some constants C, ϑ > 0
and for |k′| small enough.

Remarks. 1) Theorem 1 says that the location of the singularity does not change in
the presence of interaction; on the contrary, the wave function renormalization and
Fermi velocity are modified by the interaction. Note also that, in the presence of
the interaction, the Fermi velocity remains the same in the two coordinate direction
even though the model does not display 90o discrete rotational symmetry, but rather
a 120o rotational symmetry.

2) The resulting theory is not quasi-free: the Wick rule is not valid anymore in the
presence of interactions. However, the long distance asymptotics of the higher order
Schwinger functions can be estimated by the same methods used to prove Theorem 1,
and it is the same suggested by the Wick rule.

3) The fact that the interacting correlations decay as in the non-interacting case implies
in particular the absence of magnetic long range order in the thermal ground state of
the system at weak coupling (we recall that the thermal ground state is by definition
the weak limit as β, |�| → ∞ of the grandcanonical Gibbs state e−βH� , see the
end of Sec.2.1). In fact, as a corollary of our construction, we find:

∣∣∣∣ lim
β,|�|→∞ 〈�S�x · �S�y〉β,�

∣∣∣∣ ≤ C
1

|�x− �y|4 , (2.12)
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where, if �x ∈ �, the spin operator �S�x is defined as: �S�x = a+
�x,· �σ a−�x,·, with σi ,

i = 1, 2, 3, the Pauli matrices; similarly, if �x ∈ � + �δ1, �S�x =
∑
σ b+
�x,· �σb−�x,·. Note

that it is known, at least in the microcanonical ensemble [15], that the ground state
is unique and it has zero total spin; however, so far, existence of Néel order in the
ground state was neither proven nor ruled out.

4) Similarly to what was remarked in the previous item, one can exclude the existence
of superconducting long range order in the thermal ground state: the Cooper pairs
correlations decay to zero at infinity at least as fast as the spin-spin correlations in
(2.12).

5) Our analysis can be extended in a straightforward way to the case of exponentially
decaying interactions (instead of local interactions). However, if the decay is slower,
the result may change. In particular, in the presence of 3D Coulomb interactions,
the electron-electron interaction becomes marginal (instead of irrelevant), in a ren-
ormalization group sense [13].

6) Previous analyses of the Hubbard model on the honeycomb lattice were performed
only at a perturbative level, without any control on the convergence of the weak
coupling expansion, and directly in the Quantum Field Theory approximation, con-
sisting in the replacement of Ŝ0(k) by its linear approximation around the Fermi
points, see for instance [12] and references therein.

The proof of the theorem is based on constructive fermionic Renormalization Group
(RG) methods, see [2,17,21] for extensive reviews. It is worth remarking that the result
summarized in Theorem 1 is one of the few rigorous constructions of the ground state
properties (including correlations) of a weak coupling 2D Hubbard model. The only
other example we are aware of is the Fermi liquid construction in [8], applicable to cases
of weakly interacting 2D Fermi systems with a highly asymmetric interacting Fermi
surface. Related results include the construction of the state at temperatures larger than
a BCS-like critical temperature [4,7], or the computation of the first contribution to the
ground state energy in a weak coupling limit [11,16,22].

The rest of the paper will be devoted to the proof of Theorem 1. In Sec. 3.1 we review
the Grassmann integral representation for the free energy and the Schwinger functions.
In Sec.3.2 we start to describe the integration procedure leading to the computation of
the free energy, and in particular we describe how to integrate out the ultraviolet degrees
of freedom. In Sec.3.3 we complete the proof of convergence of the series for the free
energy and the ground state energy. In Sec.3.4 we describe the proof of convergence
for the series for the Schwinger functions, with particular emphasis on the case of the
two-point Schwinger function. In the Appendices we provide further details concern-
ing the non-interacting theory, the ultraviolet integration, the thermodynamic and zero
temperature limits.

3. Renormalization Group Analysis

3.1. Grassmann integration. In this subsection, for any β and L finite, we rewrite the
partition function and the Schwinger functions of model (2.1) in terms of Grassmann
functional integrals, defined as follows.

Let M ∈ N and χ0(t) be a smooth compact support function that is 1 for t ≤ a0
and 0 for t ≥ a0γ , with γ > 1 and a0 a constant to be chosen below, see the lines
preceding (3.29). Let D∗β,L = Dβ,L ∩ {k0 : χ0(γ

−M |k0|) > 0}, with Dβ,L defined after
(2.6). We consider the finite Grassmann algebra generated by the Grassmannian variables
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{�̂±k,σ,ρ}σ=↑↓, ρ=1,2
k∈D∗β,L and a Grassmann integration

∫ [∏
k∈D∗β,L

∏ρ=1,2
σ=↑↓ d�̂+

k,σ,ρd�̂−k,σ,ρ
]

defined as the linear operator on the Grassmann algebra such that, given a monomial
Q(�̂−, �̂+) in the variables �̂±k,σ,ρ , its action on Q(�̂−, �̂+) is 0 except in the case

Q(�̂−, �̂+) = ∏k∈D∗β,L
∏ρ=1,2
σ=↑↓ �̂

−
k,σ,ρ�̂

+
k,σ,ρ , up to a permutation of the variables. In

this case the value of the integral is determined, by using the anticommuting properties
of the variables, by the condition

∫
⎡

⎢⎣
∏

k∈D∗β,L

ρ=1,2∏

σ=↑↓
d�̂+

k,σ,ρd�̂−k,σ,ρ

⎤

⎥⎦
∏

k∈D∗β,L

ρ=1,2∏

σ=↑↓
�̂−k,σ,ρ�̂

+
k,σ,ρ = 1. (3.13)

Defining the free propagator matrix ĝk as

ĝk = χ0(γ
−M |k0|)

( −ik0 −v∗(�k)
−v(�k) −ik0

)−1

(3.14)

and the “Gaussian integration” P(d�) as

P(d�)=
⎡

⎢⎣
σ=↑↓∏

k∈D∗β,L

−β2|�|2 [χ0(γ
−M |k0|)]2

k2
0 + |v(�k)|2 d�̂+

k,σ,1d�̂−k,σ,1d�̂+
k,σ,2d�̂−k,σ,2

⎤

⎥⎦

· exp

⎧
⎪⎨

⎪⎩
−(β|�|)−1

σ=↑↓∑

k∈D∗β,L
�̂+

k,σ,· ĝ
−1
k �̂−k,σ,·

⎫
⎪⎬

⎪⎭
, (3.15)

it turns out that
∫

P(d�)�̂−k1,σ1,ρ1
�̂+

k2,σ2,ρ2
= β|�|δσ1,σ2δk1,k2

[
ĝk1

]
ρ1,ρ2

, (3.16)

so that, if x − y �∈ βZ× {�0},

lim
M→∞

1

β|�|
∑

k∈D∗β,L
e−ik(x−y)ĝk = lim

M→∞

∫
P(d�)�−x,σ�+

y,σ = S0(x − y), (3.17)

where S0(x − y) was defined in (2.5) and the Grassmann fields �±x,σ are defined by

�±x,σ,ρ =
1

β|�|
∑

k∈D∗β,L
e±ikx�̂±k,σ,ρ, x ∈ (−β/2, β/2] ×�. (3.18)

Let us now consider the function on the Grassmann algebra,

V (�) = U
∑

ρ=1,2

∫
dx�+

x,↑,ρ�
−
x,↑,ρ�

+
x,↓,ρ�

−
x,↓,ρ

= U

(β|�|)3
∑

ρ=1,2

∑

k,k′,p
�̂+

k−p,↑,ρ�̂
−
k,↑,ρ�̂

+
k′+p,↓,ρ�̂

−
k′,↓,ρ, (3.19)
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where, in the first line, the symbol
∫

dx must be interpreted as
∫

dx =
∫ β/2

−β/2
dx0

∑

�x∈�
, (3.20)

and, in the second line, the sums over k,k′ run over the set D∗β,L , while the sums over p

run over the set 2πβ−1Z×DL (with the constraint that k − p,k′ + p ∈ D∗β,L : p is the
transferred momentum).

We introduce the following Grassman integrals:

e−β|�|FM,β,L =
∫

P(d�)e−V (�), (3.21)

SM,β,�
n (x1, σ1, ε1, ρ1; . . . ; xn, σn, εn, ρn) =

∫
P(d�)e−V (�)�

ε1
x1,σ1,ρ1 · · ·�εn

xn ,σn ,ρn∫
P(d�)e−V (�)

.

(3.22)

Note that these Grassmann integrals are well defined for any U ; they are indeed poly-
nomials in U , of degree depending on M and L .

It is well known that the Grassmann integrals in (3.21) and (3.22) can be used to
compute the thermodynamic properties of the model with Hamiltonian (2.1), as ensured
by the following proposition:

Proposition 1. For any β, L < +∞, assume that there exists U0 independent of β and L
such that FM,β,L and SM,β,�

n are analytic in the complex domain |U | ≤ U0, uniformly
convergent as M →∞. Then, if |U | ≤ U0,

− 1

β|�| log Tr{e−βH�} = − 2

β|�|
∑

�k∈DL

log
(

2 + 2 cosh(β|v(�k)|)
)

+ lim
M→∞ FM,β,L ,

(3.23)

and the Schwinger functions at distinct space-time points, defined in (2.4), can be com-
puted as

Sβ,�n (x1, σ1, ε1, ρ1; . . . ; xn, σn, εn, ρn)

= lim
M→∞SM,β,�

n (x1, σ1, ε1, ρ1; . . . ; xn, σn, εn, ρn). (3.24)

For completeness, the proof of Proposition 1 is reported in Appendix B; its result guar-
antees that the thermodynamic properties of the model with Hamiltonian (2.1) can be
inferred from the analysis of the Grassmann integrals (3.21) and (3.22), provided that the
latter satisfy the uniform analyticity properties assumed in Proposition 1. The rest of the
paper is devoted to the study of the Grassmann integrals (3.21) and (3.22); our analysis
implies, in particular, the uniform analyticity properties assumed in Proposition 1, see
Corollary 1 and Sect. 3.4 below.

It is important to note that both the Gaussian integration P(d�) and the interaction
V (�) are invariant under the action of a number of remarkable symmetry transforma-
tions, which will be preserved by the subsequent iterative integration procedure and
will guarantee the vanishing of some running coupling constants (see below for details).
Let us collect in the following lemma all the symmetry properties we will need in the
following:
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Lemma 1. For any choice of M, β,�, both the quadratic Grassmann measure P(d�)
defined in (3.15) and the quartic Grassmann interaction V (�) defined in (3.19) are
invariant under the following transformations:

(1) spin exchange: �̂εk,σ,ρ←→�̂εk,−σ,ρ;

(2) global U (1): �̂εk,σ,ρ → eiεασ �̂εk,σ,ρ , with ασ ∈ R independent of k;

(3) spin SO(2):

(
�̂εk,↑,ρ
�̂εk,↓,ρ

)
→ Rθ

(
�̂εk,↑,ρ
�̂εk,↓,ρ

)
, with Rθ =

(
cos θ sin θ
− sin θ cos θ

)
and θ ∈ T

independent of k;

(4) discrete spatial rotations: �̂±
(k0,�k),σ,ρ → e∓i �k(�δ3−�δ1)(ρ−1)�̂±

(k0,T1�k),σ,ρ , with

T1 �x de f= R2π/3 �x; note that in real space this transformation simply reads
a±
(x0,�x),σ → a±

(x0,T1�x),σ and b±
(x0,�x),σ → b±

(x0,T1�x),σ ;

(5) complex conjugation: �̂±k,σ,ρ → �̂±−k,σ,ρ , c→ c∗, where c is a generic constant
appearing in P(d�) and/or in V (�);

(6.a) horizontal reflections: �̂±(k0,k1,k2),σ,1
←→�̂±(k0,−k1,k2),σ,2

;

(6.b) vertical reflections: �̂±(k0,k1,k2),σ,ρ
→ �̂±(k0,k1,−k2),σ,ρ

;

(7) particle-hole: �̂±
(k0,�k),σ,ρ → i�̂∓

(k0,−�k),σ,ρ .

(8) inversion: �̂±
(k0,�k),σ,ρ → i(−1)ρ�̂±

(−k0,�k),σ,ρ .

Proof. A moment’s thought shows that the invariance of V (�) under the above sym-
metries is obvious, and so is the invariance of P(d�) under (1)-(2)-(3). Let us then
prove the invariance of P(d�) under (4)-(5)-(6.a)-(6.b)-(7)-(8). More precisely, let us
consider the term

∑

k

�̂+
k,σ,· ĝ

−1
k �̂−k,σ,· =

−i
∑

k

�̂+
k,σ,1k0�̂

−
k,σ,1 −

∑

k

�̂+
k,σ,1v

∗(�k)�̂−k,σ,2 −
∑

k

�̂+
k,σ,2v(

�k)�̂−k,σ,1

−i
∑

k

�̂+
k,σ,2k0�̂

−
k,σ,2 (3.25)

in (3.15), and let us prove its invariance under the transformations (4)-(5)-(6.a)-(6.b)-
(7)-(8).

Under the transformation (4), the first and fourth term in the second line of (3.25) are
obviously invariant, while the sum of the second and third is changed into

−
∑

k

[
�̂+
(k0,T1�k),σ,1v

∗(�k)e+i �k(�δ3−�δ1)�̂−
(k0,T1�k),σ,2 + �̂+

(k0,T1�k),σ,2e−i �k(�δ3−�δ1)v(�k)�̂−
(k0,T1�k),σ,1

]

= −
∑

k

[
�̂+

k,σ,1v
∗(T−1

1
�k)e+i �k(�δ1−�δ2)�̂−k,σ,2 + �̂+

k,σ,2e−i �k(�δ1−�δ2)v(T−1
1
�k)�̂−k,σ,1

]
. (3.26)

Using that v(T−1
1
�k) = ei �k(�δ1−�δ2)v(�k), as it follows by the definition v(�k) =

∑
i=1,2,3 ei �k(�δi−�δ1), we find that the last line of (3.26) is equal to the sum of the sec-

ond and third term in (3.25), as desired.
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The invariance of (3.25) under the transformation (5) is very simple, if one notes that
v(−�k) = v∗(�k), it follows by the definition of v(�k).

Under the transformation (6.a), the sum of the first and fourth term in the second line
of (3.25) is obviously invariant, while the sum of the second and third is changed into

−
∑

k

�̂+
(k0,−k1,k2),σ,2v

∗(�k)�̂−(k0,−k1,k2),σ,1
−
∑

k

�̂+
(k0,−k1,k2),σ,1v(

�k)�̂−(k0,−k1,k2),σ,2

= −
∑

k

�̂+
k,σ,2v

∗((−k1, k2))�̂
−
k,σ,1 −

∑

k

�̂+
k,σ,1v((−k1, k2))�̂

−
k,σ,2. (3.27)

Noting that v((−k1, k2)) = v∗(k), one sees that this is the same as the sum of the
second and third term in (3.25), as desired.

Similarly, noting that v((k1,−k2)) = v(k), one finds that (3.25) is invariant under
the transformation (6.b).

Under the transformation (7), the sum of the first and fourth term in (3.25) is obviously
invariant, while the sum of the second and third term is changed into

+
∑

k

�̂−
(k0,−�k),σ,1v

∗(�k)�̂+
(k0,−�k),σ,2 +

∑

k

�̂−
(k0,−�k),σ,2v(

�k)�̂+
(k0,−�k),σ,1

= −
∑

k

�̂+
k,σ,2v

∗(−�k)�̂−k,σ,1 −
∑

k

�̂+
k,σ,1v(−�k)�̂−k,σ,2. (3.28)

Using, again, that v(−�k) = v∗(�k), we see that the latter sum is the same as the sum
of the second and third term in (3.25), as desired.

