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Abstract

In the first part of this dissertation, we study a pointed version of Rieffel’s quantum Gromov–
Hausdorff topology for compact quantum metric spaces (i.e, order–unit spaces with a Lipschitz–
like seminorm inducing a distance on the space of positive normalized linear functionals which
metrizes the w∗–topology). In particular, in analogy with Gromov’s notion of metric tangent cone
at a point of an (abstract) proper metric space, we propose a similar construction for (compact)
quantum metric spaces, based on a suitable procedure of rescaling the Lipschitz seminorm on a
given quantum metric space. As a result, we get a quantum analogue of the Gromov tangent
cone, which extends the classical (say, commutative) construction. As a case study, we apply
this procedure to the two–dimensional noncommutative torus, and we obtain what we call a
noncommutative solenoid.

In the second part, we introduce a quantum distance on the set of dual Lip–von Neumann
algebras (i.e., vN algebras with a dual Lip–norm which metrizes the w∗–topology on bounded
subset). As for the other GH distances (classical or quantum), this dual quantum Gromov–
Hausdorff (pseudo–)distance turns out to be a true distance on the (Lip–)isometry classes of
Lip–vN algebras. We give also a precompactness criterion, relating the limit of a (strongly)
uniform sequence of Lip–vN algebras to the (restricted) ultraproduct, over an ultrafilter, of the
same sequence. As an application, we apply this construction to the study of the Buchholz–
Verch scaling limit theory of a local net of (algebras of) observables in the algebraic quantum
field theory framework, showing that the two approaches lead to the same result for the (real
scalar) free field model.

Nella prima parte della Tesi, presenteremo una versione “puntata” della topologia di Gromov–
Hausdorff quantistica introdotta da Rieffel per spazi metrici quantistici compatti (cioè, spazi con
unità d’ordine e una seminorma Lipschitz che metrizza la topologia ∗–debole sullo spazio dei
funzionali positivi normalizzati). In particolare, proporremo una nozione di cono tangente quan-
tistico di uno spazio metrico quantistico, come analogo noncommutativo del cono tangente di Gro-
mov in un punto di uno spazio metrico ordinario, basata su una opportuna procedura di riscala-
mento della seminorma Lipschitz definita su uno spazio metrico quantistico. Tale costruzione
estende effettivamente la corrispondente costruzione valida per spazi metrici ordinari. Infine, a
titolo di esempio, descriveremo il cono tangente quantistico del toro noncommutativo bidimen-
sionale.

Nella seconda parte, invece, introdurremo una particolare distanza quantistica sull’insieme
delle algebre di von Neumann Lip–normate (cioè, dotate di una ulteriore norma che metrizza
la topologia debole sui sottoinsiemi limitati nella norma C∗). Come avviene per le distanze a
la Gromov–Hausdorff, anche questa distanza GH duale è una pseudo–distanza, e diviene una
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vera distanza solo sulle classi di equivalenza isometrica (rispetto alla norma Lip) delle algebre
di von Neumann Lip–normate. Inoltre, dimostreremo un criterio di precompatteza per famiglie
di algebre di vN Lip–normate (fortemente) uniformemente limitate, utilizzando la nozione di ul-
traprodotto (ristretto) di algebre di vN Lip–normate. Infine, nell’ambito del’approccio algebrico
alla teoria quantistica dei campi, applicheremo tale costruzione allo studio del limite di scala
(cioè, quando si fanno tendere a un punto le regioni dello spaziotempo su cui sono definiti gli
osservabili della teoria) di una rete locale di algebre di vN (le algebre degli osservabili), con-
frontando l’approccio tramite ultraprodotti (e con la convergenza nella distanza quantistica) con
la costruzione delle algebre “limite di scala” di Buchholz e Verch, mostrando che nel caso del
campo libero bosonico le due procedure forniscono lo stesso risultato.



Introduction

The main principle of Noncommutative Geometry is the duality between spaces and the func-
tions over them. For specific classes of spaces (for example, algebraic varieties, locally compact
Hausdorff spaces, manifolds), we study appropriate (usually, commutative algebras of) functions
(algebraic, continuous, smooth). When this duality is generalized to noncommutative algebras
of the same type, we think that these algebras represent “noncommutative spaces”. Then, one
can study the corresponding “noncommutative geometry”, mainly using geometric ideas in the
framework of noncommutative algebras, and sometimes revealing back deep facts about the or-
dinary spaces from the algebra level. Specifically, when we consider only the Borel structure
of a topological space and the duality between (σ–finite) measure spaces and the algebras of
C–valued measurable functions over them, we look at abstract W ∗–algebras (or, at concrete
von Neumann algebras) as “noncommutative measure spaces”. Instead, when one considers the
topological structure of the space and the duality between locally compact Hausdorff spaces and
the algebras of continuous C–valued functions over them vanishing at infinity, which are iden-
tified with commutative C∗–algebras by the Gel’fand representation theorem [50], one studies
general C∗–algebras as “noncommutative locally compact Hausdorff spaces”. If one looks at
spaces with a richer structure, say differentiable manifolds, one studies “noncommutative dif-
ferentiable manifolds”, and this is called “noncommutative differential geometry”. If one goes
further into Riemannian manifolds, one studies “noncommutative Riemannian manifolds”, and
the corresponding “noncommutative Riemannian geometry” is what A. Connes founded by using
the concept of spectral triples [17; 18; 19]. The main ingredient of a spectral triple is a Dirac
operator D. On the one hand, it captures the differential structure by setting df := i[D, f ]. On
the other hand, it enables us to recover the Lipschitz seminorm L, which is usually defined as

L(f) := sup{|f(x)− f(y)|
ρ(x, y)

: x 6= y}, (1)

where ρ is the geodesic metric on the Riemannian manifold, rather than by L(f) = ‖[D, f ]‖, and
then one recovers the metric ρ by

ρ(x, y) = sup{|f(x)− f(y)| : L(f) ≤ 1}. (2)

Following this method of identifying metrics with seminorms [17; 18], M. Rieffel introduced
the notion of compact quantum metric spaces [59; 60; 63], identifying a noncommutative metric on
a compact noncommutative space as a seminorm on the corresponding unital C∗–algebra, which
has the property that the distance defined on the state space of the algebra via (2) induces the w∗–
topology. Roughly speaking, this means that the noncommutative metric on the noncommutative
space induces the given topology. Often it is quite hard to show that certain natural Dirac
operators define noncommutative metrics [62].
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Motivated by questions in string theory, Rieffel also introduced the notion of quantum Gromov–
Hausdorff distance for compact quantum metric spaces [61; 63]. This is defined as a modified
ordinary Gromov–Hausdorff distance for the state spaces. One of the benefits of this quantum
distance is that there is also a quantum version of the Gromov completeness and compactness
theorems, which asserts that the set of isometry classes endowed with the Gromov–Hausdorff
distance is complete, and provides a criterion to say when a subset of this complete space is
precompact. Also, this quantum distance extends the ordinary Gromov–Hausdorff distance in
the sense that the map which sends each compact metric space to the associated quantum com-
pact metric space is a homeomorphism (though not an isometry) from the space of isometry
classes of compact metric spaces to a closed subspace of the space of isometry classes of quantum
compact metric spaces. Since this construction does not involve the multiplicative structure of
the algebras but only needs the state spaces, Rieffel set up everything on more general spaces,
namely order–unit spaces, based on Kadison’s representation theory [2; 40]. As a consequence,
the quantum Gromov–Hausdorff distance can not distinguish the multiplicative structure of the
algebras, i.e. non–isomorphic C∗–algebras might have distance zero.

Let us mention that there are also other approaches to noncommutative metrics. In [70;
71; 72], N. Weaver defined noncommutative metric spaces as von Neumann algebras with W ∗–
derivations. For many of the examples which he considers, the seminorms induced by the W ∗—
derivations do give the w∗–topology on the state spaces [60]. Moreover, D. Kerr [43] has defined a
matricial quantum distance, which is able to distinguish the multiplicative structures of algebras,
and there is also some kind of quantum complete and compactness theorem.

As Connes [17; 18; 19] and Rieffel showed us [59; 60], the natural way to specify a metric
on a C∗–algebra A is by means of an analogue for the Lipschitz seminorm on functions, that
is, a densely defined seminorm on A which induces, by duality, an ordinary metric on the state
space S(A) of the C∗–algebra. If this metric topologizes the w∗–topology on the state space, one
gets a compact quantum metric space (cQMS, for brevity), and the related notions of quantum
Gromov–Hausdorff distance and quantum Gromov–Hausdorff topology [63]. In the ordinary
setting, however, one may also define a non–compact version of this topology, at least for pointed
proper metric spaces, i.e. boundedly compact spaces with a basepoint, the so-called pointed
Gromov–Hausdorff distance [30; 10; 14]. For example, the tangent space at a point of a (finite–
dimensional) Riemannian manifold can be obtained as a pointed Gromov–Hausdorff limit of the
sequence consisting of the same manifold endowed with suitably rescaled metrics [10; 14].

At this point, a natural question arises: is it possible to define a non–compact quantum
metric space by means of a quantum version of the pointed Gromov–Hausdorff distance? The
first problem that one faces is the lack of an appropriate notion of non–compactness for quantum
metric spaces. In fact, the w∗–compactness of the state space of a C∗–algebra is due to the
presence of a unit. So, one may be tempted to consider non–unital C∗–algebras, in which case
w∗–compactness of the state space is lost. This was done indeed by Latrémolière in [45], where he
introduced the notion of bounded Lip(schitz)–(semi)norm, in order to deal also with non–unital
C∗–algebras. It turns out then that the metric, induced by a bounded Lip–norm on the state
space of a non–unital C∗–algebra, is a complete metric, and the corresponding induced topology
is again the w∗–topology. In this setting, the basic structure of a quantum metric space, that
is, the order–unit space consisting of the self–adjoint part of the C∗–algebra, might be replaced
by the notion of approximate order–unit space [75], as in part is suggested by Latrémolière’s
construction, though not explicitly used in [45]. On the other hand, one might try to extend
Rieffel’s notion of quantum Gromov–Hausdorff convergence, in analogy with the classical setting,



where the pointed Gromov–Hausdorff topology extends the classical Gromov–Hausdorff topology
to non necessarily compact spaces.

This is one of the objective we aimed at. A first difference with the classical situation is the
absence, in the noncommutative setting, of a natural notion of points of a noncommutative metric
space. So far, a reasonable candidate for the role of “noncommutative points” around which one
may “blow up” the space, is what we call a “shrinking family of subspaces” (see Section 1.4.2),
that is, a family of nested (order–unit) subspaces of a given compact quantum metric space,
whose radii tend to zero (so that their intersection reduces to the order–unit alone). So, once
such a family has been selected, we may rescale correspondingly the radius of each subspace
by a suitable factor, in such a way that the resulting family still has a uniform bound on the
size of the radii, for this is one of the necessary conditions for a sequence of cQMS’ to converge
(see Theorem 1.2.18). Then, if the rescaled sequence of cQMS’ is precompact in the quantum
Gromov–Hausdorff topology, one may think at each limit point as “quantum tangent space” in
the “quantum metric tangent cone” of the original QMS. As we shall see, when applied to the
ordinary setting, this quantum procedure gives back the ordinary Gromov tangent cone of a
pointed metric space at a fixed basepoint. It is worth noting that this “quantum construction”,
even in the commutative setting, actually produces more general objects than the ordinary one,
depending on which family of subspaces one selects in the ambient (quantum) metric spaces.

