POTENTIAL ROLE OF IL-10-TREATED DENDRITIC CELLS IN THE CONTROL OF THE IMMUNE RESPONSE TO ALLERGENS

Valentina Pacciani

DOCTORAL DISSERTATION

Faculty opponent
Prof. Maria Grazia Roncarolo
Vita-Salute San Raffaele University
HSR-TIGET, Milano

Supervisor
Dr. Federica Angelini
Tor Vergata University
Rome

Department of Public Health and Cellular Biology,
Tor Vergata University, Rome, Italy
2003-2006
TABLE OF CONTENTS

ABSTRACT

LIST OF PAPERS

ABBREVIATIONS

INTRODUCTION

Allergic Disease

- Epidemiology of Asthma
 pg 10
- Immunopathogenesis of Allergic Disease
 pg 12
- Allergic Inflammation
 pg 12
- Immunological Mechanisms in Asthma
 pg 16

Role of Dendritic Cells in Immune Regulation and Allergic Immune Response

- Airway DC
 pg 21

 - Antigen Uptake and Lymphnode Migration of Airway DC
 pg 22
 - Sensitization to Inhaled Allergens and Th2 Polarization by Airway DC
 pg 24

Immunological Tolerance

- Central Tolerance
 pg 30

2
ABSTRACT

Several lines of evidence indicate that a defect in immunoregulatory mechanisms is involved in the pathogenesis of allergic asthma.

The aim of this study was to determine whether IL-10-treated dendritic cells (DC) are able to modulate allergen-specific T cell responses in children affected by allergic asthma.

Forty-one children, aged between 4-14 years, allergic to House Dust Mite (HDM), and 10 healthy age-matched children were recruited. DC were differentiated from peripheral blood CD14+ precursors and cultured with GM-CSF and IL-4 for 5 days. Der p2 (a major HDM allergen) was added alone or in combination with IL-10 for 48 hours to obtain Dp2-DC and IL10 Dp2-DC, respectively. Alternatively, DC were differentiated in the presence of IL-10 and pulsed with Der p2 during the 2 last days of culture (Dp2-DC10).

The ability of the resulting DC to stimulate allergen-specific autologous T cells and to promote allergen-specific T cell anergy was analyzed.

Dp2-DC induced allergen-specific T cell proliferation in 32 out of 41 patients but not in healthy controls. In 25 out of 26 allergic patients both IL10 Dp2-DC and Dp2 DC10 induced a significantly lower allergen-specific T cell proliferation. The analysis of DC phenotype showed that IL-10 treatment during the last 2 days of culture down-regulated the expression of CD86 on Dp2-DC. However, no correlation between the reduction of CD86 expression and of T cell proliferation was observed. Dp2-DC promoted a selective activation of autologous CD4+ T cells (CD25 and intracellular CTLA-4 up-regulation), which remained unchanged after IL-10 treatment. Moreover, Dp2-DC stimulation induced a Th2 cytokine profile characterized by an increase of IL-5, IL-13 and IL-4 production and IL-5/IFN-γ ratio. In the same patients, the co-culture with both IL10 Dp2-DC and Dp2 DC10 caused a marked reduction of IL-5 and IL-13 production by T cells, with a parallel decrease of IL-5/IFN-γ ratio. Moreover, in 8 children we observed an increase of IL-10 production with IL10 Dp2-DC stimulation.
T cell lines generated with Dp2-DC10, compared to those generate with Dp2-DC, were hyporesponsive to reactivation with Der p2 in 4 out of 5 patients tested, both in terms of proliferation and cytokine production: IL-5, IL-13 and IL-5/IFN-γ ratio.

Our data show that IL-10 reduced the stimulatory capacity of DC through a mechanism independent from the downregulation of costimulatory signals. IL-10 treatment of DC promoted a suppression of allergen-specific Th2 cytokine production without a skewing to a Th1 profile, but with a parallel increase of IL-10 production by T cells. Moreover, Dp2-DC10 were able to promote T cell anergy associated with a reduction in Th2 cytokine production. These results represent an important step forward to the prospective clinical application of Dp2-DC10 to modulate allergen-specific T cell responses in vivo.

Key Words: Allergy, Th2, Dendritic cells, IL-10, Regulatory T cells
LIST OF PAPERS

II. Angelini F, Piccinini S, Pacciani V, Di Cesare S, Rapini N, Del Duca E., Paone FM, Rossi P, Manca Bitti ML. Increase of $\alpha_4\beta_7$ integrin on T lymphocytes in children affected by Type 1 diabetes. 2007. Submitted.

ABBREVIATIONS

ACD Apoptotic cell death
AHR Airway hyper reactivity
AICD Activation-induced Cell Death
APC: Antigen presenting cells
BAL bronchoalveolar lavage
DC: Dendritic cell
Der p2 Major group 2 allergen from Dermatophagoides Pteronyssinus
GVHD Graft versus host disease
HDM House dust mites
IBD Inflammatory bowel disease
IDO 2,3 Indoleamine deoxygenase
LPS Lypopolisaccarides
mDC Myeloid dendritic cells
MHC: Major histocompatibility complex
mTEC: medullar thymic epithelial cell
NKT Natural killer T cells
nTreg Natural occurring T regulatory cells
PBMC Peripheral blood mononuclear cells
pDC Plasmacytoid dendritic cells
SIT Specific immunotherapy
SLIT Sublingual immunotherapy
TCR: T cell receptor
TD1 Type 1 diabetes
Th1 T helper 1
Th2 T helper 2
Tr1 Type 1 regulatory cells
Treg T regulatory cells
INTRODUCTION

ALLERGIC DISEASE

Allergy can be defined as the clinically evident reaction to ubiquitous allergens. Immunological sensitization to common environmental allergens, such as house dust mites, grass and tree pollens and cat dander, can result in diseases such as allergic rhinitis and conjunctivitis, asthma and atopic dermatitis, and in the most extreme cases, in anaphylaxis and death (Kay AB et al., 2001; Holgate S et al., 2003).

Clinical symptoms vary, partly depending on how the allergen is introduced into the body. Aeroallergens are frequently associated with asthma, causing characteristic tightness in the chest, wheezing and shortness of breath. Most individuals with allergic asthma also suffer from allergic rhinitis, and the two conditions have a common immunopathology.

Epidemiology of Asthma

Allergic rhinitis, asthma and atopic eczema are among the commonest causes of chronic ill health care costs. In Sweden, for example, the number of children with allergic rhinitis, asthma or eczema roughly doubled over a 12-year period (Aberg N et al., 1995) and in the United States the annual cost of treating asthma is about $6 billion (Smith DH et al., 1997).

The prevalence of allergy varies between countries, as reported in the ISAAC study, (ISAAC 1998), with one study of young adults showing that the prevalence of sensitization to at least one allergen varies from 16% in Albacete, Spain, to 46% in Christchurch, New Zealand (Burney P et al., 1997). The prevalence is also generally much higher in the developed, rather than the developing, world. The recent increase in the prevalence of allergy and diseases associated with allergy in the developed world has major health and economic consequences.
Asthma prevalence in childhood, reaches in Germany 20% and in Australia 29% (Sears MR et al., 1997). In the USA asthma affects approximately 8-10% of the population and is the leading cause of hospitalization among children less than 15 years of age (Elias JA et al., 2003). Eighty percent of childhood asthma is reported to be IgE mediated.

There is a considerably lower prevalence of pediatric allergy in developing countries and there are also substantial differences between rural and urban areas. According to Von Ehrenstein, in a study performed in rural Bavaria, the prevalence of a doctor's diagnosis of asthma (3.4 vs. 6.4%) and current wheeze (5.6 vs. 8.1%) was significantly lower in farmers' children, whereas no such difference was observed for eczema. The effects were stronger in children of farmers with full-time activity as compared with their peers with only part-time farming parents, suggesting a dose-response relationship (Von Ehrenstein OS et al., 2000).

This and other observations support the so-called hygiene hypothesis. According to this theory bacterial and viral infections in early life might direct the immune system towards a prevalent type 1 helper T (Th1) cell response which produces interleukin (IL)-2 and interferon-γ (IFN-γ), thus preventing the development of allergic diseases which are characterized by a Th2 cell response with prevalent by IL-4, IL-5 and IL-13 production. Nevertheless, this theory is not easily reconciled with the increased prevalence of allergic asthma among poor blacks in the USA associated with sensitization to cockroaches and house-dust mite, and with some evidence about the increased prevalence of Th1 mediated diseases complicate the picture (Yazdanbakhsh M et al., 2002).
Immunopathogenesis of Allergic Diseases

Allergic Inflammation

All of us come across many allergens in our life, but a person without atopy mount a low grade immunological response mainly characterized by production of allergen specific IgG1 and IgG4 antibodies, and by a modest cell proliferation and production of IFN-γ by Th1 cells. By contrast, when susceptible or atopic individuals are initially exposed or sensitized to allergens, this induces an exaggerated allergen-specific response which is characterized by CD4⁺ T cells producing a T helper 2 (Th2) profile of cytokines (IL-4, IL-5, IL-9 and IL-13 rather than IFN-γ and IL-2) and the presence of allergen-specific IgE (Tab. 1).

Table 1. Components of Immune Response to Allergens in Healthy and Allergic Individuals.

Specific antibody response in serum

Healthy: - No response

- Detectable IgG1, IgG4 and IgA
- High amounts of IgG4, relatively low amounts of IgG1 and detectable IgA and IgE

Allergic: - Relatively high amounts of IgE, together with low or high amounts of IgG1, IgG4 and IgA

T-cell response in allergen-specific cells and in PBMC

Healthy: - No response

- Th0 response in PBMC and specific T-cell clones with low frequency
- Tr1, particularly IL-10-dominating response with relatively high frequency

Allergic: - Th2 response with varying quantities of IL-4, IL-5 and IL-13, in the presence of detectable IL-10 and IFN-γ

Clinical outcome

Healthy: - Healthy

- Skin-prick test and IgE positivity; clinical disease cannot be induced
- Skin-prick test and IgE positivity and healthy in normal circumstances; clinical disease can be induced by provocation tests and it is dose-dependent

Allergic: - Intermittent or persistent allergy in various clinical forms
In utero, T cells of the fetus are primed by common environmental allergens that cross the placenta. As a result, the immune response of virtually all newborn infants is dominated by Th2 cells (Prescott S et al., 1998). It has been proposed that during subsequent development the normal (i.e., nonatopic) infant’s immune system shifts in favor of a Th1-mediated response to inhaled allergens (a process termed “immune deviation”) (Holt PG et al., 1999), whereas in the potentially atopic infant there is a further increase in Th2 cells that were primed in utero. Microbes are probably the chief stimuli of protective Th1-mediated immunity. Macrophages that engulf microbes secrete IL-12, which induces Th1 cells and natural killer cells to produce IFN-γ, thereby shifting the immune system into an “allergy-protective” Th1-mediated response. Other factors may also influence whether Th1 or Th2 cells dominate the response, including the amount of allergen, the duration of exposure to the allergen, and the avidity of allergen-specific interactions between T cells and APC (Constant SL et al., 1997; Rogers PR et al., 1999).

Although the picture is more complex, the immunopathological hallmark of allergic disease is the infiltration of affected tissues by Th2 cells. In particular, the allergen is taken up by phagocytic cells located in peripheral lung tissue and subsequently transported by DC to draining lymph nodes (step 1) where is presented to T cells (step 2). Naïve T cells recognizing the allergen for the first time become activated and undergo a differentiation into Th2 effector T cells (step 3). The fully activated Th2 effector T cells initiate and sustain the local inflammatory process through secretion of soluble mediators (step 4). Concomitantly, the Th2 effector T cells instruct allergen specific B cells to differentiate to antibody-secreting plasma cells (step 5) and memory B cells (step 6). Differentiated allergen-specific T cells develop into long-lived memory T cells (step 7). Memory T cells are quiescent in the absence of antigen, but on allergen re-exposure, they quickly become activated Th2 effector T cells again (step 3) (Ngoc LP et al., 2005) (Fig. 1).
Fig. 1. Schematic representation of the development and function of Th2 cells in airway disease

The cascade of events leading to the allergic inflammation is initiated by the process of tethering, activation, and adhesion to the endothelium followed by extravasation of inflammatory cells. This requires specific glycoprotein adhesion molecules, such as integrins and selectins, on both leukocytes and on endothelial cells, which are upregulated and show increased binding affinity in response to various inflammatory stimuli. Once the inflammatory cells have infiltrated into the tissue, they respond to chemotactic gradients established by chemoattractant cytokines and chemokines, which emanate from sites of injury or infection. More than 50 different chemokines are now recognized to be involved in the recruitment of inflammatory cells via the activation of more than 20 different surface receptors (Rossi D et al., 2000). These molecules play a central role in defining the nature of the inflammatory infiltrate in allergy (Kay AB 2001).

Exposure to an allergen following allergic sensitization leads to crosslinking of allergen specific IgE bound to the surface of mast cells and basophils, degranulation of these cells and release of histamine, preformed granule-associated mediators,
membrane-derived lipids, cytokines, and chemokines that cause the symptoms associated with early or acute allergic reactions, including wheezing and conjunctivitis (Kay AB 2001). The release of mediators and leukotrienes causes increases in vascular permeability, smooth-muscle contraction and mucus secretion.

Late-phase allergic responses are characterized by the additional recruitment and activation of eosinophils and Th2 cells at the site of allergen challenge (Fig. 2).

Fig. 2. Immune Mechanisms of Allergy

from Kay AB et al N Engl J Med 2001
Immunological Mechanisms in Asthma

Over the decades, the prominent involvement of eosinophils, macrophages, mast cells, and lymphocytes in the inflammatory response in the airways of patients with asthma and the efficacy of steroids in the majority of patients with asthma became more clear and then led to the present-day concept that asthma is a chronic inflammatory disorder of the airways and that T cells are pivotal initiators and regulators of this response. Structural alterations including airway wall thickening, fibrosis in the lamina reticularis and adventitia of the airway, mucus metaplasia, myocyte hypertrophy and hyperplasia, and neovascularization are all readily appreciated in the asthmatic airway. This led to the hypothesis that the inflammatory response in the asthmatic airway causes these remodeling events, and to the belief that these events contribute to disease pathogenesis (Elias JA et al., 2003).

Immediate hypersensitivity is the basis of acute allergic reactions. It is caused by molecules released by mast cells when an allergen interacts with membrane bound IgE. The complex of allergen, IgE on the surface of the mast cell triggers a release of preformed histamine and other mediators prostaglandins. These mast-cell mediators have a critical role in anaphylaxis, rhinoconjunctivitis, and urticaria. The role of histamine in chronic asthma and eczema is probably minimal, however, as shown by the relative ineffectiveness of histamine antagonists in controlling these conditions.

Mast cells produce the three cysteinyl leukotrienes C₄, D₄, and E₄, which cause the contraction of smooth muscles, vasodilatation, increased vascular permeability, and the hypersecretion of mucus when they bind to specific receptors (Drazen JM et al., 1999).

Eosinophils, macrophages, and monocytes are also major sources of cysteinyi leukotrienes. Mast cells also contain tryptase, a four-chain neutral protease that activates the protease-activated receptors on endothelial and epithelial cells. The activation of these receptors initiates a cascade of events, including the up-regulation of adhesion molecules that selectively attract eosinophils and basophils (Holgate ST 1999).
In the cutaneous late-phase reaction, eosinophils and neutrophils accumulate, and then CD4+ T cells and basophils infiltrate the site (Ying S et al., 1999). Late-phase asthmatic (Robinson DS et al., 1993) and nasal (Durham SR et al., 1992) reactions have a similar pattern of cellular infiltration, although basophils are not prominent in the lower airways (Macfarlane AJ et al., 2000).

Th2-type cytokines such as interleukin-4, 5, 9, and 13 influence a wide range of events associated with chronic allergic inflammation.

IL-4 has a role in the initial derivation of the allergen-specific Th2-lineage cells, and IL-4 and IL-13 induce IgE class switching.

IL-5 is a lineage-specific eosinophil differentiation and activator factor. It can be detected in the serum of mice with eosinophilia, and antibody to IL-5 blocks the development of parasite-induced eosinophilia. Although eosinophilia is often associated with high levels of IgE antibody, IL-5 appears not be involved in this response, where IL-4 appears to be main controlling factor (Sanderson CJ 1990).

IL-4 and IL-9 promote the development of mast cells; IL-9 and IL-13 help promote airway hyperresponsiveness; and IL-4, IL-9, and IL-13 promote the overproduction of mucus (Kay AB 2001; Robinson DS 2000; Romagnani S 1994; Lloyd CM et al., 2001).

In the last years the important role of IL-13 in asthma has been elucidated. Originally discovered as an IL-4 like molecules, it is nowadays clear that these cytokines differ in their effector properties, IL-4 playing a more prominent role in the initiation and IL-13 in the effector phase of Th2 allergic inflammation (Zhou Y at al 2001). Several studies using overexpression-transgenic animal models have provided impressive insights in the mechanism of IL-13 induced inflammation, trough the chemokine receptor CCR2, and tissue fibrosis. They demonstrated, for instance, that the fibrotic response in asthma results from the ability of IL-13 to stimulate the production and activation of the fibrogenic cytokine TGF-β (Lee CG et al., 2001).

Moreover, the observation that other cytokines such us IL-9, mediate their effect in the lung through the induction of IL-13, suggests that IL-13 might be a final common pathway for Th2-mediated inflammatory response (Tab.2).
Tab.2. The role of Cytokines produced by Th2 Cells in Chronic Allergic Inflammation

Other players involved in pathogenesis of asthma have been recently studied. Among these proinflammatory factors, the main are thymic stromal lymphopoietin (TSLP), IL-25, IL-21, tumor necrosis factor α (TNF-α) and natural killer T cells (NKT cells).

TSLP, which is highly expressed in Hassall’s corpuscles in the thymic medulla, appears to be important in the periphery, where it enhances the capacity of DC to induce the development of Th2 cells (Ito T et al., 2005). In particular, overexpression of TSLP in the lungs of mice results in the development of severe allergic airway inflammation (Zhou B et al., 2005; Al-Shami A et al., 2005). TSLP is, in fact, expressed at high levels in the lungs of patients who have asthma (Ying S et al., 2005), which suggests that expression of TSLP by lung epithelial cells can indeed cause airway DC to enhance the development of Th2-driven inflammation.

IL-25 (also known as IL-17E) is produced by Th2 cells and mast cells and was found to induce the production of large quantities of Th2 cytokines in models of both infectious and pulmonary allergic disease (Fort MM et al., 2001). IL-25 might also enhance Th2 responses by actively inhibiting IFN-γ and IL-17 production, suggesting
that IL-25-producing cells might have a regulatory function, limiting pathologic (Th1-biased) inflammation at mucosal sites. Because IL-25 enhances Th2 cytokine production, however, it might also enhance the development of allergic inflammatory responses at mucosal sites by inducing eosinophilia, airway hyperreactivity and increased mucus production (Hurst SD et al., 2002).

IL-21 is a newly described T cell-produced cytokine related to IL-2, IL-4, and IL-15 that is capable of regulating T, NK, and, especially, B cells (Parrish-Novak J et al., 2000; Kasaian MT et al., 2002). The role of IL-21 in Th differentiation is still somewhat controversial. In the mouse IL-21 is preferentially expressed by Th2 lymphocytes and inhibits IFN-γ production from developing Th1 cells (Wurstel AR et al., 2002). Paradoxically, though, exposure of human primary T and NK cells to IL-21 has also been reported to up-regulate IFN-γ, T-bet, and IL-12Rβ2 (Strengell M et al., 2002).