Finally, under the transformation (8), all the terms in the right hand side of (3.25) are
separately invariant, and the proof of Lemma 1 is concluded. ��

3.2. Free energy: The ultraviolet integration. We start by studying the partition function
�M,β,L = e−β|�|FM,β,L with FM,β,L defined in (3.21). Note that our lattice model has
an intrinsic ultraviolet cut-off in the �k variables, while the k0 variable is not bounded
uniformly in M . A preliminary step to our infrared analysis is the integration of the
ultraviolet degrees of freedom corresponding to the large values of k0. We proceed in
the following way. We decompose the free propagator ĝk into a sum of two propagators
supported in the regions of k0 “large” and “small”, respectively. The regions of k0 large
and small are defined in terms of the smooth support function χ0(t) introduced at the
beginning of Sec. 3.1; the constant a0 entering its definition is chosen so that the sup-

port of χ0

(√
k2

0 + |�k − �p+
F |2
)

and χ0

(√
k2

0 + |�k − �p−F |2
)

are disjoint (here | · | is the

euclidean norm over R
2
/�∗). In order for this condition to be satisfied, it is enough that

2a0γ < 4π/(3
√

3); in the following, for reasons that will become clearer later, we shall
assume the slightly more restrictive condition 2a0γ < 4π/3− 4π/(3

√
3). We define

fu.v.(k) = 1− χ0

(√
k2

0 + |�k − �p+
F |2
)
− χ0

(√
k2

0 + |�k − �p−F |2
)

(3.29)

and fi.r.(k) = 1− fu.v.(k), so that we can rewrite ĝk as:

ĝk = fu.v.(k)ĝk + fi.r.(k)ĝk
de f= ĝ(u.v.)(k) + ĝ(i.r.)(k). (3.30)
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We now introduce two independent sets of Grassmann fields {�(u.v.)±k,σ,ρ } and {�(i.r.)±k,σ,ρ },
with k ∈ D∗β,L , σ =↑↓, ρ = 1, 2, and the Gaussian integrations P(d�(u.v.)) and

P(d�(i.r.)) defined by
∫

P(d�(u.v.))�̂(u.v.)−k1,σ1,ρ1
�̂
(u.v.)+
k2,σ2,ρ2

= β|�|δσ1,σ2δk1,k2 ĝ
(u.v.)(k1)ρ1,ρ2 ,

∫
P(d�(i.r.))�̂(u.v.)−k1,σ1,ρ1

�̂
(i.r.)+
k2,σ2,ρ2

= β|�|δσ1,σ2δk1,k2 ĝ
(i.r.)(k1)ρ1,ρ2 . (3.31)

Similarly to P(d�), the Gaussian integrations P(d�(u.v.)), P(d�(i.r.)) also admit
an explicit representation analogous to (3.14), with ĝk replaced by ĝ(u.v.)(k) or
ĝ(i.r.)(k) and the sum over k restricted to the values in the support of fu.v.(k) or
fi.r.(k), respectively. It easy to verify that the ultraviolet propagator g(u.v.)(x − y) =
(β|�|)−1∑

k∈D∗β,L e−ik(x−y)ĝ(u.v.)(k) satisfies

|g(u.v.)(x − y)| ≤ CN

1 + ||x − y||N , (3.32)

uniformly in M ; here ||x|| =
√
|x0|2β + |�x|2�, with | · |β the distance over the one-dimen-

sional torus of length β and | · |� the distance over the periodic lattice�. The definition
of Grassmann integration implies the following identity (“addition principle”):

∫
P(d�)e−V (�) =

∫
P(d�(i.r.))

∫
P(d�(u.v.))e−V (�(i.r.)+�(u.v.)), (3.33)

so that we can rewrite the partition function as

�M,β,L = e−β|�|FM,L ,β =
∫

P(d�(i.r.)) exp

⎧
⎨

⎩
∑

n≥1

1

n!E
T
u.v.(−V (�(i.r.) + ·); n)

⎫
⎬

⎭

≡ e−β|�|F0,M

∫
P(d�(i.r.))e−VM (�

(i.r.)), (3.34)

where the truncated expectation ET
u.v. is defined, given any polynomial V1(�

(u.v.)) with
coefficients depending on �(i.r.), as

ET
u.v.(V1(·); n) = ∂n

∂λn
log
∫

P(d�(u.v.))eλV1(�
(u.v.))

∣∣∣
λ=0

, (3.35)

and VM is fixed by the condition VM (0) = 0. It can be shown (see Appendix C) that VM
can be written as

VM (�)=
∞∑

n=1

(β|�|)−2n
∑

σ1,...,σn=↑↓

∑

ρ1,...,ρ2n=1,2

∑

k1,...,k2n

⎡

⎣
n∏

j=1

�̂
(i.r.)+
k2 j−1,σ j ,ρ2 j−1

�̂
(i.r.)−
k2 j ,σ j ,ρ2 j

⎤

⎦

·ŴM,2n,ρ(k1, . . . ,k2n−1) δ(

n∑

j=1

(k2 j−1 − k2 j )), (3.36)
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where ρ = (ρ1, . . . , ρ2n) and we used the notation

δ(k) = δ(�k)δ(k0), δ(�k) = |�|
∑

n1,n2∈Z

δ�k,n1 �b1+n2 �b2
, δ(k0) = βδk0,0, (3.37)

with �b1, �b2 a basis of�∗. The possibility of representing VM in the form (3.36), with the
kernels ŴM,2n,ρ independent of the spin indices σi , follows from the symmetries listed

in Lemma 1 and from the remark that P(d�(u.v.)) and P(d�(i.r.)) are separately invari-
ant under the same symmetries. The regularity properties of the kernels are summarized
in the following lemma, see Appendix C for a proof.

Lemma 2. The constant F0,M in (3.34) and the kernels ŴM,2n,ρ in (3.36) are given by
power series in U, convergent in the complex disc |U | ≤ U0, for U0 small enough and
independent of β, L ,M; after Fourier transform, the x-space counterparts of the kernels
ŴM,2n,ρ satisfy the following bounds:

∫
dx1 · · · dx2n

⎡

⎣
∏

1≤i< j≤2n

||xi − x j ||mi, j

⎤

⎦
∣∣∣WM,2n,ρ(x1, . . . , x2n)

∣∣∣

≤ β|�|Cn
m |U |max{1,n−1}, (3.38)

for some constant Cm > 0, where m = ∑1≤i< j≤2n mi, j . Moreover, the limits F0 =
limM→∞ F0,M and W2n,ρ(x1, . . . , x2n) = limM→∞WM,2n,ρ(x1, . . . , x2n) exist and
are reached uniformly in M, so that, in particular, the limiting functions are analytic in
the same domain |U | ≤ U0.

Remarks. 1) It is well known that the ultraviolet problem for lattice fermions can be
solved in any dimension by a multiscale expansion, see [3,5,4]; for completeness, it
will be presented in a self-contained form in Appendix C. Recently, a different proof
based on a single scale integration step and using improved bounds on determinants
associated to “chronological products” was proposed [20].

2) Once the ultraviolet degrees of freedom have been integrated out, the remaining
infrared problem (i.e., the computation of the Grassmann integral in the second line
of (3.34)) is essentially independent of M , given the fact that the limit W2n,ρ of
the kernels WM,2n,ρ is reached uniformly and that the limiting kernels are analytic
and satisfy the same bounds as (3.38). For this reason, in the infrared integration
described in the next two sections, M will not play any essential role and, for this
reason, from now on we shall not stress anymore the dependence on M , for notational
simplicity.

It is important for the incoming discussion to note that the symmetries listed in
Lemma 1 also imply some non-trivial invariance properties of the kernels. We will be
particularly interested in the invariance properties of the quadratic part ŴM,2,(ρ1,ρ2)(k),
which will be used below to show that the structure of the quadratic part of the new effec-
tive interaction has the same symmetries as the free integration. The crucial properties
that we will need are the following:

Lemma 3. Let Ŵaa(k) ≡ ŴM,2,(1,1)(k), Ŵb b(k) = ŴM,2,(2,2)(k), Ŵab(k) =
ŴM,2,(1,2)(k) and Ŵba(k) = ŴM,2,(2,1)(k). Then the following properties are valid:
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(i) Waa(k) = Wbb(k) and Wab(k) = W ∗ba(k);
(ii) as β →∞, for ω = ±, Waa(0, �pωF ) = Wab(0, �pωF ) = 0;

(iii) as β, |�| → ∞, for ω = ±,

∂�k Ŵaa(0, �p ω
F ) = �0, Re

{
∂k0 Ŵaa(0, �p ω

F )
}
= 0, ∂k0 Ŵab(0, �p ω

F ) = 0, (3.39)

Re
{
∂k1 Ŵab(0, �p ω

F )
}
= Im

{
∂k2 Ŵab(0, �p ω

F )
}
= 0,

i∂k1 Ŵab(0, �p ω
F ) = ω∂k2 Ŵab(0, �p ω

F ).

Remarks. 1) For simplicity, the properties (ii) and (iii) are spelled out only in the zero
temperature limit and in the thermodynamic limit; however, as it will be clear from
the proof, those properties all have a finite temperature/volume counterpart.

2) Lemma 3 implies that in the vicinity of the Fermi points the kernel WM,2,(ρ,ρ′)(k)
can be rewritten in the form

WM,2,(ρ,ρ′)(k0, �pωF + �k′) �
( −i z0k0 δ0(ik′1 − ωk′2)
δ0(−ik′1 − ωk′2) −i z0k0

)

ρ,ρ′
, (3.40)

for some real constants z0, δ0, modulo higher order terms in (k0, �k′). Therefore, it
is apparent that its structure is the same as the one of Ŝ0(k), modulo higher order
terms in (k0, �k′).

Proof. As remarked after (3.37), P(d�(u.v.)) and P(d�(i.r.)) are separately invariant
under the symmetry properties listed in Lemma 1. Therefore V(�) is also invariant under
the same symmetries, and so is the quadratic part of V(�), that is

(β|�|)−2
∑

σ

∑

k,p

δ(p)
[
�̂
(i.r.)+
k,σ,1 �̂

(i.r.)−
k+p,σ,1Waa(k) + �̂(i.r.)+k,σ,1 �̂

(i.r.)−
k+p,σ,2Wab(k)

+�̂(i.r.)+k,σ,2 �̂
(i.r.)−
k+p,σ,1Wba(k) + �̂(i.r.)+k,σ,2 �̂

(i.r.)−
k+p,σ,2Wbb(k)

]
. (3.41)

Recall that, as assumed in the lines preceding (3.29), the support of �̂(i.r.) consists of
two disjoint regions around �p+

F and �p−F , respectively; in particular, we assumed that
2a0γ < 4π/3− 4π/(3

√
3). Under this condition, it is easy to realize that if both k and

p + k belong to the support of �̂(i.r.), then |p| < 4π/3. As a consequence, in (3.38), the
only non-zero contributions correspond to the terms with p = 0 (in fact, if p is �= 0 and
belongs to the support of δ(p), then |p| ≥ 4π/3, which means that either k or k + p is
outside the support of �̂(i.r.), and the corresponding term in the sum is identically zero).
This means that the sum

∑

σ,k

[
�̂
(i.r.)+
k,σ,1 �̂

(i.r.)−
k,σ,1 Waa(k) + �̂(i.r.)+k,σ,1 �̂

(i.r.)−
k,σ,2 Wab(k)

+�̂(i.r.)+k,σ,2 �̂
(i.r.)−
k,σ,1 Wba(k) + �̂(i.r.)+k,σ,2 �̂

(i.r.)−
k,σ,2 Wbb(k)

]
(3.42)

is invariant under the symmetries (1)–(7) listed in Lemma 1.
Invariance under symmetry (4) implies that:

Waa(k0, �k) = Waa(k0, T−1
1
�k), Wbb(k0, �k) = Wbb(k0, T−1

1
�k), (3.43)

Wab(k0, �k) = ei �k(�δ1−�δ2)Wab(k0, T−1
1
�k), Wba(k0, �k) = e−i �k(�δ1−�δ2)Wab(k0, T−1

1
�k);
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invariance under (5) implies that:

Waa(k) = Waa(−k)∗, Wbb(k) = Wbb(−k)∗, (3.44)

Wab(k) = Wab(−k)∗, Wba(k) = Wba(−k)∗;
invariance under (6.a) implies that:

Waa(k0, k1, k2) = Wbb(k0,−k1, k2), Wab(k0, k1, k2) = Wba(k0,−k1, k2) ;
(3.45)

invariance under (6.b) implies that:

Waa(k0, k1, k2) = Waa(k0, k1,−k2), Wbb(k0, k1, k2) = Wbb(k0, k1,−k2),

(3.46)

Wab(k0, k1, k2) = Wab(k0, k1,−k2), Wba(k0, k1, k2) = Wba(k0, k1,−k2) ;
invariance under (7) implies that:

Waa(k0, �k) = Waa(k0,−�k), Wbb(k0, �k) = Wbb(k0,−�k), (3.47)

Wab(k0, �k) = Wba(k0,−�k).
Finally, invariance under (8) implies that:

Waa(k0, �k) = −Waa(−k0, �k), Wbb(k0, �k) = −Wbb(−k0, �k), (3.48)

Wab(k0, �k) = Wab(−k0, �k), Wba(k0, �k) = Wba(−k0, �k).
Now, combining the first of (3.45), the second of (3.46) and the second of (3.47), we

find that Waa(k) = Wbb(k). Combining the third of (3.44), the third of (3.47) and the
last of (3.48), we find that Wab(k) = Wba(k)∗. This concludes the proof of item (i).

The first of (3.48) implies that, as β → ∞, Waa(0, �k) = 0, and this proves, in
particular, that Waa(0, �pωF ) = 0 and that, in the limit |�| → ∞, ∂�k Waa(0, �pωF ) = �0.

Using that �pωF is invariant under the action of T1, we see that the third of (3.43) implies

that (1− ei �pωF (�δ1−�δ2))Wab(k0, �pωF ) = 0. Since ei �pωF (�δ1−�δ2) = −eiωπ/3 �= 1, this identity
proves, in particular, that Wab(0, �pωF ) = 0, and ∂k0 Wab(0, �pωF ) = 0. This concludes the
proof of item (ii).

Now, combining the first of (3.44) with the first of (3.47), we find that Waa(k0, �k) =
Waa(−k0, �k)∗, which implies, in particular, that Re

{
∂k0 Ŵaa(0, �p ω

F )
}
= 0.