As a case study, we apply these ideas to the case of the two–dimensional Noncommutative
Torus [58; 18; 23]. As we shall see, the resulting quantum tangent cone is non–empty, and contains
at least what we call a Noncommutative Solenoid, for it appears as a natural noncommutative
generalization of the (a–adic) two–dimensional solenoid group [38]. We ought to say that, as the
classical group is compact, also its noncommutative counterpart turns out to be, at a first sight,
a compact object, since the underlying C∗–algebra is unital. However, as the classical solenoid
contains a continuous (though not bi–continuous) dense image of (the additive group of) the real
numbers, one might imagine that, by considering a different topology on its state space, which
comes out quite naturally from the limiting process, a noncommutative plane “hides” inside this
noncommutative solenoid.

In this approach, as Rieffel himself pointed out, the metric spaces are called quantum spaces,
rather than noncommutative, because it is the state space of the C∗–algebra (or of its selfadjoint
part considered as order–unit space), which carries the metric structure, and in quantum physics,
which was one of the inspiring motivation for his work on this subject (cf. the discussion after
Definition 2.2 in [63]), the states are the principal objects. So, one could instead reverse the
setting, and assume that the space carrying the Lipschitz seminorm can be thought of as a
”pre–dual”, which induces a metric on its dual similarly to Rieffel’s prescription.

With this view in mind, we introduce the notion of rigged Lip-space, that is, essentially, a Lip–
space [32] (i.e., a Banach space endowed with a Lip-norm, which is a densely defined norm with the
property that the unit ball [in the Banach norm] becomes compact in the corresponding induced
topology) endowed with a further norm p smaller than the Banach norm, and the notion of dual
rigged Lip–space, which is a dual Lip–space (i.e., a dual Banach space whose dual norm metrizes
the w∗–topology on bounded subsets) endowed with a further norm p′ greater than the dual
Banach norm (see Section 2.2). In this setting, it becomes quite natural to consider as reference
objects, instead of C∗–algebras, von Neumann algebras, precisely because in this case one has a
(unique) Banach space predual ([67; 69; 49]) and, when it is separable (or, equivalently, when the
Hilbert space on which acts the von Neumann algebra is separable), the Banach dual, that is, the
von Neumann algebra itself, has indeed the property that the w∗–topology on bounded subsets is



metrizable. Correspondingly, we introduce the notion of dual Lip–von Neumann algebra, whose
bounded subsets then becomes the (compact) metric spaces for which we introduce, in analogy
with Rieffel’s construction, a Gromov–Hausdorff–type of distance.

As we shall notice, a notion of Hausdorff distance between von Neumann subalgebras of the
algebra B(H) of bounded operators on a Hilbert space H has been introduced by Haagerup and
Winslow in [35; 36], where it is called the Effros–Maréchal distance, for it goes back essentially
to an idea of O. Maréchal [46], and it is shown to metrize the Effros topology [22] on the family
of closed unit balls of the von Neumann subalgebras of B(H). So, as the Gromov–Hausdorff
distance between ordinary (compact) metric space can be regarded as an extension of the usual
Hausdorff distance between closed subsets of a fixed compact metric space to abstract (compact)
metric spaces, not necessarily lying in the same ambient space, similarly we define a (pseudo–
)distance which indeed becomes a distance on the space of Lip–isometry equivalence classes of
(dual) Lip–von Neumann algebras. In other words, if the distance between two (dual) Lip–von
Neumann algebras is zero, then the two algebras are (Lip–)∗–isomorphic. Then, we also study
the problem of finding reasonable conditions under which a sequence of (dual) Lip–von Neumann
algebras convergences, and, as we shall see, the notion of restricted ultraproduct, introduced
by D. Guido and T. Isola in [32] for various classes of Lip–spaces, will be very useful in this
setting as well. In fact, we will show that a uniform family of rigged von Neumann algebras (i.e.,
Lip–von Neumann algebras whose Lip–norm satisfies a further property; see Definition 2.4.7) is
precompact in the topology induced by this dual quantum Gromov–Hausdorff distance between
von Neumann algebras.

As an example, we apply this construction to the problem of studying the scaling limit of the
local algebras of observables in the framework of the algebraic approach to theory of quantum
fields, the so–called Algebraic Quantum Field Theory [33]. We refer principally to the theory of
renormalization in the algebraic setting, as proposed by D. Buchholz and R. Verch in [12; 13],
in which the problem of the behavior, at small scales, of the observables of a quantum theory, is
carefully analysed. We propose here an approach based on the ”metric–ultraproduct methods”
for (rigged) von Neumann algebras so far developed. This approach, studied in collaboration
with D. Guido and H. Bostelmann [8], appears to be in some sense more general than that of
Buchholz and Verch, for the scaling limit of a theory will depend, in our setting, also on the
choice of the Lip–norm on the local algebras of the theory, so that it seems that one may produce
much more limits for a given theory than by the Buchholz–Verch procedure. Though this feature
may be regarded as some kind of mathematical richness of our construction, from the physical
point of view one might expect that the small scales behavior of a given physical theory should
be somehow unique. Finally, we will show that, on the level of von Neumann (local) algebras,
in the case of the (real scalar) free field model, the two procedures, that is, the ultraproduct
construction and the Buchholz–Verch construction [13], give compatible results, in the sense that
the Buchholz–Verch representation of the scaling limit net in the vacuum sector embeds as a
subrepresentation of the net obtained by the ultraproduct construction.

This dissertation is organized as follows.
In Chapter 1, we review the definitions and the basic properties of ordinary Gromov–Hausdorff

distance and Rieffel’s quantum distance, and propose a quantum version of the pointed Gromov–
Hausdorff distance between proper metric spaces. We also give, as a case study, an example of
this pointed–like convergence for the noncommutative 2–dimensional torus.

In Chapter 2, we review the definitions and the basic properties of Lip–spaces, dual Lip–



spaces and the related notion of ultraproducts and restricted ultraproducts, over an ultrafilter,
of families of such spaces. We introduce also the concept of (dual) Lip– and rigged von Neumann
algebra, and study the restricted ultraproduct of uniform families of (dual) Lip– and rigged von
Neumann algebras.

In Chapter 3, we introduce the notion of dual quantum Gromov–Hausdorff distance for Lip–
von Neumann algebras, and study the relation between the convergence of a sequence with respect
to this distance and the corresponding ultraproduct.

Finally, in Chapter 4 we apply the ultraproduct methods to the study of the Buchholz–
Verch scaling limit theory for local algebras of observables in the algebraic quantum field theory
framework, and we show that the two approaches lead to compatible results for the (real scalar)
free field model, in the sense specified therein.





Chapter 1

Gromov–Hausdorff Distance for
Ordinary and Quantum Metric
Spaces

In the first two sections of this chapter, we introduce the Gromov–Hausdorff distance for ordinary
metric spaces, due to Gromov [29; 30], and its quantum version for compact quantum metric
spaces, due to Rieffel [63; 59; 60]. In the third section, we recall also the pointed version of the
Gromov–Hausdorff convergence, and introduce a quantum version of it. As we shall notice, in this
construction the non–compactness will emerge as a peculiar feature of the distance, which indeed
is non–bounded, though at the level of the C∗–algebras involved, the limit object of a pointed
quantum Gromov–Hausdorff sequence will be a unital C∗–algebra (or, to be more precise, a dense
set in the selfadjoint part of the algebra). This limit algebra (which we will call simply a quantum
metric space) will be still endowed with a (Lipschitz) seminorm, inducing a metric on the state
space whose topology is no longer compact, in analogy with the classical situation, where the
resulting objects of the pointed Gromov–Hausdorff limiting process are usually non–compact.

1.1 Gromov–Hausdorff Distance for Compact Metric Spaces

In this section we will recall briefly the basic definitions and properties of the Gromov–Hausdorff
distance between (ordinary) compact metric spaces. The reader is referred to [30; 14] for more
details.

1.1.1 Hausdorff Distance

Let (X, ρ) be a metric space, i.e. X is a set and ρ is a metric on it. For any subset Y ⊆ X and
r > 0, let

Nr(Y ) ≡ N (Y, r) := {x ∈ X : ρ(x, y) < r for some y ∈ Y } (1.1)

be the r–neighborhood of Y , i.e the set of points with distance less than r from Y . When Y = {x},
Nr({x}) is simply the open ball of radius r centered at x, and we shall write it as Br(x) or B(x, r).
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1.1.1 Definition. Let Y and Z be (nonempty) compact subsets of a metric space (X, ρ). The
Hausdorff distance between Y and Z is defined as

distρH(Y, Z) := inf{r > 0 : Y ⊆ Nr(Z), Z ⊆ Nr(Y )}. (1.2)

The Hausdorff distance measures the distance between Y and Z inside X. We will also use
the notation distXH(Y, Z), when no confusion arises about the metric on X.

Let (SUB(X), distρH) be the set of (nonempty) compact subsets of X, equipped with the
Hausdorff distance. The basic properties of the Hausdorff distance are summarized in the follow-
ing

1.1.2 Proposition. [10; 14] Let (X, ρ) be a metric space. Then

(1) distρH is a metric on SUB(X);

(2) SUB(X) is complete if and only if X is complete;

(3) SUB(X) is compact if and only if X is compact.

1.1.2 Gromov–Hausdorff Distance

The Gromov–Hausdorff distance was first introduced by Gromov in [29]. LetX and Y be compact
metric spaces, and let hX , hY be isometric embeddings of X and Y into some metric space Z.

1.1.3 Definition. The Gromov–Hausdorff distance between the compact metric spaces X and Y
is defined as

distZGH(X,Y ) := inf{distZH(hX(X), hY (Y )) : hX , hY are isometric embeddings inZ}. (1.3)

In the previous Definition, Z is any metric space in which X and Y can be isometrically
embedded. However, as shown by Gromov [29], it is possible to reduce this large class of metric
spaces to the disjoint union X q Y . A distance ρ on X q Y is called admissible if the inclusions
X,Y ↪→ X q Y are isometric embeddings. It turns out that

distρGH(X,Y ) = inf{distρH(hX(X), hY (Y )) : ρ is admissible on X q Y }. (1.4)

Indeed, we have the following

1.1.4 Lemma. The two definitions above are equivalent, namely distZGH(X,Y ) = distρGH(X,Y ).

Proof. Let δ ≡ distρGH(X,Y ), and let ρXqY be an admissible metric on X q Y . Then, we
have distZGH(X,Y ) ≤ ρXqY (hX(X), hY (Y )), where hX : X → X q Y and hY : Y → X q Y
are the canonical embeddings. Since this inequality holds for any admissible metric, we have
distZGH(X,Y ) ≤ δ.
Conversely, suppose that hX : X → Z and hY : Y → Z are isometric embeddings of X and Y
into a metric space Z. If the images hX(X), hY (Y ) in Z are disjoint, then hX(X) ∪ hY (Y ) is a
faithful representation of X q Y , and the restriction of ρZ to this disjoint union gives a metric
ρ on X q Y , with ρZ(hX(X), hY (Y )) = ρ(X,Y ) ≥ δ. Now, if the images hX(X), hY (Y ) are not
disjoint, we can separate them by the trick of crossing Z with a small interval Iε = [0, ε]. Put the
product metric

ρ((x, t), (y, s)) :=
√
ρZ(x, y)2 + |t− s|2
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on Z × Iε, and then embed X by h0(x) = (hX(x), 0) and Y by hε(y) = (hY (y), ε). Their
images are now disjoint and we have ρ(h0(X), hε(Y )) =

√
ρZ(hX(X), hY (Y ))2 + ε2. Therefore,

δ ≤
√
ρZ(hX(X), hY (Y ))2 + ε2, and, taking ε → 0, we get δ ≤ ρZ(hX(X), hY (Y )) for any

isometric embeddings hX , hY , and so δ ≤ distZGH(X,Y ).