TNF-α is a cytokine produced by mast cells and T cells, but its role in asthma has been controversial. However, a recent clinical study, in which patients who had refractory asthma were treated with the soluble TNF-α receptor ‘etanercept’, suggests that the TNF-α axis is upregulated and is proinflammatory in asthma (Berry MA et al., 2006). Whether the role of TNF-α is as important in mild-to-moderate asthma as it is in refractory asthma remains to be seen.

Another pro-allergic pro-asthmatic factor that is part of the innate immune system is the invariant T-cell receptor (TCR) natural killer T (iNKT) cell compartment. Some years ago, iNKT cells were shown to be required for the development of allergen-induced airway hyperreactivity (AHR) in mouse models of asthma (Akbari O et al., 2003). More recently, the activation of iNKT cells has been shown to be sufficient to induce AHR (Meyer EH et al., 2006) and it has been shown that iNKT cell-driven AHR can occur in the complete absence of adaptive immunity. These results suggest that glycolipids from respiratory pathogens might activate iNKT cells and directly cause wheezing and AHR. Although the studies of allergen-induced AHR in mice strongly suggested that iNKT cells might be important in human asthma, direct assessment of the role of iNKT cells
in human asthma was necessary to establish this possibility. Frequency and distribution of iNKT cells in the lungs and in the circulating blood of patients with moderate-to-severe persistent asthma was assessed (Akbari O et al., 2006). Surprisingly, 60% of the pulmonary CD4+CD3+ cells in the lungs of these patients who had asthma were iNKT cells. These studies strongly suggest that iNKT cells play a prominent pathogenic role in human asthma. The presence of a large numbers of iNKT cells in the lungs of patients with asthma is surprising, and suggests that these cells might have been mistakenly identified in the past as conventional CD4+ Th2 cells. Most of the iNKT cells in the lungs of patients with asthma expressed CD4 and produced IL-4 and IL-13, but not IFN-γ, suggesting that a Th2-like subset of iNKT cells was recruited or expanded in the lungs of patients with asthma (Akbari O et al., 2006). In this and in another study by Ikegami et al, iNKT cells were not increased in the peripheral blood of patients with asthma, nor did circulating iNKT cells show any change in functionality (Ikegami Y et al., 2004); this indicates that the immunology of asthma must be studied not by the examination of peripheral blood alone but rather by the evaluation of cells from within the lung. The specific mechanisms by which the Th2-like subset of iNKT cells enters or expands in the lungs, and whether the number of iNKT cells in the lungs correlates with disease severity, are not yet clear. Nevertheless, a very recent study showed low number of iNKT in airway biopsy, bronchoalveolar lavage (BAL), and sputum of allergic patients with no significant differences in the percentage of iNKT in atopic subjects compared to healthy controls (Pandurangan V et al., 2007).

Therefore, it seems clear that the precise role of this potent group of immunoregulatory cells in airway inflammation remain to be understood.
Role of Dendritic Cells in Immune Regulation and in Allergic Immune Response

Antigen-presenting cells are critical in initiating and controlling allergic inflammation and DC are particularly important in asthma. DC are professional APC specialized for the initiation of T cell immunity (Banchereau J et al., 1998; Cella M et al., 1997). Depending on their maturational state and their location, DC perform different functions within the immune system. DC normally reside in nonlymphoid tissues, such as the skin or the bronchial mucosa, in an immature form, where they are specialized for antigen capture. Activation of DC and subsequent migration from nonlymphoid tissues to regional lymph nodes have been shown to be early steps during inflammatory processes and critical events in the generation of cell-mediated immune responses against various pathogens. After antigen uptake, inflammatory stimuli are necessary to switch DC to a T cell stimulatory mode. This process has been called “maturation” and is associated with changes in the phenotype and function of DC, including upregulation of costimulatory molecules and adhesion molecules, expression of chemokine receptors, with concomitant down-regulation of tissue homing receptors for RANTES (CCL5), eotaxin (CCL11), and MIP3a (CCL20) (Power CA et al., 1997; Stumbles PA et al., 1998; Beaulieu S et al., 2002) and upregulation of lymph node homing chemokine receptors, which direct the migration of DC to the T-cell zones of draining lymph nodes where DC interact with recirculating T cells and initiate T cell immunity (Cella M et al., 1997; De Smedt TB et al., 1996; Romani N et al., 1989).

Airway DC

Over the last 10 years, it has become increasingly clear that airway DC are crucial to the process of allergic Th2 sensitization, particularly through the use of mouse models of asthma. Transgenic and inducible knock out models have been developed to specifically study the role of DC in the pulmonary allergic response. From these
studies, a model has emerged in which airway DC are not only crucial for regulating the process of sensitization to inhaled antigens leading to allergy, but also for controlling established allergic inflammation. In addition to chemokines, other mechanisms are likely to regulate DC migration, including integrin and cadherin expression and extracellular matrix degrading enzymes.

Antigen Uptake and Lymphnode Migration of Airway DC

DC form a network in the upper layers of the epithelium and lamina propria of the airways. Here DC are said to be in an immature state, specialized for internalizing foreign antigens but not yet able to activate naïve T cells. With antigen uptake in the presence of a danger signal, DC undergo a maturation, whereby they lose their capacity to take up antigen and acquire a phenotype of professional APC expressing all the costimulatory molecules and chemokines to attract and stimulate naïve T cells (Fig. 3).

A molecular basis for DC activation has been provided with the discovery of pattern-recognition receptors (PRR). PRR recognize conserved microbial structures, termed pathogen-associated molecular patterns (PAMP), and signalling via PRR leads to DC activation, defined by upregulation of MHC class II and co-stimulatory molecules. The significance of this finding for induction of pulmonary immunity is underscored by the fact that lipopolysaccharide (LPS) is necessary for Th2 sensitization in mouse models of asthma (Eisenbarth SC et al., 2002; Dabbagh K et al., 2002).

DC transport the antigen from the mucosa to the draining lymph nodes of the lung, after degradation of the antigen in short immunogenic peptides and loading the peptide on major histocompatibility complex II (MHCII) molecules. DC migrate to the T cell-rich area of draining lymph nodes where naïve T lymphocytes continuously pass by (Vermaelen KY et al., 2001; Lambrecht BN et al., 2000).

In the lymph node mature DC form an immunologic synapse with T cells in which the MHC peptide interacts with the T-cell receptor, costimulatory molecules interact with T cell–expressed coreceptors, and cytokines are released to polarize the T-cell response. The process of migration to the lymph node is driven by chemokine signals.
acting on the CCR7 receptor (Marsland BJ et al., 2005). The recognition of danger induces the surface expression of CCR7 on peripheral DC, but the responsiveness of CCR7 to CCL19 and CCL21 and the consequent lymph node migration of DC is controlled by lipid mediators, such as the leukotrienes and prostaglandins.

Like skin DC, lung DC used the CCR8 receptor for the chemokine CCL-1 (also known as I-309 in human subjects and TCA-3 in mice) in concert with CCR7 for emigration of DC from the skin and lung, although the pathways governing DC migration from different tissues partially differ in molecular regulation. (Jakubzick C et al., 2006).

Fig. 3. The function of DC in allergic airway disease

from Kuipers H et al. Curr Opin Immunol 2004
Sensitization to Inhaled Allergen and Th2 Polarization by Airway DC

It was therefore long enigmatic how sensitization to natural allergens occurs. One requisite for priming to occur is that DC need to be activated by a sense of danger. This danger signal could be found in the allergen itself or in some accompanying microbial contaminant. Most clinically important allergens, such as the major Der p1 allergen from house dust mite (HDM), are proteolytic enzymes that can directly activate DC or epithelial cells (Hammad H et al., 2001). The biological function of the HDM allergen Der p2 is still unknown, although the possibility of a protease activity has been recently ruled out, since it had no effect on human alveolar cell lines (Kauffman HF et al. 2006). Other allergens, such as the experimental allergen OVA, do not have any intrinsic activating properties. For these antigens, contaminating molecules or environmental exposures (respiratory viruses and air pollution) might pull the trigger on DC activation (Dahl ME et al., 2004).

Based on studies on the functional interaction between mucosal T cells and DC, it is clear that effector Th2 responses in vivo in the lung continuously depend on antigen-presenting DC. One possible explanation would be that effector T cells in vivo remain dependent on costimulation.

Pulmonary DC upregulate the expression of CD40, CD80, CD86, ICOS-L, programmed death ligand (PD-L) 1, and PD-L2 during eosinophilic airway inflammation, particularly on contact with Th2 cells. (De Heer HJ et al., 2004; Van Rijt LS et al., 2005; Van Rijt LS et al., 2004). Costimulatory molecules might be involved in activation of effector T cells in the tissues.

Numerous models of asthma have demonstrated that blocking the interaction of costimulatory molecules of the B7 superfamily (CD80, CD86, ICOS-L) or tumour necrosis factor (TNF)-R family (OX40L) can reduce features of asthma (Coyle AJ et al., 2000; Deurloo DT et al., 2003; Harris N et al., 1997). However, challenge with DC derived from the BM of CD80/86 double knockout mice in sensitized mice induced similarly strong airway inflammation similar to the one observed after challenge with wild-type DC. It is likely that other costimulatory molecules besides CD80/CD86 are involved in activating T cells in secondary immune responses. Several
molecules on the surface of the DC, like ICOSL, OX40L, 4-1BBL, CD40 and ICAM-1, have been reported to have costimulatory capacity, and may be responsible for the induced reaction in the absence of CD80/CD86 (Watts TH et al., 1999). Strikingly, it was also observed an increase in the B7 family members PDL-1 and PDL-2, ligands of the inhibitory PD-1 receptor, on DC within eosinophilic inflammation (Van Rijt LS et al., 2005). PD-1 is generally seen as an inhibitory signal but recent data suggest that PDL-1 might also provide a costimulatory signal to T cells (Shin T et al., 2003).

Another costimulatory pathway able to compensate for the lack of CD80/86/B7RP-1 costimulation on DC would be OX40L. OX40 (CD134), a member of the TNFR family, is a major regulator of anti-apoptotic proteins such as Bcl-xL and Bcl-2, and strongly promotes the survival of antigen-activated primary CD4 T cells. In addition, OX40 is preferentially expressed by memory Th2 cells. Blocking of OX40–OX40L interaction impaired all features of asthma induced by adoptive transfer of OVA-specific Th2 cells (Salek-Ardakani S et al., 2003). The requirement of CD40 and CD40L interaction has been investigated in several murine models for asthma with different protocols. It appeared that sensitized CD40-/- and CD40L-/- mice develop, respectively, less eosinophilia and airway hyper-reactivity in response to an allergen challenge when compared with wild-types (Lei XF et al., 1998; Mehlhop PD et al., 2000). However, an inevitable disadvantage of using transgenic mice to study secondary immune responses is also that during sensitization, CD40-CD40L interaction is absent. Therefore, it is possible that the final consequence of asthma development in mice is determined by the sensitization phase because mice need to be sensitized before they can develop the effector phase. In another model where they could circumvent sensitization by using the OVA transgene in CD40-deficient mice to obtain sufficient OVA-specific T cells without sensitization, the results were completely opposite. Mice without CD40 developed more eosinophilia and a higher AHR compared with CD40+/+ OVA animals (Takahashi H et al., 2003). These results suggest that during sensitization, CD40/ CD40L can act as a pro-inflammatory signal while having a protective role during the effector phase. The role of CD40/CD40L interaction between DC and T cells during a secondary immune
response in allergic airway inflammation still has to be further elucidated.

Besides their capacity to provide costimulation, an alternative characteristic that makes DC so important during secondary immune responses could be that lung DC are essential for the recruitment of Th2 cells by producing Th2-selective chemokines and cytokines.

In allergen-challenged mice, mDC might also be a prominent source of the chemokines CCL17 and CCL22, which are involved in attracting CCR4+ Th2 cells to the airways (Kohl J et al., 2006). The proallergic cytokine TSLP induces the production of large amounts of CCL17 by mDC, thus contributing to the recruitment of a large number of Th2 cells to the airways (Zhou B et al., 2005). In human subjects the HDM allergen Der p1 induces the production of CCL17 and CCL22 in monocyte-derived DC derived from asthmatic subjects with HDM allergy (Hammad H et al., 2003).

Mature DC produce two important polarizing cytokines: IL-12 recognized as the most powerful Th1 inducing cytokine and IL-10, a regulatory cytokine which has been shown to influence indirectly T cell polarization through its capacity to downregulate IL-12 production by DC (Smedt T et al., 1997; Trinchieri G 2003; Smits HH et al., 2004). It has been shown that retroviral overexpression of IL-12 in myeloid DC is sufficient to turn these cells into strong Th1 inducers, even in the Th2-prone milieu of the lung (Kuipers H et al., 2004). However, IL-12 is not necessary for Th1 development by DC, as LPS-stimulated IL-12p40/-/- DC still induce Th1 development in the lung (Kuipers H et al., 2003).

In contrast to the signals governing Th1 development, the mechanisms for DC-driven Th2 development have remained somewhat enigmatic. According to one theory, Th2 development occurs as a default in the absence of polarizing IL-12. Alternatively, some regard Th2 development as an instructive event requiring specific cytokines (such as IL-4 and IL-13) or cell surface molecules on DC. Although the prototypic Th2 cytokine IL-4 is important for Th2 development in vivo, it is not produced by DC directly, but can be induced in other cells by DC contact. Early sources of IL-4 (and IL-13) might be naïve T cells, eosinophils or CD1d-restricted NKT cells, reacting to antigens presented by CD1d on airway DC (Voehringer D et al., 2004). Recent work
from Amsen identified that the cell surface Notch ligand families delta and jagged influence Th1 and Th2 differentiation, respectively. Th2 differentiation induced by APC is abrogated in T cells lacking the Notch effector RBPJkappa. Notch directs Th2 differentiation by inducing GATA3, a transcription factor important for Th2 development and by directly regulating IL4 gene transcription through RBPJkappa sites in a 3' enhancer (Amsen D et al., 2004). The expression patterns of these ligands on DC correlate with the ability of known Th1- or Th2-inducing stimuli, such as cholera toxin, prostaglandin E2 or LPS to induce T cell differentiation (Kapsenberg ML 2003). Ectopic expression of jagged1 and delta1 skewed naïve CD4+ T cells towards Th2 and Th1, respectively.

Other cytokines are important during Th1 or Th2 development. IL-6 is a cytokine produced by DC and other cell types and has recently discovered roles in the abrogation of tolerance and in Th2 induction in several non-allergic models of disease. In addition, the production of IL-6 by pulmonary DC may favor Th2 differentiation by inhibiting Th1 responses (Dodge IL et al., 2003). IL-27 and IL-23 are produced by macrophages and DC. IL-27 and IL-23 can function as a proinflammatory cytokine because they synergize with IL-12 to induce IFN-γ production from NK cells and to promote Th1 responses. IL-27 also has anti-inflammatory properties. Addition of recombinant IL-27 to naïve T cells in culture under Th2-polarizing conditions results in decreased expression of GATA-3. Concurrent with the decrease in GATA-3 was a decrease in IL-4 production. The decrease in Th2 cytokines caused by IL-27 is a result of inhibition of Th2 cell development. These results suggest that IL-27 might serve a dual role in T-cell development and the immune response by stimulating production of Th1 responses while inhibiting production of Th2 inflammatory responses (Villarino AV et al., 2004).

Others important players are involved in Th polarization. Among the transcription factors, T-bet and Gata-3 are the most important involved in Th1 and Th2 development, respectively. The transcription factor T-bet is necessary to induce helper T cells to differentiate into Th1 cells and to produce IFN-γ. For these reasons, T-bet is thought to be central to the feedback loops that regulate Th1 and Th2 cells, and in this
way it could be important in asthma. Without any allergic sensitization of the animals, the bronchi in the T-bet-/- mice were infiltrated with eosinophils and lymphocytes and showed signs of the airway remodelling typical of allergic asthma. Moreover, these animals had AHR, and their BAL contained increased amounts of cytokines produced by the Th2 cells. These spontaneous changes in the T-bet-/- knockout mice were similar to those found in bronchi of wild-type mice that had been sensitized with a foreign protein and then challenged with an aerosol containing the allergen. These findings constitute strong evidence of the modulating role of IFN-γ in asthma and provide support for the hypothesis that an imbalance between Th1 and Th2 cells contributes to asthma (Finotto S et al., 2002). Furthermore, the transcription factor T-bet was recently found to be expressed in DC in addition to T cells. T-bet is required for optimal production of IFN-γ by DC under certain conditions. T-bet-/- DC were less potent in inducing Th1 responses and produced less proinflammatory cytokines. These observations suggest that T-bet could regulate type 1 and 2 immunity by influencing genetic programs in both adaptive and innate immunity (Wang J et al., 2006).

Gata-3 is present at low levels in naïve CD4+ T cells. Its expression strongly increases during Th2 differentiation and decreases during Th1 differentiation. Expression of Gata-3 using retroviral vectors or in transgenic mice, up-regulates expression of all Th2 cytokine genes, even when CD4+ cells are stimulated under Th1-polarizing conditions (Ouyang W et al., 1998; Zheng W et al., 1997; Ferber IA et al., 1999; Lee HJ et al., 2000). In addition, Gata-3 strongly inhibits the production of IFN-γ and down-regulates IL-12Rβ2 expression in an IL-4-independent manner T (Ouyang W et al., 1998, Ferber IA et al., 1999). Gata-3 mRNA is increased in the airways of atopic asthmatic patients compared with those of normal control subjects (Nakamura Y et al., 1999). Moreover, transgenic T cell expression of a dominant-negative Gata-3 allele attenuates allergic inflammation in a murine model of asthma, with decreased eosinophilia, mucus production, and IgE levels associated with decreased IL-4, IL-5, and IL-13 production (Zhang DH et al., 1999).

Finally, it has been shown that exposure of DC to agents such as epithelial cell-derived TSLP (Soumelis V et al., 2002) and PGE2 (Kalinski P et al., 1997), mast
cell-derived histamine (Caron G et al., 2001), and b2 agonists (Panina-Bordignon P et al., 1997), polarize the maturation of myeloid DC into Th2-promoting DC. Mice that conditionally overexpress thymic stromal lymphopoietin (TSLP) in the lungs mount vigorous Th2 responses in the airways in a process driven by DC (Zhou B et al., 2005; Al-Shami A et al., 2005). TSLP is increased in the airways of asthmatic patients (Ying S et al., 2005) and it can activate myeloid DC to prime naïve CD4+ T cells to differentiate into proinflammatory Th2 cells (Watanabe N et al. 2005). The Th2 skewing effect induced by TSLP-activated DC was found to be dependent on OX40 ligand, a costimulatory molecule shown to play a critical role in the development of allergic lung inflammation (Ito T et al. 2005).
IMMUNOLOGICAL TOLERANCE

The ability of the immune system to discriminate between self and non-self results in immunological tolerance, which can be defined as lack of responsiveness towards certain molecules, and can be acquired by central and peripheral mechanisms. CENTRAL TOLERANCE occurs during the ontogeny of T cells and leads to the elimination of self-reactive T cells by clonal deletion in the thymus. PERIPHERAL TOLERANCE takes place throughout life, and is usually designed to control responses towards foreign antigens, which are not harmful or antigens recognized with low affinity. Several not exclusive mechanisms are operational in peripheral lymphoid organs.

Central Tolerance

The thymus is the unique lymphoid organ responsible for the generation of the peripheral T lymphocytes repertoire with the ability to eliminate foreign pathogens while being tolerant to self-antigens. The process of differentiation of thymocytes into mature T cells is a dynamic process with a series of selection steps that allows only fully competent T cells to be exported to the periphery. During the development in the thymus only a very small percentage of the thymocytes generated are able to survive and eventually reach the periphery (Shortman K 1992; Tough DF et al., 1994).