Finally, let Wab(0, �pωF + �k′) � αω1 k′1 + αω2 k′2, modulo higher order terms in �k′. Using

that T−1
1 =

( −1/2
√

3/2
−√3/2 −1/2

)
in the third of (3.43), we find that

αω1 k′1 + αω2 k′2 = e−iωπ/3
[
αω1 (k

′
1/2−

√
3k′2/2) + αω2 (

√
3k′1/2 + k′2/2)

]
, (3.49)

which implies αω1 = −iωαω2 . Moreover, using the third of (3.44) we find that αωi =
−(α−ωi )∗, and using the third of (3.46) we find that αω2 = −α−ω2 . Therefore, αω2 =
−α−ω2 = −(α−ω2 )∗, and we see that αω2 is real and odd in ω, that is αω2 = ωa, for some
real constant a. Therefore, αω1 = −iωαω2 = −ia, and this concludes the proof of item
(iii). ��
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3.3. Free energy: The infrared integration. Multiscale analysis. In order to compute
(3.34) we proceed in an iterative fashion, using standard functional Renormalization
Group methods [2,10,17]. As a starting point, it is convenient to decompose the infrared
propagator as:

g(i.r.)(x, y) =
∑

ω=±
e−i �p ωF (�x−�y)g(≤0)

ω (x, y), (3.50)

where, if k′ = (k0, �k′),

g(≤0)
ω (x, y) = 1

β|�|
∑

k′∈Dω
β,L

χ0(|k′|)e−ik′(x−y)
( −ik0 −v∗(�k′ + �p ω

F )

−v(�k′ + �p ω
F ) −ik0

)−1

,

(3.51)

and Dω
β,L = D∗β × Dω

L , with D∗β = Dβ ∩ {k0 : χ0(γ
−M |k0|) > 0} and Dω

L = { n1
L
�b1 +

n2
L
�b2 − �p ω

F , 0 ≤ n1, n2 ≤ L − 1}.
Correspondingly, we rewrite �(i.r.) as a sum of two independent Grassmann fields:

�(i.r.)±x,σ,ρ =
∑

ω=±
ei �p ωF �x�(≤0)±

x,σ,ρ,ω, (3.52)

and we rewrite (3.34) in the form:

�M,β,L = e−β|�|F0,M

∫
Pχ0,A0(d�

(≤0))e−V(0)(�(≤0)), (3.53)

where V(0)(�(≤0)) is equal to VM (�
(i.r.)), once �(i.r.) is rewritten as in (3.52), i.e.,

V(0)(�(≤0)) (3.54)

=
∞∑

n=1

(β|�|)−2n
∑

σ1,...,σn=↑↓

ω1,...,ω2n=±∑

ρ1,...,ρ2n=1,2

∑

k′1,...,k′2n

⎡

⎣
n∏

j=1

�̂
(≤0)+
k′2 j−1,σ j ,ρ2 j−1,ω2 j−1

�̂
(≤0)−
k′2 j ,σ j ,ρ2 j ,ω2 j

⎤

⎦

·Ŵ (0)
2n,ρ,ω(k

′
1, . . . ,k′2n−1) δ

⎛

⎝
2n∑

j=1

(−1) j (p
ω j
F + k′j )

⎞

⎠

=
∞∑

n=1

∑

σ ,ρ,ω

∫
dx1 · · · dx2n

⎡

⎣
n∏

j=1

�(≤0)+
x2 j−1,σ j ,ρ2 j−1,ω2 j−1

�(≤0)−
x2 j ,σ j ,ρ2 j ,ω2 j

⎤

⎦W (0)
2n,ρ,ω(x1, . . . , x2n),

with:

1) ω = (ω1, . . . , ω2n), σ = (σ1, . . . , σn) and pωF = (0, �p ω
F );

2) Ŵ (0)
2n,ρ,ω(k

′
1, . . . ,k′2n−1) = ŴM,2n,ρ(k′1 + p

ω j
F , . . . ,k′2n−1 + pω2n−1

F ), see (3.36);

3) the kernels W (0)
2n,ρ,ω(x1, . . . , x2n) are defined as:

W (0)
2n,ρ,ω(x1, . . . , x2n)

= (β|�|)−2n
∑

k′1,...,k′2n

ei
∑2n

j=1(−1) j k j x j Ŵ (0)
2n,ρ,ω(k

′
1, . . . , k′2n−1) δ

⎛

⎝
2n∑

j=1

(−1) j (p
ω j
F + k′j )

⎞

⎠.

(3.55)
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Moreover, Pχ0,A0(d�
(≤0)) is defined as

Pχ0,A0(d�
(≤0))

= N0
−1

⎡

⎢⎣
χ0(|k′|)>0∏

k′∈Dω
β,L

∏

σ,ω,ρ

d�̂(≤0)+
k′,σ,ρ,ωd�̂(≤0)−

k′,σ,ρ,ω

⎤

⎥⎦

· exp

⎧
⎪⎨

⎪⎩
−(β|�|)−1

∑

ω=±,σ=↑↓

χ0(|k′|)>0∑

k′∈Dω
β,L

χ−1
0 (|k′|)�̂(≤0)+

k′,σ,·,ωA0,ω(k′)�̂(≤0)−
k′,σ,·,ω

⎫
⎪⎬

⎪⎭
.

(3.56)

where:

A0,ω(k′) =
( −ik0 −v∗(�k′ + �p ω

F )

−v(�k′ + �p ω
F ) −ik0

)

=
( −iζ0k0 + s0(k′) c0(ik′1 − ωk′2) + t0,ω(k′)

c0(−ik′1 − ωk′2) + t∗0,ω(k′) −iζ0k0 + s0(k′)

)
,

N0 is chosen in such a way that
∫

Pχ0,A0(d�
(≤0)) = 1, ζ0 = 1, c0 = 3/2, s0 ≡ 0 and

|t0,ω(k′)| ≤ C |k′|2.
It is apparent that the �(≤0) field has zero mass (i.e., its propagator decays poly-

nomially at large distances in x-space). Therefore, its integration requires an infrared
multiscale analysis. We consider the scaling parameter γ > 1 introduced above, see the
lines preceding (3.29), and we define a sequence of geometrically decreasing momentum
scales γ h , h = 0,−1,−2, . . .. Correspondingly we introduce compact support functions
fh(k′) = χ0(γ

−h |k′|)− χ0(γ
−h+1|k′|) and we rewrite

χ0(|k′|) =
0∑

h=−∞
fh(k′). (3.57)

The purpose is to perform the integration of (3.53) in an iterative way. We step by step
decompose the propagator into a sum of two propagators, the first supported on momenta
∼ γ h , h ≤ 0, the second supported on momenta smaller than γ h . Correspondingly we
rewrite the Grassmann field as a sum of two independent fields:�(≤h) = �(h)+�(≤h−1)

and we integrate the field �(h). In this way we inductively prove that, for any h ≤ 0,
(3.53) can be rewritten as

�M,β,L = e−β|�|Fh

∫
Pχh ,Ah (d�

(≤h))e−V(h)(�(≤h)), (3.58)

where Fh, Ah,V(h) will be defined recursively, χh(|k′|) = ∑h
k=−∞ fk(k′) and

Pχh ,Ah (d�
(≤h)) is defined in the same way as Pχ0,A0(d�

(≤0))with�(≤0), χ0, A0,ω, ζ0,

c0, s0, t0,ω replaced by �(≤h), χh, Ah,ω, ζh, ch, sh, th,ω, respectively. Moreover
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V(h)(0) = 0 and

V(h)(�) =
∞∑

n=1

(β|�|)−2n
∑

σ,ρ,ω

∑

k′1,...,k′2n

⎡

⎣
n∏

j=1

�̂
(≤h)+
k′2 j−1,σ j ,ρ2 j−1,ω2 j−1

�̂
(≤h)−
k′2 j ,σ j ,ρ2 j ,ω2 j

⎤

⎦

·Ŵ (h)
2n,ρ,ω(k

′
1, . . . ,k′2n−1) δ(

2n∑

j=1

(−1) j (p
ω j
F + k′j ))

=
∞∑

n=1

∑

σ,ρ,ω

∫
dx1 · · · dx2n

⎡

⎣
n∏

j=1

�(≤h)+
x2 j−1,σ j ,ρ2 j−1,ω2 j−1

�(≤h)−
x2 j ,σ j ,ρ2 j ,ω2 j

⎤

⎦

×W (h)
2n,ρ,ω(x1, . . . , x2n). (3.59)

Note that the field �(≤h)
k′,σ,·,ω, whose propagator is given by χh(|k′|)[A(h)ω (k′)]−1, has

the same support as χh , that is on a neighborood of size γ h around the singularity k′ = 0
(that, in the original variables, corresponds to the Dirac point k = pωF ). It is important

for the following to think Ŵ (h)
2n,ρ,ω, h ≤ 0, as functions of the variables {ζk, ck}h<k≤0.

The iterative construction below will inductively imply that the dependence on these
variables is well defined.

The iteration will continue up to the scale hβ , where hβ is the largest scale such that

a0γ
hβ−1 <

π

β
ζhβ , (3.60)

where a0 is the constant appearing in the definition of χ0(|k′|). By the properties of ζh
that will be described and proved below, it will turn out that hβ is finite and larger than
logγ

π
2a0β

. The result of the last iteration will be �M,β,L = e−β|�|FM,β,L .
Localization and renormalization. In order to inductively prove (3.58) we write

V(h) = LV(h) + RV(h), (3.61)

where

LV(h) = 1

β|�|
∑

σ=↑↓

∑

ρ1,ρ2=1,2
ω=±

χh(|k′|)>0∑

k′
�̂
(≤h)+
k′,σ,ρ1,ω

�̂
(≤h)−
k′,σ,ρ2,ω

Ŵ (h)
2,ρ,(ω,ω)(k

′), (3.62)

and RV(h) is given by (3.59) with
∑∞

n=1 replaced by
∑∞

n=2, that is it contains only the
monomials with more than four fields.

Note that in (3.62) the ω-index of the � fields is the same; this follows from the fact
that in terms with differentω’s the momenta verify k′1−k′2 +pωF−p−ωF = n1�b1 +n2 �b2, for
some choice of n1, n2, and such a condition cannot be verified if k′1,k′2 are in the support
of the�(≤h) fields, because pωF−p−ωF �∈ �∗ and 2a0γ is smaller than 4π/3−4π/(3

√
3),

see the lines preceding (3.29) and the discussion after (3.41).

Remark. The fact that the quadratic terms with different ω’s, i.e., the one particle umk-
lapp processes, does not contribute to the infrared effective potential is a crucial fact,
which reduces the number of relevant running coupling constants and, in particular,
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tells us that the interaction does not generate mass terms. Note, in fact, that the presence
of one particle umklapp terms with a non zero contribution at the Fermi points could
produce an exponential decay of the interacting correlations.

The symmetries of the action, listed in Lemma 1, which are preserved by the iterative
integration procedure, imply that, in the zero temperature and thermodynamic limit,
Ŵ (h)

2,ρ,(ω,ω)(0) = 0 and

k′∂k′ Ŵ
(h)
2,(ρ1,ρ2),(ω,ω)

(0) =
( −i zhk0 δh(ik′1 − ωk′2)
δh(−ik′1 − ωk′2) −i zhk0

)

ρ1,ρ2

, (3.63)

for suitable real constants zh, δh . The proof of (3.63) is completely analogous to the
proof of Lemma 2 and will not be repeated here.

Once the above definitions are given, we can describe our iterative integration pro-
cedure for h ≤ 0. We start from (3.58) and we rewrite it as

∫
Pχh ,Ah (d�

(≤h)) e−LV(h)(�(≤h))−RV(h)(�(≤h))−β|�|Fh , (3.64)

with

LV(h)(�(≤h)) = (β|�|)−1
∑

ω,σ

χh(|k′|)>0∑

k′
·�̂(≤h)+

k′,σ,·,ω

×
( −i zhk0 + σh(k′) δh(ik′1 − ωk′2) + τh,ω(k′)
δh(−ik′1 − ωk2) + τ ∗h,ω(k′) −i zhk0 + σh(k′)

)
�̂
(≤h)−
k′,σ,·,ω.

(3.65)

Then we include LV(h) in the fermionic integration, so obtaining
∫

Pχh ,Ah−1
(d�(≤h)) e−RV(h)(�(≤h))−β|�|(Fh+eh), (3.66)

where

eh = 1

β|�|
∑

ω,σ

∑

k′

∑

n≥1

(−1)n

n
Tr
{[
χh(k′)A−1

h,ω(k
′)W (h)

2,ρ,(ω,ω)(k
′)
]n}

(3.67)

is a constant taking into account the change in the normalization factor of the measure
and

Ah−1,ω(k′) =
( −iζ h−1k0 + sh−1(k′) ch−1(ik′1 − ωk′2) + th−1,ω(k′)

ch−1(−ik′1 − ωk′2) + t∗h−1,ω(k
′) −iζ h−1k0 + sh−1(k′)

)

(3.68)

with:

ζ h−1(k
′) = ζh + zhχh(k′), ch−1(k′) = ch + δhχh(k′),

sh−1(k′) = sh(k′) + σh(k′)χh(k′), th−1,ω(k′) = th,ω(k′) + τh,ω(k′)χh(k′).
(3.69)
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Now we can perform the integration of the �(h) field. We rewrite the Grassmann
field �(≤h) as a sum of two independent Grassmann fields �(≤h−1) + �(h) and corre-
spondingly we rewrite (3.66) as

e−β|�|(Fh+eh)

∫
Pχh−1,Ah−1(d�

(≤h−1))

∫
Pfh ,Ah−1

(d�(h)) e−RV(h)(�(≤h−1)+�(h)),

(3.70)

where

Ah−1,ω(k′) =
( −iζh−1k0 + sh−1(k′) ch−1(ik′1 − ωk′2) + th−1,ω(k′)

ch−1(−ik′1 − ωk′2) + t∗h−1,ω(k
′) −iζh−1k0 + sh−1(k′)

)

(3.71)

with:

ζh−1 = ζh + zh, ch−1 = ch + δh,

sh−1(k′) = sh(k′) + σh(k′), th−1,ω(k′) = th,ω(k′) + τh,ω(k′). (3.72)

The single scale propagator is
∫

Pfh ,Ah−1
(d�(h))�(h)−x1,σ1,ρ1,ω1

�(h)+x2,σ2,ρ2,ω2
= δσ1,σ2δω1,ω2

[
g(h)ω (x1, x2)

]

ρ1,ρ2
,

(3.73)

where

g(h)ω (x1, x2) = 1

β|�|
∑

k′∈Dω
β,L

e−ik′(x1−x2) fh(k′)
[
Ah−1,ω(k′)

]−1
. (3.74)

After the integration of the field on scale h we are left with an integral involving the
fields �(≤h−1) and the new effective interaction V(h−1), defined as

e−V(h−1)(�(≤h−1))−ehβ|�| =
∫

Pfh ,Ah−1
(d�(h)) e−RV(h)(�(≤h−1)+�(h)), (3.75)

with V(h−1)(0) = 0. It is easy to see that V(h−1) is of the form (3.59) and that
Fh−1 = Fh + eh + eh . It is sufficient to use the well known identity

eh + V(h−1)(�(≤h−1)) =
∑

n≥1

1

n! (−1)n+1ET
h

(
RV(h)

(
�(≤h−1) +�(h)

)
; n), (3.76)

where ET
h (X (�

(h)); n) is the truncated expectation of order n w.r.t. the propagator g(h)ω ,
which is the analogue of (3.35) with �(u.v.) replaced by �(h) and with P(d�(u.v.))
replaced by Pfh ,Ah−1

(d�(h)).
Note that the above procedure allows us to write the effective renormalizations

�vh = (ζh, ch), h ≤ 0, in terms of �vk , h < k ≤ 0, namely �vh−1 = βh(�vh, . . . , �v0),
where βh is the so–called Beta function.
Tree expansion for the effective potentials. An iterative implementation of (3.76) leads
to a representation of V(h)(�(≤h)) in terms of a tree expansion, defined as follows:
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h v 1+01−1+hh

r v 0

v

Fig. 1. A tree τ ∈ Th,n with its scale labels

1) Let us consider the family of all trees which can be constructed by joining a point r ,
the root, with an ordered set of n ≥ 1 points, the endpoints of the unlabeled tree, so
that r is not a branching point. n will be called the order of the unlabeled tree and
the branching points will be called the non-trivial vertices. The unlabeled trees are
partially ordered from the root to the endpoints in the natural way; we shall use the
symbol < to denote the partial order. Two unlabeled trees are identified if they can
be superposed by a suitable continuous deformation, so that the endpoints with the
same index coincide. It is then easy to see that the number of unlabeled trees with n
end-points is bounded by 4n . We shall also consider the labelled trees (to be called
simply trees in the following); they are defined by associating some labels with the
unlabelled trees, as explained in the following items.

2) We associate a label h ≤ −1 with the root and we denote Th,n the corresponding set
of labeled trees with n endpoints. Moreover, we introduce a family of vertical lines,
labeled by an integer taking values in [h, 1], and we represent any tree τ ∈ Th,n so
that, if v is an endpoint or a non trivial vertex, it is contained in a vertical line with
index hv > h, to be called the scale of v, while the root r is on the line with index h.
In general, the tree will intersect the vertical lines in a set of points different from
the root, the endpoints and the branching points; these points will be called trivial
vertices. The set of the vertices will be the union of the endpoints, of the trivial ver-
tices and of the non-trivial vertices; note that the root is not a vertex. Every vertex
v of a tree will be associated to its scale label hv , defined, as above, as the label
of the vertical line to whom v belongs. Note that, if v1 and v2 are two vertices and
v1 < v2, then hv1 < hv2 .