1.1.5 Notation. In view of the previous Lemma, in the following we will denote simply by
distGH(X,Y ) the Gromov–Hausdorff distance between two (compact) metric spaces X and Y .
Moreover, let us denote by diam(X) the diameter of the compact metric space (X, ρ), defined as
diam(X) := max{ρ(x, y) : x, y ∈ X}, and by rX = diam(X)

2 the radius of (X, ρ).

The basic properties of the Gromov–Hausdorff distance are summarized in the following

1.1.6 Proposition. [30; 10; 14] Let X and Y be compact metric spaces. Then,

(1) distGH(X,Y ) = 0 if and only if X and Y are isometric;

(2) distGH(X,Y ) defines a metric on the set CM of isometry classes of compact metric spaces;

(3) |rX − rY | ≤ distGH(X,Y ) ≤ max(rX , rY ).

1.1.7 Definition. For a compact metric space (X, ρ) and any ε > 0, the covering number
Covρ(X, ε) (also denoted by nε(X)) is defined as the smallest number of open balls of radius ε
whose union covers X.

A remarkable property of the Gromov–Hausdorff distance is given by the following

1.1.8 Theorem (Gromov’s Completeness and Compactness Theorem). [29] The space
(CM,distGH) is a complete metric space. A subset S ⊆ CM is totally bounded if and only if

(1) there is a constant D such that diam(X, ρ) ≤ D for all (X, ρ) ∈ S;

(2) for any ε > 0, there is a constant Kε > 0 such that Covρ(X, ε) ≤ Kε for all (X, ρ) ∈ S.

Gromov’s proof is based on Proposition 1.1.2 and on the following

1.1.9 Proposition. [29] If a subset S ⊆ CM satisfies the two conditions in Theorem 1.1.8, then
there is a compact metric space (Z, ρ) such that each X ∈ S can be isometrically embedded into
Z.

In practical situations, it is usually very hard to compute the precise value of the Gromov–
Hausdorff distance for two given compact metric spaces. In most cases, a crucial tool for esti-
mating the Gromov–Hausdorff distance is given by the next Proposition, which follows directly
from Definition 1.1.3.

1.1.10 Proposition. For two compact subsets X and Y of a metric space (Z, ρ), we have:

distGH(X,Y ) ≤ distρH(X,Y ). (1.5)

1.1.11 Remark. Assume that the sequence {Xn} of compact metric space converges to the
(compact metric) space X in the Gromov–Hausdorff topology, Then, given ε > 0, there exists
nε ∈ N such that, for any n ≥ nε, one can find an admissible metric ρn on the disjoint union
XnqX such that distρn

H (Xn, X) < ε. When such a sequence of metrics {ρn} is chosen and fixed,
it makes sense to speak about convergence of a sequence of points {xn}, with xn ∈ Xn, to a
point x ∈ X, for this just means that lim

n→∞
ρn(ιn(xn), ι(x)) = 0, with ιn (resp., ι) the canonical

inclusion of Xn (resp., X) in Xn qX.
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1.2 Rieffel’s Quantum Gromov–Hausdoff Distance

The reader is referred to [59; 60; 61; 63] for more details.

1.2.1 Order–unit Spaces

As Rieffel pointed out, the right framework for the quantum metric spaces is that of order–unit
spaces. Typically, these arise as real–linear subspaces of the vector space of selfadjoint operators
on a Hilbert space, containing the identity operator (the order–unit). In fact, any order–unit
space can be realized in this way. The (real–linear) space of all selfadjoint elements of a unital
C∗–algebra is a very useful example of order–unit space. There is an abstract characterization
of order–unit spaces due to Kadison [40; 2].

1.2.1 Definition. An order–unit space is a real partially ordered vector space A with a distin-
guished element e (the order–unit) which satisfies:

1) (order–unit property) for each a ∈ A there is an r ∈ R such that a ≤ re;

2) (Archimedean property) if a ∈ A and if a ≤ re for all r ∈ R with r > 0, then a ≤ 0.

On an order–unit space (A, e), we can define a norm by

‖a‖ := inf{r ∈ R : −re ≤ a ≤ re}. (1.6)

Then, A becomes a normed vector space, and so we can consider its dual A′, consisting of the
bounded linear functionals on A, equipped with the dual norm ‖ · ‖′. By a state of an order–
unit space (A, e) we mean a µ ∈ A′ such that µ(e) = 1 = ‖µ‖′. (Notice that the states are
automatically positive [2].) We denote by S(A) the collection of all the states of A, and call it
the state space of A. It is a bounded closed convex subset of A′, and so it is compact for the
w∗–topology on A′. Each a ∈ A defines a continuous affine function on S(A) by â(µ) = µ(a),
and e becomes the constant function 1 on S(A). By Kadison’s Representation Theorem [40; 2],
this representation â 7→ a is an isometric order isomorphism of A onto a dense subspace of the
space AfR(S(A)) of all affine R–valued continuous functions, equipped with the supremum norm
and the usual order on functions. In particular, the image of A is the whole of AfR(S(A)) if,
and only if, A is complete in the order–unit norm (cf. [2], Theorem II.1.8). Conversely, for any
compact convex subset X of a Hausdorff topological real vector space V , every linear subspace
A ⊆ AfR(X) containing the constant function 1 is an order–unit space [2]. Therefore, we can
view order–unit spaces as dense linear subspaces of AfR(X) containing 1, where X is any compact
convex subset of a Hausdorff topological real vector space.

An important notion is that of morphisms between order–unit spaces. Let A and B be order–
unit spaces. By a morphism ϕ : A→ B, we mean a linear positive map preserving the order–units,
hence norm–continuous (cf. [2], Proposition II.1.3). Then the dual map ϕ′ : B′ → A′, restricted
to S(B), sending ν ∈ S(B) to ϕ′(ν) ∈ S(A), defines a continuous (for the w∗–topologies) affine
map S(ϕ) from S(B) to S(A). The notion of isomorphisms between order–unit spaces follows
directly from that of morphisms.

In particular, when φ is surjective, S(ϕ) is injective. We call such a pair (ϕ,B) a quotient
of A. Since both S(A) and S(B) are compact Hausdorff spaces, S(ϕ) is a homeomorphism from
S(B) onto its image, and we can identify S(B) with its image S(ϕ)(S(B)), regarded as a closed
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convex subset of S(A). Then, the morphism ϕ : A → B becomes the restriction of vectors in
A ⊆ AfR(S(A)), which are affine functions on S(A), to S(ϕ)(S(B)). In fact, the converse is also
true.

1.2.2 Proposition. [63] Let A be an order–unit space. There is a natural bijection between
isomorphism classes of quotients of A and closed convex subsets of S(A).

1.2.2 Compact Quantum Metric Spaces

As the metric on an ordinary compact metric space is determined by the Lipschitz seminorm it
defines on (continuous) functions1, Rieffel suggested that for “noncommutative spaces”, that is,
C∗–algebras, the way to specify a “metric” is by means of a seminorm which plays the role of a
Lipschitz seminorm.

For an order–unit space (A, e) and a seminorm L on A, we may define an ordinary metric ρL
on the state space S(A) by

ρL(µ, ν) := sup{|µ(a)− ν(a)| : L(a) ≤ 1}. (1.7)

(Notice that, in the absence of further hypotheses, ρL(µ, ν) may take the value +∞.) This
is a generalization of the Monge–Kantorovič metric on the space of probability measures on
an ordinary compact metric space [41; 42], and, within the context of Dirac operators, it was
introduced into Noncommutative Geometry by Connes in [17; 18]. In [60], these ideas were
extended to consider Lipschitz seminorms on order–unit spaces. Since C∗–algebras are linear
spaces over the complex numbers, while order–unit spaces are over the real numbers, we should
point out that, for a C∗–algebra A, we require a Lipschitz seminorm L to satisfy L(a∗) = L(a),
for any a ∈ A. Under this condition, then it suffices to take the above supremum just over
selfadjoint elements of A when defining ρL.

1.2.3 Definition. Let (A, e) be an order–unit space. By a Lipschitz seminorm on A, we mean
a densely defined, lower semicontinuous seminorm L on A satisfying:

1) for a ∈ A we have L(a) = 0 if, and only if, a ∈ Re;

We call L a Lip–seminorm if it satisfies further:

2) the topology on S(A), induced by the metric ρL, is the w∗–topology.

1.2.4 Notation. Since in the following chapter we will define Lip–norms in a more general
setting, which are really norms and not only seminorms, we prefer to use here the term Lip–
seminorm, in contrast with the standard terminology introduced by Rieffel.

1Let (X, ρ) be a compact space X. The Lipschitz seminorm Lρ determined by ρ is defined on functions f on X
by

Lρ(f) = sup{|f(x)− f(y)|/ρ(x, y) : x 6= y}.

(Notice that it may take the value +∞.) Then, one can recover ρ from Lρ by

ρ(x, y) = sup{|f(x)− f(y)| : Lρ(f) ≤ 1}.
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1.2.5 Definition. By a compact Quantum Metric Space (cQMS), we mean a pair (A,L) con-
sisting of an order–unit space A with a Lip–seminorm L defined on it. The diameter diam(A),
the radius rA, and the covering number Cov(A, ε) of (A,L) are defined to be those of (S(A), ρL).

(Let us notice that, if the seminorm L is not lower semicontinuous, we can always replace it
by the largest lower semicontinuous seminorm smaller than L, as this will give the same metric
on S(A) (cf. [60], Theorem 4.2).)

A useful tool will be the following

1.2.6 Lemma (Comparison Lemma). [59] Let (A, e) be an order–unit space, L a desely defined
(Lipschitz) seminorm on A, and B a subspace of A, endowed with a seminorm M . Let ρM and
ρL denote the corresponding metrics on S(A) as in (1.7) (possibly taking the value +∞). Assume
that, on B,

M ≥ L,

in the sense that M(a) ≥ L(a) for all a ∈ B. Then,

ρM ≤ ρL,

in the sense that ρM (µ, ν) ≤ ρL(µ, ν) for all µ, ν ∈ S(A). Thus,

(i) if ρL is finite, so is ρM ;

(ii) if ρL is bounded, so is ρM ;

(iii) if the ρL–topology on S(A) agrees with the w∗–topology, then so does the ρM–topology.

Proof. If a ∈ B and M(a) ≤ 1, then L(a) ≤ 1. Thus, the supremum defining ρM is taken over a
smaller set than that for ρL, hence ρM ≤ ρL. The claims (i) and (ii) are then obvious, and (iii)
follows from the fact that a continuous bijection from a compact space to a Hausdorff space is a
homeomorphism (cf., for instance, [50], Proposition 1.6.8).