The thymic cellular environment allows the generation of the peripheral T-cell repertoire through three main mechanisms: a) intrathymic random recombination of gene segments coding for the variable parts of the T-cell antigen receptor (TCR); b) clonal deletion of T cells bearing a TCR that binds with high avidity/affinity MHC-self peptides; c) generation of self-antigen specific regulatory T cells (Treg).

Hemopoietic progenitor T cells enter the thymus by the cortico-medullary boundary and migrate to subcapsular cortex where they undergo intense proliferation. Their differentiation depends on positive or negative selection, and is mediated by
Transient synapses of immature thymocytes with thymic stromal cells. Thymic selection tunes the T cell repertoire through the testing of the signaling thresholds of newly rearranged molecules for peptides presented within the thymus. This process depends on several parameters: concentration and density of thymic MHC/self antigens complexes, as well as the affinity of randomly recombined for those complexes (Sprent J, Webb SR 1995; Sebzda E et al., 1994). Positive selection of immature thymocytes is the result of low avidity/MHC-self peptide interactions. Thymocytes with TCR that binds to MHC-self peptide complex with high affinity are deleted during negative selection whereas those with TCR that does not bind to MHC fail positive selection and will die by default (neglect) (Ashton-Rickardt PG et al., 1994; Jameson SC et al., 1995; Jameson SC et al., 1994; Surh CD et al., 1994).

Recent studies on autoimmune diseases that result from single gene mutations like autoimmune polyendocrinopathy syndrome type 1 (APS1) have provided new insights into how self-tolerance is maintained. APS1 is a syndrome characterized by mucocutaneous candidiasis, hypoparathyroidism and Addison Disease and results from homozygous mutations of the autoimmune regulator gene Aire, encoding a protein with structural and functional features suggestive of a transcription factor. Aire has recently been identified as an important mediator of central tolerance. The highest levels of Aire expression are detected in the thymus (Anderson MS et al., 2002; Gotter J et al., 2004) with its highest levels within the thymic medullary epithelial cells (mTEC), followed by thymic dendritic cells (Heino M et al., 2000). Importantly, Aire is undetectable in the organs targeted by the autoimmune disease in APS1 patients. Studies on Aire-deficient mice have demonstrated that Aire drives the expression of many self-proteins in medullary mTEC (Anderson MS et al., 2002). These organ-specific proteins are presented on the surface of mTEC by MHC molecules to developing T cells and thymocytes that recognize these proteins undergo negative selection. In the absence of Aire, there is a defect in the negative selection of organ specific T cells (Liston A et al., 2003). Recently, it has been shown that also lymph node stromal cells can present endogenously expressed peripheral-tissue antigens and are therefore functionally akin to mTEC (Lee JW et al., 2007). (Fig. 4).
Fig 4. Central mechanisms of the induction of Tolerance

from Makai IR et al N Engl J Med 2001
Peripheral Tolerance

Thymic deletion is not sufficient for preventing the escape of self-reactive T cells in the periphery. Indeed, self-reactive T cells exist in normal healthy individuals (Pette M et al., 1990; Lohmann T et al., 1996; Semana G et al., 1999), suggesting that to control self-reactive T cells in order to maintain self-tolerance additional mechanisms occur in the periphery. Peripheral tolerance is operational during the entire lifespan and controls immune responses to self-antigens that are not expressed in the thymus, and to foreign antigens that are encountered in peripheral tissues. Mechanisms of peripheral T-cell tolerance include immunological ignorance, clonal deletion (Munn DH et al., 1996; Varadhachary AS, Salgame P. 1998), anergy (Sharpe AH. 1995), and active suppression mediated by regulatory cells (Chen L. 1998) (Fig. 5).

![Peripheral mechanisms of the induction of Tolerance](from_Makai_IR_et_al_N_Engl_J_Med_2001)
Several mechanisms can cause immunological ignorance: the antigen concentration that may be below the threshold required to induce the activation or deletion of T cells (Akkaraju S et al., 1997; Ferber I et al., 1999), antigens that may be physically separated from T cells (e.g., by the blood-brain barrier) (Barker CF et al., 1977), or antigens presented by MHC molecules in the absence of costimulation and therefore cannot induce T cell responses (Janeway CA Jr. 1992).

Anergy is a process that occurs when a T cell encounters its proper MHC-peptide complex under particular conditions and results in the induction of a hyporesponsive state, which affect IL-2 production and proliferation upon re-stimulation (Lamb JR et al., 1983). Several mechanisms are responsible for the induction of anergy including presentation of peptide antigens by a non-professional APC, which lack co-stimulatory molecules, such as CD80 and CD86. Moreover, during the course of inflammatory processes cell types other than professional APC, such as endothelial or epithelial cells, may express MHC class II alleles and are able to present peptides to T cells in the absence of co-stimulatory signals (Powell JD. 2006; Asnagli H et al., 2001). Alternatively, T cell anergy can occur when peptide recognition is not followed by CD80-CD86/CD28 interaction, but with the CD80-CD86/cytotoxic T lymphocyte associated antigen (CTLA)-4 (CD152), which delivers inhibitory signals (Powell JD. 2006; Asnagli H et al., 2001).

Deletion is an alternative mechanism of peripheral tolerance by which mature T cells undergo apoptosis when they encounter the specific antigen at high concentrations and/or are heavily activated. This process is known as activation-induced cell death (AICD), and it is mediated by the surface expression of Fas (CD95). The interaction between Fas e FasL on the proliferating T cells activates the cascade of caspase enzymes that results in the induction of apoptosis (Fas SC et al., 2006).

Regulatory T (Treg) cells are crucial players in the induction of peripheral tolerance to both self and not harmful foreign antigens. Cells with regulatory function exist within all major T and NK cell subsets, although most attention has been focused on Treg cells comprise in the CD4+ lymphocyte subset (Tab 3). The two most relevant classes of Treg described within the CD4+ subset are CD4+CD25+ Treg (Shevach EM.
2002; Wood KJ et al., 2003) and regulatory T type 1 (Tr1) cells (Roncarolo MG et al., 2000; Battaglia M et al., 2006). These two Treg subsets differ in a number of important biological features, including their specific cytokine secretion profile, cellular markers, ability to differentiate in response to antigen specific stimuli, and dependency on cytokines vs. cell–cell contact mechanisms for mediating suppressive activity (Wood KJ et al., 2003; Levings MK et al., 2005).

<table>
<thead>
<tr>
<th>Subset</th>
<th>Phenotype</th>
<th>Origin</th>
<th>Mode of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturally occurring T_{reg} cells</td>
<td>CD4^{+}CD25^{+}Foxp3^{+}</td>
<td>Thymus and possibly periphery</td>
<td>Cell–cell contact and/or secretion of short-range membrane-bound or soluble TGF-β, secretion of IL-10 in vivo</td>
</tr>
<tr>
<td>T_{reg}^1 cells^{*}</td>
<td>CD4^{+}, secrete IL-10, and T_{reg}^1 and T_{reg}^2 cytokines (IFN-γ and IL-6, respectively)</td>
<td>Periphery</td>
<td>Secretion of IL-10, and possibly other mechanisms</td>
</tr>
<tr>
<td>IL-10-secreting regulatory T cells^{*}</td>
<td>CD4^{+}, secrete IL-10 but not T_{reg}^1 or T_{reg}^2 cytokines</td>
<td>Periphery</td>
<td>Secretion of IL-10, and possibly cell–cell contact</td>
</tr>
<tr>
<td>T_{reg}^2 cells</td>
<td>CD4^{+}, secrete TGF-β</td>
<td>Periphery</td>
<td>Secretion of TGF-β</td>
</tr>
<tr>
<td>T_{reg}^1 cells</td>
<td>CD4^{+}, secrete IFN-γ</td>
<td>Periphery</td>
<td>Secretion of IFN-γ, which inhibits T_{reg}^2 responses, and in some cases, secretion of IL-10, which regulates T_{reg}^1 responses by inhibiting macrophage and DC production of IL-12</td>
</tr>
<tr>
<td>T_{reg}^2 cells</td>
<td>CD4^{+}, secrete IL-4, IL-6 and IL-10</td>
<td>Periphery</td>
<td>Secretion of IL-10, which inhibits T_{reg}^1 responses, secretion of IL-10, which inhibits T_{reg}^2 responses by inhibiting macrophage and DC production of IL-12</td>
</tr>
</tbody>
</table>

Tab 3. Regulatory T-cell population
Regulatory T Cells

Natural Occurring T Regulatory Cells

Naturally occurring CD4\(^+\)CD25\(^+\) Treg (nTreg) cells represents a minor population of CD4\(^+\) T cells (~10%), which emerge from the thymus. Thymic development of natural Treg appears to require a high avidity interaction between their and self-peptide/MHC ligands, and they expand in the periphery by recognizing the selecting self-peptide/MHC ligands (Picca CC et al., 2006). nTreg are characterized by the constitutively expression of CD25 (IL-2 receptor) molecule, as well as CTLA-4, glucocorticoid-induced tumor necrosis factor receptor (GITR), OX40 (CD134), L-selectin (CD62L) and the transcription factor forkhead box protein 3 (Foxp3) (Sakaguchi S 2005). Although the expression of CD25 has been used to specifically identify nTreg in naïve mice, the value of CD25 as a marker of human nTreg is limited because CD25 is highly expressed (as are CTLA-4 and GITR) on activated CD4\(^+\) T cells. Based on the level of expression of CD25, freshly isolated human T cells can be split into suppressive (CD25\(^{\text{high}}\)) and non-suppressive (CD25\(^{\text{low}}\)) cells. However, analysis at the clonal level revealed that even the small fraction of CD25\(^{\text{high}}\) cells is not an homogeneous population of suppressor cells. In addition, within the freshly isolated CD25\(^{\text{high}}\) subset, the HLA-DR positive cells can mediate early contact-dependent suppression that is associated with high Foxp3 expression, whereas HLA-DR negative CD25\(^{\text{high}}\) T cells promote early IL-10 and IL-4 production and induce late Foxp3-associated contact-dependent suppression. In contrast to CD25, the expression of Foxp3 is highly restricted to a subset of αβ TCR T cells. Studies on mice suggest that Foxp3, which binds to DNA, localizes to the nucleus, acts as transcriptional repressor (Shubert L et al., 2001) and functions as a nTreg lineage specification factor (Fontenot JD et al., 2005; Fontenot JD et al., 2003; Hori S et al., 2003). It has been shown that Foxp3 expression correlates with suppressor activity (Fontenot JD et al., 2005), primarily in mice and less clearly in humans. It has been demonstrated that ectopic expression of Foxp3 can endow murine T cells with regulatory capacities in
vitro and in vivo (Ramsdell F. 2003). However, in contrast to results described in murine cells, in humans it is still controversial whether Foxp3 overexpression in naïve CD4\(^+\) T cells is sufficient to confer a regulatory function (Yagi H et al., 2004; Allan SE et al., 2005). Of note is that in human cells, Foxp3 is also expressed by activated non-suppressive CD4\(^+\)CD25\(^-\) T cells (Allan SE et al., 2007; Wang J et al., 2007) suggesting that in addition to this transcription factor other components may be required for optimal suppressor activity (Schofield L et al., 1999).

Genetic mutation of Foxp3 gene, and the resulting deficiency or dysfunction of nTreg, is the primary cause of IPEX (immunodysregulation, polyendocrinopathy, enteropathy, X–linked syndrome), a monogenic human disease characterized by an allergic phenotype with dermatitis and hyper IgE and an autoimmune phenotype with enteropathy, type I diabetes, thyroiditis, haemolytic anemia and thrombocytopenia, and results from mutations of Foxp3 (Chatila TA et al, 2000).

nTreg cells do not produce IL-2 and are anergic in vitro. This hypo-responsiveness can be reversed by potent stimulation via TCR and high concentrations of IL-2. Importantly, IL-2 is not required for thymic development of nTreg cells, but it plays a central role in their peripheral homeostasis and function. Indeed, the presence of IL-2 is required for nTreg cells to exert their suppressive function.

Several mechanisms of nTreg-mediated suppression have been proposed including a direct T cell–T cell interaction, perforin and/or granzyme A-dependent killing, inhibitory cytokine-mediated suppression, modification of the DC function, and IL-2 consumption (Von Boehmer H 2005; Kim JM et al., 2006). In vitro studies suggest a role for cell–cell contact rather than secretion of inhibitory cytokines (Thornton AM et al., 1998). Whereas some groups have linked high levels of membrane-bound TGF-β to nTreg function in vitro (Nakamura K et al., 2001; Nakamura K, et al., 2004), others have shown that nTreg can suppress in the absence of TGF-β (Piccirillo CA et al., 2002). A recent report, which suggests that TGF-β is important for maintaining expression of Foxp3 and thus the suppressive function of nTreg, but it is not directly involved in their mechanism of action, may reconcile these discrepancies (Marie JC et al., 2005). However, in vivo, at least part of the
The regulatory function of nTreg cells has been demonstrated in vivo in several pre-clinical models of autoimmune pathology including autoimmune diabetes in non-obese diabetic (NOD) mice, experimental autoimmune encephalomyelitis (EAE), colitis, and arthritis. In addition, nTreg cells have been demonstrated to exert regulatory function in pre-clinical mouse models of allogenic BM transplantation.
Depletion of either recipient or donor nTreg cells induced markedly accelerated graft-versus host disease (GvHD) lethality, whereas addition of freshly isolated nTreg cells to the donor graft not only delayed GvHD lethality, but also favoured the allogeneic hematopoietic engraftment. Importantly, it has been shown that following BMT, inhibition of GvHD by nTreg cells does not abolish graft-versus-tumor and graft-versus-leukaemia activity. Furthermore, depletion of nTreg provokes effective tumor immunity to autologous tumor cells in otherwise non responding animals, enhances immune responses to invading or cohabiting microbes (Shimizu J et al., 1999; Onizuka S et al., 1999; Jones E et al., 2003). Elevated numbers of CD4^+CD25^+ T cells have been found in various human cancers, and these cells have been demonstrated to mediate suppressive function and to be present at tumor sites, envisaging nTreg depletion as an interesting strategy for promoting tumor rejection. The relevance of immune suppressive function of Foxp3^+CD4^+CD25^+ Treg cells has been studied also in human allergies, and impaired skin infiltration of Foxp3^+CD4^+CD25^+ T cells was observed in acute atopic dermatitis lesions (Verhagen J et al., 2006). Therefore, nTreg not only play a central role in maintaining tolerance towards self-antigens but also suppress a variety of physiological and pathological immune responses to non-self antigens (Sakaguchi S et al., 2006). A growing number of infections have been shown to be also associated with nTreg development (Belkaid Y, Rouse BT. 2005). nTreg in this scenario may tamper immune responses and thus diminish tissue damage in the host; however, this activity may come at the cost of prevention of pathogen clearance, thus leading to increased persistence or transmission of the microbe.

Adaptive T Regulatory Cells

CD4^+CD25^+ Treg

It has been generally accepted that a population of Treg cells phenotypically and functionally similar to nTreg can be generated in the periphery from naïve precursors, perhaps under particular conditions (Walker MR et al., 2003; Walker MR et al.,
2005). De novo generation of human CD4+CD25+ T cells can be obtained using high doses of anti-CD3 or anti-CD3 together with anti-CD28. Alternatively, Treg specific for particular peptide-MHC complexes can be generated in vitro by culturing CD4+CD25+ T cells with allogeneic DC pulsed with peptide. The resulting peptide-specific Treg cells can be isolated by using HLA class II tetramers (Walker MR et al., 2005). Peripheral development of CD4+CD25+ Treg appears to be a stochastic process, with a certain fraction of activated cells remaining CD25bright, beginning to express Foxp3, and acquiring suppressive capacity. Alternatively, CD25+ Treg cells expressing Foxp3 and presenting suppressive functions can be generated by priming both human and mouse T cell in the presence of TGF-β. Indeed, polyclonal stimulation CD4+CD25+ T cells, but not CD4+CD25- T cells, in the presence of exogenous TGF-β promotes the expression of Foxp3 (Fantini MC et al., 2004; Fantini MC et al., 2006). The resulting Foxp3 expressing T cells are anergic and suppress T cells responses in vitro, and in vivo. Moreover, it has been shown that activation of CD4+CD25+ T cells with allogeneic APC in the presence of exogenous TGF-β results in the generation of Treg cells phenotypically and functionally similar to nTreg cells. In this system the ability of TGF-β to promote Treg cells is strickly dependent on IL-2. Importantly, TGF-β-induced Treg cells have the ability to educate other CD4+CD25- cells to become Treg cells, suggesting that IL-2 and TGF-β stimulation triggers a cytokine-dependent self-perpetuating loop to sustain specific Treg cell activity and expansion.

Similarly, it has been reported that Treg cells can be induced in vivo. Thorstenson et al. (Thorstenson KM et al., 2001) used the DO11.10 transgenic adoptive transfer system to show that CD4+CD25+ T cells may also arise in the course of peripheral tolerance induction. CD25+ DO11.10 cells could be induced in hosts that had been adoptively transferred with DO11.10 cells and immunized with OVA peptide intravenously or orally. In the studies, the absolute number of CD25+ cells that was generated following adoptive transfer and immunization, and the relative percentage of CD25+ DO11.10 cells, inversely correlated with the amount of antigen present and the strength of immunogenic stimulus. Although Foxp3 staining was not feasible at the time of these studies, the CD25+ cells were shown to be defective in IL-2 production.
and to mediate suppressive function in vitro. These studies suggested that CD25+ suppressor cells could be generated from mature peripheral CD4+ cells. Additionally, two studies have demonstrated that delivery of antigen coupled to the DC-specific anti-DEC205 monoclonal antibody led to the appearance of CD25+ Treg, in the periphery (Kretschmer K et al., 2005; Mahnke K et al., 2003). Similar to previously described results, the highest percentage of Treg was seen with low doses of antigen in the absence of inflammatory stimuli. These Treg had undergone fewer cell divisions than CD25- antigen-specific cells. However, immunization with a high dose of anti-DEC205HA and anti-CD40 (the latter to activate DC) led to the presence of approximately fivefold more Foxp3+ cells at earlier time points and twofold fewer at later points than with a low dose of anti-DEC205HA alone, and this population seemed to undergo as many divisions as did CD25+ cells.

Type-1 Regulatory T cells
In 1997, Groux et al. described antigen-specific Treg cells characterized by the ability to secrete high levels of IL-10 and suppress T cell responses in vitro and in vivo via IL-10 and TGF-β. This subset was defined as Tr1 cells based on the fact that it was the first Treg cell population characterized at the clonal level. Tr1 cells can be generated in vitro and in vivo upon priming of naïve T cells with antigen in the presence of IL-10 and are characterized by their unique pattern of cytokine production, which is distinct from that of classical Th1 and Th2 cells. Tr1 cells, upon TCR-mediated activation, produce high levels of IL-10 and TGF-β, and IL-5, but low IL-2 and IFN-γ and no IL-4. Tr1 cells display low proliferative capacity, but can expand in the presence of IL-2 and IL-15, independently from their activation via the TCR (Bacchetta R et al., 2002). Activated Tr1 cells express the IL-2 receptor (IL-2R) α chain, and high levels of the IL-15Rα chain, together with both the IL-2/15Rβ and IL-2Rγ chains. Upon activation Tr1 cells also express activation markers such as CD40L, CD69, CD28, CTLA-4 and HLA-DR (Bacchetta R et al., 2002). In contrast to CD25+ Treg cells, Tr1 cells do not constitutively express Foxp3, but upon activation can up-regulated this transcription
factor to levels similar to those observed in activated CD4^+CD25^+ T cells (Levings MG et al., 2005; Vieira PL et al., 2004).