3) There is only one vertex immediately following the root, which will be denoted v0
and cannot be an endpoint; its scale is h + 1.

4) Given a vertex v of τ ∈ Th,n that is not an endpoint, we can consider the subtrees
of τ with root v, which correspond to the connected components of the restriction
of τ to the vertices w ≥ v. If a subtree with root v contains only v and an endpoint
on scale hv + 1, it will be called a trivial subtree.

5) With each endpoint v we associate one of the monomials with four or more Grass-
mann fields contributing to RV(0)(�(≤hv−1)), corresponding to the terms with n ≥ 2
in the r.h.s. of (3.54) (with �(≤0) replaced by �(≤hv−1)) and a set xv of space-time
points (the corresponding integration variables in the x-space representation).
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6) We introduce a field label f to distinguish the field variables appearing in the terms
associated with the endpoints described in item 5); the set of field labels associated
with the endpoint v will be called Iv; note that |Iv| is the order of the monomial
contributing to V(0)(�(≤hv−1)) and associated to v. Analogously, if v is not an end-
point, we shall call Iv the set of field labels associated with the endpoints following
the vertex v; x( f ), ε( f ), σ( f ), ρ( f ) andω( f )will denote the space-time point, the
ε index, the σ index, the ρ index and the ω index, respectively, of the Grassmann
field variable with label f .

In terms of these trees, the effective potential V(h), h ≤ −1, can be written as

V(h)(�(≤h)) + β|�|ek+1 =
∞∑

n=1

∑

τ∈Th,n

V(h)(τ,�(≤h)), (3.77)

where, if v0 is the first vertex of τ and τ1, . . . , τs (s = sv0 ) are the subtrees of τ with
root v0, V(h)(τ,�(≤h)) is defined inductively as follows:

i) if s > 1, then

V(h)(τ,�(≤h)) = (−1)s+1

s! ET
h+1

[
V̄(h+1)(τ1, �

(≤h+1)); . . . ; V̄(h+1)(τs, �
(≤h+1))

]
,

(3.78)

where V̄(h+1)(τi , �
(≤h+1)) is equal to RV(h+1)(τi , �

(≤h+1)) if the subtree τi con-
tains more than one end-point, or if it contains one end-point but it is not a trivial
subtree; it is equal to RV(0)(τi , �

(≤h+1)) if τi is a trivial subtree;
ii) if s = 1, then V(h)(τ,�(≤h)) is equal to ET

h+1

[
RV(h+1)(τ1, �

(≤h+1))
]

if τ1 is not
a trivial subtree; it is equal to ET

h+1

[
RV(0)(�(≤h+1))−RV(0)(�(≤h))

]
if τ1 is a

trivial subtree.

Using its inductive definition, the right hand side of (3.77) can be further expanded,
and in order to describe the resulting expansion we need some more definitions.

We associate with any vertex v of the tree a subset Pv of Iv , the external fields of v.
These subsets must satisfy various constraints. First of all, if v is not an endpoint and
v1, . . . , vsv are the sv ≥ 1 vertices immediately following it, then Pv ⊆ ∪i Pvi ; if v is an
endpoint, Pv = Iv . If v is not an endpoint, we shall denote by Qvi the intersection of Pv
and Pvi ; this definition implies that Pv = ∪i Qvi . The union Iv of the subsets Pvi \Qvi

is, by definition, the set of the internal fields of v, and is non empty if sv > 1. Given
τ ∈ Th,n , there are many possible choices of the subsets Pv , v ∈ τ , compatible with all
the constraints. We shall denote Pτ the family of all these choices and P the elements
of Pτ .

With these definitions, we can rewrite V(h)(τ,�(≤h)) in the r.h.s. of (3.77) as:

V(h)(τ,�(≤h)) =
∑

P∈Pτ
V(h)(τ,P),

V(h)(τ,P) =
∫

dxv0�̃
(≤h)(Pv0)K

(h+1)
τ,P (xv0), (3.79)

where

�̃(≤h)(Pv) =
∏

f ∈Pv

�
(≤h)ε( f )
x( f ),σ ( f ),ρ( f ),ω( f ), (3.80)
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and K (h+1)
τ,P (xv0) is defined inductively by the equation, valid for any v ∈ τ which is not

an endpoint,

K (hv)
τ,P (xv) =

1

sv!
sv∏

i=1

[K (hv+1)
vi

(xvi )] ET
hv [�̃(hv)(Pv1\Qv1), . . . , �̃

(hv)(Pvsv
\Qvsv

)],

(3.81)

where �̃(hv)(Pvi \Qvi ) has a definition similar to (3.80). Moreover, if vi is an end-

point K (hv+1)
vi (xvi ) is equal to one of the kernels of the monomials contributing to

RV(0)(�(≤hv)), corresponding to the terms with n ≥ 2 in the r.h.s. of (3.54) (with
�(≤0) replaced by �(≤hv)); if vi is not an endpoint, K (hv+1)

vi = K (hv+1)
τi ,Pi

, where Pi =
{Pw,w ∈ τi }.

Equations (3.77)–(3.81) are not the final form of our expansion; we further decom-
pose V(h)(τ,P), by using the following representation of the truncated expectation in
the r.h.s. of (3.81). Let us put s = sv , Pi ≡ Pvi \Qvi ; moreover we order in an arbi-
trary way the sets P±i ≡ { f ∈ Pi , ε( f ) = ±}, we call f ±i j their elements and we

define x(i) = ∪ f ∈P−i
x( f ), y(i) = ∪ f ∈P+

i
x( f ), xi j = x( f −i j ), yi j = x( f +

i j ). Note that
∑s

i=1 |P−i | =
∑s

i=1 |P+
i | ≡ n, otherwise the truncated expectation vanishes. A couple

l ≡ ( f −i j , f +
i ′ j ′) ≡ ( f −l , f +

l ) will be called a line joining the fields with labels f −i j , f +
i ′ j ′ ,

sector indices ω−l = ω( f −l ), ω+
l = ω( f +

l ), ρ-indices ρ−l = ρ( f −l ), ρ+
l = ρ( f +

l ), and
spin indices σ−l = σ( f −l ), σ +

l = σ( f +
l ), connecting the points xl ≡ xi j and yl ≡ yi ′ j ′ ,

the endpoints of l. Moreover, ifω−l = ω+
l , we shall putωl ≡ ω−l = ω+

l . Then, we use the
Brydges-Battle-Federbush formula (e.g., see [10,17]) saying that, up to a sign, if s > 1,

ET
h (�̃

(h)(P1), . . . , �̃
(h)(Ps))

=
∑

T

∏

l∈T

δω−l ,ω+
l
δσ−l ,σ+

l

[
g(h)ωl

(xl − yl)
]

ρ−l ,ρ+
l

∫
d PT (t) det Gh,T (t), (3.82)

where T is a set of lines forming an anchored tree graph between the clusters of points
x(i) ∪ y(i), that is T is a set of lines, which becomes a tree graph if one identifies all
the points in the same cluster. Moreover t = {tii ′ ∈ [0, 1], 1 ≤ i, i ′ ≤ s}, d PT (t) is a
probability measure with support on a set of t such that tii ′ = ui · ui ′ for some family
of vectors ui ∈ R

s of unit norm. Finally Gh,T (t) is a (n − s + 1)× (n − s + 1) matrix,
whose elements are given by

Gh,T
i j,i ′ j ′ = tii ′δω−l ,ω+

l
δσ−l ,σ+

l

[
g(h)ωl

(xi j − yi ′ j ′)
]

ρ−l ,ρ+
l

, (3.83)

with ( f −i j , f +
i ′ j ′) not belonging to T . In the following we shall use (3.80) even for s = 1,

when T is empty, by interpreting the r.h.s. as equal to 1, if |P1| = 0, otherwise as equal
to det Gh = ET

h (�̃
(h)(P1)).

Remark. It is crucial to note that Gh,T is a Gram matrix, i.e., defining e+ = e↑ = (1, 0)
and e− = e↓ = (0, 1), the matrix elements in (3.83) can be written in terms of scalar
products:

tii ′δω−l ,ω+
l
δσ−l ,σ+

l

[
g(h)ωl

(xi j − yi ′ j ′)
]

ρ−l ,ρ+
l

(3.84)

=
(

ui ⊗ eω−l ⊗ eσ−l ⊗ A(xi j − ·), ui ′ ⊗ eω+
l
⊗ eσ+

l
⊗ B(xi ′ j ′ − ·)

)
≡ (fα, gβ),
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where

A(x) = 1

β|�|
∑

k′∈Dω
β,L

e−ik′x√ fh(k′) 1,

B(x) = 1

β|�|
∑

k′∈Dω
β,L

e−ik′x√ fh(k′)
[
Ah−1,ω(k′)

]−1
. (3.85)

The symbol (·, ·) denotes the inner product, i.e.,

(
ui ⊗ eω ⊗ eσ ⊗ A(x − ·),ui ′ ⊗ eω′ ⊗ eσ ′ ⊗ B(x′ − ·))

= (ui · ui ′) (eω · eω′) (eσ · eσ ′) ·
∫

dzA∗(x − z)B(x′ − z), (3.86)

and the vectors fα, gβ with α, β = 1, . . . , n − s + 1 are implicitly defined by (3.84).
The usefulness of the representation (3.84) is that, by the Gram-Hadamard inequal-
ity (see, e.g., [10]), | det(fα, gβ)| ≤ ∏α || fα|| ||gα||. In our case, ||fα|| ≤ Cγ 3h/2 and
||gα|| ≤ Cγ h/2. Therefore, || fα|| ||gα|| ≤ Cγ 2h , uniformly in α, so that the Gram
determinant can be bounded by Cn−s+1γ 2h(n−s+1).

If we apply the expansion (3.82) in each vertex of τ different from the endpoints, we
get an expression of the form

V(h)(τ,P) =
∑

T∈T

∫
dxv0�̃

(≤h)(Pv0)W
(h)
τ,P,T (xv0) ≡

∑

T∈T

V(h)(τ,P, T ), (3.87)

where T is a special family of graphs on the set of points xv0 , obtained by putting
together an anchored tree graph Tv for each non-trivial vertex v. Note that any graph
T ∈ T becomes a tree graph on xv0 , if one identifies all the points in the sets xv , with v
an endpoint. Given τ ∈ Th,n and the labels P, T , calling v∗i , . . . , v∗n the endpoints of τ

and putting hi = hv∗i , the explicit representation of W (h)
τ,P,T (xv0) in (3.87) is

Wτ,P,T (xv0) =
[

n∏

i=1

K (hi )

v∗i
(xv∗i )

]

·

⎧
⎪⎨

⎪⎩

∏

v
not e.p.

1

sv!
∫

d PTv (tv) det Ghv,Tv (tv)

⎡

⎣
∏

l∈Tv

δω−l ,ω+
l
δσ−l ,σ+

l

[
g(hv)ωl

(xl − yl)
]

ρ−l ,ρ+
l

⎤

⎦

⎫
⎪⎬

⎪⎭
,

(3.88)

Analyticity of the effective potentials. The tree expansion described above allows us to
express the effective potential V(h) in terms of the running coupling constants ζh, ch and
of the renormalization functions σk(k), tk,ω(k).

The next goal is the proof of the following result.

Theorem 2. There exists a constant U0 > 0, independent of M, β and L, such that the
kernels W (h)

2l,ρ,ω(x1, . . . , x2l) in (3.59), h ≤ −1, are analytic functions of U in the com-

plex domain |U | ≤ U0, satisfying, for any 0 ≤ θ < 1 and a suitable constant Cθ > 0
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(independent of M, β, L), the following estimates:

1

β|�|
∫

dx1 · · · dx2l |W (h)
2l,ρ,ω(x1, . . . , x2l)| ≤ γ h(3−2l+θ) (Cθ |U |)max(1,l−1).

(3.89)

Moreover, the constants eh and eh defined by (3.67) and (3.76) are analytic functions
of U in the same domain |U | ≤ U0, and there they satisfy the estimate |eh | + |eh | ≤
Cθ |U |γ h(3+θ).

Proof of Theorem 2. Let us preliminarily assume that, for h′ ≤ h ≤ −1, and for suitable
constants c, cn , the corrections zh, δh, σh(k′) and τh(k′) defined in (3.63) and (3.65),
satisfy the following estimates:

max {|zh |, |δh |} ≤ c|U |γ θh,

sup
γ h′−1≤|k′|≤γ h′+1

{||∂n
k′σh(k′)||, ||∂n

k′τh,ω(k′)||} ≤ cn|U |γ 2(h′−h)γ (1+θ−n)h .

(3.90)

Using (3.90) we inductively see that the running coupling functions ζh, ch, sh(k′) and
th(k′) satisfy similar estimates:

max {|ζh − 1|, |ch − 3/2|} ≤ c|U |,
sup

γ h′−1≤|k′|≤γ h′+1

{||∂n
k′sh(k′)||, ||∂n

k′(th,ω(k
′)− t0,ω(k′))||} ≤ cn|U |γ 2(h′−h)γ (1+θ−n)h .

(3.91)

Now, using the definition of g
(h)
ω , see (3.74) and (3.68), we get, after integration by parts,

for any N ≥ 0,

∣∣∣∣

∣∣∣∣
[
g(h)ω (x1, x2)

]

ρ,ρ′

∣∣∣∣

∣∣∣∣ ≤ CN
γ 2h

1 + (γ h ||x1 − x2||)N
, (3.92)

where CN is a suitable constant and ||x1− x2|| is the distance on the torus, defined after
(3.32)

Using the tree expansion described above and, in particular, Eqs.(3.77), (3.79), (3.87)
and (3.88), we find that the l.h.s. of (3.89) can be bounded from above by

∑

n≥1

∑

τ∈Th,n

∑

P∈Pτ|Pv0 |=2l

∑

T∈T

∫ ∏

l∈T ∗
d(xl − yl)

[
n∏

i=1

|K (hi )

v∗i
(xv∗i )|

]

·
⎡

⎣
∏

v not e.p.

1

sv! max
tv

∣∣∣det Ghv,Tv (tv)
∣∣∣
∏

l∈Tv

|| g(hv)ωl
(xl − yl) ||

⎤

⎦ , (3.93)

where || · || is the spectral norm and where T ∗ is a tree graph obtained from T = ∪vTv ,
by adding in a suitable (obvious) way, for each endpoint v∗i , i = 1, . . . , n, one or more
lines connecting the space-time points belonging to xv∗i .
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A standard application of the Gram–Hadamard inequality, combined with the dimen-
sional bound on g(h)ω (x) given by (3.92), see the remark after (3.83), implies that

|detGhv,Tv (tv)| ≤ c
∑sv

i=1 |Pvi |−|Pv |−2(sv−1) · γ hv
(∑sv

i=1 |Pvi |−|Pv |−2(sv−1)
)
. (3.94)

By the decay properties of g
(h)
ω (x) given by (3.92), it also follows that

∏

v not e.p.

1

sv!
∫ ∏

l∈Tv

d(xl − yl) ||g(hv)ωl
(xl − yl)|| ≤ cn

∏

v not e.p.

1

sv!γ
−hv(sv−1). (3.95)

The bound (3.38) on the kernels produced by the ultraviolet integration implies that

∫ ∏

l∈T ∗\∪vTv

d(xl − yl)

n∏

i=1

|K (hi )

v∗i
(xv∗i )| ≤

n∏

i=1

C pi |U | pi
2 −1, (3.96)

where pi = |Pv∗i |. Combining the previous bounds, we find that (3.93) can be bounded
above by

∑

n≥1

∑

τ∈Th,n

∑

P∈Pτ|Pv0 |=2l

∑

T∈T

Cn

⎡

⎣
∏

v not e.p.