As a consequence, we get also the following

1.2.7 Proposition. [59] Let (A, e) be an order–unit space, and L a desely defined seminorm on
A. Let t be a strictly positive real number, and set M := tL on L := {a ∈ A : L(a) <∞}. Then,
ρM = t−1ρL. Thus,

(i) if ρL is finite, so is ρM ;

(ii) if ρL is bounded, so is ρM ;

(iii) if the ρL–topology on S(A) agrees with the w∗–topology, then so does the ρM–topology.

Proof. Clearly,

ρM (µ, ν) = sup{|µ(a)− ν(a)| : M(a) ≤ 1} = t sup{|µ(a)− ν(a)| : L(a) ≤ 1} = ρL(µ, ν).

Then, the proof is the same as in the previous Lemma.
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1.2.8 Definition. By a C∗–algebraic Compact Quantum Metric Space we mean a pair (A, L)
consisting of a unital C∗–algebra A and a (possibly +∞–valued) seminorm L on A satisfying the
reality condition

L(a) = L(a∗), (1.8)

and such that the linear subspace {a ∈ A : L(a) <∞} is dense in A, contains eA (the identity of
A), and L restricted to the (order–unit) space

A := {a ∈ A : L(a) <∞} ∩Asa (1.9)

is a Lip–seminorm. (Asa denotes the set of all selfadjoint elements of A.) We call (A,L|A)
the associated Compact Quantum Metric Space. The diameter, radius and covering number of
(A, L) are defined to be the same as those of (A,L|A).

1.2.9 Example. For any compact metric space (X, ρ), define the Lipschitz seminorm Lρ (which
may take the value +∞) on CC(X), the set of all C–valued continuous functions over X, by

Lρ(f) := sup
{
|f(x)− f(y)|

ρ(x, y)
: x 6= y

}
. (1.10)

Clearly, Lρ satisfies the reality condition (1.8) and, moreover, the Leibniz rule

Lρ(f · g) ≤ Lρ(f)‖g‖+ ‖f‖Lρ(g), f, g ∈ CC(X). (1.11)

Let us define
A(X,ρ) := {f ∈ CR(X) : Lρ(f) <∞}. (1.12)

Then, (A(X,ρ), Lρ|A(X,ρ)
) is a closed compact quantum metric space, and (CC(X), Lρ) is a C∗–

algebraic compact quantum metric space. It is called the associated compact quantum metric
space of (X, ρ). Notice that S(A(X,ρ)) is the set of probability measures on X, and the induced
metric on S(A(X,ρ)) is the Monge–Kantorovič metric [41; 42].

We can restrict a quantum metric space to its closed convex subsets by the following

1.2.10 Proposition. [63] Let A be an order–unit space, and let B be a quotient of A with the
quotient map ψ : A→ B. Let L be a Lipschitz seminorm on A, and let LB be the corresponding
quotient seminorm on B, defined as

LB(b) := inf{L(a) : ψ(a) = b}. (1.13)

Then, S(ψ) is an isometry for the corresponding metrics ρL and ρLB
. If L is actually a Lip–

seminorm, then so is LB. If furthermore L is closed, then so is LB, and we have ψ(L1(A)) =
L1(B) (where L1(A) := {a ∈ A : L(a) ≤ 1}).

As shown by Rieffel [59; 62], a wide class of cQMS’s consists of C∗–algebras with metrics
arising from ergodic actions of compact groups, i.e. actions for which the only invariant elements
are the scalar multiple of the identity. So, let G be a compact group with a length function, i.e.
a continuous real–valued function ` on G, such that

`(xy) ≤ `(x) + `(y) ∀x, y ∈ G, (1.14)
`(x−1) = `(x) ∀x ∈ G, (1.15)
`(x) = 0 if, and only if, x = eG, (1.16)
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where eG is the identity of G. Let A be a unital C∗–algebra, and let α be a strongly continuous
action of G on A by automorphisms. Define a (possibly +∞–valued) seminorm L on A by

LG(a) := sup
{
‖αx(a)− a‖

`(x)
: x ∈ G, x 6= eG

}
(1.17)

Then, clearly, L satisfies the reality condition (1.8) and the Leibniz rule (1.11). It can be shown
[59] that the set of elements in A where L is finite, is always a dense ∗–subalgebra of A. Hence,
the set A = {Asa : L(a) < 1} is a dense subspace of Asa containing the identity eA of A, and the
state space of A can be identified with that of A. Furthermore, when the action α is ergodic, i.e.
the only α–invariant elements are the scalar multiples of the identity, (A,L|A) is a closed compact
quantum metric space and (A, L) is a C∗–algebraic compact quantum metric space, so that L
should be thought of as a (compact) metric on the quantum space A. (Notice that to any length
function ` on G there corresponds a left invariant metric ρ on G, given by ρ(x, y) = `(x−1y).
Conversely, if ρ is a metric on the compact group G, then ρ̃(x, y) :=

∫
G ρ(zx, zy)dz, with dz the

Haar measure, is a left–invariant metric. Hence, G has a length function if, and only if, it is
metrizable.)

We have then the following

1.2.11 Theorem. [59] Let α be an ergodic action of a compact group G on a unital C∗–algebra
A. Let ` be a length function on G, LG be the corresponding seminorm, and set AG := {a ∈ Asa :
LG(a) <∞}. Moreover, let ρG be the corresponding metric on the state space S(A) of A. Then
the ρG–topology on S(A) agrees with the w∗–topology (and ρG is bounded by 2

∫
G `(x)dx, where

dx is the (normalized) Haar measure on G).

An even more interesting situation is when G is a Lie group. So, let G be a connected
(compact) Lie group, g its Lie algebra, and fix a norm ‖ · ‖ on g. For any action α of G on a
Banach space B, we let B1 denote the space of α–differentiable elements of B. Thus, if b ∈ B1,
then, for each X ∈ g, there exists a dXb ∈ B, such that

lim
t→0

(αexp(tX)(b)− b)/t = dXb. (1.18)

Clearly, X 7→ dXb is a linear map from g into B, and we denote it by db (cf. [9]). Since g and B
both have norms, the operator norm ‖db‖ of db is defined (and finite), namely

‖db‖ := sup{‖dXb‖ : X ∈ g, ‖X‖ = 1} < +∞. (1.19)

Then, a standard smoothing argument shows that B1 is dense in B (cf. [9]).
Suppose now that A is a C∗–algebra and α is an action by automorphisms of A. We set

Ag ≡ A1 and Lg(a) := ‖da‖. It is easily verified that Ag is a ∗–subalgebra of A. Since G is
connected, Lg(a) = 0 if, and only if, a is α–invariant. Let us prove the following

1.2.12 Theorem. [59] Let G be a compact connected Lie group and fix a norm on g. Let α be
an ergodic action of G on a unital C∗–algebra A. Set Ag = A1 and Lg(a) = ‖da‖, as above, and
let ρg denote the corresponding metric on the state space S(A) of A. Then the ρg–topology on
S(A) agrees with the w∗–topology.

Proof. Let 〈·, ·〉e be an inner product on g, with e the unit of G. Its corresponding norm ‖ · ‖e
is clearly equivalent to the given norm (as g. is a finite–dimensional vector space), and so, by
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the Comparison Lemma 1.2.6, it suffices to deal with the norm from the inner product. We
can left–translate this inner product over G to obtain a left–invariant Riemannian metric on G,
and then a corresponding left–invariant ordinary metric on G, as follows: we define 〈X,Y 〉p :=
〈(dLp−1)p(X), (dLp−1)p(Y )〉e, p ∈ G, X,Y ∈ TpG (the tangent space at p), where Lp : G → G,
Lp(q) := pq is the left–translation. Since Lp depends differentiably on p, we get a Riemannian
metric, which is clearly left–invariant, i.e. it satisfies 〈X,Y 〉p := 〈(dLp)q(X), (dLp)q(Y )〉Lp(q),
for all p, q ∈ G and X,Y ∈ TpG. Then, let γ : [α, β] → G be a (smooth) curve segment, with
γ(α) = p, γ(β) = q. The arc length of γ is defined by

L(γ) :=
∫ β

α
(〈γ̇(t), γ̇(t)〉γ(t))1/2dt =

∫ β

α
‖γ̇(t)‖γ(t)dt,

and the distance from p to q is then defined as

ρ(p, q) := inf
γ
L(γ),

where the infimum has to be taken over all the arc segments joining p and q. We see that, by
construction, ρ is left–invariant. Now, let `(x) denote the corresponding distance from x to e,
i.e. `(x) := ρ(x, e). Then, ` is a continuous length function on G satisfying conditions (1.15–
1.16). Indeed, we have clearly `(x) = 0 if, and only if, x = e, `(xy) = ρ(xy, e) ≤ ρ(xy, x) +
ρ(x, e) = `(x) + `(y) (by left–invariance of ρ, and the fact that it is a metric), and finally
`(x−1) = ρ(x−1, e) = ρ(xx−1, x) = `(x). Then, the elements of A1 are Lipschitz for `. In fact,
let a ∈ A1 and let c : [0, 1] → G be a smooth path from e to a point x ∈ G. Then, the function
φ : [0, 1]→ A1, defined as φ(t) = αc(t)(a), is differentiable, and thus we have

‖αx(a)− a‖ = ‖
∫ 1

0
φ̇(t)dt‖ ≤

∫ 1

0
‖αc(t)(dċ(t)a)‖dt ≤ ‖da‖

∫ 1

0
‖ċ(t)‖edt = L(c).

Thus, taking the infimum on the r.h.s. over all paths from x to e, we obtain

‖αx(a)− a‖ ≤ ‖da‖`(x).

(Notice that the above argument works for any norm on g.) Then, if we let AG and LG be
defined just in terms of ` as above, we see that Ag ⊆ AG and LG ≤ Lg. Hence, we can apply the
Comparison Lemma 1.2.6 to obtain the desired conclusion.

Now, let us choose a norm ‖ · ‖ on g coming form an Ad–invariant inner product, where, for
p ∈ G, the adjoint representation Ad(p) : g→ g is defined as the differential Ad(p) := d(Rp−1Lp);
for example, we may take the negative of the Killing form, that is 〈X,Y 〉 := −tr(Ad(X)Ad(Y ))
(see, for instance, [37]). Then, ` will satisfy the extra condition `(yxy−1) = `(x), and, as a
consequence, A1 will be α–invariant. Indeed, the Ad–invariance of a (left–invariant) inner product
implies also its right–invariance, namely

〈X,Y 〉p = 〈(dRp−1)p(X), (dRp−1)p(Y )〉e
= 〈(dRp−1)p ◦ (dLp)p−1)(X), (dRp−1)p ◦ (dLp)p−1)(Y )〉e
= 〈Ad(p)(X), Ad(p)Y 〉e = 〈X,Y 〉p.
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Hence, the corresponding metric will be left– and right–invariant, that is, `(yxy−1) = ρ(yxy−1, e) =
`(x) = ρ(x, e). Moreover, we have also the α–invariance of the seminorm, namely

LG(αy(a)) = sup
{‖αy(αy−1xy(a)− a)‖

`(x)
: x 6= eG

}
= sup

{
‖αx(a)− a‖
`(yxy−1)

: x 6= eG

}
= LG(a).

Then, for any X ∈ g and t in a sufficiently small neighborhood of 0 ∈ R, we have `(exp(tX)) =
|t|‖X‖2, and thus, if ‖X‖ = 1, we get

‖(αexp(tX)(a)− a)/t‖ = ‖(αexp(tX)(a)− a)‖/`(exp(tX)).