Human Tr1 cells in the resting phase express both Th1-associated (CXCR3 and CCR5) and Th2-associated (CCR3, CCR4, and CCR8) chemokine receptors (Sebastiani S et al., 2001). Interestingly, CCR8 is expressed at higher levels compared with Th2 cells, and upon activation, human Tr1 cells migrate preferentially in response to I-309, a ligand for CCR8 (Sebastiani S et al., 2001). CCR8 seems also to be relevant in vivo, because it has been recently demonstrated that in a model of helminth infection, its expression is strongly associated with IL-10-producing CD4^+ T cells, which resemble Tr1 cells (Freeman CM et al., 2005). In contrast, CD4^+ T cells from normal donors with a Tr1 cell phenotype have been found to express CCR9, suggesting that these cells home to the gut (Papadakis KA et al., 2003). Although significant efforts have been made to identify molecules expressed by Tr1 cells to discriminate them from the nTreg cells and from effector T cells, no specific marker for Tr1 cells has been reported so far.

Tr1 cells are anergic and proliferate poorly upon polyclonal-mediated or antigen-specific activation (Groux H et al., 1997; Bacchetta R et al., 1994), and these cells do not expand significantly under standard culture conditions. The autocrine production of IL-10 by Tr1 cells contributes to their low proliferative capacity, since addition of anti-IL-10 monoclonal antibody partially restores this response (Groux H et al., 1997; Bacchetta R et al., 1994).

Tr1 cells regulate immune responses through the secretion of the immunosuppressive cytokines IL-10 and TGF-β, and they suppress both naïve and memory T-cell responses in vivo and in vitro (Groux H et al., 1997; Barrat FJ et al., 2002; Bacchetta R et al 1994; Levings MK et al., 2001; Veldman C et al., 2004). Nevertheless, a mechanism implicating direct cell-cell contact with the target cells has also been postulated (Hawrylowicz CM et al., 2005). Although antigen-specific Tr1 cells need to be activated via the TCR in order to exert their suppressive function, once activated, Tr1 cells can mediate bystander suppressive activity against other antigens. This bystander suppression is likely mediated by the local release of IL-10 and TGF-β.
which act on both APC and T cells. IL-10 downregulates expression of costimulatory molecules and pro-inflammatory cytokine production by APC and directly inhibits IL-2 and tumor necrosis factor-a (TNF-α) production by CD4+ T cells (Pestka S et al., 2004). Similarly, TGF-β downregulates the function of APC (Strobl H et al., 1999) and inhibits proliferation and cytokine production by T cells (Cerwenka A et al., 1999). The suppressive effects of Tr1 cells are reversed by addition of anti-IL10 and anti-TGF-β neutralizing monoclonal antibodies (Levings MK et al., 2005; Groux H et al., 1997; Bacchetta R et al., 1994; Levings MK et al., 2005; Cavani A et al., 2000), but additional mechanisms may also contribute.

Tr1 are involved in many T cell-mediated diseases. The first evidence that human Tr1 cells are involved in maintaining peripheral tolerance in vivo came from studies in severe combined immunodeficient (SCID) patients successfully transplanted with HLA-mismatched allogeneic stem cells. Despite the HLA disparity, these patients did not develop GvHD in the absence of immunosuppressive therapy. Interestingly, high levels of IL-10 were detected in the plasma of these patients, and a significant proportion of donor-derived T cells, which were specific for the host HLA antigens and produced high levels of IL-10, could be isolated in vitro (Bacchetta R et al., 1994). More recently, high frequencies of donor T cells producing IL-10 in response to recipient alloantigens have been found to correlate with the absence of acute GvHD after allogeneic HSC transplantation in cancer patients, while low frequencies were strongly associated with severe GvHD (Weston LE et al., 2006). Finally, spontaneous development of tolerance to kidney or liver allograft in transplanted patients is associated with the presence of CD4+ T cells that suppress naïve T-cell responses via production of IL-10 or TGF-β (Van Buskirk AM et al., 2000). Together these data indicate that Tr1 cells can regulate immune responses and induce tolerance in vivo in bone marrow and solid organ transplantation.

There are many evidences displaying that Tr1 cells regulate also responses to self-antigens and autoimmunity. Kitani and colleagues isolated self-major histocompatibility complex (MHC)-reactive Tr1 cell clones from peripheral blood of healthy individuals (Kitani A et al., 2000). These Tr1 cells inhibit proliferation of
primary CD4+ T cells and tetanus toxoid-specific T-cell clones via IL-10 and TGF-β. Similarly, T cells from non-diabetic individuals carrying HLA class II molecules associated with type 1 diabetes show an IL-10 response to islet peptides, while T cells from diabetic subjects produce predominantly IFN-γ (Arif S et al., 2004). These findings clearly demonstrate that self-antigen-specific Tr1 cells are present in humans and that they may play a role in maintaining self-tolerance. It is possible that skewing of self-reactive T cells toward a Treg or Th1 phenotype defines the balance between homeostasis and autoimmunity, respectively, and that unbalance in favor of Th1 cells results in pathology.

Tr1 cells specific for infectious agents or tumor antigens may interfere with the host’s immune response and thus be detrimental. Presumably, it is advantageous for pathogens to evolve strategies to enhance the differentiation of Tr1 cells, which would then limit the protective immune response and allow long-term infection of the host (McGuirk P et al., 2002). Hemagglutinin from B. pertussis inhibits IL-12 and enhances IL-10 production from DC in the lung and bronchial lymph nodes (Gray CP et al., 2002). In chronic helminthes infections, where patients have relatively little sign of dermatitis despite the presence of small worms in the skin, antigen-specific Tr1 cells can be isolated. These cells were able to inhibit proliferation of effector T cell clones (Satoguina J et al., 2002). Several studies report the existence of Tr1 cells specific for tumor antigens. It has been shown that myeloma cells prime DC towards a state that favors the generation of T cells with a Tr1 rather than an effector phenotype (Fiore F et al., 2005). Exposure to cyclooxygenase-2-overexpressing glioma induces mature DC to overexpress IL-10 and decreased IL-12p70 production. These DC induce a Tr1 cell response, which is characterized by robust secretion of IL-10 and TGF-β with negligible IL-4 secretion by CD4+ T cells, and an inhibitory effect on responder T cells (Akasaki Y et al., 2004). In addition, Hodgkin lymphoma infiltrating CD4+ lymphocytes (HLIL), unlike their PBMC counterpart, have been found to be anergic, and suppress cell proliferation in vitro. Furthermore, HLIL contain large populations of both IL-10-secreting Tr1 and CD4+CD25+ Treg cells. Thus, HLIL are highly enriched
in Treg cells, which create a profoundly immunosuppressive environment that provides an ineffective immune clearance of cancer cells (Marshall NA et al., 2004).
Mechanism of Tolerance to Allergens

Because most allergens are immunologically inert proteins, the usual outcome of their inhalation is tolerance, and inflammation does not develop on chronic exposure (De Heer et al., 2004; Ostroukhova M et al., 2004). Several mechanisms have been proposed to describe this phenomenon. The most probable explanation is that partially activated DC migrate to the lymphoid organs and induce an abortive proliferative response of T cells leading to death (Gett AV et al., 2003). It is presently unclear whether tolerance induction is mediated by DC at different state of maturation, or by specialized DC subsets. Steinman has suggested that peripheral tolerance induction is induced by immature DC (Steinman RM et al., 2003). Bone marrow myeloid DC kept in an immature state by peroxisome proliferator activating receptor (PPAR) agonist treatment and subsequently injected into the trachea, they suppressed development of airway inflammation in an IL-10-dependent manner, whereas injection of mature DC induced Th2 priming (Lambrecht BN et al., 2000; Hammad H et al., 2004). However, Umetsu et al. demonstrated that tolerance in the lung is depended upon CD86 and ICOS-L, suggesting that some degree of DC maturity is necessary for tolerance induction, and is accompanied by vigorous naïve T cell division (Akbari O et al., 2002; Tsitoura DC et al., 1999).

In Humans, myeloid DC (mDC) and plasmacytoid DC (pDC) were initially called DC1 and DC2, referring to their capacity to preferentially induce the differentiation of naïve T cells into Th1 and Th2 effector cells, respectively. The finding that asthmatic patients have more pDC in peripheral blood compared to healthy individuals (Matsuda H et al., 2002) could be related to the Th2-dominant phenotype in asthma. However, several studies described a plasticity of the two DC subsets in directing T cell responses (Cella M et al., 2000; Langenkamp A et al., 2000). These studies suggest that not only their lineage but also the cytokine microenvironment, and/or inflammatory mediators can influence the outcome of the immune response.
Another level of complexity arose when it was been demonstrated that respiratory tolerance might be control by a subset of pDC (De Heer HJ et al., 2004; Oriss TB et al., 2005). The precise mechanisms by which pDC promote tolerance are unknown, but in the absence of pDC, mDC become more immunogenic and induce the secretion of effector cytokines. pDC express high-level of programmed death ligand 1 which can deliver a negative signal to both T cells and mDC (De Heer HJ et al., 2004; Kohl J et al., 2006). Additionally, pDC produce the tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase (IDO), which exerts a strong inhibitory activity on T-cell proliferation (Fallarino F et al., 2004) and prevents inflammatory airway disease (Hayashi T et al., 2004). Interestingly, IDO expression has been recently demonstrated also in pulmonary CD11c+ cells (Swanson KA et al., 2004), suggesting that not only pDC but also mDC may control inflammation in the lung. Finally, the tolerogenic properties of pDC can be related to their immature phenotype, since it has been demonstrated that immature pDC can induce Treg (De Heer HJ et al., 2004).

Based on the mutually inhibitory effects of Th1 and Th2 cytokines, it has been proposed that skewing towards Th1 response may protect against the development of allergic disease. Indeed, there is a considerable body of evidence from studies of allergic patients receiving immunotherapy, to support a protective effect for IFN-γ (Durham SR et al., 1998). Studies in vitro (Manetti R et al., 1993; Parronchi P et al., 1992, Manetti R et al., 1999; Parronchi P et al., 1999; Brugnolo F et al., 2003; Fili L et al., 2006) and in vivo (Tournoy KG et al., 2002; Smart JM et al., 2002; Shahid SK et al., 2002; Romagnani S 2004; Turcanu V et al., 2003; Hamid QA et al., 1997) support the hypothesis that allergen-specific Th2 responses are subjected to the negative control by Th1-polarizing cytokines, such as IFNs, and IL-12. Conversely, other studies have suggested that Th1 cells may contribute to Th2 priming or to inflammatory responses in the lung (Bocek P et al., 2004; Dahl ME et al., 2004; Kuipers H et al., 2004; Heaton T et al., 2005). Therefore although in murine models a clear-cut role of Th2 cells in promoting asthma has been demonstrated, data in humans indicate that both Th1 and Th2 cells contributes to allergic inflammatory
processes. Renewed interest in Treg cells within the last few years has led to the general consensus that Treg play a pivotal role in controlling allergic responses.

Role of CD4$^+$CD25$^+$ in allergy

The function of nTreg cells has been investigated in mouse models of allergic airway disease. In vitro studies showed the capacity of ex vivo-derived nTreg cells to inhibit both the differentiation of mouse T cells towards a Th2 phenotype (Xu D et al., 2003; Stassen M et al., 2004) and the production of cytokines by established Th2 cells, but the latter occurred only after the pre-activation of nTreg cells in vitro (Stassen M et al., 2004). The in vivo data, however, seem to be more complex. CD25$^+$ depletion failed to show any effect on inflammation or AHR, although, modulated the Th2 response (Jaffar Z et al., 2004). By contrast, using recombination- activating gene 2 (Rag2)$^{-/-}$ ovalbumin (OVA)-specific TCR transgenic mice the capacity of unfractionated T cells and CD4$^+$CD25$^+$-depleted T cells to control antigen-induced airway eosinophilia was compared. Results demonstrated that depletion of CD4$^+$CD25$^+$ T cells upregulated Th2-cell-mediated allergic inflammation (Suto A et al., 2001). Similarly, in mouse model resistant to allergen-induced AHR (C3H) it has been shown that depletion of CD4$^+$CD25$^+$ Treg cells promoted AHR, eosinophilia, and IgE, with a concomitant increase of Th2 cytokine production (Lewkowich IP et al., 2005). Moreover, in vivo transfer of nTreg reduced AHR, recruitment of eosinophils, and Th2 cytokine expression in the lung after allergen challenge. This suppression was dependent on IL-10, but IL-10 production by the Treg cells themselves is not required for suppression (Kearley J et al., 2005). In a different system, was demonstrated a role for membrane-bound TGF-β-expressing CD4$^+$ T cells in the induction of airway tolerance elicited with low doses of inhaled antigen (Ostroukhova, M et al., 2004).

Although it is generally accepted that Treg cells in mouse model of allergic inflammation are crucial to control airways inflammation, the antigen-specificity of Treg cells remains controversial. Indeed, using the DO11.10 mouse model of allergic inflammation it has been demonstrated that suppression mediated by Treg cells is not
Ag-specific (Li J et al., 2006). Conversely, Der p1 peptide administration in DO11.10 mice have been shown to promote peripheral tolerance through the induction of Ag-specific Treg which can exert, once activated by Der p1, a bystander suppression (Zuleger CL et al., 2005).

Several studies have examined the role of nTreg in modulating allergic disease in humans. Some reports have suggested a defect in the number and/or function of allergen-specific Treg cells in atopic individuals. (Ling EM et al., 2004; Akdis CA et al., 1998; Karlsson MR et al., 2004; Verhagen J 2006). CD4+CD25+ T cells from patients with hay fever suppressed allergen-induced proliferation of autologous CD25− T cells and their IL-5 production at lower extent than in non-atopic donors. Treg cells were Foxp3+, but their suppressive activity was not related to CTLA-4, IL-10, or TGF-β (Ling EM et al., 2004). The loss in inhibitory activity of CD25+ T cells from allergic donors was most pronounced during symptomatic periods, when pollen counts were highest. Similarly, CD25+ T cells from both allergic and non-allergic individuals potently suppressed T-cell proliferation and Th2 cytokine production in response to birch allergen outside of the pollen season; however, during the birch pollen season, CD25+ T cells from allergic patients but not from non-allergic controls were defective in downregulating birch-pollen induced IL-13 and IL-5 production (Grindebacke H et al., 2004). In healthy non-allergic subjects, the proliferative response of T cells to cows’ milk antigen is essentially absent, however, depletion of CD25+ T cells resulted in significant T-cell proliferation, suggesting that CD25+ T cells normally suppress the responses to dietary antigens (Taams LS et al., 2002, Sletten GB et al., 2007). Similarly, children who had outgrown cows’ milk sensitivity had higher frequencies of circulating Treg cells and decreased in vitro proliferative responses to bovinem β-lactoglobulin (a milk protein) in PBMC compared with children who maintained clinically active milk sensitivity. Nevertheless, the reduced proliferative response to milk (β-lactoglobulin) in children who had outgrown milk-induced gastrointestinal symptoms could be reversed by removal of the CD25+ cells from the cultured PBMC, but this increase in T-cell proliferation did not occur in allergic individuals. These results indicate that in cows’ milk-induced colitis, CD25+ inhibitory Treg become
evident after cows’ milk challenge in allergic children who become tolerant to cows’ milk. The suppressive activity of these Treg cells was not related to the release of soluble factors, but was due to a cell contact-dependent phenomenon (Karlsson MR et al., 2004). These latter findings are apparently at variance with the results of another study performed in children suffering from peanut allergy. Children who outgrew their peanut allergy exhibited increased numbers of allergen-specific interferon (IFN)-γ-producing and reduced levels of IL-4-producing T cells in comparison with those who remained peanut-sensitive, thus becoming nearly similar to peanut non-allergic children. This finding suggests that the lack of peanut allergy or the recovery from this form of hypersensitivity is due to an immune deviation in the specific response from Th2 to Th1 rather than to the enhancement of immune suppression (Turcanu V et al., 2003).

Role of Tr1 in allergy

Many studies in mouse model had shown the importance of Tr1 cells in controlling allergy and asthma. Intranasal treatment with OVA induced T cell tolerance by inhibiting T cell proliferation, IgE and IgG1 production. In this system tolerance to OVA was associated with the generation of Tr1 cells in bronchial lymph nodes (Barbey C et al., 2004). Akbari et al., showed that in the bronchial lymph nodes of mice exposed to respiratory allergen mature pulmonary DC induced the development of Tr1 cells, via the inducible ICOS-ICOS-ligand pathway (Akbari O et al 2002). In addition, it has been described the in vivo development of a population of Treg cells during a Th1 polarized response, which were distinct from Treg cells. These antigen-specific Treg cells produced both IL-10 and IFN-γ, expressed the transcription factors Foxp3 and T-bet, and potently inhibited the development of AHR (Stock P et al., 2004). The suppressive activity of *Mycobacterium vaccae* on airway eosinophilia was found to be clearly related to the induction of allergen-specific Treg cells able to produce IL-10 and TGF-β (Zuany-Amorim C et al., 2002). Although, in a subsequent study *M. vaccae* administration during allergen sensitization or challenge suppressed
asthmatic features without inducing an increase in either IFN-γ or IL-10 in the lung lavage fluid (Smit JJ et al., 2003). Tr1 cells are also important in downregulating immune responses toward allergens such as nickel (Kinter AL et al., 2004), insect venom (Durez P et al., 1993), and cat allergens (Bergmann, M. & Sautner, T. 2002). Cavani et al. has been isolated Nickel-specific Tr1 clones from skin and peripheral blood of atopic patients affected by ACD to Nickel (Ni). They demonstrated that Ni-specific Tr1 cells inhibit the APC functions of monocytes (antigen-presenting capacity) and DC (maturation, antigen-presenting capacity and IL-12 relapse), in a IL-10-dependent manner, and directly suppress Ni-specific Th1 responses (Cavani A et al., 2000).

The defect in allergen-specific Tr1 cells in human subjects has been reported by Akdis and colleagues. The authors demonstrated an increased frequency of allergen-specific Tr1 cells with a concomitant decreased allergen-specific Th2 cells in non-allergic compared to allergic subjects. These results clearly indicate that the balance between allergen-specific Tr1 and Th2 cells is a key determinant in the development of allergic responses in humans (Akdis M et al., 2004).
The Interplay between IL-10, Dendritic Cells and Regulatory T cells in Allergy

IL-10

IL-10, an anti-inflammatory cytokine, has originally been described as cytokine-synthesis-inhibiting factor (CSIF) with regard to its effects exerted on IFN-γ production of Th1 cells. It is predominantly produced by T lymphocytes, monocytes, and macrophages. IL-10 exerts suppressive effects on a wide range of different populations of lymphocytes and it inhibits the antigen presenting capacity of different types of APC, including DC, Langerhan’s cells, and macrophages. Moreover, IL-10 inhibits the production of pro-inflammatory cytokines and IL-12 (a cytokine important for the development of Th1 cells) (Moore KW et al., 2001), chemokine secretion (Jinquan T et al., 1993; Kasama T et al., 1994), and the expression of MHC class II and costimulatory molecules (Moore KW et al., 2001; Fiorentino DF et al., 1991). IL-10 inhibits the maturation of DC from monocyte precursors (Buelens C et al., 1997), modifies chemokine receptor expression (Sozzani S et al., 1998; Takayama T et al., 2001), increases β2-integrin ligand (e.g., ICAM-1) expression (Willems F et al., 1994). IL-10 has also been shown to promote the development of B1 cells (Ishida H et al., 1992), to enhance the survival of B cells which correlated with increased expression of the anti-apoptotic protein bcl-2, T cells, and tumor cells (Levy Y et al., 1994; Cohen SB et al., 1997), and, paradoxically, to induce apoptosis in chronic B cell leukemia cells (Fluckiger AC et al., 1994). IL-10 promotes the activity of NK cells (Cai G et al 1999) and has a stimulatory effect on CD8+ T cells by enhancing their cytotoxic capacity and proliferation (Moore KW et al., 2001; Asadullah K et al., 2003; Groux H et al., 1998; Schwarz MA et al., 1994).