1

sv!γ
hv
(∑sv

i=1 |Pvi |−|Pv |−3(sv−1)
)
⎤

⎦
[

n∏

i=1

C pi |U | pi
2 −1

]
.

(3.97)

Let us define n(v) =∑i :v∗i >v 1 as the number of endpoints following v on τ and v′ as
the vertex immediately preceding v on τ . Recalling that |Iv| is the number of field labels
associated to the endpoints following v on τ (note that |Iv| ≥ 4n(v)) and using that

∑

v not e.p.

[(
sv∑

i=1

|Pvi |
)
− |Pv|

]
= |Iv0 | − |Pv0 |,

∑

v not e.p.

(sv − 1) = n − 1,

∑

v not e.p.

(hv − h)

[(
sv∑

i=1

|Pvi |
)
− |Pv|

]
=

∑

v not e.p.

(hv − hv′)(|Iv| − |Pv|),
∑

v not e.p.

(hv − h)(sv − 1) =
∑

v not e.p.

(hv − hv′)(n(v)− 1), (3.98)

we find that (3.97) can be bounded above by

∑

n≥1

∑

τ∈Th,n

∑

P∈Pτ|Pv0 |=2l

∑

T∈T

Cnγ h(3−|Pv0 |+|Iv0 |−3n)

·
⎡

⎣
∏

v not e.p.

1

sv!γ
(hv−hv′ )(3−|Pv |+|Iv |−3n(v))

⎤

⎦
[

n∏

i=1

C pi |U | pi
2 −1

]
. (3.99)
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Using the identities

γ hn
∏

v not e.p.

γ (hv−hv′ )n(v) =
∏

v e.p.

γ hv′ ,

γ h|Iv0 |
∏

v not e.p.

γ (hv−hv′ )|Iv | =
∏

v e.p.

γ hv′ |Iv |, (3.100)

we obtain

1

β|�|
∫

dx1 · · · dx2l |W (h)
2l,ρ,ω(x1, . . . , x2l)| ≤

∑

n≥1

∑

τ∈Th,n

∑

P∈Pτ|Pv0 |=2l

∑

T∈T

Cnγ h(3−|Pv0 |)

·
⎡

⎣
∏

v not e.p.

1

sv!γ
−(hv−hv′ )(|Pv |−3)

⎤

⎦

⎡

⎣
∏

v e.p.

γ hv′ (|Iv |−3)

⎤

⎦
[

n∏

i=1

C pi |U | pi
2 −1

]
. (3.101)

Note that, if v is not an endpoint, |Pv| − 3 ≥ 1 by the definition of R. Moreover, if v is
an endpoint, |Iv| − 3 ≥ 1; in particular, we get

∏

v e.p.

γ hv′ (|Iv |−3) ≤ γ h∗−1, (3.102)

with h∗ the highest scale label of the tree. Now, note that the number of terms in
∑

T∈T
can be bounded by Cn ∏

v not e.p. sv!. Using also that |Pv|−3 ≥ 1 and |Pv|−3 ≥ |Pv|/4,
we find that the l.h.s. of (3.101) can be bounded as

1

β|�|
∫

dx1 · · · dx2l |W (h)
2l,ρ,ω(x1, . . . , x2l)| ≤ γ h(3−|Pv0 |)

∑

n≥1

Cn
∑

τ∈Th,n

γ h∗−1

·
⎛

⎝
∏

v not e.p.

γ−θ(hv−hv′ )γ−(1−θ)(hv−hv′ )/2

⎞

⎠

×
∑

P∈Pτ|Pv0 |=2l

⎛

⎝
∏

v not e.p.

γ−(1−θ)|Pv |/8
⎞

⎠
n∏

i=1

C pi |U | pi
2 −1. (3.103)

Now, the sum over P can be bounded using the following combinatorial inequality (see
for instance Sect. A6.1 of [10]): let {pv, v ∈ τ }, with τ ∈ Th,n , a set of integers such
that pv ≤∑sv

i=1 pvi for all v ∈ τ which are not endpoints; then, if α > 0,

∏

v not e.p.

∑

pv

γ−αpv ≤ Cn
α.

This implies that

∑

P∈Pτ|Pv0 |=2l

⎛

⎝
∏

v not e.p.

γ−(1−θ)|Pv |/8
⎞

⎠
n∏

i=1

C pi |U | pi
2 −1 ≤ Cn

θ |U |n .
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Finally, using that γ h∗∏
v not e.p. γ

−θ(hv−hv′ ) ≤ γ θh , and that, for 0 < θ < 1,

∑

τ∈Th,n

∏

v not e.p.

γ−(1−θ)(hv−hv′ )/2 ≤ Cn,

as it follows by the fact that the number of non-trivial vertices in τ is smaller than n− 1
and that the number of trees in Th,n is bounded by constn , and collecting all the previous
bounds, we obtain

1

β|�|
∫

dx1 · · · dx2l |W (h)
2l,ρ,ω(x1, . . . , x2l)| ≤ γ h(3−|Pv0 |+θ)

∑

n≥1

Cn|U |n, (3.104)

which is the desired result.
We now need to prove the assumption (3.90). We proceed by induction. The assump-

tion is valid for h = 0, as it follows by (3.38) and by the discussion in Appendix C.
Now, assume that (3.90) is valid for all h ≥ k + 1, and let us prove it for k − 1. The
functions −i zkk0 + σk(k′) and δk(ik′1 − ωk′2) + τk,ω(k′) admit a representation in terms

of W (k)
2,ρ,(ω,ω)(x, y). In particular,

max{|zk |, |δk |} ≤ 1

β|�|
∫

dx1dx2||x − y|| |W (k)
2,ρ,(ω,ω)(x, y)|, (3.105)

and

sup
γ h′−1≤|k′|≤γ h′+1

{||∂n
k′σk(k′)||, ||∂n

k′τk,ω(k′)||}

≤ Cγ 2h′

β|�|
∫

dx1dx2||x − y||n+2|W (k)
2,ρ,(ω,ω)(x, y)|. (3.106)

The same proof leading to (3.104) shows that the r.h.s. of (3.105) can be bounded by the
r.h.s. of (3.104) times γ−k (that is the dimensional estimate for ||x−y||), and that the r.h.s.
of (3.105) can be bounded by the r.h.s. of (3.104) times γ 2h′γ−(n+2)k (where γ−k(n+2)

is the dimensional estimate for ||x − y||n+2). This concludes the proof of Theorem 2.
It remains to prove the estimates on eh, eh . The bound on eh is an immediate corollary

of the discussion above, simply because eh can be bounded by (3.93) with l = 0. Finally,
remember that eh is given by (3.67): an explicit computation of A−1

h,ω(k
′)W (h)

2,ρ,(ω,ω)(k
′)

and the use of (3.90)–(3.91) imply that ||A−1
h,ω(k

′)W (h)
2,ρ,(ω,ω)(k

′)|| ≤ C |U |γ θh , from

which: |eh | ≤ C ′γ 3h ∑
n≥1(C |U |γ θh)n , as desired. ��

The existence and analyticity of the specific free energy is a corollary of Theorem 2, see
Appendix D for the proof.

Corollary 1. The limit fβ(U ) = limL→∞ limM→∞ FM,β,L , with FM,β,L defined in
(3.21), exists and is reached uniformly in U; in particular, fβ(U ) is analytic in |U | ≤ U0,
with U0 the same constant of Theorem 2. Moreover, the limit e(U ) = limβ→∞ fβ(U )
exists and is reached uniformly in U; in particular, e(U ) is analytic in |U | ≤ U0.

Corollary 1 implies the part of the statement of Theorem 1 concerning the free energy
and the ground state energy. For the proof of analyticity of the Schwinger functions, see
the next section.
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3.4. The two point Schwinger function. In this section we describe how to modify the
expansion for the free energy described in previous sections in order to compute the
Schwinger functions at distinct space-time points. For simplicity, we shall restrict our
attention to the case of the two point Schwinger function. The general case can be worked
out along the same lines.

The Schwinger functions can be derived from the generating function defined as

W(φ) = log
∫

P(d�)e
−V(ψ)+

∫
dx
[
φ+

x,σ,ρ�
−
x,σ,ρ+�+

x,σ,ρφ
−
x,σ,ρ

]

, (3.107)

where summation over repeated indices is understood and the variables φεx,σ,ρ are Grass-
mann variables, anticommuting among themselves and with the variables �εx,σ,ρ . The

two–point Schwinger function S(x − y)ρ,ρ′
de f= SM,β,�

2 (x, σ,−, ρ; y, σ,+, ρ′) is given
by

S(x − y)ρ,ρ′ = ∂2

∂φ+
x,σ,ρ∂φ

−
y,σ,ρ′

W(φ)

∣∣∣
φ=0

. (3.108)

We start by studying the generating function and, in analogy with the procedure described
before, we begin by decomposing the field � in an ultraviolet and an infrared compo-
nent: � = �(u.v.) +�(i.r.), with �(i.r.)±x,σ,ρ =∑ω=± ei �pωF �x�(≤0)±

x,σ,ρ,ω. After the integration
of the �(u.v.) variables, and after rewriting φ±x,σ,ρ =

∑
ω=± ei �pωF �xφ±x,σ,ρ , we get:

eW(φ) = e−β|�|F0+S(≥0)(φ)

∫
Pχ0,A0(d�

(≤0)) ·

·e−V(0)(ψ(≤0))−B(0)(�(≤0), φ)+
∫

dx
[
φ+

x,σ,ρ,ω�
(≤0)−
x,σ,ρ,ω+�(≤0)+

x,σ,ρ,ωφ
−
x,σ,ρ,ω

]

, (3.109)

where S(≥0)(φ) (chosen in such a way that S(≥0)(0) = 0) collects the terms depending
on φ but not on �(≤0) and B(0)(�(≤0), φ) the terms depending both on φ and �(≤0)

generated by the ultraviolet integration.
Proceeding as in Sec. 3.3, we inductively show (see below for details) that, if h ≤ 0,

eW(φ) can be rewritten as:

eW(φ) = e−β|�|Fh+S(≥h)(φ)

∫
Pχh ,Ah (d�

(≤h))

·e−V(h)(�(≤h))−B(h)(�(≤h), φ)+
∫

dk′
[
φ̂+

k′,σ,ρ,ω Q̂(h+1)
k′,ω,ρ,ρ′ �̂

(≤h)−
k′,σ,ρ′,ω+�̂(≤h)+

k′,σ,ρ,ω Q̂(h+1)
k′,ω,ρ,ρ′ φ̂

−
k′,σ,ρ′,ω

]

,

(3.110)

where
∫

dk′ must be interpreted as equal to (β|�|)−1∑
k∈Dω

β,L
; B(h)(�(≤h), φ) can be

written as B(h)φ (�(≤h)) + W (h)
R , with W (h)

R containing the terms of third or higher order

in φ and B(h)φ (�(≤h)) of the form
∫

dx

[
φ+·,σ,ρ1,ω

∗ G(h+1)
ω,ρ1,ρ2

∗ ∂V
(h)(�(≤h))

∂�
(≤h)+·,σ,ρ2,ω

+
∂V(h)(�(≤h))

∂�
(≤h)−·,σ,ρ1,ω

∗ G(h+1)
ω,ρ1,ρ2

∗ φ−·,σ,ρ2,ω

+φ+·,σ1,ρ1,ω1
∗ G(h+1)

ω1,ρ1,ρ2
∗ ∂2

∂�
(≤h)+·,σ1,ρ2,ω1∂�

(≤h)−·,σ2,ρ3,ω2

RV(h)(�(≤h)) ∗ G(h+1)
ω2,ρ3,ρ4

∗ φ−·,σ2,ρ4,ω2

]
,

(3.111)
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with

Ĝ(h+1)
ω,ρ,ρ′(k

′) =
1∑

k=h+1

ĝ
(k)
ω,ρ,ρ′′(k

′)Q̂(k)
k′,ω,ρ′′,ρ′ (3.112)

and Q̂(h)
k′,ω,ρ,ρ′ defined inductively by the relations

Q̂(h)
k′,ω,ρ,ρ′ = Q̂(h+1)

k′,ω,ρ,ρ′ −W (h)
2,ρ,ρ′′,(ω,ω)(k

′)Ĝ(h+1)
ω,ρ′′,ρ′(k

′), Q(1)
k′,ω,ρ,ρ′ ≡ δρ,ρ′ ,

(3.113)

where W (h)
2,ρ,ω is the kernel of LV(h), as defined in (3.62). In (3.112), ĝ

(1)
ω is defined as

ĝ(1)ω (k′) = ĝ(u.v.)(k′ + pωF )
[
1
(||k′|| < ||k′ + pωF − p−ωF ||

)

+
1

2
1
(||k′|| = ||k′ + pωF − p−ωF ||

)]
,

where pωF
de f= (0, �pωF ). Note that, by the compact support properties of ĝ

(h)
ω (k′), if

ĝ(h)ω (k′) �= 0, h < 0, then ĝ( j)(k) = 0 for | j − h| > 1, so that

Q̂(h)
k′,ω,ρ,ρ′ = 1− Ŵ (h)

2,ρ,ρ1,(ω,ω)
(k′)ĝ(h+1)

ω,ρ1,ρ2
(k′)Q̂(h+1)

k′,ω,ρ2,ρ′ ,

and, therefore, proceeding by induction, we see that on the support of ĝ(h)ω (k′) we have

||Q̂(h)
k′,ω − 1|| ≤ C |U |γ θh, ||∂n

k′ Q̂
(h)
k′,ω|| ≤ Cn|U |γ (θ−n)h . (3.114)

In order to derive (3.114), we used Theorem 2 and the decay bounds (3.92).
Using (3.114), the definition (3.112) and the decay bounds (3.92), we find that

∫
dx |x| j ||G(h)

ω (x)|| ≤ C jγ
−(1+ j)h . (3.115)

Let us now prove (3.110). We proceed by induction. For h = 0 (3.110) is clearly true (it
coincides with (3.109)). Assuming inductively that the representation (3.110) is valid up
to a certain value of h < 0, we can show that the same representation is valid for h − 1.
In fact, we can rewrite the term V(h) in the exponent of (3.110) as V(h) = LV(h)+RV(h),
as in (3.61), and we can “absorb” LV(h) in the fermionic integration, as explained in
Sec. 3.3, see (3.64)–(3.66). Similarly we rewrite

∂

∂�
(≤h)±
x,σ,ρ,ω

V(h)(�(≤h)) =
∫

dy W (h)
2,(ρ,ρ′),(ω,ω)(x, y)�(≤h)∓

y,σ,ρ′,ω

+
∂

∂�
(≤h)±
x,σ,ρ,ω

RV(h)(�(≤h)). (3.116)

This rewriting induces a decomposition of the first line of (3.111) into two pieces, the
first proportional to W (h)

2 , the second identical to the first line of (3.111) itself, with V(h)
replaced by RV(h), that we will call RB(h)φ (�(≤h)). We choose to “absorb” the term
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proportional to W (h)
2 into the definition of Q(h), and this gives the recursion relation

(3.113). Moreover, note that combining RB(h)φ (�(≤h)) with RV(h)(�(≤h)) we find:

RV(h)(�(≤h)) + RB(h)φ (�(≤h)) = RV(h)(�(≤h) + G(h+1) ∗ φ) + W (h)
R,1, (3.117)

with W (h)
R,1 containing terms of third or higher order in φ. We define W

(h)
R = W (h)

R +W (h)
R,1.