From this we see that ‖dXa‖ ≤ LG(a) for all X with ‖X‖ = 1. Thus, we have established the
following

1.2.13 Proposition. For Lg defined, as above, through a norm on g, and for LG defined in
terms of the corresponding length function on G, we have Lg = LG and Ag = AG.

1.2.3 Quantum Gromov–Hausdorff Distance

Let (A,LA) and (B,LB) be compact quantum metric spaces. The dual object for the disjoint
union X q Y is the direct sum A ⊕ B of vector spaces, with (eA, eB) as order–unit, and with
the natural order structure. A ⊕ B is thus an order–unit space, and the natural projections
from A ⊕ B to A and B are surjective order–unit space morphisms. Correspondingly, we call a
Lip–seminorm L on A ⊕ B admissible if it induces LA and LB as in Proposition 1.2.10, and we
denote by L(LA, LB) the set of admissible Lip–seminorms on A⊕ B. Then, a natural notion of
quantum distance, introduced by Rieffel, is the following:

1.2.14 Definition. Let (A,LA) and (B,LB) be compact quantum metric spaces. We define the
quantum Gromov–Hausdorff distance between them as

distq(A,B) := inf{distLH(S(A), S(B)) : L ∈ L(LA, LB)} (1.20)

It is evident that distq(A,B) is symmetric in A and B. As for the triangle inequality, one has
the following

1.2.15 Theorem. [63] Let (A,LA), (B,LB) and (C,LC) be quantum metric spaces. Then,

distq(A,C) ≤ distq(A,B) + distq(B,C). (1.21)

For a compact quantum metric space (A,L), we denote by Ac the (norm) closure of A and
by Lc the extension of L to Ac (which may take now the value +∞).

1.2.16 Definition. Let (A,LA) and (B,LB) be compact quantum metric spaces. By an isometry
from (A,LA) to (B,LB), we mean an order isomorphism ϕ from Ac onto Bc, such that LcA =
LcB ◦ ϕ.

2Indeed, the map exp ≡ expe : TeG := g → G is a local diffeomorphism (in the sense that there exists an
ε > 0 such that exp : Bε(0) ⊂ TeG → G is a diffeomorphism of the ε–ball Bε(0) onto an open subset of G), and,
moreover, it is also an isometry for the inner product in g and the corresponding metric on G, and this follows
from the Gauss’ Lemma (see, for instance, Proposition 2.9 in [24]).
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The quantum version of Proposition 1.1.6 is the following

1.2.17 Theorem. [63] Let (A,LA) and (B,LB) be compact quantum metric spaces. Then:

(1) distq(A,B) = 0 if, and only if, (A,LA) and (B,LB) are isometric;

(2) the isometries from (A,LA) to (B,LB) are in natural bijective correspondence with the
affine isometries from (S(B), ρLB

) onto (S(A), ρLA
) through the map ϕ 7→ S(ϕ);

(3) distq defines a metric on the set QCM of isometry classes of compact quantum metric
spaces;

(4) |rA − rB| ≤ distq(A,B) ≤ diam(A) + diam(B).

Theorems 1.2.17(1)–(2) and 1.2.15 tell us that distq is indeed a distance between the state
spaces of compact quantum metric spaces, equipped with the induced metrics and the convex
structures.

There is also a quantum version of Gromov’s Completeness and Compactness Theorem, due
to Rieffel.

1.2.18 Theorem (Rieffel’s Quantum Completeness and Compactness Theorem). [63]
The space (QCM,distq) is a complete metric space. A subset S ⊆ QCM is totally bounded if
and only if

(1) there is a constant D such that diam(A,L) ≤ D for all (A,L) ∈ S;

(2) for any ε > 0, there exists a constant Kε > 0 such that Cov(A, ε) ≤ Kε for all (A,L) ∈ S.

We have a quantum version of Proposition 1.1.10 as well:

1.2.19 Proposition. [63] Let (A,LA) be a compact quantum metric space, and let X1 and X2 be
compact convex subsets of S(A). Let (Bj , Lj) for j = 1, 2 be the corresponding quotients. Then

distq(B1, B2) ≤ dist
ρLA
H (X1,X2). (1.22)

The quantum distance distq extends indeed the ordinary Gromov–Hausdorff distance distGH .

1.2.20 Proposition. [63] The Gromov–Hausdorff distance between two compact metric spaces
is greater than or equal to the quantum distance between the associated compact quantum metric
spaces. The map from CM to QCM sending each compact metric space to its associated compact
quantum metric space is a homeomorphism from CM onto a closed subspace of QCM.

1.2.21 Remark. In general, the Gromov–Hausdorff distance between two compact metric spaces
is not equal to the quantum distance between the associated compact quantum metric spaces (see,
for a concrete example, Appendix 1 in [63]). This happens because one admits Lip–seminorms,
which need not to come from metrics on the disjoint union of the two spaces.

1.2.22 Example (Quantum Tori). Fix n ≥ 2, and let Θ be the space of all skew symmetric
n× n matrices. For θ ∈ Θ, let Aθ be the corresponding quantum torus [57; 58]. It is defined as
follows. Let σθ denote the skew bicharacter on Zn defined by

σθ(p, q) := e2πip·θq. (1.23)
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Equip Cc(Zn), the space of C–valued functions on Zn of finite support, with the product consisting
of convolution twisted by σθ. That is, for f, g ∈ Cc(Zn), we define

(f ∗ g)(p) :=
∑
q∈Zn

f(q)g(p− q)σθ(p, q). (1.24)

Equip Cc(Zn) also with the involution f∗(p) = f(−p), and the norm of `1(Zn), so that Cc(Zn)
becomes a normed ∗–algebra. Let πθ denote the ∗–representation of Cc(Zn) on the Hilbert space
`2(Zn), given by

πθ(f)ξ := (f ∗ ξ)(p) :=
∑
q∈Zn

f(q)ξ(p− q)σθ(p, q), ξ ∈ `2(Zn). (1.25)

Moreover, let ‖ · ‖θ be the C∗–norm on Cc(Zn) given by ‖f‖θ := ‖πθ(f)‖. Then, Aθ is defined to
be the completion of Cc(Zn) for this norm. (In this way, the elements of Aθ can be thought of as
some kind of functions on Zn.) The n.-torus Tn has a canonical ergodic action αθ on Aθ. If we
denote the duality between Zn and Tn by 〈p, x〉 for x ∈ Tn and p ∈ Zn, then αθ is determined by

(αθ,x(f))(p) = 〈p, x〉f(p). (1.26)

Now, fix a length function on G = Tn, let Lθ be the seminorm defined by (1.17) and set, as
above, Aθ = {a ∈ (Aθ)sa : Lθ <∞}. Then, one has the following

1.2.23 Proposition. Lθ is a Lip–seminorm and (Aθ, Lθ) is a (compact) quantum metric space.

Proof. Since the action αθ of the compact group Tn is clearly ergodic, it suffices to apply Theorem
1.2.11.

Moreover, we will use intensively the following fundamental result of Rieffel (see [63], Theorem
9.2):

1.2.24 Proposition. [63] For any ε > 0 there exists a δ > 0 such that, if ‖θ − ψ‖ < δ, then
distq(Aθ, Aψ) < ε.

1.2.25 Remark. As we shall see, for n = 2, the quantum torus, also known as (ir)rational
rotation algebra, depending on whether θ is in Q or in R\Q (see, for instance, [23] for more
details), can be equivalently defined by a universality property, namely, it is the universal C∗–
algebras generated by two unitaries U and V satisfying the commutation relation

UV = e2πiθV U. (1.27)

Indeed, let H = L2(R/Z), and consider two unitary operators on H, the operator U := Mz(t) of
multiplication by the unimodular function z(t) = e2πit and the operator V of rotation by θ, that
is

Uf(t) = z(t)f(t) = e2πiθf(t) and V f(t) = f(t− θ). (1.28)

A simple calculation then yields

V Uf(t) = (Uf)(t− θ) = z(t− θ)f(t− θ)
= e−2πiθz(t)(V f)(t) = e−2πiθUV f(t).
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Hence,
UV = e2πiθV U.

We recall that a C∗–algebra Aθ is universal for the relation (1.27), provided that it is generated
by two unitaries Ũ and Ṽ satisfying (1.27) and, whenever A = C∗(U, V ) is another C∗–algebra
satisfying (1.27), there is a (∗–)homomorphism of Aθ onto A, which carries Ũ to U and Ṽ to V .
Since we know that there are unitaries satisfying the relation (the two unitaries in (1.28)), we
may consider the collection of all irreducible pair of unitaries (Uα, Vα) in B(H) satisfying (1.27).
Then, consider the operators

Ũ =
⊕∑
α

Uα and Ṽ =
⊕∑
α

Vα, (1.29)

and set Aθ := C∗(Ũ , Ṽ ). In order to see that Aθ is universal, let A := C∗(U, V ) be another
C∗–algebra satisfying (1.27). To verify that there is a well defined homomorphism ϕ : Aθ → A

such that ϕ(Ũ) = U and ϕ(Ṽ ) = V , it suffices to show that

‖p(U, V, U∗, V ∗)‖ ≤ ‖p(Ũ , Ṽ , Ũ∗, Ṽ ∗)‖

for every noncommutative polynomial in four variables. So, fix a polynomial p, and let A =
p(U, V, U∗, V ∗). By the GNS construction, there exists an irreducible representation π of A such
that ‖π(A)‖ = ‖A‖. Consider now the pair of unitaries U ′ := π(U) and V ′ := π(V ). Then
(U ′, V ′) is an irreducible pair of unitaries satisfying (1.27). Hence, by construction, we see that

‖p(Ũ , Ṽ , Ũ∗, Ṽ ∗)‖ ≥ ‖p(U ′, V ′, U ′∗, V ′∗)‖ = ‖p(U, V, U∗, V ∗)‖.

Therefore, ϕ is well defined and contractive from the ∗–algebra generated by Ũ and Ṽ into A.
Thus, it extends by continuity to a homomorphism of Aθ onto A.

As in the following we will use some “ultratechniques”, in the next section we introduce some
basic notions about ultrafilters and ultraproducts.

1.3 Ultrafilters and Ultraproducts

In this section, we briefly recall the definition and the principal properties of ultrafilters. (The
reader is referred to [68; 44] for a detailed exposition.)

1.3.1 Definition. Let X be a set and U a non–empty family of subsets of X. U is a ultrafilter
if the following properties are satisfied:

1) ∅ /∈ U ,

2) A,B ∈ U implies A ∩B ∈ U ,

3) A ∈ U implies B ∈ U , ∀B ⊇ A,

4) for each A ⊆ X, one has either A ∈ U or X\A ∈ U .

The ultrafilter is principal (or fixed, or trivial) if it satisfies the further property:
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5) the filter contains a least element, i.e. there exists a set B ⊂ X, called the basis for U , such
that U is the collection of all the supersets of B.

A free (non–principal) ultrafilter is an ultrafilter which is not principal.

1.3.2 Lemma. Let U be an ultrafilter on a set X. Then,

1. if U is principal, its basis is a singleton;

2. if U is non–principal, it does not contain finite sets.

Proof. 1. Let B be the basis for U . If B is not a singleton, we can take a non trivial partition
of B. Then, one, and only one, of the sets of this partition belongs to U , contradicting the
minimality of B. 2. Assuming the contrary, let A ∈ U be a finite set, and let a ∈ A. Then, only
one of the two sets {a} and A\{a} belongs to U . If {a} does, U should be principal with basis
{a}. If A\{a} ∈ U , one can repeat the argument, ending up with a singleton. In both cases, one
gets a contradiction, hence the claim.