The principle function of IL-10, however, is to limit the magnitude of an immune response, as mice lacking IL-10 exhibit spontaneous enterocolitis (Kuhn R et al., 1993). More relevant to peripheral immunity, mice lacking IL-10 by gene deletion have increased Th1 responses (Yang X et al., 1999) and, consequentially, enhanced
clearance of bacterial (Murray PJ et al., 1999; Sewnath ME et al., 2001), fungal (Vazquez-Torres A et al., 1999), or toxoplasmic (Gazzinelli RT et al., 1996) infection. These mice also show exaggerated asthmatic (Tournoy KG et al., 2000) and allergic responses (Berg DJ et al., 1995; Grunig G et al., 1997).

IL-10 modulates many cells and effector functions that are associated with allergic and it is thought to have a role in naturally regulating immune homeostasis in the lungs (Akbari O et al., 2001) Consistent with these findings, there is an inverse association between IL-10 levels and the severity of allergic and asthmatic disease (Lim S et al, 1998). IL-10 is expressed at lower levels in the nasal mucosa of HDM patients with severe allergic rhinitis compared to patients with mild symptoms (Muller B. 2007). In asthmatic patients, the wheal size from skin prick with allergen is negatively associated with IL-10. Moreover, bronchial hyper-responsiveness (BHR) in non-atopics was associated with elevated allergen-specific and polyclonal IL-10 production (Heaton T et al., 2005). Atopic subjects have intrinsic inability to up-regulate IL-10 production (Gentile DA et al., 2004). Studies with BAL fluid from asthmatic patients have revealed lower IL-10 levels than in healthy controls, and T cells from children suffering from asthma have been shown to produce less IL-10 mRNA than T cells from healthy children (Borish L et al., 1996; Koning H et al., 1997).

A suppressive role for IL-10 has also been demonstrated in both allergen-specific immunotherapy (SIT) and normal responses to allergens (Blaser K et al., 2004). Increased expression of allergen-induced in vitro IL-10 mRNA in PBMC of allergic rhinitis patients has been demonstrated after specific venom immunotherapy (Savolainen J et al., 2004). During allergen- SIT, intracellular IL-10 significantly increased in the antigen-specific T cell population and activated CD4+ T lymphocytes during the early phase of the therapy. Afterwards, intracytoplasmatic IL-10 was also increased in monocytes and B cells. These results indicate that IL-10 secreted by T cells represents a crucial step for the consequent induction T-cell anergy and the modulation of APC that are required for the maintenance of tolerance (Akdis CA et
The proliferative and cytokine responses could be reconstituted by *ex vivo* neutralization of endogenous IL-10, supporting the pivotal role of IL-10 in promoting tolerance after allergen-SIT (Akdis CA et al., 1999). Moreover, in *Dermatophagoides-pteronyssinus*-sensitive patients, the allergen-specific sublingual immunotherapy (SLIT) increased IL-10 and IFN-γ production upon allergen stimulation of PBMC before the clinical improvement (Cosmi L et al., 2006).

In animal models IL-10 has been shown to be effective in inhibiting allergic inflammation. IL-10 administration before allergen treatment induced antigen-specific T-cell unresponsiveness and promote peripheral T-cell tolerance (Enk AH et al., 1994). Moreover, intranasal administration of constructs carrying the transgenes for murine IL-10 (Stampfli MR et al., 1999) and adoptive transfer of IL-10-transfected T cells (Oh JW et al., 2002) or OVA-specific cells engineered to produce IL-10 (Hansen G et al 2000), have both been shown effective in blocking allergic airway inflammation.

Therapies shown to be beneficial for the treatment of allergy and asthma, such as glucocorticoids, have been shown to increase IL-10 secretion by T cells (Corral LG et al., 1999). Furthermore, the clinical efficacy of glucocorticoids seems to be linked to the ability of T cells to produce IL-10 (Sawicka E et al 2003). It has been demonstrated that allergen-specific Tr1 cells induced *in vitro* with vitamin D3 and dexamethasone potently inhibit allergen-induced Th2 cytokine production in an IL-10-dependent manner (Barrat FJ et al., 2002). Furthermore, administration of vitamin D3 to glucocorticoid-resistant patients enhanced T-cell responsiveness to dexamethasone with an increase in IL-10 production (Xystrakis E et al., 2006) (Fig. 6).
Fig 6. Functions of IL-10 that are relevant in allergy and asthma
Immunoregulation of Dendritic Cells by IL-10

IL-10 has been shown to modulate APC, including DC. When human or murine DC exposed to IL-10 display reduced surface expression of MHC class I and class II molecules and costimulatory molecules of the B7 family (Jonuleit H, Schmitt E 2003; Schuler G, Steinman RM 1985; Bonifaz L et al., 2002; Mahnke K et al., 2003; Mahnke K et al., 2002). In addition, the release of pro-inflammatory cytokines by DC, i.e. IL-1β, IL-6, TNF-α and most markedly IL-12, is abolished after IL-10 treatment (Chang CH et al., 1995; Koch F et al., 1996). However, these effects have been shown when immature DC were exposed to IL-10 (Steinbrink K et al., 1997; Misra N et al., 2004).

IL-10-transduced murine bone marrow-derived mDC showed reduced expression of MHC class II and costimulatory molecules and thereby an impaired ability to promote T cell proliferation (Takayama T et al., 2001; Takayama T et al., 1998; Lu L et al., 1999). Moreover, IL-10-transduced DC showed lower levels of CCR7 and simultaneously increased CCR5 levels, which seemed responsible for an impaired, in vivo homing of DC from peripheral tissues to secondary lymphoid organs (Takayama T et al., 2001). Studies have demonstrated, however, that the tolerogenic effect of IL-10-treated DC is not simply due to decreased cytokine production or costimulatory molecule expression. Indeed, IL-10 modulates DC maturation enabling DC to induce T cells with regulatory properties (Steinbrink K et al., 1997; Sato K et al., 2002; Steinbrink K et al., 2002). Freshly isolated Langerhans cells treated with IL-10 inhibit Th1 cells proliferation (Enk AH et al., 1993).

IL-10 not only modulates already differentiated DC, but also promote the differentiation of tolerogenic DC. Wakkach et al. (Wakkach A et al., 2003) showed that addition of IL-10 during in vitro differentiation of bone-marrow derived DC resulted in a population of CD45RB^{high} tolerogenic DC. These CD11c^{low}CD45RB^{high} DC are present in the spleen and lymph nodes of normal mice and are significantly enriched in the spleen of IL-10 transgenic mice. These natural or in vitro-derived DC display plasmacytoid morphology, an immature-like phenotype, and secrete high levels of IL-
10 after activation. Moreover, OVA peptide-pulsed CD11c^{low}CD45RB^{high} DC specifically induce differentiation of Tr1 cells in vitro and in vivo.

The therapeutic use of these IL-10-modulated DC is under investigation since injection of in vitro generated IL-10-modified DC have been shown to be able to prevent EAE (Okura Y et al., 2003) and GvHD (Muller G et al., 2002; Sato K et al., 2003).

Induction of Regulatory T Cells by Dendritic Cells

Several evidences indicate that Treg cells can be induced by both DC in an immature or semi-mature stage. Presentation of antigens by immature DC in the absence of danger signals results in tolerance (Steinman et al., 2000 e Steinman et al., 2002). Repetitive stimulation of naïve cord blood CD4⁺ T cells with allogenic immature DC results in the differentiation of IL-10-producing Treg (Jonuleit H et al., 2000) that suppress T-cell responses via a cell-contact dependent mechanism. Furthermore, it has been reported that repeated stimulation of naïve peripheral blood CD4⁺ T cells with allogeneic iDC induces the differentiation of human Tr1 cells in vitro (Levings MK, et al., 2005). In this system, after three rounds of stimulation with iDC, T cells become anergic and acquire regulatory function. These T cells secrete high levels of IL-10 and TGF-β, significant amounts of IFN-γ and IL-5, low IL-2, and no IL-4. They also suppress T-cell responses via an IL-10- and TGF-β-dependent mechanism. Similarly, semi-mature DC originated from the exposure of immature DC to TNF-α in the absence of danger signals acquire some characteristic of mature DC but, due to their inability to produce polarizing signals, they induce the differentiation of Tr1 cells (Menges M et al., 2002).

Not only immature DC but also specialized subsets of tolerogenic DC may prime Treg cells (Battaglia M et al., 2006; Lanzavecchia A et al., 2001; Banchereau J et al., 1998; Penna G et al., 2005; Mahnke K et al., 2005; Battaglia M et al., 2004). Biological agents, such as IL-10 (Steinbrink K et al., 1997; Steinbrink K et al., 2002; Gregori S et al., 2007 submitted), TGF-β (Sato K et al., 2003), IFN-α (Carbonneil C et al., 2004) induce tolerogenic DC inhibiting the antigen-presenting
capacity and promoting the differentiation of Treg in vitro (Woltman AM et al., 2003; Adorini L et al 2004; Matyszak MK et al., 2000). During the differentiation from peripheral progenitors, DC exposed to IL-10 for the last 2 days of culture show a strongly reduced capacity to stimulate a CD4⁺ T cell response in an allogeneic MLR in a dose-dependent manner (Steinbrink K et al., 1997). These anergic T cells were able to suppress activation and function of T cells in an antigen-specific manner. (Steinbrink K et al., 1999; Steinbrink K et al., 2002). We recently demonstrated that IL-10 induces the differentiation of a unique subset of myeloid DC (DC-10) which are CD14⁺CD11c⁺CD11b⁻CD83⁺HLA-DR⁻CD71⁻CD1a⁻, display a myeloid mature phenotype (CD80⁺CD86⁺), express ILT2, ILT3 and ILT4, secrete high levels of IL-10 but low IL-12, and display low stimulatory capacity. Importantly, DC-10 are potent inducer of Tr1 cells in a allogenic system (Gregori S et al., 2007 manuscript submitted).

Several immunosuppressive agents including glucocorticoids, mycophenolate mofetil, vitamin D3, and sirolimus have been shown to promote DC with tolerogenic phenotype and function (Penna G et al., 2005). These agents impair DC maturation and inhibit up-regulation of costimulatory molecules, secretion of proinflammatory cytokines, in particular IL-12, and allostimulatory capacity. Certain pathogens or allergens, such as Bordetella pertussis (McGuirk P et al., 2002), Lactobacillus reuteri, L. casei (Smits HH, et al., 2005), and ferruginol (Takei M et al., 2005), evade immunity by priming DC to become tolerogenic DC, which induce Tr1 cells.

Not only mDC but also other subsets of DC, including pDC, can induce the differentiation of Treg. pDC polarize T cells towards IL-10 production and regulatory activity in vitro (Gilliet M et al., 2002; Kuwana M et al., 2001; Kuwana M 2002). In addition, repetitive stimulation of naïve CD4⁺ T cells with murine CD8α⁺ pDC isolated from mesenteric lymph nodes results in the generation of a population of Tr1-like cells with regulatory properties (Bilsborough J et al., 2003).
Control of lung Dendritic Cell Function by regulatory T cells

It is clear that DC control effector T cell responses at sites of inflammation. An obvious question, therefore, is whether Treg cells also exert their action by regulating the function of DC within sites of inflammation, by producing IL-10, TGF-β or through cell–cell contact. Induction of CD86 on DC by inflammation might lead to the local expansion of Treg cells and, after a few days of inflammation, Treg cell numbers might outnumber pathogenic effector T cells (Yamazaki S et al., 2003). Within sites of chronic inflammation, such as colonic inflammation induced by transfer of CD45RB⁺ cells into severe combined immunodeficiency syndrome (SCID) mice, Treg cells interact locally with DC and pathogenic effector T cells to suppress effector T cell activation by downregulating OX40L (Mottet C et al., 2003). This might also occur in asthma, where OX40L is critical for effector Th2 cells (Salek-Ardakani S et al., 2003). The chemokines produced by DC in response to allergen recognition not only attract pathogenic Th2 cells, but also CCR4- and CCR8-expressing Treg cells (Hammad H et al., 2003; Iellem A et al., 2001).

How Treg downregulate inflammation is a matter of debate. In one scenario, Treg might keep DC in an immature state, unable to induce Th immunity (Serra P et al., 2003). In a very interesting study, mice that were deficient in Runx3, a critical downstream mediator of TGF-β signalling, had lung DC that were in a spontaneously activated and mature state, leading to Th2 mediated lung inflammation to environmental antigens (Fainaru O et al., 2004). It was also shown that murine natural Treg cells have the capacity to induce IDO activity and tryptophan catabolism in myeloid DC, thus leading to T cell suppression (Fallarino F et al., 2003). High level IDO expression, such as induced by treatment with CpG motifs has been shown to suppress eosinophilic airway inflammation (Hayashi T et al., 2004).

If Treg cell suppression of allergic immune responses is mediated at the level of the DC, it will be important to find out if DC from atopic individuals have a reduced capacity to interact with or stimulate Treg function or alternatively are resistant to Treg regulation. Inflammatory cytokines produced by DC (e.g. IL-6) might render effector T
cells irresponsive to Treg suppression (Pasare C, Medzhitov R 2003). Alternatively, decreased Treg activity in atopic individuals might contribute to chronic inflammation (Ling EM et al., 2004).

During generation of an efficient immune response, lung DC have to overcome suppression by Treg, and the dominant way in they seem to do this is by producing the cytokine IL-6, which counteracts the suppression by naturally occurring CD4⁺CD25⁺ Treg (Doganci A et al., 2005). Several articles now support the concept that Treg alter airway DC function. In mice resistant to HDM-induced asthma and AHR (C3Hmice), Treg depletion with the CD25-depleting antibody similarly led to increased numbers of pulmonary mDC with increased expression of MHC class II, CD80, and CD86 and an increased capacity to stimulate T-cell proliferation and Th2 cytokine production. In normally susceptible A/J mice Treg did not suppress inflammation and AHR. These data suggest therefore that resistance to allergen-driven AHR is mediated in part by CD4⁺CD25⁺ Treg suppression of DC activation and that the absence of this regulatory pathway contributes to susceptibility (Lewkowich IP et al., 2005).

In human subjects with allergy, there is a reduction in the number and possibly function of Treg, (Kuipers H, Lambrecht BN 2004) but it is unclear at present whether this would also lead to altered function of DC in these patients.
AIM OF THE STUDY

Several studies have indicated that an alteration of immune regulatory mechanisms is involved in the development of allergic diseases. In particular, an impaired number or function of T regulatory subsets as well as a defective production of IL-10 and TGF-β by T cells have been recently reported in individuals affected by allergic diseases.

DC treated with IL-10 were found to be potent inhibitors of the immune response. This effect is mediated by the induction of Tr1 and the production of high amount of IL-10. Tr1 generated in this way are able to inhibit both Th1 and Th2 responses.

The aim of this thesis is to determine whether IL-10-treated DC are able to induce Tr1 cells in children allergic to HDM. These conditioned DC could be used as cellular therapy for allergy or for other diseases characterized by inappropriate immune response, such as autoimmune diseases.

To this end, monocyte-derived DC were obtained from allergic patients and healthy controls, pulsed with Der p2 (a major HDM allergen) in presence of IL-10 (using 2 different experimental strategies) and further used to stimulate autologous T cells.

The specific aims of the study can be summarized in the following way:

1. To characterize Der p2-specific T cell response in HDM patients in terms of cell proliferation, T cell phenotype and cytokine production.
2. To determine whether IL-10-treated DC are able to modulate allergen-specific T cell responses in HDM patients.
3. To induce Der p2-specific T cells with regulatory capacities by using DC treated with IL-10.
MATERIALS AND METHODS

PATIENTS

Inclusion criteria.

The study included 41 children (24 males and 17 females) between 4 and 14 years, sensitized to House Dust Mites (HDM) and affected by intermittent to mild persistent asthma diagnosed according to the GINA guidelines (GINA, 2006).

All patients had clinical symptoms after allergen exposure, and elevated IgE and/or positive skin prick tests to HDM: Dermatophagoides Pteronissimus (Dt Pt), and Farinae (Dt F). None of the children was affected by a concomitant autoimmune diseases or infection and at the time of the enrollment and none of them had been taking either local or oral antibiotics, corticosteroids, or immunosuppressive drugs since at least 2 months. The demographic and clinical characteristic of the patients are reported in Tab 4.

Ten age-matched healthy controls (5 male and 5 female) aged between 3 and 14 years without a family history of allergic symptoms, and negative for skin prick test and serum specific IgE were used as controls.

Table 4. Demographic and clinical description of study population.

<table>
<thead>
<tr>
<th></th>
<th>PATIENTS (n=41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (females/males)</td>
<td>17/24</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>*8.5±3.3</td>
</tr>
<tr>
<td>Range</td>
<td>3-14.4</td>
</tr>
<tr>
<td>Duration of asthma (yrs)</td>
<td>3.6±2.7</td>
</tr>
<tr>
<td>Family history of asthma and/or allergy (%)</td>
<td>27/41 (65.85)</td>
</tr>
<tr>
<td>Other symptoms of allergy (%)</td>
<td>21/41 (51.2)</td>
</tr>
<tr>
<td>Respiratory infections (%)</td>
<td>5/41 (18.5)</td>
</tr>
<tr>
<td>Total IgE</td>
<td>144.5±165.1</td>
</tr>
<tr>
<td>Dt. Pt specific IgE</td>
<td>15.3±31</td>
</tr>
<tr>
<td>Dt. F specific IgE</td>
<td>10.5±17.8</td>
</tr>
<tr>
<td>Occasional use of symptom relievers (%)</td>
<td>34/41 (82.9)</td>
</tr>
</tbody>
</table>

*Data are expressed as means ±SD, unless differently stated.

Serum IgE quantization.
IgE specific for inhalant and food allergens were tested with Pharmacia RAST, according to the manufacturer’s instructions. Serum samples were blind-coded prior to the quantization of total and specific IgE and titers were expressed as IU/ml.

Skin prick tests.
The Skin Prick Test was performed on the volar forearm. We evaluated skin test reactivity to cow milk, egg, *Dermatophagoides Pteronissimus* and *Farinae*, grass, birch, *Alternaria Alternata*, *Aspergillus Fumigatus* and *Cladosporium*, *Olea* tree, cat and dog dander. As positive and negative controls, histamine (10 mg/ml) and 0.9% sodium chloride in 50% glycerol, respectively, were included. Test was considered positive when the size of the wheals had a diameter ≥ 3 mm than any measurable diameter of the negative control test.

Peripheral blood cells
Peripheral blood monocyte cells (PBMC) were obtained from allergic patients and healthy controls according to the ethical commitment and were purified by gradient centrifugation over Ficoll-Hypaque (Amersham Biosciences, Uppsala, Sweden). Blood samples range between 5 and 15ml.