After these splittings and redefinitions, we can rewrite (3.110) as

eW(φ) = e−β|�|(Fh+eh)+S(≥h)(φ)

∫
Pχh−1,Ah−1(d�

(≤h−1))

∫
Pfh ,Ah−1

(d�(h))

·e−RV(h)(�(≤h)+G(h+1)∗φ)−W
(h)
R +

∫
dk′
[
φ̂+

k′ Q̂
(h)
k′ �̂

(≤h)−
k′ +�̂(≤h)+

k′ Q̂(h)
k′ φ̂
−
k′
]

. (3.118)

Integrating the field �(h), we get the analogue of (3.75):

∫
Pfh ,Ah−1

(d�(h)) e
−RV(h)(�(≤h)+G(h+1)∗φ)−W

(h)
R +

∫
dk′
[
φ̂+

k′ Q̂
(h)
k′ �̂

(≤h)−
k′ +�̂(≤h)+

k′ Q̂(h)
k′ φ̂
−
k′
]

= e−ehβ|�|−V(h−1)(�(≤h−1)+G(h)∗φ)+∫ dk′φ̂+
k′ Q̂

(h)
k′ ĝ(h)(k′)Q̂(h)

k′ φ̂
−
k′−W (h−1)

R,2 ·
·e
∫

dk′
[
φ̂+

k′ Q̂
(h)
k′ �̂

(≤h−1)−
k′ +�̂(≤h−1)+

k′ Q̂(h)
k′ φ̂
−
k′
]

, (3.119)

with G(h) defined by the recursion relation (3.112) and W (h−1)
R,2 a term of third or higher

order in φ. Equation (3.119) can be proved by making use of a formal change of Grass-
mann variables �̂ ′k′ = �̂k′ − ĝ(h)(k′)Q(h)

k′ φ̂k′ , as described in Ch.4 of [2]. At this point
it is straightforward to check that the final expression for eW(φ) that we end up with is
given by the r.h.s. of (3.110), with h replaced by h − 1, and the inductive assumption is
proved.

From the definitions and the construction above, we get

Sρ,ρ′(x − y) =
∑

ω=±
e−i �pωF (�x−�y)Sω,ρ,ρ′(x − y) ≡

∑

ω=±
e−i �pωF (�x−�y) ·

·
1∑

h=−∞

[(
Q(h)
ω,ρ,ρ1

∗ g(h)ω,ρ1,ρ2
∗ Q(h)

ω,ρ2,ρ′
)
(x − y)

−
(

G(h)
ω,ρ,ρ1

∗W (h−1)
2,(ρ1,ρ2),(ω,ω)

∗ G(h)
ω,ρ2,ρ′

)
(x − y)

]
. (3.120)

Analyticity of Sρ,ρ′(x−y) follows from this representation and the results of Theorem 2.
Concerning the representation (2.10), let us take the Fourier transform of Sω,ρ,ρ′(x−y).
If we define hk = min{h : ĝ(h)ω (k′) �≡ 0}, we get, for k′ inside the support of �(≤0)

k′,σ,ρ,ω,

Ŝω,ρ,ρ′(k′) =
hk+1∑

j=hk

Q( j)
k′,ω,ρ,ρ1

g( j)
ω,ρ1,ρ2

(k′)( j)Q( j)
k′,ω,ρ2,ρ′

−
hk+1∑

j=hk

G( j)
ω,ρ,ρ1

(k′)W ( j−1)
2,(ρ1,ρ2),(ω,ω)

(k′)G( j)
ω,ρ2,ρ′(k

′), (3.121)
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which readily implies (2.10): in fact, using the explicit expression of g
(h)
ω and the induc-

tive bounds on Q(h), see (3.114), it is easy to see that the term in the first line of (3.121)
can be written as in (2.10) and that their only singularity is located at k′ = 0.

The contributions from the second line can be bounded using the bounds on W (h)
2

proved in Theorem 2, and we find that they can be bounded by C |U |γ hk′ (−1+θ), which
means that they only contribute to the error term appearing in (2.10). This also implies
that no other singularity, besides the one at the Fermi points, can be produced by such
terms.

Finally, if k does not belong to the support of �(≤0), we can write

Ŝρ,ρ′(k) = Ŝ(u.v.)
ρ,ρ′ (k) = g(u.v.)(x − y)−

(
g(u.v.)ρ,ρ1

∗W2,(ρ1,ρ2) ∗ g(u.v.)
ρ2,ρ′

)
(x − y),

(3.122)

with W2,ρ defined by (3.36). The bounds discussed in Sec. 3.2 and Appendix C imply

that S(u.v.)
ρ,ρ′ (x− y) decays faster than any power, so that no singularity can appear in its

Fourier transform.
Note that all the bounds discussed in this section are uniform in M, β, L and this

fact, in analogy with the results and proofs of Lemma 2 and Corollary 1, implies the
existence of the two-point Schwinger function Sβ2 and of its zero temperature limit S2,
see Appendix D for details. A similar expansion can be obtained for higher order Schw-
inger functions, but we will not belabor the details here. This concludes the proof of the
uniform analyticity properties of 3.22 assumed in Proposition 1 and of Theorem 1. ��

Appendix A. The Non-interacting Theory

In this Appendix we give some details about the computation of the Schwinger func-
tions of the non-interacting theory, i.e., of model (2.1) with U = 0. In this case the
Hamiltonian of interest reduces to

H0,� = −
∑

�x∈�
i=1,2,3

∑

σ=↑↓

(
a+
�x,σb−�x+�δi ,σ

+ b+
�x+�δi ,σ

a−�x,σ
)
, (A.1)

with �, a±�x,σ , b±�x+�δi ,σ
defined as in items (1)–(4) after (2.1).

First of all, let us recall that, being H0,� quadratic, the 2n-point Schwinger functions
satisfy the Wick rule, i.e.,

〈T{�−x1,σ1,ρ1
· · ·�−xn ,σn ,ρn

�+
y1,σ

′
1,ρ
′
1
· · ·�+

yn ,σ ′n ,ρ′n }〉β,� = − det G,

Gi j = δσiσ
′
j
〈T{�−xi ,σi ,ρi

�+
y j ,σ

′
j ,ρ
′
j
}〉
β,�
. (A.2)

Moreover, every n–point Schwinger function Sβ,�n (x1, ε1, σ1, ρ1; . . . ; xn, εn, σn, ρn)

with
∑n

i=1 εi �= 0 is identically zero. Therefore, in order to construct the whole set of

Schwinger functions of H0,�, it is enough to compute the 2–point function Sβ,�0 (x−y) =
〈T{�−x,σ,ρ�+

y,σ,ρ′ }〉β,�, and in order to do this, it is convenient to first diagonalize H0,�.

Let us proceed as follows:
We identify � with the set of vectors in a fundamental cell, and we write

� = {n1�a1 + n2�a2 : 0 ≤ n1, n2 ≤ L − 1}, (A.3)
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with �a1 = 1
2 (3,
√

3) and �a2 = 1
2 (3,−

√
3). The reciprocal lattice�∗ is the set of vectors

such that ei �K �x = 1, if �x ∈ �. A basis �b1, �b2 for �∗ can be obtained by the inversion
formula:

(
b11 b12
b21 b22

)
= 2π

(
a11 a21
a12 a22

)−1

, (A.4)

which gives

�b1 = 2π

3
(1,
√

3), �b2 = 2π

3
(1,−√3). (A.5)

We call DL the set of quasi-momenta �k of the form

�k = m1

L
�b1 +

m2

L
�b2, m1,m2 ∈ Z, (A.6)

identified modulo �∗; this means that DL can be identified with the vectors �k of the
form (2.2) and restricted to the first Brillouin zone:

DL =
{�k = m1

L
�b1 +

m2

L
�b2 : 0 ≤ m1,m2 ≤ L − 1

}
. (A.7)

Given a periodic function f : �→ R, its Fourier transform is defined as

f (�x) = 1

|�|
∑

�k∈DL

ei �k�x f̂ (�k), (A.8)

which can be inverted into

f̂ (�k) =
∑

�x∈�
e−i �k�x f (�x), �k ∈ DL , (A.9)

where we used the identity
∑

�x∈�
ei �k�x = |�|δ�k,�0, (A.10)

and δ is the periodic Kronecker delta function over �∗.
We now associate to the set of creation/annihilation operators a±�x,σ , b±�x+�δi ,σ

the cor-

responding set of operators in momentum space:

a±�x,σ =
1

|�|
∑

�k∈DL

e±i �k�xâ±�k,σ , b±�x+�δ1,σ
= 1

|�|
∑

�k∈DL

e±i �k�xb̂±�k,σ . (A.11)

Note that, using (A.8)–(A.10), we find that

â±�k,σ =
∑

�x∈�
e∓i �k�xa±�x,σ , b̂±�k,σ =

∑

�x∈�
e∓i �k�xb±�x+�δ1,σ

(A.12)

are fermionic creation/annihilation operators satisfying

{aε�k,σ , aε
′
�k′,σ ′ } = |�|δ�k,�k′δε,−ε′δσ,σ ′ , {bε�k,σ , bε

′
�k′,σ ′ } = |�|δ�k,�k′δε,−ε′δσ,σ ′ ,

(A.13)
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and {aε�k,σ , bε
′
�k′,σ ′ } = 0. With these definitions, we can rewrite

H0,� = −
∑

�x∈�
i=1,2,3

∑

σ=↑↓
(a+
�x,σb−�x+�δi ,σ

+ b+
�x+�δi ,σ

a−�x,σ ) = −
1

|�|2
∑

�x∈�
i=1,2,3

∑

σ=↑↓

×
∑

�k,�k′∈DL

(
e+i �k�xe−i �k′(�x+�δi−�δ1)â+

�k,σ b̂−�k′,σ + e−i �k�xe+i �k′(�x+�δi−�δ1)b̂+
�k′,σ â−�k,σ

)

= − 1

|�|
∑

�k∈DL

∑

σ=↑↓

(
v∗�k â+
�k,σ b̂−�k,σ + v�k b̂+

�k,σ â−�k,σ
)
, (A.14)

with

v�k =
3∑

i=1

ei(�δi−�δ1)�k = 1 + 2e−i 3
2 k1 cos

√
3

2
k2. (A.15)

The Hamiltonian H0,� can be diagonalized by introducing the fermionic operators

α̂�k,σ =
â�k,σ√

2
+

v∗�k√
2|v�k |

b̂�k,σ , β̂�k,σ =
â�k,σ√

2
−

v∗�k√
2|v�k |

b̂�k,σ , (A.16)

in terms of which we can rewrite

H0,� = 1

|�|
∑

�k∈DL

∑

σ=↑↓

(
−|v�k |α̂+

�k,σ α̂�k,σ + |v�k |β̂+
�k,σ β̂�k,σ

)
, (A.17)

with

|v�k | =
√(

1 + 2 cos(3k1/2) cos(
√

3k2/2)
)2

+ 4 sin2(3k1/2) cos2(
√

3k2/2),

(A.18)

which is vanishing iff �k = �pωF , ω = ±, with

�p ω
F = (

2π

3
, ω

2π

3
√

3
). (A.19)

Now, for �x ∈ �, we define α±�x,σ = |�|−1∑�k∈DL
e±i �k�xα̂�k,σ and β±�x,σ = |�|−1

∑
�k∈DL

e±i �k�xα̂�k,σ ; moreover, if x = (x0, �x) we define α±x,σ = eH0,�x0α±�x,σ e−H0,�x0 and

β±x,σ = eH0,�x0β±�x,σ e−H0,�x0 . A straightforward computation, see, e.g., Appendix 1 of
[2], shows that, if −β < x0 − y0 ≤ β,

〈T{α−x,σ α+
y,σ ′ }〉β,�

= δσ,σ ′

|�|
∑

�k∈DL

e−i �k(�x−�y)
[
1 (x0 − y0 > 0)

e(x0−y0)|v�k |

1 + eβ|v�k |
− 1 (x0 − y0 ≤ 0)

e(x0−y0+β)|v�k |

1 + eβ|v�k |

]
,

(A.20)
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〈T{β−x,σ β+
y,σ ′ }〉β,�

= δσ,σ ′

|�|
∑

�k∈DL

e−i �k(�x−�y)
[
1 (x0 − y0 > 0)

e−(x0−y0)|v�k |

1 + e−β|v�k |
− 1 (x0 − y0 ≤ 0)

e−(x0−y0+β)|v�k |

1 + e−β|v�k |

]
,

(A.21)

and 〈T{α−x,σ β+
y,σ ′ }〉β,� = 〈T{β−x,σ α+

y,σ ′ }〉β,� = 0. A priori Eq. (A.21) and (A.22) are

defined only for−β < x0−y0 ≤ β, but we can extend them periodically over the whole
real axis; the periodic extension of the propagator is continuous in the time variable for
x0 − y0 �∈ βZ, and it has jump discontinuities at the points x0 − y0 ∈ βZ. Note that at
x0 − y0 = βn, the difference between the right and left limits is equal to (−1)nδ�x,�y , so
that the propagator is discontinuous only at x − y = βZ× �0. For x − y �∈ βZ× �0, we
can write

〈T{α−x,σ α+
y,σ ′ }〉β,� =

δσ,σ ′

β|�|
∑

k∈Dβ,L

e−ik(x−y) 1

−ik0 − |v�k |
, (A.22)

〈T{β−x,σ β+
y,σ ′ }〉β,� =

δσ,σ ′

β|�|
∑

k∈Dβ,L

e−ik(x−y) 1

−ik0 + |v�k |
. (A.23)

Note indeed that for x0 − y0 �∈ βZ the sums over k0 in (A.22) are convergent,
uniformly in M ; if x0 − y0 = βn and �x �= �y, the r.h.s. of (A.22) is equal to

1

2

(
lim

x0−y0→(βn)+
〈T{α−x,σ α+

y,σ ′ }〉β,� + lim
x0−y0→(βn)−

〈T{α−x,σ α+
y,σ ′ }〉β,�

)

= 〈T{α−x,σ α+
y,σ ′ }〉β,�

∣∣∣
x0−y0=βn

. (A.24)

A similar remark is valid for 〈T{β−x,σ β+
y,σ ′ }〉β,�. If we now re-express α±x,σ and β±x,σ

in terms of a±x,σ and b±x+δ1,σ
, using (A.16), we get (2.6) and (3.17). Note that if, on the

contrary, x = y, then (3.17) is not valid. In fact

lim
M→∞

1

β|�|
∑

k∈D∗β,L
ĝk =

∑

k∈Dβ,L

1

k2
0 + |v(�k)|2

(
0 −v∗(�k)
−v(�k) 0

)
. (A.25)

In particular, the diagonal part of (A.25) is vanishing, while, using (A.16) and the
fact that 〈α̂+

�k,σ β̂�k′,σ ′ 〉β,� = 〈β̂
+
�k,σ α̂�k′,σ ′ 〉β,� = 0, we have that

S0(0
−, �0)1,1 = S0(0

−, �0)2,2 = −1

2

(
〈α+
�x,σ α�x,σ 〉β,� + 〈β+

�x,σ β�x,σ 〉β,�
)

= − 1

2|�|
∑

�k∈DL

(
eβ|v�k |

1 + eβ|v�k |
+

e−β|v�k |

1 + e−β|v�k |

)
= −1

2
. (A.26)
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Appendix B. Proof of Proposition 1

Let us start by proving (3.23), which is equivalent to

Tr{e−βH�}
Tr{e−βH0,�} = exp

{
−β|�| lim

M→∞ FM,β,L

}
. (B.1)

The first key remark is that, if β, L are finite, the left hand side of (B.1) is a priori well
defined and analytic on the whole complex plane. In fact, by the Pauli principle, the
Fock space generated by the fermion operators a±�x,σ , b±�x+�δ1,σ

, with �x ∈ �, σ =↑↓, is

finite dimensional. Therefore, writing H� = H0
� + U V�, with H0

� and V� two bounded
operators, we see that Tr{e−βH�} is an entire function of U , simply because e−βH�

converges in norm over the whole complex plane:

||e−βH� ||≤
∞∑

n=0

βn

n!
(
||H0

�|| + |U | ||V�||
)n =

∞∑

k=0

βk |U |k ||V�||k
k!