1.3.3 Definition. Let {xi}i∈N be a family of real numbers and U an ultrafilter on the index set
N. We say that limU xα = x, if the set {i ∈ N : |xα − x| < ε} is in U for any ε > 0.

1.3.4 Example. We want to show that a convergent sequence {xn}n∈N ⊂ R converges over any
ultrafilter U on N. Let us consider separately the two cases, namely U principal and U free. If U
is principal, let {n0} be its basis. By definition, Aε = {n ∈ N : |xn − xn0 | < ε} contains n0 for
any ε > 0. Thus, Aε ∈ U (by property 3) of the Definition), and consequently limU xn = xn0 . If,
instead, U is non–principal, let x be the usual limit of the sequence (i.e. x = limn→∞ xn). Given
ε > 0, one should have either Aε ∈ U or N\Aε ∈ U (by property 4)). Since N\Aε is evidently
finite, by the previous Lemma one can conclude that Aε ∈ U for any ε > 0.

1.3.5 Remark. A more refined version of the previous argument shows that every bounded
net {xi}i∈I is convergent over any given ultrafilter U on I. Indeed, one can use a Bolzano–
Weierstrass argument as follows: let {xi}i∈I ⊆ [−M,M ], and set R1 = [−M, 0], R2 = (0,M ] and
Fα = {i ∈ I : xi ∈ Rα}, α = 1, 2. One, and only one, among F1 and F2 belongs to U . (If it
happens that F2 is in U , we change R2 with its closure R2 and thus we obtain a subset of I which
contains F2, and so is still in U). Proceeding in this way, we get a sequence of closed sets Rn,
whose diameters halves at each step and containing infinitely many elements of the net. Then⋂
Rn is a singleton {x}, and then it follows that limU xi = x.

More generally, we want to link ultrafilters with the concept of convergence in topological
spaces.

1.3.6 Definition. Let (X, T ) be a Hausdorff topological space, {xi}i∈I ⊆ X, with I an index set,
and let U be an ultrafilter on I. Then, we say that limU xi(∼= T − limU xi) = x0, if for every
neighbourhood N of x0 we have {i ∈ I : xi ∈ N} ∈ U .

Notice that limits over U are unique, and if U is an ultrafilter on N and {xi} is a bounded
sequence in R, then

lim inf
n

xn ≤ lim
U
xn ≤ lim sup

n
xn.

Moreover, if C is a closed subset of X and {xi}i∈I ⊆ C, then limU xi belongs to C, whenever it
exists.
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1.3.7 Remark. Let X be a metric space. If U is an ultrafilter over N and limU xn = x, with
{xn} ⊂ X, then there exists a subsequence of {xn} which converges to x. Indeed, if we set
Uk := {k ∈ N : d(xn, x) < 1/k}, then Uk ∈ U . For each k, let nk be the smallest element in Uk.
The subsequence {xnk

} clearly converges to x.

The next theorem characterizes compactness by use of ultrafilters.

1.3.8 Theorem. [1] Let K be a Hausdorff topological space. Then K is compact if, and only if,
limU xi exists for all {xi}i∈I ⊆ K and any ultrafilter U over I.

Proof. Assume that K is compact. Let {xi}i∈I be a subset of K and U an ultrafilter over I.
Suppose that {xi}i∈I does not converge to any x ∈ K. Then, each x in K has a neighborhood
Vx such that {i ∈ I : xi ∈ Vx} /∈ K. Since K ⊂

⋃
x∈K Vx and K is compact, there exist

Vy1 , Vy2 , . . . , Vyn such that K ⊂
⋃n
j=1 Vyj , which implies that I =

⋃n
j=1 Ij , where Ij := {i ∈

I : xi ∈ Vyj}. Now, if we show that some Ik ∈ U , we get a contradiction, thus proving the
implication. So, assume, to the contrary, that Ij /∈ K for j = 1, . . . , n. Then, by property 4) in
Definition 1.3.1, we have I\Ij ∈ U , and thus

⋂n
j=1(I\Ij) = ∅ ∈ K, which is a contradiction.

Conversely, suppose that any subset {xi}i∈I of K is convergent over any ultrafilter U on I.
Let {Fα}α∈Γ be a family of closed subsets of K which has the finite intersection property (i.e.,
any finite subfamily of {Fα}α∈Γ has non..empty intersection). We will prove that

⋂
α Fα 6= ∅,

which will imply that K is indeed compact. So, consider the set I := {A ⊂ Γ : A is finite }
and let xA ∈

⋂
α Fα. Set B := {[A,∞) := {B ∈ I : A ⊂ B} : A ∈ 2I}. Since [A,∞) ∩

[A′,∞) = [A ∪ A′,∞), B is stable under intersection, and we may define a filter on I by setting
F(B) := {A ⊂ I : there is a B ∈ B such that B ⊂ A}. Then, F(B) is a proper filter (i.e.,
F(B) 6= 2I) because ∅ 6= B. Let U be some ultrafilter on I which extends F(B). We can now
use the assumption on K that every subset is convergent over any ultrafilter, and deduce that
limU xA = x exists.
In order to complete the proof, we have to show that x is an element of every Fα. Suppose, to the
contrary, that x /∈ Fα′ for some α′ ∈ Γ. Then, x has a neighborhood Vx such that Vx ∩ Fα′ = ∅.
Since limU xA = x, we have Ix := {A ∈ I : xA ∈ Vx} ∈ U . We also know that Ix ∩ [{α′},∞) ∈ U ,
because [{α′},∞) ∈ B ⊂ F(B) ⊂ U . Now, for any A ∈ Ix ∩ [{α′},∞) ∈ U , we have both
xA ∈ Vx and xA ∈

⋂
γ∈A Fγ ⊂ Fα′ , which contradicts the assumption that Vx ∩ Fα′ = ∅. Hence,

Ix ∩ [{α′},∞) = ∅ ∈ U . But this is also a contradiction, and the proof is now complete.

1.3.9 Remark. As seen in Theorem 1.2.18, the space (QCM,distq) of isometry equivalence
classes of compact quantum metric spaces is itself a complete metric space. Since it is also
separable (cf. Theorem 13.15 in [63]), (QCM,distq) is a Hausdorff space. Therefore, if S is any
totally bounded subset inQCM, its closure S is compact, and we can apply the previous Theorem
to deduce that any sequence (An, Ln)n∈N ⊂ S converges to limU (An, Ln) for any ultrafilter U
over N.

When the space is a linear topological vector space, the convergence over an ultrafilter shares
the same properties with the usual convergence. In particular, we have the following

1.3.10 Proposition. [44; 68] Let X be a linear topological vector space, and U an ultrafilter over
an index set I.

(i) Suppose that {xi}i∈I and {yi}i∈I are two subsets of X such that limU xi and limU yi exist.
Then

lim
U
xi + yi = lim

U
xi + lim

U
yi, and lim

U
αxi = α lim

U
xi
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for any scalar α ∈ R.

(ii) If X is a Banach lattice and {xi}i∈I is a subset of positive elements of X, then limU xi is
also positive.

We can now introduce the notion of ultrapower of a Banach space. So, let X be a Banach
space and U an ultrafilter over an index set I. We define

`∞(X) := {{xi}i∈I : ‖{xi}‖ := sup
i∈I
‖xi‖ <∞}. (1.30)

Then,
NU (X) := {{xi}i∈I ∈ `∞(X) : lim

U
‖xi‖ = 0} (1.31)

is a closed linear subspace of `∞(X) (see Proposition 1.3.15 below).

1.3.11 Definition. The Banach space ultrapower of X over U is defined to be the Banach space
quotient

`∞(X,U) := `∞(X)/NU (X), (1.32)

with elements denoted by [xi]U , where {xi} is a representative of the equivalence class. The
quotient norm is canonically given by

‖[xi]U‖ = inf{‖{xi + yi}‖ : {yi} ∈ NU (X)}. (1.33)

1.3.12 Proposition. [1] The quotient norm on `∞(X,U) satisfies

‖[xi]U‖ = lim
U
‖xi‖ for any [xi]U ∈ `∞(X,U). (1.34)

Proof. Let xU ≡ [xi]U be in `∞(X,U). Then, xU = {{xi + yi} : {yi} ∈ NU (X)}, and thus

lim
U
‖xi + yi‖ = lim

U
‖xi‖ ≤ ‖{xi + yi}‖,

for any {yi} ∈ NU (X), which implies that limU ‖xi‖ ≤ ‖xU‖. As for the reverse inequality,
consider the set

Iε := {i ∈ I : ‖xi‖ ≤ lim
U
‖xi‖+ ε}, ε > 0.

By the very definition of limit over U , we have Iε ∈ U . Now, define {yi} by setting yi = −xi if
i /∈ Iε and yi = 0 otherwise. Then, limU ‖yi‖ = 0, and so {xi + yi} is a representative of xU . But
‖{xi + yi}‖ = supi∈Iε ‖xi‖, which implies that

‖{xi + yi}‖ ≤ lim
U
‖xi‖+ ε.

Hence, ‖xU‖ ≤ ‖{xi + yi}‖ ≤ limU ‖xi‖+ ε. By the arbitrariness of ε, the claim follows.

1.3.13 Remark. The map πU : X → `∞(X,U), defined by

πU (x) := [xi] := [xi]U , where xi = x, for all i ∈ I, (1.35)

is an isometric embedding of X into `∞(X,U). Using the map πU , one may identify X with
πU (X), so that X can be regarded as a subspace of `∞(X,U).
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1.3.14 Example (Ultrapowers of a Hilbert space). It is known that a Banach space X is a
Hilbert space if, and only if, ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X. Let `∞(X,U)
be an ultrapower of X and let [xi], and [yi] be two elements in `∞(X,U). Then, we have

‖[xi] + [yi]‖2 = ‖[xi + yi]‖2 = lim
U
‖xi + yi‖2

and
‖[xi]− [yi]‖2 = ‖[xi − yi]‖2 = lim

U
‖xi − yi‖2

Since
lim
U
‖xi + yi‖2 + lim

U
‖xi − yi‖2 = lim

U
(‖xi + yi‖2 + ‖xi − yi‖2)

and using the Hilbert structure of X, we get

lim
U
‖xi + yi‖2 + lim

U
‖xi − yi‖2 = lim

U
(2‖xi‖2 + 2‖yi‖2)

Hence,
‖[xi] + [yi]‖2 + ‖[xi]− [yi]‖2 = 2 ‖[xi]‖2 + ‖[yi]‖2 ,

which implies that `∞(X,U) is a Hilbert space.