Dendritic cells differentiation.
Dendritic cells (DC) were differentiated from peripheral blood monocytes (CD14⁺). CD14⁺ cells were isolated from PBMC by positive selection, using anti-CD14-conjugated magnetic Microbeads (MACS; Miltenyi Biotec, Belgish Gladbach, Germany) according to the manufacturer’s instructions. CD14⁺ population routinely resulted in >95% purity as assessed by flow cytometry. The negative fraction (CD14⁻) was collected and cryopreserved for later uses. DC were differentiated from CD14⁺ cells cultured with rhGM-CSF (100 ng/ml, R&D Systems Minneapolis, MN, USA) and rhIL-4 (10 ng/ml, R&D Systems) for 5 days in RPMI 1640 containing 5% pooled AB human serum (BioWhittaker, Walkersville, MD, USA), 100 U/ml penicillin/streptomycin (Bristol-Myers Squibb, New York, USA), 2mM L-glutamine
(GIBCO BRL Gaithersburg, MD, USA) (DC medium). 5 days of culture, extractive purified Der p2 (1 µg/ml, Lofarma, Milano, Italy), was added for additional 2 days (Dp2-DC). The optimal concentration of Der p2 was defined on the basis of pilot experiments. In some experiments after 5 days of culture, DC were treated with Der p2 (1 µg/ml) and activated with lipopolysaccharide from E. Coli (LPS) (1 µg/ml, Sigma Chemicals, St Louis, MO, USA) for additional 2 days (LPS Dp2-DC). In parallel, DC were differentiated from CD14+ cells in the presence of GM-CSF and IL-4 for 5 days and left un-stimulated (iDC) or maturated with LPS (1 µg/ml) for additional 2 days (LPS-DC).

IL-10-treated Dp2-DC were obtained by differentiating CD14+ cells in the presence of GM-CSF and IL-4 for 5 days, and cultured with Der p2 (1 µg/ml) and rhIL-10 (40 ng/ml, Endogen, Woburn, MA, USA) for additional 2 days (see IL10-DC, protocol n.1). Dp2-DC10 were differentiated from CD14+ cells cultured with GM-CSF, IL-4, and rhIL-10 (10 ng/ml, BD Biosciences, San Jose CA, USA) for 5 day. After 5 day of culture, DC were treated with Der p2 (1 µg/ml) for additional two days (see DC10, protocol n.2).

The purity and maturation state of DC was routinely checked by flow cytometric analysis to determine expression of CD14, CD1a, CD80, CD83, CD86, and HLA DR.

T cell differentiation

Protocol n.1: CD14- cells (freshly isolated T cells) were thawed and cultured with autologous iDC, Dp2-DC, IL-10 Dp2-DC at 10:1 T cells/DC ratio in RPMI 1640 containing 10% fetal calf serum (FCS) (BioWhittaker), 100 U/ml penicillin/streptomycin (Bristol-Myers Squibb), 2mM L-glutamine (GIBCO BRL). After 6 days of culture, T cell lines were collected, washed, and cultured with 50 U/ml of rhIL-2 (Sigma Chemicals, St Louis, MO, USA) for additional 14 days. Subsequently, T cell lines were collected, washed, and repeatedly stimulated with original type of autologous DC freshly differentiated from cryopreserved CD14+ cells. At any time points, a portion of T cell cells was analyzed for T cell phenotype and proliferation (see protocol n.1).
Protocol n.2. CD14\(^+\) cells (freshly isolated T cells) were thawed and cultured with autologous iDC, Dp2-DC, Dp2-DC10 at 10:1 T cells/DC ratio in X-vivo 15 medium (BioWhittaker), supplemented with 5% pooled AB human serum (BioWhittaker) and 100 U/mL penicillin/ streptomycin (Bristol-Myers Squibb). After 7 days of culture, rhIL-2 (20 U/mL, Chiron, Amsterdam, Holland) was added, and cells were expanded for additional 7 days. 14 days after initiation of the culture, T cell lines were collected, washed, and tested for their ability to respond Der p2 (see protocol n.2).

Flow cytometric analyses.

DC were stained with monoclonal antibodies against CD14, CD1a, CD80, CD83, CD86, and HLA-DR as well as with isotype controls, FITC-or PE-conjugated (all from Pharmingen, San Diego, CA, USA or BD Biosciences, San Jose CA, USA). T cell were stained with monoclonal antibodies against CD3, CD4, CD8, CD25, CD69, and CTLA-4, as well as isotype controls, FITC-or PE- CyCr-, Cy5- and APC-conjugated (from Pharmingen, or BD Biosciences). For intracellular expression of CTLA-4, after surface staining, Cytoperm/Cytofix kit (BD-Pharmingen) was used, according to manufacturer’s instructions. After washing twice, cells were incubated with anti-CTLA-4 for 20 min, washed and analyzed by flow cytometry. Cells were analyzed by a multiparametric flow cytometry with FACSCalibur (Beckton Dickinson, San Jose, CA, USA), interfaced with Cellquest software (Beckton Dickinson).

Der p2-specific T cell proliferative response

To analyze Der p2-specific T-cell proliferation, autologous CD14\(^+\) cells (5x10⁴/well) were thawed and cultured either with iDC, Dp2-DC, IL10-Dp2-DC or Dp2-DC10 (5x10³/well) (at 10:1, T cells/DC ratio) in 96-well round-bottom microplates in triplicate in a final volume of 200 µl of medium. Alternatively T cells were stimulated with PHA (5 µg/ml, Sigma, St Louis MO, USA). After 5 days of culture, T-cell proliferation was assessed by overnight \(^{3}H\)Timidine incorporation (1µCi/well, Amersham International, Amersham U.K.). In parallel after 5 days of culture, supernatants were collected for cytokine detection.
To test the anergy, T cell lines (5x10^4/well) were cultured alone or with autologous monocytes (5x10^4/well) (at 1:1 T cells/monocytes ratio) in absence or presence of Der p2 (1 µg/ml) in 96-well round-bottom microplates, in a final volume of 200 µl of medium. After 3 days of culture, T-cell proliferation was assessed by overnight incorporation \[^3\text{H}]\text{Timidine} (1µCi/well ,Amersham International, Amersham U.K.). In parallel after 2 days of culture, supernatants were collected for cytokine detection.

Cytokine production assay.

To detect IL-4, IL-5, IL-10, IL-13, TNF-α, IFN-γ concentrations in supernatants of DC-T cell co-cultures, was used the Th1/Th2 cytometric bead array-kit (CBA) (BD Biosciences, San Jose, USA) or, alternatively, the Bioplex Protein Array system (BioRad, Hercules CA, USA), according to the manufacturer’s instruction. The detection limit was 20 pg/ml for ELISA and CBA and 2 pg/ml for Bioplex.

Statistical analysis

Student’s t test was used to compare the differences of cell proliferation and cytokine production between patients and controls and between different cell culture conditions. The relationship between CD86 expression and T cell proliferation reductions was assessed by Person’s correlation test. The SPSS 13.0 analysis software was employed. P value <0.05 was considered statistically significant.
Protocol n.1

Freshly isolated T cells + IL-2 50 U/ml
6 days

1st stimulation with DCs

T(iDC) → T(Dp2-DC)
T(Dp2-DC) → T(iDC)

7 days

2nd stimulation with DCs

T(Dp2-DC) → T(iDC)
T(iDC) → T(Dp2-DC)

7 days

3rd stimulation with DCs

T(Dp2-DC) → T(iDC)
T(iDC) → T(Dp2-DC)

7 days

Protocol n.2

Freshly isolated T cells + IL-2 20 U/ml
7 days

1st stimulation with DCs

T(iDC) → T(Dp2-DC)
T(Dp2-DC) → T(iDC)

7 days

2nd stimulation with DCs

T(Dp2-DC) → T(iDC)
T(iDC) → T(Dp2-DC)

7 days

3rd stimulation with DCs

T(Dp2-DC) → T(iDC)
T(iDC) → T(Dp2-DC)

7 days
RESULTS

1. CHARACTERIZATION OF Der p2 SPECIFIC RESPONSE IN ALLERGIC PATIENTS

1a. Selection of the Culture Conditions to promote Der p2-specific T Cell Response in Allergic Patients.

To set up conditions to promote Derp2-specific T-cell response in patients allergic to HDM, we performed co-culture experiments using DC differentiated from CD14+ peripheral blood monocytes with GM-CSF and IL-4 for 5 days, and pulsed for additional 2 days with different concentrations of Der p2 (range from 0.1 to 10 µg/ml) and autologous T cells. We observed a dose-response curve with the maximal proliferation at the concentration of 1 µg/ml of Derp 2 which was used in all subsequent experiments (Fig. 7).

![Fig. 7. Dose-response curve to Der p2.](image)

T cells from allergic patients were co-cultured with autologous DC differentiated from peripheral blood CD14+ cells cultured with GM-CSF and IL-4 for 5 days, and pulsed with the indicated concentrations of Der p2 for additional 2 days. Proliferative responses were evaluated after 5 days of culture by thymidine incorporation for an additional 16 hrs. Results are expressed as ratio between Der p2-specific T-cell response and unstimulated T-cell response (Stimulation Index). The average±SD of 7 independent experiments is presented.
It is well known that mature DC are better antigen presenting cells than immature DC (Banchereau J et al., 1998). Moreover, it has been recently reported that LPS can promote allergic inflammation (Hollingsworth JW et al., 2006). To identify the antigen specific stimulator to be used in our study, we differentiated DC from CD14$^+$ peripheral monocytes of allergic patients with GM-CSF and IL-4 for 5 days, and pulsed with Der p2 (1 µg/ml) for additional 2 days in the absence (Dp2-DC) or in the presence of LPS (LPS Dp2-DC). As control, we used DC obtained by culturing CD14$^+$ peripheral monocytes with GM-CSF and IL-4 for 5 days, and left un-stimulated (iDC) or activated with LPS (LPS DC) for additional 2 days. Autologous T cells stimulated with LPS Dp2-DC displayed a proliferative response comparable to that observed with un-pulsed LPS-DC. Conversely, stimulation of T cells with autologous Dp2-DC resulted in a Der p2-specific T-cell response (Fig. 8). These results indicate that Dp2-DC are good Der p2-specific T cell stimulators, and therefore were used in all subsequent experiments.

![Fig. 8. Dp2-DC are good antigen specific stimulator.](image)

T cells from allergic patients were co-cultured with autologous Dp2-DC or Dp2-DC maturated with LPS (1 µg/ml) (LPS Dp2-DC). In parallel, T cells were stimulated with un-pulsed DC left inactivated (iDC) or activated with LPS (1µg/ml) (LPS DC). Proliferative responses were evaluated after 5 days of culture by thymidine incorporation for an additional 16 hrs. Results from one representative patient out of three patients analyzed are shown.
We then analyzed the phenotype of Dp2-DC generated from CD14+ peripheral monocytes of 8 allergic patients. We observed an increase in the expression of CD86 in terms of percentage and Mean Fluorescence Intensity (MFI) (42.7±14.2%, MFI 35.5±17.9 and 33.3±13.7%; MFI 27.4±13.4 in Dp2-DC and iDC, respectively, n=8 p=NS) and no differences in the expression of CD80 (47.3±19.9%; MFI 18.9±7.5 and 43.7±18.7%; MFI 17.3±7.1 in Dp2-DC and iDC, respectively n=8) (Fig. 9). Together these results indicate that pulsing of DC with Der p2 promotes a partial maturation of DC.

Fig. 9. Dp2-DC phenotype. Monocyte-derived DC were differentiated from CD14+ cells cultured with IL-4 and GM-CSF for 5 days, and pulsed (Dp2-DC) or not (iDC) for additional 2 days with Der p2 (1µg/ml). Expression level of CD86 and CD80 were evaluated by FACS analysis. A representative patient out of 8 patients analyzed is presented.
1b. Dp2-DC induce Derp2-specific Th2 Response.

To induce Derp2-specific T-cell response in HDM patients, we stimulated T cells obtained from PBMC after CD14+ depletion with autologous Dp2-DC. As controls we used T cells from 7 aged-matched healthy children. Responder was defined any patient displaying a stimulation index (SI) ≥ of the mean SI+2SD obtained by stimulating T cells from healthy controls with autologous Dp2-DC. In our study, the cut off is set at 1.3 (Fig. 10a). Among the allergic children analyzed, Der p2-specific T-cell proliferation was observed in 22 out of 29 patients. Therefore, a Der p2 response was observed in 75.8% of the children allergic to HDM studied (Fig. 10b) consistent with previous reports (Taketomi EA et al., 2006; Tsai JJ et al., 2000).

To characterize the Der p2-specific T-cell response elicited by Dp2-DC, we analyzed the phenotype and the cytokine production profile of T cells from responder patients. Analyses of the T cell phenotype revealed that stimulation with autologous Dp2-DC promoted the up-regulation of activation markers CD25 (inducible α-chain IL-2 Receptor) and intracellular CTLA-4. The mean of T cells expressing CD25 and CTLA-4 after stimulation with Dp2-DC [T(Dp2-DC)] was 41.1±11.1% and 25.3±9.9%, respectively, compared to T cells stimulated with iDC [T(iDC)] (24.4±7.2% and 18.9±8.6%, respectively). (Fig. 11). These effects were observed in CD4+ but not CD8+ T cells (data not shown).
Fig. 10. Dp2-DC induce Der p2-specific T cell proliferation in allergic patients. a) T cells from HDM patients and healthy controls were co-cultured with autologous Dp2-DC. Proliferative responses were evaluated after 5 days of culture by thymidine incorporation for an additional 16 hrs. Results are expressed as Stimulation Index (SI) and the horizontal bars represent the means. b) Prevalence of Der p2-responders and non-responders among the total population of allergic children analyzed.
Fig. 11. T cells stimulated with Dp2-DC display an activated phenotype. Freshly isolated T cells from allergic patients were co-cultured with autologous immature DC (iDC) or Der p2-pulsed DC (Dp2-DC).

a) The expression of CD25 and intracellular CTLA-4 CD4+ freshly isolated T cells and CD4+ T cells after 6 days of culture was evaluated by flow cytometry. A representative patient out of 6 patients analyzed is shown. b) The average±SD of CD25+ and intracellular CTLA-4+ CD4+ T cells detected in 6 patients is presented.
We then analyzed the cytokine production profile of T cells after 6 days of co-culture with Dp2-DC. Detectable amounts of IL-5 were observed in 7 out of 13 patients (53.8%), with a mean of 336.2±181.2 pg/ml (Fig. 12a). In addition, among these 7 patients, 3 patients (42.8%) showed also detectable levels of IL-4 after Der p2 stimulation, with a mean of 67.4±27.3 pg/ml (Fig. 12b). These data indicate that Der p2-specific T-cell response is Th2 like. This result was confirmed by the increase of IL-5/IFN-γ ratio after Der p2-stimulation (Fig. 12c).

In conclusion, we demonstrated that stimulation of T cells from allergic children to HDM with autologous Dp2-DC promotes the induction of Der p2-specific Th2 cell response.
Fig. 12. Dp2-specific T cells are Th2. T cells from allergic patients were co-cultured with autologous iDC or Dp2-DC. Culture supernatants were collected after 6 days of culture and IL-5 (a) and IL-4 (b) were determined by cytometric bead array-kit (CBA). c) The IL-5/IFN-γ ratio was calculated by dividing the amount (express in pg/ml) of the IL-5 by the amount of IFN-γ (also expressed in pg/ml).
2. MODULATION OF Der p2-SPECIFIC T-CELL RESPONSE BY IL-10 TREATED-DC

2a. IL-10 modulates Der p2-pulsed DC

IL-10 is an immunomodulatory cytokine that has key role in controlling inflammatory processes, tolerance induction and maintenance of immunological homeostasis. It exerts suppressive effects on different populations of lymphocytes, it downregulates cytokine production by T cells and monocytes/macrophages, and proliferation of antigen-specific CD4+ T effector cells, by inhibiting the antigen presenting capacity of APC (Moore KW et al., 2001). Moreover, IL-10 induces antigen-specific T-cell anergy (Groux H et al., 1996) and, importantly, induces Tr1 cells both in vitro (Groux H et al., 1997) and in vivo (Battaglia M et al., 2006). Furthermore, IL-10 plays an important role in controlling allergic inflammation. IL-10 inhibits the proliferative T-cell response in PBMC to various allergens (Akdis CA et al., 2000). A suppressive role for IL-10 has also been demonstrated in both normal responses to allergens and in allergic individuals after SIT (Blaser K et al., 2004 Muller UR et al., 1998; Akdis CA et al., 1998 Pierkes M et al., 1999). Moreover, these studies indicate that IL-10-secreting Treg cells are involved in the suppression of allergic Th2 cell responses in humans.

These observations strongly suggested us to investigate the ability of IL-10 to modulate Der p2-specific responses through its effect on DC. Then, we first analyzed the role of IL-10 in modulating Dp2-DC. DC were differentiated from peripheral CD14+ monocytes of allergic patients with GM-CSF and IL-4 for 5 days, and then pulsed with Der p2 (1µg/ml) for additional two days in the absence (Dp2-DC) or in the presence of exogenous IL-10 (40ng/ml) (IL10 Dp2-DC). Phenotypic analysis of the resulting DC demonstrated that IL-10 treatment significantly downregulated the CD86 expression, both in terms of cell percentage and MFI in IL-10 Dp2-DC (28.6±13.5%; MFI 32.9±17.2) compared to that observed in Dp2-DC (42.7±14.2%; MFI 28.4±13.8, n=12 p=0.045). Conversely, the CD80 expression was slightly affected by the IL-10 treatment (43.8±11.2%; MFI 17.3±5.8 vs. 47.3±18.8%; MFI 16.6±7.1 in IL10 Dp2-DC and Dp2-DC respectively, n=12 p=NS). (Fig. 13).
Fig. 13. IL-10 modulates Dp2-DC phenotype and cytokines production. Monocyte-derived DC from allergic patients were differentiated from CD14+ cells cultured with IL-4 and GM-CSF for 5 days and then pulsed with Der p2 (1 µg/ml) in the absence (Dp2-DC) or in the presence of exogenous IL-10 (40ng/ml)(IL10 Dp2-DC) for additional 2 days. As control, unpulsed DC (iDC) were used.

a) Expression level of CD86 and CD80 were evaluated by FACS analysis. A representative patient out of 12 patients analyzed is shown. b) The average of positive cells percentage±SD (upper panel) and the average MFI±SD (lower panel) of 12 patients are presented. *p<0.05 when IL10 Dp2-DC were compared to Dp2-DC.

2b. IL-10-treated Dp2-DC inhibit Der p2-specific T-Cell Response

We next determine the ability of IL-10-treated Dp2-DC to modulate Der p2-specific T-cell response. T cells from 16 allergic patients were stimulated with both Dp2-DC and IL10 Dp2-DC. In 15 out of 16 allergic patients, IL-10-treated Dp2-DC induced a significantly lower Der p2-specific T-cell proliferation compared to Dp2-DC.
(SI: 0.9±0.5 vs. 2.3±0.8 in T cells stimulated with IL-10 Dp2-DC and with Dp2-DC respectively, n=15 p=0.00007) with an average inhibition of 69.2±20.3% (Fig. 14).

(a)

(b)

Fig. 14. IL-10-treated Dp2-DC inhibit Der p2-specific T-cell proliferation. Monocyte-derived DC were differentiated from CD14+ cells in IL-4 and GM-CSF for 5 days and then pulsed (Dp2-DC) or not (iDC) with Der p2 (1 µg/ml) for additional 2 days. Alternatively, DC were pulsed with Der p2 (1 µg/ml) in the presence of IL-10 (40ng/ml) for additional 2 days (IL10 Dp2-DC). T cells from allergic patients were cocultured with autologous iDC, Dp2-DC, or IL10 Dp2-DC. Proliferative responses were evaluated after 5 days of culture by thymidine incorporation for an additional 16 hrs.
a) Mean±SD of triplicates of individual patient are presented. b) The average proliferation±SD of 15 patients is presented. Results are expressed in SI. \(p<0.05 \) when T cells were stimulated with IL10 Dp2-DC compared to T cells stimulated with Dp2-DC.
IL10 Dp2-DC were unable to inhibit Derp2-specific T-cell proliferation in only one patient (P28). Interestingly, this result was consistent with the lack of downregulation of CD86 expression on DC mediated by IL-10 treatment (Fig. 15a, 15b). Based on this observation, we investigated whether a correlation between reduction of T-cell proliferation induced by IL10 Dp2-DC and downregulation of CD86 expression on IL-10 Dp2-DC was present in the cohort of allergic children analyzed. No correlation between the two variables was observed (Fig. 15c), indicating that IL-10 does not decrease the stimulatory capacity of Dp2-DC through modulation of costimulatory molecules.