∑

n≥k

βn−k ||H0
�||n−k

(n − k)!
= eβ||H0

�||+β|U | ||V�||, (B.2)

where the norm || · || is, e.g., the Hilbert-Schmidt norm ||A|| = √Tr(A† A).
On the other hand, by assumption, FM,β,L is analytic in |U | ≤ U0, with U0 inde-

pendent of β, L ,M , and uniformly convergent as M →∞. Hence, by the Weierstrass
theorem, the limit Fβ,L = limM→∞ FM,β,L is analytic in |U | ≤ U0 and its Taylor
coefficients coincide with the limits as M → ∞ of the Taylor coefficients of FM,β,L .
Moreover, limM→∞ e−β|�|FM,β,L = e−β|�|Fβ,L , again by the Weierstrass theorem.

It is well known that the Taylor coefficients of e−β|�|Fβ,L coincide with the Taylor
coefficients of Tr{e−βH�}/Tr{e−βH0,�}: this can be shown by developing the trace in
power series by using Trotter’s product formula; the coefficients of the resulting expan-
sion are expressed in terms of Feynman graphs, which are order by order finite for any
fixed β and L (in fact at any fixed order they can be written as a finite combination of
integrals over imaginary time and spatial momenta of products of propagators, which
are bounded and integrable). Note that, in order to guarantee that the two formal power
series are the same, the correct choice of the interaction (3.19) expressed in Grassmann
variables does not include terms bilinear in the fields, contrary to the interaction in sec-
ond quantized form, see (2.1): in fact, with this choice, in both perturbative expansions
the "tadpoles" are exactly vanishing, as required by the condition that the system is at
half filling, even though the Grassmann propagator at the origin does not coincide with
S0(0−, �0), see (A.25) and (A.26).

In conclusion, Tr{e−βH�}/Tr{e−βH0,�} = e−β|�|Fβ,L in the complex region |U | ≤
U0, simply because the l.h.s. is entire in U , the r.h.s. is analytic in |U | ≤ U0 and the
Taylor coefficients at the origin of the two sides are the same. Taking logarithms at both
sides proves (3.23).

Regarding (3.24), we note that, by analyticity, Tr{e−βH�}/Tr{e−βH0,�} never van-
ishes on |U | ≤ U0; therefore, the same argument used above for the pressure can be
now repeated for the Schwinger functions. ��

Appendix C. The Ultraviolet Integration

In this Appendix we prove Lemma 2, that is we prove Eq.(3.38) and the existence (and
uniformity) of the M →∞ limit. Note that in order to get (3.38), a simple application of
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(3.82) and determinant bounds is not enough, because g(u.v.)(x) does not admit a Gram
representation, which is a key property needed for the implementation of standard fer-
mionic cluster expansion methods. As mentioned in Sect. 3.2, a way out of this problem
is to decompose the ultraviolet propagator into a sum of propagators, each admitting
a Gram representation, and performing a simple multiscale analysis of the ultraviolet
problem, in analogy with the standard strategy for ultraviolet problems in fermionic
Quantum Field Theories [9,14]. This multiscale analysis is very similar to (but much
simpler than) the one described in Sect. 3.3; it has been performed in several previous
papers [3,5,4] and it is reported here for completeness.

Appendix C.1. Proof of (3.38). Let M be the integer introduced at the beginning of
Sect. 3.1, let β, L be fixed throughout this Appendix and let us rewrite the Fourier
transform of ĝ(u.v.)(k) as

g(u.v.)(x) =
M∑

h=1

g(h)(x), (C.1)

where

g(h)(x) = 1

β|�|
∑

k∈D∗β,L
fu.v.(k)Hh(k0)e

−ikxĝk, (C.2)

with H1(k0) = χ0(γ
−1|k0|) and, if h ≥ 2, Hh(k0) = χ0(γ

−h |k0|) − χ0(γ
−h+1|k0|).

Note that [g(h)(0)]ρρ = 0, ρ = 1, 2, and, for any integer K ≥ 0, g(h)(x) satisfies the
bound

||g(h)(x)|| ≤ CK

1 + (γ h |x0|β + |�x|�)K
, (C.3)

where | · |β is the distance on the one dimensional torus of size β and | · |� is the
distance on the periodic lattice �. Moreover, g(h)(x) admits a Gram representation:
g(h)(x − y) = ∫ dz A∗h(x − z) · Bh(y− z), with

Ah(x) = 1

β|�|
∑

k∈Dβ,L

√
fu.v.(k)Hh(k0)

e−ikx

k2
0 + |v(�k)|2

(
1 0
0 1

)
,

Bh(x) = 1

β|�|
∑

k∈Dβ,L

√
fu.v.(k)Hh(k0) e−ikx

(
ik0 −v∗(�k)
−v(�k) ik0

)
, (C.4)

and

||Ah ||2 =
∫

dz|Ah(z)|2 ≤ Cγ−3h, ||Bh ||2 ≤ Cγ 3h, (C.5)

for a suitable constant C .
Our goal is to compute

e−β|�|F0−V(�(i.r)) = lim
M→∞

∫
P(d�[1,M])eV (�(i.r.)+�[1,M])

= exp

{
lim

M→∞ log
∫

P(d�[1,M])eV (�(i.r.)+�[1,M])
}
, (C.6)
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where P(d�[1,M]) is the fermionic “Gaussian integration” associated with the propaga-
tor
∑M

h=1 ĝ(h)(k) (i.e., it is the same as P(d�(u.v.))); the fact that the limit M →∞ can
be exchanged with the logarithm in (C.6) follows from the analysis below. We perform
the integration of (C.6) in an iterative fashion, analogous to the procedure described in
Sec. 3.3 for the infrared integration. We can inductively prove the analogue of (3.58),
i.e.,

e−β|�|F0,M−VM (�
(i.r)) = e−β|�|Fh

∫
P(d�[1,h])eV(h)M (�(i.r.)+�[1,h]), (C.7)

where P(d�[1,h]) is the fermionic “Gaussian integration” associated with the propagator∑h
k=1 ĝ(k)(k) and

V(h)M (�[1,h]) =
∞∑

n=1

∑

ρ,σ

∫
dx1 · · · dx2n

⎡

⎣
n∏

j=1

�[1,h]+x2 j−1,σ j ,ρ2 j−1
�[1,h]−x2 j ,σ j ,ρ2 j

⎤

⎦

×W (h)
M,2n,ρ(x1, . . . , x2n). (C.8)

In order to inductively prove (C.7)–(C.8) we simply use the addition principle to rewrite
∫

P(d�[1,h])eV(h)M (�(i.r.)+�[1,h]) =
∫

P(d�[1,h−1])

×
∫

P(d�(h))eV(h)M (�(i.r.)+�[1,h−1]+�(h)), (C.9)

where P(d�(h)) is the fermionic Gaussian integration with propagator ĝ(h)(k). After
the integration of �(h)) we define

eV(h−1)
M (�(i.r.)+�[1,h−1])−β|�|eh =

∫
P(d�(h))eV(h)M (�(i.r.)+�[1,h−1]+�(h)), (C.10)

which proves (C.7). In analogy with (3.76) we have

eh + V(h−1)
M (�) =

∑

n≥1

1

n! (−1)n+1ET
h

(
V(h)M

(
� +�(h)

); n). (C.11)

As described in Sect. 3.3, the iterative action of ET
hi

can be conveniently represented in
terms of trees τ ∈ TM;h,n , where TM;h,n is a set of labelled trees, completely analogous
to the set Th,n described before Eq.(3.77), unless for the following modifications:

1. a tree τ ∈ TM;h,n has vertices v associated with scale labels h + 1 ≤ hv ≤ M + 1,
while the root r has scale h;

2. with each end-point v we associate V (�[1,M]), with V (�) defined in (3.19).

In terms of these trees, the effective potential V(h)M , 0 ≤ h ≤ M (with V(0)M (�(i.r.))

identified with V(�(i.r.))), can be written as

V(h)M (�[1,h]) + β|�|eh+1 =
∞∑

n=1

∑

τ∈TM;h,n

V(h)(τ,�[1,h]), (C.12)

where, if v0 is the first vertex of τ and τ1, . . . , τs (s = sv0 ) are the subtrees of τ with
root v0, V(h)(τ,�[1,h]) is defined inductively as follows:
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h v 1+MM1−M1+hh

r
v 0

v

Fig. 2. A tree τ ∈ TM;h,n with its scale labels

i) if s > 1, then

V(h)(τ,�[1,h])= (−1)s+1

s! ET
h+1

[
V̄(h+1)(τ1, �

[1,h+1]); . . . ; V̄(h+1)(τs, �
[1,h+1])

]
,

(C.13)

where V̄(h+1)(τi , �
[1,h+1]) is equal to V(h+1)(τi , �

[1,h+1]) if the subtree τi contains
more than one end-point, or if it contains one end-point but it is not a trivial subtree;
it is equal to V (�[1,h+1]) if τi is a trivial subtree;

ii) if s = 1, then V(h)(τ,�(≤h)) is equal to ET
h+1

[
V(h+1)(τ1, �

[1,h+1])
]

if τ1 is not a
trivial subtree; it is equal to ET

h+1

[
V (�[1,h+1])− V (�[1,h])

]
if τ1 is a trivial subtree.

Note that, with V (�) defined as in (3.19) and with the present choice of the ultravio-
let cutoff (such that [g(h)(0)]ρρ = 0), we get ET

h+1

[
V (�[1,h+1])− V (�[1,h])

] = 0. This
implies that, if v is not an endpoint and n(v) is the number of endpoints following v on
τ , and if τ has a vertex v with n(v) = 1, then its value vanishes: therefore, in the sum
over the trees, we can freely impose the constraint that n(v) > 1 for all vertices v ∈ τ .
From now on we shall assume that the trees in TM;h,n satisfy this constraint.

Repeating step by step the discussion leading to (3.79), (3.87) and (3.88), and using
analogous definitions, we find that

V(h)(τ,P) =
∑

T∈T

∫
dxv0�̃

[1,h](Pv0)W
(h)
τ,P,T (xv0) ≡

∑

T∈T

V(h)(τ,P, T ), (C.14)

where

�̃[1,h](Pv) =
∏

f ∈Pv

�
[1,h]ε( f )
x( f ),σ ( f ),ρ( f ) (C.15)

and

Wτ,P,T (xv0) = U n

⎧
⎪⎨

⎪⎩

∏

v
not e.p.

1

sv!
∫

d PTv (tv) det Ghv,Tv (tv)

⎡

⎣
∏

l∈Tv

δσ−l ,σ+
l

[
g(hv)(xl − yl)

]

ρ−l ,ρ+
l

⎤

⎦

⎫
⎬

⎭ . (C.16)
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Moreover, Ghv,Tv (tv) is a matrix, analogous to (3.83), with δω+
l ,ω
−
l

replaced by 1 and

g(h)ωl replaced by g(h). Note that Wτ,P,T and, therefore, V(h)(τ,P) do not depend on M :

V(h)M (�) depends on M only through the choice of the scale labels (i.e., the dependence
on M is all encoded in TM;h,n).

As in the proof of Theorem 2, we get the bound

1

β|�|
∫

dx1 · · · dx2l |W (h)
M,2l,ρ(x1, . . . , x2l )| ≤

∑

n≥1

|U |n
∑

τ∈TM;h,n

∑

P∈Pτ|Pv0 |=2l

∑

T∈T

∫ ∏

l∈T

d(xl − yl )

·
⎡

⎣
∏

v not e.p.

1

sv ! max
tv

∣∣∣det Ghv ,Tv (tv)
∣∣∣
∏

l∈Tv

|| g(hv)(xl − yl ) ||
⎤

⎦ (C.17)

and, using the analogues of the estimates (3.94), (3.95) and (3.96), taking into account
the new scaling of the propagator, we find that (C.17) can be bounded above by

∑

n≥1

∑

τ∈TM;h,n

∑

P∈Pτ|Pv0 |=2l

∑

T∈T

Cn|U |n
⎡

⎣
∏

v not e.p.

1

sv!γ
−hv(sv−1)

⎤

⎦ . (C.18)

Using (3.98) we find that the latter expression can be rewritten as

∑

n≥1

∑

τ∈TM;h,n

∑

P∈Pτ|Pv0 |=2l

∑

T∈T

Cn|U |nγ−h(n−1)

⎡

⎣
∏

v not e.p.

1

sv!γ
−(hv−hv′ )(n(v)−1)

⎤

⎦ , (C.19)

where we remind the reader that n(v) > 1 for any τ ∈ TM;h,n . Performing the sums
over T,P and τ as in the proof of Theorem 2, we finally find

1

β|�|
∫

dx1 · · · dx2l |W (h)
M,2l,ρ(x1, . . . , x2l)| ≤ C |U |max{1,n−1}, (C.20)

which (3.38) with m = 0. The proof of the general case, m ≥ 0, is completely analogous.
By the uniformity of the constant C with respect to M, β, L , the bounds above imply
analyticity of the kernels in |U | ≤ U0, for a suitable U0 independent of M, β, L .

Appendix C.2. The M →∞ limit. In this subsection we prove that, if M ′ ≥ M ,

1

β|�|
∫

dx1 · · · dx2l

∣∣∣W (0)
M ′,2l,ρ(x1, . . . , x2l)−W (0)

M,2l,ρ(x1, . . . , x2l)

∣∣∣

≤ C1|U |max{1,n−1}γ−M/2, (C.21)

which readily implies the last statement of Lemma 2. In fact, (C.21) implies that
{Ŵ (0)

k,2l,ρ}k∈N is a Cauchy sequence, uniformly in U for |U | ≤ U0. Since the kernels

are analytic in U in the same domain, by the Weierstrass theorem the kernels Ŵ (0)
M,2l,ρ

admit a limit Ŵ (0)
2l,ρ as M → ∞; the limit is analytic in |U | ≤ U0 and its Taylor

coefficients are the limits of the coefficients of Ŵ (0)
M,2l,ρ .
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Using the same representation leading to (C.17) and following the steps leading to
(C.18) and (C.19), we see that the l.h.s. of (C.21) can be bounded as

1

β|�|
∫

dx1 · · · dx2l

∣∣∣W (0)
M ′,2l,ρ(x1, . . . , x2l)−W (0)

M,2l,ρ(x1, . . . , x2l)

∣∣∣

≤
∑

n≥1

∑

τ∈TM ′; 0,n\TM; 0,n

∑

P∈Pτ|Pv0 |=2l

∑

T∈T

Cn|U |n
⎡

⎣
∏

v not e.p.

1

sv!γ
−(hv−hv′ )(n(v)−1)

⎤

⎦ .

(C.22)

Note that the set of trees over which we are summing is TM ′;h,n\TM;h,n , i.e., the trees

contributing to the difference W (0)
M ′,2l,ρ − W (0)

M,2l,ρ must have at least one endpoint on

scale M < h∗ ≤ M ′ + 1. By using the fact that n(v) ≥ 2, we can bound the r.h.s. of
(C.22) from above by

γ−
M
2
∑

n≥1

∑

τ∈TM ′; 0,n\TM; 0,n

∑

P∈Pτ|Pv0 |=2l

∑

T∈T

Cn|U |n
⎡

⎣
∏

v not e.p.

1

sv!γ
−(hv−hv′ )(n(v)−3/2)

⎤

⎦

≤ C1|U |max{1,n−1}γ−M/2, (C.23)

which proves (C.21).

Appendix D. The Thermodynamic and Zero Temperature Limits

In this Appendix we first prove Corollary 1, discussing the existence (and uniformity)
of the thermodynamic limit and of the zero temperature limit of the free energy. Finally,
we discuss the existence of the thermodynamic and zero temperature limits for the
Schwinger functions.