The ultraproduct of a family of Banach spaces is defined in a similar manner. In fact, let
{Xi}i∈I be a family of Banach spaces and U an ultrafilter over the index set I. We define

`∞(Xi) := {{xi}i∈I : ‖xi‖ := sup
i∈I
‖xi‖ <∞}. (1.36)

Then, as above, the subspace

N(Xi,U) := {{xi}i∈I ∈ `∞(Xi) : lim
U
‖xi‖ = 0} (1.37)

is a closed linear subspace of `∞(Xi). Indeed, we have the following

1.3.15 Proposition. [1] N(Xi,U) is a closed subspace of `∞(Xi).

Proof. By construction, N(Xi,U) is clearly a subspace of `∞(Xi). In order to show that it is
closed, Take a Cauchy sequence {{xni }i∈I}n∈N in `∞(Xi) with {xni }i∈I ∈ N(Xi,U) for each n ∈ N.
Since `∞(Xi) is complete, we know that {{xni }i∈I}n∈N converges to some {xi} ∈ `∞(Xi). Hence,
let ε > 0 be given, and consider the nonempty set Jε := {n : ‖{xni }− {xi}‖ ≤ ε}. For any n ∈ Jε
and i ∈ I, we have ‖xni − xi‖ ≤ ε. Then, limU ‖xi‖ ≤ limU ‖xni ‖+ ε. Since {xni } ∈ N(Xi,U), we
have limU ‖xi‖ ≤ ε, which completes the proof.

1.3.16 Definition. The ultraproduct of the family of Banach spaces {Xi}i∈I is defined to be the
Banach space quotient

`∞(Xi,U) := `∞(Xi)/N(Xi,U), (1.38)

with elements denoted by [xi]U , where {xi} is a representative of the equivalence class. In view
of Proposition 1.3.12, the quotient norm is given by

‖[xi]U‖ := lim
U
‖xi‖. (1.39)
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1.3.17 Example (Ultralimits of sequences of pointed metric spaces). Recall that a
pointed metric space (X,x, ρ) is a metric space (X, ρ) with a distinguished point (the basepoint)
x ∈ X. Let U be a free ultrafilter on N, and let (Xi, xi, ρi)i∈N be a sequence of (proper) metric
spaces with basepoint xi. Consider the set

X∞ := {{yi}i∈N : ρi(xi, yi) <∞}. (1.40)

Since {ρi(xi, yi)}i∈N is a bounded sequence, we may define ρ̃U : X∞ × X∞ → R by ρ̃U (y, z) :=
limU ρi(yi, zi). Then, ρ̃U is a pseudo–distance. We define the ultralimit of the sequence (Xi, xi, ρi)
to be the quotient metric space (XU , xU , ρU ), where xU := [xi]U denotes the element corresponding
to {xi} ∈ X∞ in the quotient.

1.3.18 Lemma. If {(Xi, xi, ρi)}i∈N is a sequence of pointed metric spaces, then (XU , xU , ρU ) is
complete.

Proof. Let ynU be a Cauchy sequence in XU , where ynU = [yni ]U . Let U0 = N, and define inductively
the family of subsets Uk by

Uk := {n ≥ k : |ρn(yjn, yin)− ρU (yjU , y
i
U )| < 1/2k, 1 ≤ i, j ≤ k}.

Then, Uk ∈ U , Uk+1 ⊆ Uk and
⋃
k≥0 Uk\Uk+1 = N. For n ∈ Uk\Uk+1, let us define zn = ykn.

Then, zU = [ykn]U , since the sequence {ρn(xn, zn)} is bounded, and thus yjU → zU as j → ∞.
Indeed, we have

|ρn(yjn, zn)− ρU (yjU , zU )| < 1
2k
.

Hence, since j → ∞ implies k → ∞, and limj→∞ ρn(y
j
n, zn) = limj→∞ ρn(y

j
n, ykn) = 0, we get

ρU (yjU , zU )→ 0 for j →∞, as claimed.

Let us notice that one of the main benefits of the ultralimit formulation is to avoid the messy
process of passing to subsequences, sub–subsequences, and so on, by making once and for all
some choice in advance. For instance, the ultralimit construction naturally gives an embedding
between two limits in each other, provided that an embedding is given between elements with
the same index. In fact, let {(Yi, di)}i∈N, {(Xi, ρi)}i∈N be two sequences of proper metric spaces,
and let let ιi : Yi → Xi, i ∈ N be an isometric embedding of Yi into Xi. Fix a basepoint yi ∈ Yi
for each i ∈ N, set xi ∼= ιi(yi), and consider the two sequences {(Yi, yi, di)}i∈N, {(Xi, xi, ρi)}i∈N
of pointed metric spaces. Then, we have the following

1.3.19 Lemma. For any free ultrafilter U over N, the ultralimit (YU , yU , dU ) of the sequence
{(Yi, yi, di)}i∈N isometrically embeds into the ultralimit (XU , xU , ρU ) of {(Xi, xi, ρi)}i∈N.

Proof. Indeed, as ιi : Yi → Xi are isometric embeddings for all i ∈ N, the family {ιi} induces an
isometric embedding ιU : YU → XU by setting ιU (zU ) := [ιi(zi)]U for any sequence {zi} ∈ Y∞. In
fact, for any two sequences {zi}, {z̃i} in the same equivalence class zU , one has limU di(zi, z̃i) =
limU (ιi(zi), ιi(z̃i)) = 0, which implies dU (zU , z̃U ) = ρU (ιU (zU ), ιU (z̃U ). In particular, xU = ιU (yU ),
and the claim follows.
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1.4 Towards a Quantum Metric Tangent Space

1.4.1 The pointed Gromov–Hausdorff convergence for (proper) metric spaces

Let us briefly recall the basic definitions of pointed-Gromov–Hausdorff convergence and of tangent
sets of a metric space. The reader is referred to [30; 10; 14] for more details.

1.4.1 Notation. If (X, ρ) is a metric space, we shall denote by B(x, r) the open ball {y ∈ X :
d(x, y) < r}, by B(x, r) the closed ball {y ∈ X : d(x, y) ≤ r}, and by B(x, r) the closure of
B(x, r). Moreover, we let Nε(E) := {x ∈ X : infy∈E d(x, y) < ε} be the ε–neighborhood of the
subset E in X.

In the case of non–compact, proper (i.e., boundedly compact) metric spaces, one is lead to
consider the pointed Gromov–Hausdorff topology as a good substitute for the Gromov–Hausdorff
topology, which is defined only for family of compact spaces. So, let (X,x) be a pointed metric
space. There are several equivalent manners to define this topology.

1.4.2 Definition. [29] A neighbourhood base for the pointed Gromov–Hausdorff topology consists
of the sets Nε(X,x), ε ∈ (0, 1

2),where

Nε(X,x) := {(Y, y) : d̃H((X,x), (Y, y)) < ε}, (1.41)

and d̃H((X,x), (Y, y)) is defined as the infimum of the ε > 0 for which there is an admissible
metric ρ on the disjoint union X qY of X and Y , such that ρ(x, y) < ε, BX(x, 1

ε ) ⊂ Bε(Y ), and
BY (y, 1

ε ) ⊂ Bε(X).

As pointed out by Gromov in [29], the function d̃H is not properly a distance (Gromov calls
it a “modified Hausdorff distance”): it satisfies the triangle inequality provided that at least two
of the three “distances” involved are small enough (say ≤ 1/2). Nevertheless, the family of sets
Nε(X,x) do define a neighbourhood base.

Equivalently,

1.4.3 Definition. [29] A neighbourhood base for the pointed Gromov–Hausdorff topology consists
of the sets NR,ε(X,x), with R > 0 and ε ∈ (0, 1), where

NR,ε(X,x) := {(Y, y) : dR((X,x), (Y, y)) < ε}, (1.42)

and dR((X,x), (Y, y)) is defined as the infimum of the ε > 0 such that there are isometric
embeddings hX , hY of X and Y into a metric space (Z, ρ) for which ρ(hX(x), hY (y)) < ε,
hX(BX(x,R)) ⊂ Nε(hY (Y )) and hY (BY (y,R)) ⊂ Nε(hX(X)).

On the isometry classes of proper metric spaces, the pointed Gromov–Hausdorff topology is
a Hausdorff topology, and, since it is separable, it is determined by its converging sequences.
Indeed, it is also equivalently defined by the following

1.4.4 Proposition. [29] (Xn, xn) converges to (X,x) in the pointed Gromov–Hausdorff topology
if, and only if, for any R > 0 there exists a positive infinitesimal sequence εn such that, for
any η > 0 there is n0 ∈ N such that, for all n > n0, there are isometric embeddings hn, h
of BXn(xn, R + εn) and BX(x,R) into a metric space (Zn, ρn) for which ρn(hn(xn), h(x)) < η,
hn(BXn(xn, R+ εn)) ⊂ Nη(h(BX(x,R))) and hn(BX(x,R)) ⊂ Nη(h(BXn(xn, R+ εn))).
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We may rephrase the notion of pointed Gromov–Hausdorff convergence in terms of ultralimits.
Indeed, we have the following

1.4.5 Theorem. If the family (Xi, xi, ρi)i∈N of pointed metric spaces is precompact in the pointed
Gromov–Hausdorff topology (i.e., for any r > 0, the family (Bi(xi, r), ρi)i∈N is precompact in the
Gromov–Hausdorff topology), then (XU , xU , ρU ) is a limit point of the sequence (Xi, xi, ρi)i∈N for
any free ultrafilter U over N.

Proof. Let U be a free ultrafilter. Given ε > 0 and r > 0, then, by total boundedness, there
exists an N(ε, r) ∈ N such that we can find a family {yji }

N(ε,r)
j=1 ⊂ Bi(xi, r) of N(ε, r) elements,

which is an ε–net in Bi(xi, r) for any i. The N(ε, r) sequences {yji }i∈N for 1 ≤ j ≤ N(ε, r)
give us N(ε, r) elements yjU ∈ XU . If zU ∈ BU (xU , r), then we can find an element Ur ∈ U
such that ρi(xi, zi) < r for any i ∈ Ur. Moreover, for ε > 0 given, there exists an Uε ∈ U
such that |ρU (yjU , zU ) − ρi(yji , zi)| < ε for i ∈ Uε, which implies that ρU (yjU , zU ) < 2ε for some
1 ≤ j ≤ N(ε, r). Hence, BU (xU , r) is totally bounded, and for all ε > 0 there is a 2ε–net in
BU (xU , r) which is a Gromov–Hausdorff limit point of ε–nets in the balls Bi(xi, r). It follows
then that (Xi, xi, ρi) converges over U to (XU , xU , ρU ) in the pointed Gromov–Hausdorff topology.

In particular, the conclusion of the previous Theorem clearly holds for any precompact se-
quence of compact metric spaces.

1.4.6 Remark. The ultralimit formulation of the (pointed) Gromov–Hausdorff convergence al-
lows us to find an embedding between two limits in each other, provided that an embedding is
given between elements with the same index (see Lemma 1.3.19 above). In this way, the GH–
limits of any precompact sequence of compact subspaces Yi ⊂ Xi (containing the basepoint xi)
canonically embed into XU . As a consequence, if (X∞, x∞) is the pointed Gromov–Hausdorff
limit of the sequence of proper spaces (Xn, xn), then, for every free ultrafilter U on N, the ultra-
limit (XU , xU ) is isometric to (X∞, x∞).

1.4.7 Lemma. Let {Xn} be a sequence of compact metric spaces, and let Yn ⊆ Xn be a closed
subspace for each n ∈ N. If {Xn} converges to X in the Gromov–Hausdorff topology, then there
exists a subsequence of {Yn} Gromov–Hausdorff converging to a closed subset Y ⊆ X.