Patient: P28

![Graph](image)

Fig. 15. In patient P28 IL-10-treated Dp2-DC did not inhibit Der p2-specific T-cell proliferation. Monocyte-derived DC were differentiated from CD14+ cells cultured with IL-4 and GM-CSF for 5 days, and then pulsed (Dp2-DC) or not (iDC) with Der p2 (1 µg/ml) for additional 2 days. Alternatively, DC were pulsed with Der p2 (1 µg/ml) in the presence of IL-10 (40ng/ml) for additional 2 days (IL10 Dp2-DC). T cells from P28 were co-cultured with autologous iDC, Dp2-DC, or IL10 Dp2-DC.

a) Proliferative responses were evaluated after 5 days of culture by thymidine incorporation for an additional 16 hrs. Mean±SD of triplicates are presented. b) Percentage of CD86+ DC was evaluated by FACS analysis. In c), the percent reduction in proliferation of T cells stimulated with IL-10 treated Dp2-DC of 12 patients and the respective percent reduction of CD86 expression on DC surface were plotted.
We next determined whether the inhibition of T-cell proliferation depends on the prevention of T-cell activation. Analysis of the expression of CD25 and of intracellular CTLA-4 on T cell stimulated with IL10 Dp2-DC was performed. Results in Figure 16 showed that the levels of CD25 and of intracellular CTLA-4 expression in CD4+ T cells remained unchanged (Fig. 16), indicating that IL-10 Dp2-DC did not prevent T-cell activation.

Fig. 16. IL10 Dp2-DC do not modify T cell activation. Freshly isolated T cells from allergic patients were co-cultured with autologous Dp2-DC and IL10-treated Dp2-DC.

a) The expression of CD25+CD4+ and intracellular CTLA-4+CD4+ T cells after 6 days of culture was evaluated by flow cytometry. A representative patient out of 6 patients analyzed is shown. b) The average±SD percentages of CD25+CD4+ and intracellular CTLA-4+ CD4+ T cells detected in 6 patients are presented.
We then investigated the effect of IL-10 Dp2-DC stimulation on T cell cytokine production. We previously demonstrated that 7 patients displayed a Th2 cytokine profile after Der p2 stimulation using Dp2-DC (Fig. 12). In the same patients, we observed that stimulation of T cells with IL-10-treated Dp2-DC resulted in a significant reduction in IL-5 production (222.1±144.4 pg/ml vs. 336.2±181.2 pg/ml in T cells stimulated with IL10 Dp2-DC and Dp2-DC respectively, n=7 p=0.029) with an average inhibition of 55.1±28.8%. This data was confirmed by the reduction of IL-5/IFN-γ ratio (1.1±0.4 vs. 2.5±1.4 in T cells activated with IL10 Dp2-DC and Dp2-DC respectively, n=7). Importantly, although the IL-5/IFN-γ ratio was reduced, the IFN-γ production by T cells stimulated with IL-10 treated Dp2-DC was not increased (243.5±93.5 pg/ml vs. 416±118.4 pg/ml by T cells primed with IL10 Dp2-DC and Dp2-DC respectively, n=7), indicating that the IL-5/IFN-γ ratio reduction was due to the inhibition of IL-5 secretion. These results indicate that IL-10 treated Dp2-DC promote a preferential suppression of Th2 cytokines without skewing to a Th1 profile. Interestingly, an increase of IL-10 production by T cells stimulated with IL-10–treated Dp2-DC was observed in 8 patients (37.0±7.0 pg/ml vs. 5.7±4.0 pg/ml, n=8 p=0.001). Of note, in 4 of these patients, a reduction of IL-5 production was also observed (Fig. 17), suggesting a putative role of IL-10 Dp2-DC in promoting IL-10 production by T cells.

Taken together, these results indicate that IL-10-treated DC modulate allergen-specific Th2 responses and might promote the induction of IL-10-producing T cells.
Fig. 17. IL-10 treated Dp2-DC modulate the Th2 cytokine profile. T cells from allergic patients were co-cultured with autologous Dp2-DC and IL10 Dp2-DC. Culture supernatants were collected after 6 days of culture and IL-5 a) and IL-10 b) were determined by cytometric bead array-kit (CBA). c) The IL-5/IFN-γ ratio was calculated by dividing the amount (express in pg/ml) of the IL-5 by the amount of IFN-γ (also expressed in pg/ml).
3. ROLE OF IL-10 ON DENDRITIC CELLS: EFFECT ON DIFFERENTIATION AND EFFECTOR FUNCTION.

The tolerogenic effect of IL-10-modulated DC has been previously demonstrated. Indeed, DC matured in presence of IL-10 induced the differentiation of anergic CD4+ and CD8+ T cells (Steinbrink K et al., 1999), with the ability to suppress T cell responses via cell-cell contact mechanism (Steinbrink K et al., 2002). The ability of IL-10-treated Dp2-DC to modulate allergic-specific T-cell responses prompted us to determine whether they would be able to generate anergic allergen-specific T cells with suppressor activity. To this end, we designed a protocol to differentiate antigen-specific T-cell lines with regulatory activity through repetitive Der p2-specific stimulation with IL-10-treated Dp2-DC. We aimed to compare T cell lines generated with Dp2-DC [T (Dp2-DC)] with T cell lines generated with IL-10-treated Dp2-DC [T(IL10 Dp2-DC)] obtained upon 3 rounds of stimulation with freshly differentiated Dp2-DC (Fig. 18). Unfortunately, we collected a single blood sample from each of our patients and we were not able to complete our experimental plan. Indeed, the differentiation of freshly DC was impaired due to the low number of CD14+ cells routinely obtained from our pediatric patients.

Therefore, we sought for an alternative protocol which would provide us a sufficient number of DC and T cells to be analyzed. We therefore set up a new protocol based on the use of DC differentiated in the presence of IL-10 (DC10) (Gregori S et al., 2007 submitted). DC10 are potent inducers of Tr1 cells, since a single round of stimulation is sufficient to promote Tr1 differentiation (Gregori S et al., 2007 submitted). Thus, this protocol has the advantage to shorten the experimental procedure utilizing fewer cells (Fig. 19).
Fig. 18. Protocol n.1 (see methods)

- iDC
- Dp2-DC
- Freshly isolated T cells
- +IL-2 50 U/ml
- 6 days
- 14 days
- T(iDC)
- T(Dp2-DC)
- T(IL10 Dp2-DC)
- 2X with original type DC freshly differentiated

Fig. 19. Protocol n.2 (see methods)

- iDC
- Dp2-DC
- Freshly isolated T cells
- +IL-2 20 U/ml
- 7 days
- 7 days
- T(iDC)
- T(Dp2-DC)
- T(Dp2-DC10)
To validate the possibility to use DC10 to differentiate Der p2-specific T cell lines with regulatory function, we first compared phenotype and effector function of DC differentiated in the presence of IL-10 (DC10) and DC treated with IL-10 during the last 2 days of differentiation (IL10-DC) (Fig. 20).

DC Differentiation

![Diagram of DC Differentiation](image)

Fig. 20. DC Differentiation. DC were differentiated from CD14+ cells culturing with GM-CSF and IL-4 for 5 days. Der p2 (1μg/ml) was added in combination with IL-10 (40ng/ml) for 48 hours to obtain IL10 Dp2-DC (upper panel). Alternatively, DC were differentiated from CD14+ cells culturing with GM-CSF and IL-4 for 5 days in the presence of IL-10 (10ng/ml) and pulsed with Der p2 (1μg/ml) for additional 48 hours to obtain Dp2-DC10 (lower panel).
3a. Comparison of phenotype and allogenic stimulatory capacity of DC10 and IL10-DC

DC10 were differentiated from CD14+ cells cultured with GM-CSF and IL-4 in the presence of exogenous IL-10 for 7 days. Alternatively, IL-10 DC were differentiated from CD14+ cells cultured with GM-CSF and IL-4 for 5 days, and then treated with IL-10 for additional 2 days. As control, we used iDC and LPS DC. The resulting DC were compared both in terms of phenotype and allogenic stimulatory capacity. As previously demonstrated (Gregori S et al., 2007 submitted) DC10 were CD14+, CD1a- and expressed HLA-DR, CD80, CD83, and CD86, whereas IL10 DC were CD14-, CD1a+ and expressed low levels of HLA-DR, CD80, CD83, and CD86 (Fig. 21). This result indicates that addition of exogenous IL-10 at the beginning of the DC differentiation or during the last two days of culture resulted in the generation of DC with different phenotype.

DC10 and IL-10 DC were then tested for their ability to promote allogenic T cell response. Results in Fig. 22 show that both DC10 and IL-10 DC displayed lower stimulatory capacity compared to iDC. Therefore, despite the different expression of costimulatory molecules between DC10 and IL-10 DC, both cells were comparable in inhibiting allogenic T cell response.
Fig. 21. DC10 and IL10 DC phenotype. Monocyte-derived DC were differentiated from CD14+ cells cultured with IL-4, GM-CSF, and IL-10 for 7 days (10ng/ml every 2 days) (DC10) or with GM-CSF and IL-4 for 5 days and then IL-10 (40ng/ml) was added for additional 2 days. As control, unpulsed DC (iDC) and mature DC (LPS DC) were used. Expression level of CD14, CD1a, HLA DR, CD80, CD83, and CD86 were evaluated by FACS analysis. The cell percentage and the MFI set according to the isotype-matched control are shown. A representative donor out of 2 donors analyzed is presented.
Fig. 22. DC10 and IL10-DC display a low stimulatory capacity. Naïve CD4+ T cells were cultured with allogenic iDC, DC10, IL10-DC and LPS-DC. After 4 days of culture, proliferative responses were evaluated by addition of thymidine for an additional 16 hrs. Mean of triplicates±SD are presented. A representative donor out of 2 independent donors tested is presented.
4. MODULATION OF T CELL RESPONSE BY DC DIFFERENTIATED IN PRESENCE OF IL-10

4a. Dp2-DC10 inhibit Der p2-specific T-cell responses
We determined the ability of Dp2-DC10 to inhibit Der p2-specific T-cell response in 12 allergic patients. In 10 out of 12 patients, who responded to Der p2, Dp2-DC10 induced a significantly lower allergen-specific T-cell proliferation (SI: 0.3±0.2 vs. 4.0±1.7 in T cells stimulated with Dp2-DC10 and Dp2-DC respectively, n=10 $p=0.00011$) (Fig. 23). This result indicates that Dp2-DC10 are comparable to IL10 Dp2-DC in inhibiting Der p2-specific T-cell proliferation.

![Stimulation Index](image)

Fig. 23. Dp2-DC10 inhibit Der p2-specific T-cell proliferation. Monocyte-derived DC were differentiated from CD14+ cells and cultured with IL-4 and GM-CSF in presence of IL-10 for 5 days, and then pulsed with Der p2 (1 µg/ml) (Dp2-DC) for additional 2 days. T cells from allergic patients were cocultured with autologous Dp2-DC or Dp2-DC10. Proliferative responses were evaluated after 5 days of culture by thymidine incorporation for an additional 16 hrs. The average proliferation±SD of 10 patients is presented. Results are expressed in SI. $P<0.05$ when T cells were stimulated with Dp2-DC10 compared to T cells stimulated with Dp2-DC.
Analyses of the cytokine production in 10 responder allergic patients revealed in 8 out of 10 (80%) detectable amount of Der p2-specific IL-5 (342.5±174.1 pg/ml vs. 5.1±1.1 pg/ml in T cell stimulated with Dp2-DC and with iDC, respectively, n=8, p=0.037). Interestingly, in 7 out of 10 patients (70%) Der p2-specific IL-5 was strongly reduced when T cells were cultured in the presence of Dp2-DC10 (60.4±32.5 pg/ml). Moreover, the ratio IL-5/IFN-γ was markedly reduced (0.7±0.2 vs. 87.9±53.1 in T cell stimulated with Dp2-DC10 and with Dp2-DC, respectively, n=8). This observation was supported by the data on IL-13 production which was found substantially defective in the presence of Dp2-DC10 (15.7±10.2 pg/ml vs. 369.8±255.8 pg/ml in Dp2-DC10 and Dp2-DC, respectively, n=8). Although the average production of IL-5 and IL-13 was markedly reduced (68% and 80%, respectively), the decrease did not reach statistical significance due to the high variability of IL-5 and IL-13 secretion among patients (IL-5 ranged between 12 and 1488 pg/ml, IL-13 ranged between 8 and 2000 pg/ml) (Fig. 24).
Fig. 24. Dp2-DC10 inhibit Ag-specific Th2 cell response. Monocyte-derived DC were differentiated from CD14+ cells and cultured with IL-4 and GM-CSF in presence of IL-10 for 5 days, and then pulsed with Der p2 (1 µg/ml) (Dp2-DC) for additional 2 days. T cells from allergic patients were co-cultured with autologous Dp2-DC or Dp2-DC10.

a) Proliferative responses were evaluated after 5 days of culture by thymidine incorporation for an additional 16 hrs. Mean of triplicates±SD are presented. Culture supernatants were collected after 5 days of culture and IL-5 (b) and IL-13 (c) were determined by Bioplex Protein Array system. A representative patient out of 10 patients analyzed is shown.
4b. Dp2-DC10 induce anergic Tcells

To test the ability of Dp2-DC10 to promote Der p2-specific T cell anergy in allergic patients, we used a standardized protocol (Gregori S et al., 2007 submitted) (see Material and Methods) in which T cells were stimulated for 14 days with iDC, Dp2-DC, and Dp2-DC10. After stimulation, T cell lines were tested for their ability to proliferate in response to Der p2. Interestingly, T cells generated with Dp2-DC10 were hypo-responsive to reactivation with Der p2 in 4 out of 5 patients (80%) tested. An average reduction of 60.8±15.9% in Ag-induced proliferation of T cell lines generated with Dp2-DC10 compared to T cell lines generated with Dp2-DC was observed ($p=0.05$). (Fig. 25).
Fig. 25. Dp2-DC10 induce anergic T cells. Monocyte-derived DC were differentiated from CD14+ cells and cultured with IL-4 and GM-CSF in presence of IL-10 for 5 days pulsed with Der p2 (1 µg/ml) (Dp2-DC) for additional 2 days. T cells from allergic patients were co-cultured with autologous Dp2-DC or Dp2-DC10 for 14 days. T cells were collected, and cultured with autologous CD14+ in the absence (medium) or in the presence of Der p2 (1 µg/ml). Proliferative responses were evaluated after 2 days of culture by thymidine incorporation for an additional 16 hrs. Mean of triplicates±SD are presented.

a) A representative patient out of 4 patients analyzed is presented. Control proliferation after co-culture of T(Dp2-DC) and T(Dp2-DC10) cell lines with unstimulated CD14+ are also shown. b) Proliferative response of 4 patients in which anergy was induced is shown.
T cell lines generated with Dp2-DC10 showed a lower production of IL-5 (48.3±31.7 pg/ml) compared to T cell lines generated with Dp2-DC (297.1±182.3 pg/ml). In addition, inhibition of IL-13 (24.2±9.7 vs. 351.1±212.6 pg/ml in T(Dp2-DC10) and T(Dp2-DC), respectively, n=4), and reduction of IL-5/IFN-γ ratio (1.9±1.3 vs. 7.5±3.5 in T(Dp2-DC10) and T(Dp2-DC), respectively, n=4) were observed (Fig 26 a-c).

![Table](image)

Fig. 26. Dp2-DC10 induce anergic T cells. Monocyte-derived DC were differentiated from CD14+ cells and cultured with IL-4 and GM-CSF in presence of IL-10 for 5 days and then pulsed with Der p2 (1 µg/ml) (Dp2-DC) for additional 2 days. T cells from allergic patients were co-cultured with autologous Dp2-DC or Dp2-DC10 for 14 days. T cells were collected, and cultured with autologous CD14+ in presence of Der p2 (1 µg/ml). Culture supernatants were collected after 2 days of culture and IL-5 (a) and IL-13 (b) were determined by Bioplex Protein Array system. c) The IL-5/IFN-γ ratio was calculated by dividing the amount (express in pg/ml) of the IL-5 by the amount of IFN-γ (also expressed in pg/ml).
These results indicate that Dp2-DC10 are able to promote antigen-specific T cell anergy associated with a reduction in the Th2 cytokine production.

In parallel we tested the ability of Dp2- DC10 in promoting allergen-specific T cells in 3 healthy aged-matched controls. In none of them we observed any response to Der p2, and induction of anergic T cells (data not shown).
DISCUSSION

In the present study, we characterized the immune response to Der p2, the most important allergens from Dt.Pt., in patients allergic to HDM. We demonstrated that DC pulsed with Der p2 (Dp2-DC) induced Der p2-specific Th2 response in HDM-allergic patients, but not in healthy controls. We then investigated the ability of Dp2-DC treated or differentiated in the presence of exogenous IL-10, IL-10 Dp2-DC and Dp2-DC10, respectively, to modulate the immune response to Der p2. We demonstrated that both IL-10 Dp2-DC and Dp2-DC10 inhibit Der p2-specific T cell proliferation and Th2 cytokine production. Interestingly, we showed that Dp2-DC differentiated in presence of IL-10 are able to promote T-cell anergy associated with a reduction in Th2 cytokine production. In conclusion, we demonstrate that Dp2-DC are useful tools to promote Der p2-specific Th2 response in HDM-allergic patients. Moreover, our data strongly support the conclusion that IL-10 enables DC to modulate allergen-specific Th2 response, and drives the differentiation of tolerogenic DC able to promote the induction anergic T cells, which may represent the precursors of regulatory T cells.

We showed that autologous DC pulsed with the allergen Der p2 efficiently stimulated Der p2-specific Th2 cell response. The use of allergen-pulsed-DC to stimulate Th2 cell response in a autologous system has been previously demonstrated. Autologous Der p1-pulsed DC have been shown to be able to stimulate T cells from allergic patients and to preferentially increase IL-4 production without modifying IFN-γ production. Conversely, autologous Der p1-pulsed DC favoured a type 1 response in healthy donors (Hammad H et al., 2001). Our results are in line with previous reports in which stimulation of total PBMC from HDM allergic patients and healthy controls with Der p2 promoted T cell proliferation and Th2 cytokine induction (O’Brien RM et al., 1992; Bullens DM et al., 2005). Here we show, for the first time, that Der p2-specific T cell response can be elicited by autologous Der p2-DC in HDM allergic patients.
We detected a specific proliferative response to Der p2 in HDM patients but not healthy controls. Within the atopic cohort, 75.8% of subjects responded to Der p2, consistent previous reports in which 80-90% of mite-sensitive subjects have IgE antibodies to Der p1 and 2 allergens (Taketomi EA et al., 2006; Tsai JJ et al., 2000). The high frequency of Der p2 reactive patients is probably due to the presence in Der p2 protein of a immunodominant T cell epitope that behaves as a universal epitope recognized by most human MHC class II molecules (Wu B et al., 2002).