Let us start by studying the thermodynamic limit of the free energy. The discussion in
Appendix C implies that limM→∞ Fβ,L = F0+

∑0
h=hβ (eh +eh), where F0 was defined in

Lemma 2 and eh and eh were defined in (3.67) and (3.76), respectively 1. Note that both
F0 and eh, eh depend on L and β, through the propagators (which depend on β, L) and
through the definition of the integration interval and of the sum over the scale labels. In
order to make this dependence apparent, let us rename them as F0,β,L , eh,β,L and eh,β,L .
Similarly, when needed, we shall attach extra labels β, L to the kernels of the effective
potentials, to the propagators and to the Gram determinants, to make their dependence
on β, L apparent. We already know that F0,β,L , eh,β,L and eh,β,L are analytic in the
uniform domain |U | ≤ U0, where they satisfy bounds of the form: |F0,β,L | ≤ C |U |,
|eh | + |eh | ≤ C |U |γ h(3+θ), 0 ≤ θ < 1. Our first goal is to prove that, for any β < +∞
and for any 0 < K < 4,

|F0,β,L − F0,β | +
0∑

h=hβ

(|eh,β,L − eh,β | + |eh,β,L − eh,β |
) ≤ CK |U |

L K
, (D.1)

1 With some abuse of notation, we are denoting by the same symbols both the functions eh and eh com-
puted at finite M , and their limits as M → ∞ (which exist, by Lemma 2, Theorem 2 and an application of
the Weierstrass theorem: note in fact that eh and eh in (3.67) and (3.76) have a very weak dependence on M ,

induced by the kernels of V(0)M , that is essentially irrelevant, as proved in Appendix C).
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for suitable functions F0,β , eh,β , eh,β , analytic in |U | ≤ U0, and a suitable constant CK .
Let us start by considering

F0,β,L = 1

β|�|
∑

n≥1

∑

M≥1

∑

τ∈T ∗0,n(M)

∑

P∈Pτ|Pv0 |=0

∑

T∈T

∫
dxv0 W (0)

τ,P,T,β,L(xv0), (D.2)

where T ∗0,n(M) is the set of trees with root on scale 0, n endpoints and the highest scale
label equal to M + 1. We observe that, by using translation invariance, we can fix one
variable at the origin: remember that xv0 = {xv : v is an e.p. of τ }, so that, if v∗ is one
arbitrarily chosen endpoint of τ ,

F0,β,L =
∑

n≥1

∑

M≥1

∑

τ∈T ∗0,n(M)

∑

P∈Pτ|Pv0 |=0

∑

T∈T

∫

(β,�)

dx̄v0 W (0)
τ,P,T,β,L (x̄v0), (D.3)

where x̄v0 = {xv − xv∗ : v is an e.p. of τ } and

∫

(β,�)

dx̄v0 =
∏

v e.p.
v �=v∗

⎡

⎣
∫ β/2

−β/2
dx0,v

∑

�xv∈�

⎤

⎦ . (D.4)

We want to estimate

F0,β,L − F0,β

=
∑

n≥1

∑

M≥1

∑

τ∈T ∗0,n (M)

∑

P∈Pτ|Pv0 |=0

∑

T∈T

[∫

(β,�)

dx̄v0 W (0)
τ,P,T,β,L (x̄v0 )−

∫

(β,B)

dx̄v0 W (0)
τ,P,T,β (x̄v0 )

]
,

(D.5)

where B is the infinite triangular lattice and W (0)
τ,P,T,β the kernel obtained from W (0)

τ,P,T,β,L

by replacing all the propagators g
(h)
β,L(x) by their infinite volume limits g

(h)
β (x) =

limL→∞ g
(h)
β,L(x). Let us fix 0 < δ < 1/4 and let us define

�δ = {n1�a1 + n2�a2 : |n1|, |n2| ≤ δL}. (D.6)

We rewrite (D.5) as

F0,β,L − F0,β =
∑

n≥1

∑

M≥1

∑

τ∈T ∗0,n(M)

∑

P∈Pτ|Pv0 |=0

∑

T∈T

(
R(1)τ,P,T,β,L + R(2)τ,P,T,β,L + R(3)τ,P,T,β,L

)
,

(D.7)

where

R(1)τ,P,T,β,L =
∫

(β,�)

dx̄v0 W (0)
τ,P,T,β,L(x̄v0)−

∫

(β,�δ)

dx̄v0 W (0)
τ,P,T,β,L(x̄v0),

R(2)τ,P,T,β,L =
∫

(β,�δ)

dx̄v0 W (0)
τ,P,T,β(x̄v0)−

∫

(β,B)

dx̄v0 W (0)
τ,P,T,β(x̄v0), (D.8)

R(3)τ,P,T,β,L =
∫

(β,�δ)

dx̄v0

(
W (0)
τ,P,T,β,L (x̄v0)−W (0)

τ,P,T,β(x̄v0)
)
.
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The contributions to F0,β,L−F0,β associated to R(1)τ,P,T,β,L and R(2)τ,P,T,β,L , in analogy
with (C.17), can be bounded from above by

∑

n≥1

|U |n
∑

M≥1

∑

τ∈T ∗h,n(M)

∑

P∈Pτ|Pv0 |=0

∑

T∈T

∫ ∗∏

l∈T

d(xl − yl)

·
⎡

⎣
∏

v not e.p.

1

sv! max
tv

∣∣∣det Ghv,Tv
β,Lv

(tv)
∣∣∣
∏

l∈Tv

|| g(hv)β,Ll
(xl − yl) ||

⎤

⎦ , (D.9)

where Lv and Ll can only assume the values L or +∞, and
∫ ∗ means that the integra-

tion region satisfies the following constraint: there exists a subtree T̃ ⊆ T such that
|∑l∈T̃ (yl − xl)| ≥ δL . Using this constraint and (C.3), we get the following improved
version of the analogue of (3.95):

∏

v not e.p.

1

sv!
∫ ∏

l∈Tv

d(xl − yl) ||g(hv)β,Ll
(xl − yl)|| ≤ cn

K

1 + (δL)K

∏

v not e.p.

1

sv!γ
−hv(sv−1).

(D.10)

This implies that the contributions to F0,β,L − F0,β associated to R(1)τ,P,T,β,L and

R(2)τ,P,T,β,L are bounded by CK |U |L−K , as desired.

Let us now look at the contributions to F0,β,L − F0,β associated to R(3)τ,P,T,β,L . Using

(C.16) we can bound it from above by R(4)β,L + R(5)β,L , with

R(4)β,L =
∑

n≥1

|U |n
∑

M≥1

∑

τ∈T ∗h,n(M)

∑

P∈Pτ|Pv0 |=0

∑

T∈T

∫

(β,�δ)

∏

l∈T

d(xl − yl)

⎧
⎪⎨

⎪⎩

⎛

⎝
∏

v not e.p.

1

sv !

·max
tv

∣∣∣det Ghv,Tv
β,Lv

(tv)
∣∣∣

⎞

⎠ ·
∑

l∈T

||g(hl )
β,L (xl − yl)− g

(hl )
β (xl − yl)||

∏

l′∈T
l′ �=l

|| g(hl )
β,Ll′ (xl ′ − yl ′) ||

⎫
⎪⎬

⎪⎭

and

R(5)
β,L =

∑

n≥1

|U |n
∑

M≥1

∑

τ∈T ∗h,n(M)

∑

P∈Pτ|Pv0 |=0

∑

T∈T

∫

(β,�δ)

∏

l∈T

d(xl − yl )

⎧
⎪⎪⎨

⎪⎪⎩

∏

l∈T

∣∣∣∣g(hl )
β,Ll

(xl − yl )
∣∣∣∣

·
∑

w not e.p.

1

sw! max
tw

∣∣det Ghw,Tw
β,L (tw)− det Ghw,Tw

β (tw)| ·

⎛

⎜⎜⎝
∏

v not e.p.
v �=w

1

sv ! max
tv

∣∣det Ghv,Tv
β,Lv

(tv)
∣∣

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭

where, again, Ll and Lv can only assume the values L or +∞. By Poisson’s summation
formula, g

(h)
β,L(x) − g

(h)
β (x) = ∑�n �=�0 g

(h)
β (x0, �x + �a1n1L + �a2n2L), with �a1,2 the two

basis’ vectors of the triangular lattice B; therefore,
∫

(β,�δ)

d(xl − yl)||g(hl )
β,L (xl − yl)− g

(hl )
β (xl − yl)|| ≤ CK γ

−hl

L K
, (D.11)
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which, combined with the same bounds leading from (C.17) to (C.20), implies that
R(4)β,L ≤ CK |U |L−K . Now, in order to get a bound on R(5)β,L , if Ghw,Tw is an s× s matrix,
we rewrite

det Ghw,Tw
β,L (tw)− det Ghw,Tw

β (tw) (D.12)

=
∑

p

(−1)p
[
(g
(h)
β,L)1,p(1) · · · (g(h)β,L)s,p(s) − (g(h)β )1,p(1) · · · (g(h)β )s,p(s)

]

=
∑

p

(−1)p
s∑

j=1

· ·
(
(g
(h)
β,L)1,p(1) · · · (g(h)β,L) j−1,p( j−1)

)

(
(g
(h)
β,L) j,p( j) − (g(h)β ) j,p( j)

) (
(g
(h)
β ) j+1,p( j+1) · · · (g(h)β )s,p(s)

)
,

where p = (p(1), . . . , p(s)) is a permutation of the indices in the (unordered) set
J = {1, . . . , s}. We rewrite the two sums over p and j in the following way:

∑

p

s∑

j=1

=
s∑

j=1

s∑

k=1

∗∑

J1,J2

∗∗∑

p

, (D.13)

where the ∗ on the second sum means that the (unordered) sets J1 and J2 are s.t. (J1, J2)

is a partition of J \ {k}; the ∗∗ on the third sum means that p(1), . . . , p( j − 1) belong
to J1, p( j) = k and p( j + 1), . . . , p(s) belong to J2. Using (D.13), we rewrite (D.12)
as

det Ghw,Tw
β,L (tw)− det Ghw,Tw

β (tw) =
s∑

j=1

s∑

k=1

(
(g
(h)
β,L) j,k − (g(h)β ) j,k

)

·
∗∑

J1,J2

(−1)π
∑

p1,p2

(−1)p1+p2

⎛

⎝
∏

i∈J1

(g
(h)
β,L)i,p1(i)

⎞

⎠

⎛

⎝
∏

i ′∈J2

(g
(h)
β )i ′,p2(i ′)

⎞

⎠ , (D.14)

where: (−1)π is the sign of the permutation leading from the ordering (1, . . . , s) to
the ordering ( f, J̄1, J̄2), with J̄i a fixed (arbitrary) reordering of Ji ; pi , i = 1, 2 is a
permutation of J̄i and (−1)pi is its sign. In conclusion, using the obvious notation,

det Ghw,Tw
β,L (tw)− det Ghw,Tw

β (tw)

=
s∑

j=1

s∑

k=1

(
(g
(h)
β,L) j,k − (g(h)β ) j,k

) ∗∑

J1,J2

(−1)π det Ghw
β,L(J1) · det Ghw

β (J2),

(D.15)

where Ghw
β,L(J1) and Ghw

β,L(J1) are two Gram matrices. Note that the number of terms
in the sum

∑∗
J1.J2

is equal to 2s . By the Gram-Hadamard inequality and Poisson’s
summation formula, we get

max
tw

∣∣det Ghw,Tw
β,L (tw)− det Ghw,Tw

β (tw)| ≤ cs
K

L K
, (D.16)

which, combined with the same bounds leading from (C.17) to (C.20), implies the desired
bound, R(5)β,L ≤ CK |U |L−K .
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We now need to prove that
∑0

h=hβ

(|eh,β,L − eh,β | + |eh,β,L − eh,β |
) ≤ C |U |L−K .

The quantity |eh,β,L − eh,β | can be bounded by following a strategy completely analo-
gous to the one used to bound |F0,β,L − F0,β |, the only difference being that now the
trees involved in the expansions are the infrared ones (with root on scale h and highest
scale ≤ 1); therefore, the analogue of (D.10) is changed into

∏

v not e.p.

1

sv!
∫ ∏

l∈Tv

d(xl − yl) ||g(hv)ωl ,β,Ll
(xl − yl)||

≤ cn
K

1 + (γ hδL)K

∏

v not e.p.

1

sv!γ
−hv(sv−1) ; (D.17)

the analogue of (D.11) is changed into

∫

(β,�δ)

d(xl − yl)||g(hl )
ωl ,β,L

(xl − yl)− g(hl )
ωl ,β

(xl − yl)|| ≤ CK γ
−hl

(γ hl L)K
; (D.18)

the analogue of (D.16) is changed into

max
tw

∣∣det Ghw,Tw
β,L (tw)− det Ghw,Tw

β (tw)| ≤ cs
K γ

2hws

(γ hw L)K
. (D.19)

These estimates imply that, for any 0 ≤ θ < 1 and any K > 0, |eh,β,L − eh,β | ≤
CK ,θ |U |γ (3+θ)h(γ h L)−K ; therefore, for any K < 3 + θ , we get the desired bound,∑

h≥hβ |eh,β,L − eh,β | ≤ CK |U |L−K . A similar estimate is valid for
∑

h≥hβ |eh,β,L −
eh,β |, but we will not belabor the details here. This concludes the proof of the first claim
of Corollary 1, concerning the thermodynamic limit of the free energy.

We are now left with discussing the zero temperature limit limβ→∞ fβ(U ). More
precisely, we need to prove that, for any β ′ > β and 0 < K < 4,

|F0,β − F0,β ′ | +
∣∣∣∣∣∣

0∑

h=hβ

(eh,β + eh,β)−
0∑

h=hβ′
(eh,β ′ + eh,β ′)

∣∣∣∣∣∣
≤ CK |U |

βK
. (D.20)

If we follow step by step the discussion above, leading to the estimate |F0,β,L − F0,β | ≤
CK |U |L−K , we find that, similarly, |F0,β − F0,β ′ | ≤ CK |U |β−K , K > 0; the proof of
this bound is based on a decomposition of the difference F0,β−F0,β ′ into a sum of terms
involving either integrals over constrained regions (such that

∑
l∈T |xl−yl | ≥ δβ) or dif-

ferences of propagators |g(h)β (x)− g(h)(x)| ≤∑n �=0 |g(h)(x0 + nβ, �x)| ≤ CK (γ
hβ)−K ;

the technical details are similar to those discussed above for the thermodynamic limit
and will not be repeated here.

Let us now consider the difference
∑0

h=hβ eh,β −∑0
h=hβ′ eh,β ′ : its absolute value

can be bounded from above by
∑

hβ′≤h<hβ |eh,β ′ | +∑hβ≤h≤0 |eh,β − eh,β ′ |. The terms

in the latter sum admit bounds similar to those obtained above for |eh,β,L − eh,β |,
leading to |eh,β − eh,β ′ | ≤ CK ,θ |U |γ (3+θ)h(γ hβ)−K ; therefore, for any K < 3 + θ ,
we get

∑
h≥hβ |eh,β − eh,β ′ | ≤ CK |U |β−K , as desired. Finally,

∑
hβ′≤h<hβ |eh,β ′ | ≤∑

h<hβ c|U |γ (3+θ)h ≤ C |U |γ (3+θ)hβ ≤ C ′|U |β−3−θ , as desired. A similar discussion
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implies the same bound for eh,β but we will not belabor the details here. This concludes
the proof of Corollary 1. ��

Finally, let us consider the two-point Schwinger function S(x) ≡ SM,β,�
2 (x, σ,−; 0,

σ,+). We recall that S(x) can be expressed in terms of the kernels W ( j)
2 of the effective

potential and of the propagators g
( j)
ω , see (3.120)–(3.121) and (3.112)–(3.113). There-

fore, for any fixed k, convergence of Ŝ(k) follows from the uniform convergence of
W ( j)

2 (x) and of g
( j)
ω (x). Note that the uniform convergence of g

( j)
ω was already proven

above, in the discussion on the convergence of the free energy. Moreover, the conver-
gence of the kernels of the effective potential can be proven by expressing W ( j)

2 in a

way analogous to the r.h.s. of (D.5), then by decomposing the integral of W ( j)
τ,P,T,β,L in

a way analogous to (D.9), and finally by bounding the analogues of R(1), R(2), R(3) in
the same way explained above for the free energy. The n-point Schwinger functions can
be treated in a similar way, but we will not belabour the details here.
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