Dp2-DC promoted Der p2-specific T cell proliferation, and, importantly, in the majority of allergic patients induced a Th2 cytokine profile. In our study we were not able to detect cytokine production after 48 hours of T cell activation (data not shown), in contrast to previous reports in which a pick of Th2 cytokine production was detected after 48-72 hours of T cell-DC co-culture (Hammad H et al., 2001; Bullens DM et al., 2005; Bullens DM et al., 2004; Noma T et al., 2004). In our culture system a substantial amount of IL-5 and IL-13 was detected after 5 days of T cell stimulation with autologous Der p2-pulsed DC. Nevertheless, in some patients IL-5 and IL-4 were undetectable. The lack of IL-5 and IL-4 production in some patients, already reported by others (Nurse B et al., 2000), could be due to the low frequency of Th2 clones in peripheral blood. It has been indeed reported that a high number of IL-5- and IL-4-producing T cells are accumulated and infiltrate the inflamed bronchial mucosa (Borgonovo B et al., 1997). Similarly to previous reports (Wurtzen PA et al., 1998; Looney RJ et al., 1994; Nurse B et al., 2000), we were unable to detect IL-4 in the majority of our patients. The discrepancy between IL-5 (detected in 16 out of 23 patients) and IL-4 production (detected in 3 out of 23 patients) could be explained by the fact that pick of IL-4 production occurs before that of IL-5 and rapidly declines, as indicated in time course analyses on primary cultures (Kimura M et al., 2000; Van Bever HP et al., 1998; Jung T et al., 1996). Alternatively, the phase of disease, acute vs. chronic, might justify a differential involvement of IL-4 and IL-5, respectively, in the allergic inflammatory response. Likewise, although IL-13 is involved in acute phase of disease, it differs in its effector properties from IL-4. IL-4 plays a prominent role in the initiation of the Th2 response whereas IL-13 in the effector phase of the
response (Zhou Y et al., 2001). Moreover, IL-4 plays a pivotal role as growth factor for B and Th2 cells, which might result in the exhaustion of IL-4 in the majority of the cell cultures from allergic patients. Some patients and healthy controls showed a substantial IFN-γ production after Der p2 stimulation (data not shown). This effect has been previously reported (Bullens DM et al., 2005, Akdis CA et al., 2004) and an increase of Th1 response has been recently demonstrated in chronic allergic inflammation (Heaton T et al., 2005).

We demonstrated that Der p2 induced a partial maturation of DC in the absence of other maturation stimuli. Although it is well established that the addition of LPS or CD40 cross-linked promotes DC maturation and optimizes the antigen presentation capacity of the resulting DC (Banchereau J et al., 1998), we showed that addition of LPS to Der p2-pulsed DC did not improve their Der p2-specific presenting capacity. Conversely, Der p2 induced a partial maturation of DC and unable them to promote a Der p2-specific response. Der p2 induced a selective upregulation of CD86 on Dp2-DC. It has been suggested that the type of costimulatory molecules expressed by DC is essential for determining Th differentiation: CD86 seems to be more important than CD80 in the promoting a Th2 response (Kuchroo KV et al., 1995). Indeed, in mice exposed to ovalbumin aerosols, treatment with anti-CD86 but not with anti-CD80 mAbs significantly inhibits allergic reactions such as the production of ovalbumin-specific IgE and IgG1 antibodies, and airway eosinophilia and hyperresponsiveness (Haczku A et al., 1999). In atopic dermatitis, CD86 is predominantly expressed on Langerhans cells and seems to play an important role in the pathogenesis of the disease since Dt.Pt.-specific T cell proliferation is completely inhibited by the addition of anti-CD86 mAbs (Ohki O et al., 1997). Moreover, previous evidence demonstrates that B7 -CD28 costimulation is required for the production of Th2 cytokines such as IL-5 and IL-13 by allergen-specific T cells from asthmatic patients. Interestingly, this effect seems to be dependent on CD86 in the periphery and on CD80 in the inflamed tissues (Jaffar Z et al., 1999).

The immunosuppressive properties of IL-10 have been well documented (reviewed in Moore KW et al., 2001). The inhibitory influence of IL-10 on antigen
presenting function of DC may be due to several phenotypic and functional alteration, including downregulation of MHC-class II and costimulatory molecules, and inhibition of variety of pro-inflammatory cytokines (Chang CH et al., 1995; Koch F et al. 1996; De Smedt T et al., 1997; Sato K et al., 1999; Willems F et al., 1994; Fiorentino DF et al., 1991; De Waal Malefyt R et al., 1991). In our study we investigated the ability of IL-10 to modulate monocyte-derived-DC from HDM allergic patients using 2 different protocols. DC were either treated with IL-10 during the last 2 days of differentiation (IL-10 DC), or DC were differentiated in the presence of IL-10 (DC10). Despite their different phenotype, both DC lines were able to modulate T cell response. IL-10-modulated Dp2-DC induce a significantly lower allergen-specific T cell proliferation in all responder patients associated with a marked reduction of both IL-5 and IL-13 production, and a parallel decrease of IL-5/IFN-γ ratio. These results are in line with several studies in which the pivotal role of IL-10 (Cottrez F et al., 2000; Zuany-Amorim C et al., 2002; Akdis CA et al., 2004; Akbari O et al., 2001; Xystrakis E et al., 2006) and of IL-10–treated DC (Bellinghausen I et al., 2001; Bellinghausen I et al., 2006) in inhibiting Th2 response has been shown. Of note, recently Koya demonstrated that IL-10-treated DC are potent suppressors of the development of AHR, inflammation, and Th2 cytokine production in mice (Koya T et al., 2007). Similarly to the DC10, tolerogenic DC used in this study were obtained by culturing bone marrow cells with GM-CSF and IL-10. Interestingly, in our patients, the reduction of IL-5 and IL-13 after IL-10 treatment of DC, occurred without a skewing toward a Th1 cytokine profile. This hold an important clinical implication since it suggests that modification of DC function by IL-10 might attenuate allergic response without increasing the risk of Th1-mediated diseases. Therapeutic strategies for controlling Th2-immune response based on the upregulation of Th1-immunity are not desirable, not only for the potential induction of autoimmunity, but also for the possible risk of exacerbation of allergic immune response. Increasing evidence indicates the role of IFN-γ and CD8+IFN-γ' cells in the pathogenesis of atopy (Heaton T et al., 2005).
In agreement with previous reports (Steinbrink et al., 1997; Steinbrink et al., 2002), we showed that IL-10 treatment promoted a significant downregulation of CD86 expression on the resulting DC. Nevertheless, we did not observe a correlation between CD86 downregulation and the reduction of allergen-specific T cell proliferation, suggesting that the poor stimulatory capacity of IL 10- treated Dp2-DC is not due to inhibition of costimulation. Moreover, although Dp2-DC10 displayed a mature phenotype, since they expressed CD80 and CD86 at levels similar to those observed in mature DC, they elicited a low T cell proliferation. Taken together these data indicate that the poor stimulatory capacity of IL 10-treated Dp2-DC and of Dp2-DC10 does not reside in the lack of costimulation. It is indeed generally approved that the capacity of DC to inhibit T cell proliferation, to promote T cell anergy and Tr1 cells differentiation is not associated with reduced expression of costimulatory molecules (Gray CP et al., 2002; Mc Guirk P et al., 2002). Recent studies support the hypothesis that other mechanisms including inhibitory costimulatory molecules ICOS-L (Akbari O et al., 2002), or tolerogenic molecules ILT-3 and ILT-4 (Manavalan JS et al., 2003) are involved in the generation of anergic T cells with regulatory activity by tolerogenic DC. Importantly, IL-10 has been reported to up-regulate ILT-3 and ILT-4 expression on DC (Velten FW et al., 2004; Manavalan JS et al., 2003) Furthermore, we recently identified a unique population of DC (DC-10), which is present in vivo and can be generated in vitro in the presence of IL-10, produces high levels of IL-10 and low IL-12, and is characterized by the expression of CD14, CD11c, CD11b, CD83, CD71 and HLA-DR, but not CD1a. DC-10 have a stable phenotype, display low stimulatory capacity, and are powerful Tr1 cell inducers. DC-10 express high levels of tolerogenic molecules ILT-2, ILT-3, ILT-4, and HLA-G. DC-10 induce Tr1 cells via the IL-10-dependent ILT-4/HLA-G pathway (Gregori S et al., 2007 submitted). It is probable that an up-regulation of tolerogenic markers, including ILT-3 and ILT-4, occurred also on DC10 generated from our patients rendering them capable of promoting allergen-specific anergic T cells containing already differentiated or precursors of allergen-specific Tr1 cells.
In vitro T-cell priming by immature DC, as well as by DC rendered tolerogenic with biological or pharmacological agents, can drive the differentiation of regulatory T cells (Roncarolo MG et al., 2006; Levings MK et al., 2005; Chang CC et al., 2002; Penna G et al., 2005; Jonuleit H et al., 2000). Immature DC differentiated in vitro and treated with exogenous IL-10 display reduced allo-stimulatory capacity and were shown to induce anergic Ag-specific T cells (Zheng Z et al., 2004). Furthermore, DC matured in the presence of exogenous IL-10 induce Ag-specific anergic T cells (Steinbrink K et al., 1997), which suppress T-cell proliferation (Steinbrink K et al., 2002). It has been shown that Tr1 differentiation can be obtained by stimulation of human peripheral blood naïve CD4+ T cells with allogeneic immature DC only after repetitive stimulation (Levings MK et al., 2005 Jonuleit H et al., 2000). In our study we were not able to promote T cell anergy using IL-10- treated Dp2-DC, due to the low number of cells obtained from our allergic children which did not allow us to perform the necessary rounds of stimulation. Importantly, we demonstrated that single stimulation of autologous T cells with Dp2-DC10 promoted anergic T cells that secreted lower amounts of Th2 cytokines. Interestingly, TNF-α production by anergic T cells was preserved (data not shown), indicating that innate immunity was not affected, but the tolerogenic effect of DC10 was directed mainly to Th2 effector cells. These results are in line with our recent data demonstrating that DC-10 drive Tr1 differentiation after a single round of stimulation in allogeneic system (Gregori S et al., 2007 submitted). We can therefore speculate that Der p2-specific anergic T cells induced by DC10 are precursor or contain already differentiated Tr1 cells, although the suppressor capacity of these cells is currently under investigation together with their antigen specificity.

A previous report demonstrated the presence of Der p1-specific Tr1 and Th2 cells in healthy donors as well as in atopic subjects. Nevertheless, in allergic patients was observed a lower Der p1-specific Tr1/Th2 ratio compared to healthy controls, indicating that allergen-specific Tr1 cells are present in allergic patients but in lower frequency compared to Th2 cells (Akdis CA et al., 2004). Thus, we can hypothesise that an imbalance of Tr1/Th2 ratio is present in our HDM-allergic children. In this
light, our work represents an important step forward to restoring the balance between Tr1 and Th2, which is altered in allergic disease. Dp2-DC10 represent a good tool to re-establish tolerance and the defective Tr1 compartment of the immune system in allergic patients.

CONCLUDING REMARKS

In the present study we demonstrated that allergen-specific anergic T cells, which may exert regulatory activity, can be generated *in vitro* using DC differentiated in the presence of exogenous IL-10 in allergic patients. This finding represent a step forward for the prospective clinical use of autologous DC, rendered tolerogenic with IL-10, as vectors for the immunotherapy of allergic disease, to restore tolerance. Immunization with *ex vivo* generated DC has been proven feasible in other conditions and would be particularly attractive in allergy since a disease modifying treatment is not currently available. Moreover, the advent of component resolved diagnosis of allergy and the increasing availability of recombinant allergens and synthetic peptides makes of DC based immunotherapy a realistic strategy to cure allergy in the future.
• Akdis CA, Blaser K. IL-10-induced anergy in peripheral T cell and reactivation by microenvironmental cytokines: two key steps in specific immunotherapy. FASEB J. 1999;13(6):603-9. Review
• Akkaraju S, Ho WY, Leong D, Canaan K, Davis MM, Goodnow CC. A range of CD4 T cell tolerance: partial inactivation to organ-specific antigen allows nondestructive thyroiditis or insulitis. Immunity. 1997;7(2):255-71
• Bellinghausen I, Konig B, Bottcher I, Knop J, Saloga J. Inhibition of human allergic Th2 immune responses by induced regulatory T cells requires the combination of IL-10-treated dendritic cells and TGF-β for their induction. Clin Exp Allergy 2006; 36(12):1546-1555.

• Bilsborough J, George TC, Norment A, Viney JL. Mucosal CD8alpha+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 2003;108:481–492.

• De Wit D, Amraoui Z, Vincart B, Michel O, Michils A, Van Overvelt L, Willems F, Goldman M. Helper T-cell responses elicited by Der p 1-pulsed

• Fiore F, Nuschak B, Peola S, Mariani S, Muraro M, Foglietta M. Exposure to myeloma cell lysates affects the immune competence of dendritic cells and

- Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A. In the absence of endogenous IL-10, mice acutely infected with toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α. J. Immunol 1996; 157:798–805

• Gregori S, Pacciani V, Tomasoni D, Scirpoli M, Battaglia M, Magnani C, Hauben E, Roncarolo MG. Differentiation of type 1 T regulatory cells through the IL-10-dependent ILT4/HLA-G pathway. 2007. Submitted
• Groux H. Type 1 T-regulatory cells: their role in the control of immune responses. Transplantation 2003;75:8S-12S.
• Grunig G, Corry DB, Leach MW, Seymour BW, Kurup VP, Rennick DM. Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J. Exp. Med 1997;185:1089–99
• Hammad H, de Heer HJ, Souillie T, Angeli V, Trottein F, Hoogsteden HC, Lambrecht BN. Activation of peroxisome proliferator-activated receptor

• Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057–1061
• Jinquan T, Larsen CG, Gesser B, Matsushima K, Thestrup-Pedersen K. Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor of IL-8-induced CD4+ T lymphocyte migration. J. Immunol 1993;151:4545–51
• Kasama T, Strieter RM, Lukacs NW, Burdick MD, Kunkel SL. Regulation of neutrophil-derived chemokine expression by IL-10. J. Immunol 1994;152:3559–69
• Kauffman HF, Tamm M, Timmerman JA, Borger P. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms. Clin Mol Allergy 2006;4:5.

Kim JM, Rudensky A. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol Rev. 2006;212:86-98. Review

Kimura M, Tsuruta S, Yoshida T IL-4 production by PBMCs on stimulation with mite allergen is correlated with the level of serum IgE antibody against mite in children with bronchial asthma. J Allergy Clin Immunol 2000;105(2 Pt 1):327-32.

Kuipers H, Heirman C, Hijdra D, Muskens F, Willart M, Van Meirvenne S, et al. Dendritic cells retrovirally overexpressing IL-12 induce strong Th1

• Lim S, Crawley E, Woo P, Barnes PJ. Haplotypes associated with low interleukin-10 production in patients with severe asthma Lancet. 1998;352(9122):113

• Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB, Kronenberg M, Nakayama T, DeKruyff RH, Umetsu DT. Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc Natl Acad Sci USA 2006;103:2782-2787.

• Ngoc LP, Gold DR, Tzianabos AO, Weiss ST, Celedon JC. Cytokines, allergy and asthma. Curr Opin Allergy Clin Immunol 2005; 5: 161-6

• Nurse B, Puterman AS, Haus M, Berman D, Weinberg EG, Potter PC. PBMCs from both atopic asthmatic and nonatopic children show a TH2 cytokine response to house dust mite allergen. J Allergy Clin Immunol. 2000; 106 (1 Pt):84-91

• Smith DH, Malone DC, Lawson KA, Okamoto LJ, Battista C, Saunders WB. A national estimate of the economic costs of asthma. Am J Respir Crit Care Med 1997;156:787-93.

- Takayama, T., Morelli, A. E., Onai, N., Hirao, M., Matsushima, K., Tahara, H., Thomson, A. W. Mammalian and viral IL-10 enhance C–C chemokine receptor 5 but down-regulate C–C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J. Immunol 2001;166, 7136–7143

• Tsai JJ, Shen HD, Chua KY. Purification of group 2 Dermatophagoides pteronyssinus allergen and prevalence of its specific IgE in asthmatics. Int Arch Allergy Immunol. 2000;121(3):205-10

• Voehringer D, Shinkai K, Locksley RM. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 2004;20:267-277.

• Weston LE, Geczy AF, Briscoe H. Production of IL-10 by alloreactive sibling donor cells and its influence on the development of acute GVHD. Bone Marrow Transplant 2006; 37:207–212.

• Xu, D. et al. CD4+CD25+ regulatory T cells suppress differentiation and functions of TH1 and TH2 cells, Leishmania major infection, and colitis in mice. J. Immunol. 2003;170, 394–399

• Xystrakis E, Kusumakar S, Boswell S, Peek E, Urry Z, Richards DF, Adikibi T, Prideon C, Dallman M, Loke TK, Robinson DS, Barrat FJ, O'Garra A,

Ringraziamenti

Se sono riuscita a realizzare questo lavoro lo devo soprattutto all’aiuto di tante persone che ho incontrato in questi ultimi 3 anni.

Innanzitutto vorrei ringraziare il Prof Paolo Rossi per avermi dato l’opportunità ed i mezzi per diventare un PhD.

Un enorme grazie va alla Prof.ssa Maria Grazia Roncarolo per avermi dato l’opportunità di frequentare e studiare nel suo laboratorio. Grazie per i gli enormi insegnamenti che mi ha dato, e per aver avuto la possibilità di confrontarmi giornalmente con il mondo della ricerca ai più alti livelli, mettendomi perennemente alla prova, permettendomi così di crescere professionalmente.

Alla Dott Federica Angelici e alla Dott. Silvia Gregori che mi hanno guidato in questo percorso, va il mio ringraziamento più grande. A loro devo tutto quello che sono diventata oggi. Grazie alla loro esperienza e professionalità, ai loro suggerimenti, hanno permesso la realizzazione di questo lavoro. Grazie anche per il loro aiuto non solo intellettuale, ma soprattutto umano.

Grazie alla Dott Loredana Chini, alle infermiere ed i medici, in particolare Stefania, del Centro Interdisciplinare di Pediatria Specialistica del PTV, che hanno permesso il reclutamento dei piccoli pazienti. Grazie anche ai piccoli pazienti e ai loro genitori!

Grazie a Luisa, Silvia, Lola, Franceschina; Betta, Simona, Elio, Zok e tutte le persone con cui ho avuto il piacere di lavorare a Roma. Grazie per il loro aiuto e per la loro amicizia.

Un grazie al mio fedele e amico Simone, con il quale ho condiviso non solo il duro cammino di “studente” fino ad oggi, ma le soddisfazioni, le delusioni, i viaggi, le paure e le ansie, le risate….e l’Amicizia che ci lega ormai da 10 anni!!!!

Grazie a Manuela, Rosi, Daniela, Chiara, Laura, Nuria, Andrea, Giorgia e tutte le persone che ho incontrato nel laboratorio Tiget di Milano. Grazie per aver condiviso con me le loro competenze professionali e soprattutto per avermi fatto sentire “a casa”.

E grazie a Lella e alla sua infinita pazienza e disponibilità.
Vorrei ringraziare i miei genitori, senza i quali, ancora una volta, tutto questo non sarebbe stato possibile, e mia sorella che giorno dopo giorno mi stupisce sempre più, dimostrandomi il suo affetto e il suo sostegno. Un ringraziamento particolare va a mia madre, il mio punto di riferimento, alla quale dedico questa tesi. Perché senza il suo sostegno, i suoi insegnamenti, la sua forza, il suo amore incondizionato non sarei mai riuscita ad affrontare questi ultimi 3 anni e a superare uno dei momenti più difficili della mia vita.

Grazie infine a tutte le persone che mi sono state vicine in questi anni. Un grazie particolare a Fabio, non solo per avermi aiutato per questa tesi, ma soprattutto per essermi stato vicino in tanti momenti difficili, per avermi insegnato a “guardare oltre” e ad affacciarmi al domani con un sorriso….e grazie per aver avuto la pazienza di attendere….