Proof. In fact, since Yn ⊆ Xn, the sequence {Yn} is precompact in the Gromov–Hausdorff topol-
ogy. Therefore, it converges to its ultralimit YU for any ultrafilter U . Let XU be the ultralimit
of {Xn} over the same ultrafilter. Now, XU is isometric to X (call ϕU : X → XU this isometry),
and we have YU ⊆ XU by Lemma 1.3.19 (since ιU (yU ) = [ιi(yi)]U = [yi]U = yU for any yU ∈ YU ).
Let Y := ϕ−1

U |YU (YU ) be the corresponding isometric copy of YU in X. Then, Y ⊆ X and we can
find a subsequence of {Yn} converging to Y in the Gromov–Hausdorff topology.

Then, from the previous characterization, one can easily prove the following

1.4.8 Proposition. If {(Xn, xn)} converges to (X,x) in the pointed Gromov–Hausdorff topology,
then, for any ultrafilter U over N, we have BU = GH− limU BXn(xn, R), with BX(x,R) ⊆ BU ⊆
BX(x,R).
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Proof. Indeed, let U be a free ultrafilter over N. Then, by Theorem 1.4.5 above, the pointed
Gromov–Hausdorff limit (X,x) coincides with (i.e., is isometric to) the ultralimit (XU , xU ) over
U of the sequence {(Xn, xn)}, and we have

BX(x,R) = {[yn]U : lim
U
ρn(xn, yn) ≤ R},

while BX(x,R) coincides with the closure of of the open ball

BX(x,R) = {[yn]U : lim
U
ρn(xn, yn) < R} = {[yn]U : ρn(xn, yn) < R, ∀n ∈ N},

where the second equality follows from the fact that, since limU ρn(xn, yn) < R implies ρn(xn, yn) <
R eventually, one may always replace the elements of a sequence {yn} ∈ [yn]U with distance from
the basepoint greater than R, with points at distance strictly smaller than R, and the equivalence
class does not change. Finally, we have

BU = GH− lim
U
BXn(xn, R) = {[yn]U : ρn(xn, yn) ≤ R, ∀n ∈ N},

and thus, BX(x,R) ⊆ BU ⊆ BX(x,R), as claimed. Let us notice that BU clearly depends on U ,
as well as the embeddings.

Tangent sets of abstract metric spaces at a point have been defined by Gromov (cf. [30; 10;
14]), as a natural generalization of the notion of tangent cone at a convex set, e.g. in Rn .

1.4.9 Definition (Tangent Cone). Let (X, ρ) be a (proper) metric space, and x ∈ X. A
tangent set of X at x is any limit point, for t → ∞, of (X,x, tρ) in the pointed Gromov–
Hausdorff topology, where tρ denotes the rescaled distance by the parameter t. We write also tX
for (X,x, tρ) when the metric and x are clear from the context. We shall denote by TxX, and
call it the tangent cone of X at x, the family of tangent sets of X at x. A tangent ball of X at
x is any ball centered in x of some tangent set T ∈ TxX.

Recall that Covρ(X, r) denotes the minimum number of open balls of radius r necessary
to cover a subset E ⊂ X. Then, as an application of the Gromov compactness criterion (cf.
Theorem 1.1.8), one can easily prove the following

1.4.10 Proposition. Let (X,x) be such that

lim sup
r→0

Covρ(BX(x, r), λr) <∞ ∀λ > 0. (1.43)

Then, TxX is not empty. Indeed, given any sequence tn → +∞, there exists a subsequence tnk
for

which (X,x, tnk
ρ) converges to a unique proper space in the pointed Gromov–Hausdorff topology.

Proof. Since Covρ(BX(x, r), λr) = Covρ(BλX(x, λr), r), the claim follows from the Gromov com-
pactness criterion for compact metric spaces (see Theorem 1.1.8).

Let us recall that a pointed metric space (X,x, ρ) is called a cone, if it is invariant under
rescaling, i.e. if (X,x, tρ) is isometric to (X,x, ρ), as pointed spaces, for any t > 0.
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1.4.11 Remark. We list some basic properties of tangent sets.
(i) A tangent set cannot be empty, since it necessarily contains the basepoint x. However, it may
happen that TxX is empty, namely that (X,x, tρ) has no limit points.
(ii) If X is a (Riemannian n-dimensional) manifold, the tangent set at x is unique, and coincides
with the ordinary tangent space (see next example; cf., also, [30; 10; 14]).
(iii) TxX is dilation invariant in the following sense: if (T, ρT ) is a tangent set of X at x, given
by the converging sequence (X,x, tnρ), and α > 0, then (X,x, αtnρ) converges to (T, αρT ). As
a consequence, if TxX consists of a unique set, such set is a cone in the usual sense. For this
reason, one refers to the set TxX with the name of Gromov tangent cone.
(iv) If all the metric spaces Xn are subsets of the same proper metric space Z, the pointed
Gromov–Hausdorff convergence may be replaced by the Attouch–Wets convergence3. Let us note
that in this case we do not need to specify a point in Z.
(v) If the ambient space Z is dilation invariant, e.g. Z = Rn, then the dilations of a given subset
are still subsets of Z. Hence, the tangent sets can be defined as Attouch–Wets limits, and are
subsets of Z. Even if the two topologies do not coincide, the families of tangent sets at a given
point do.

One may say that the tangent cone is a local notion, since it grasps the behavior of a set in a
small neighborhood of a point. On the opposite side, let us mention the asymptotic cones, which
do the same, but ”near infinity”.

1.4.12 Definition (Asymptotic Cone). Let (X, ρ) be a (proper) metric space, and x ∈ X. An
asymptotic cone of X, or of X at infinity, is any limit point, for t→ 0, if one exists, of (X,x, tρ)
in the pointed Gromov–Hausdorff topology.

An example: the tangent cone to a Riemannian manifold

As mentioned in Remark (ii) above, the tangent cone to a Riemannian manifold (M, g) at a point
m0 is then the usual tangent space at m0 with the Euclidean distance function ρE defined by the
Riemannian metric g, and the dilation is the usual homothety of a vector space. To prove it, we
need some preparation. (We will follow [47], Chapter 8.)

1.4.13 Lemma (Approximate isometry criterion). Let (X, ρX) and (Y, ρY ) be metric spaces,
and suppose that A is a subset of X and f : A → Y is a map, not necessarily continuous, such
that

|ρY (f(a1), f(a2))− ρX(a1, a2)| ≤ δ

for all a1, a2 ∈ A. Suppose that every point of X lies within εX of A and every point of Y lies
within εY of the image f(A). Then,

distGH(X,Y ) ≤ max(εX , εY ) + δ/2.

Proof. We shall define a compatible metric on the disjoint union X q Y . So, for x ∈ X and
y ∈ Y , set

ρ(z, y) := inf
a∈A
{ρX(x, a) + ρY (f(a), y)}+ δ/2.

3Given a metric space (X, d), the Attouch–Wets topology on the family CL(X) of closed sets of X is the topology
that CL(X) inherits from C(X, R), the algebra of R–valued continuous functions equipped with the topology of
uniform convergence on bounded subsets of X, under the identification A ↔ d(·, A), where ρ(x, A) = infy∈A ρ(x, y).
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The constant δ/2 is required by the triangle inequality. In order to show that ρ defines an
admissible metric, we must verify the triangle inequality. Let us check that ρ(x1, x2) ≤ ρ(x1, y)+
ρ(y, x2) for x1, x2 ∈ X, y ∈ Y (the other cases are proven similarly). By the definition of ρ,

ρ(x1, y) + ρ(y, x2) = inf
a1

{ρX(x, a1) + ρY (f(a1), y)}+ δ/2

+ inf
a2

{ρY (y, f(a2)) + ρX(a2, x2)}+ δ/2.

On the other hand,

ρ(x1, x2) = ρX(x1, x2) ≤ ρX(x1, a1) + ρX(a1, a2) + ρX(a2, x2),

and, by the assumption of the lemma,

ρX(a1, a2) ≤ ρY (f(a1), f(a2)) + δ

≤ ρY (f(a1), y) + ρY ((y, f(a2)) + δ,

ρ(x1, x2) ≤ ρX(x1, a1) + ρY (f(a1), y) + ρY ((y, f(a2)) + ρX(a2, x2) + δ.

By taking the infimum over all a1, a2 ∈ A, we get ρ(x1, x2) ≤ ρ(x1, y) + ρ(y, x2).
By assumption, for any y ∈ Y , there is an a ∈ A with ρY (f(a), y) < εY . Therefore ρ(a, y) ≤
ρY (f(a), y)+δ/2 < εY +δ/2, which implies that Y is contained in the δ1–neighborhood N (X, δ1)
for the metric ρ, with δ1 ≡ εY + δ/2. A similar argument shows that X ⊂ N (Y, δ2) with
δ2 ≡ εX + δ/2. Thus, we have distGH(X,Y ) ≤ max(δ1, δ2) = max(εX , εY ) + δ/2.

1.4.14 Definition. A map F satisfying the assumption of Lemma 1.4.13 will be called an ap-
proximate isometry between X and Y , or a (δ, εX , εY )–isometry.

We say that a metric space (X, ρ) has the continuous expansion property at x0 ∈ X if
Nh(B(r, x0)) = B(r + h, x0) for all r, h > 0. The continuous expansion property holds for
Riemannian spaces, and indeed for any length space, but can fail for discrete metric spaces (cf.
[30]).

1.4.15 Proposition. Let (X,x0) be a pointed space with a metric ρ0 that admits dilations δt,
t > 0. Suppose that ρ is another metric defined in a ρ0–neighborhood U of x0 and that the
estimate

|ρ(δt(·), δt(·))− ρ0(δt(·), δt(·))| ≡ |δ∗t (ρ− ρ0)| = o(t) (1.44)

holds uniformly on U as t → 0. If both ρ0 and ρ have the continuous expansion property, then
the Gromov tangent cone of (X,x0, ρ) at x0 is (X,x0, ρ0).

Proof. We write Bt(r) for the ball of radius r about x0 w.r.t. the metric (1/t)ρ, and B0(r) for
the ball of radius r about x0 w.r.t. ρ0. We will show that Bt(r) Gromov–Hausdorff converges to
B0(r), using the approximate isometry criterion of Lemma 1.4.13 above.
The estimate in (1.44) means that

|ρ(δtq1, dtq2)− ρ0(δtq1, δtq2)| ≤ f(t)

for all q1, q2 in the neighborhood U and some function f such that f(t)/t → 0 as t → 0. Since
the δt are ρ0–dilations, ρ0(δtq1, δtq2) = tρ0(q1, q2), so the estimate can be rewritten as

|1
t
ρ(δtq1, δtq2)− ρ0(δtq1, δtq2)| ≤ h(t)
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where h(t) = f(t)/t. This last estimate asserts that δt is an h(t)–approximate isometry between
B0(r) and Bt(r). The same estimate, applied with q1 = x0, shows that δt(B0(r − h(t))) ⊂ Bt(r)
and Bt(r−f(t)) ⊂ δt(B0(r)). Consequently, if we take the domain A of δt to be δ−1

t (Bt(r))∩B0(r),
then we find that B0(t−h(t)) ⊂ A and Bt(r−h(t)) ⊂ δt(A). The continuous expansion property,
i.e. Nh(B(r)) = B(r + h) now implies that the dilation δt is a (h(t), h(t), h(t))–approximate
isometry, and consequently that distGH(Bt(r), B0(r)) ≤ 3h(t)/2. Since h(t) → 0 as t → 0, the
claim then follows.

Finally, we prove the following

1.4.16 Theorem (Riemannian Tangent Cone). Let (M, g) be an n–dimensional Riemannian
manifold. Then, the tangent cone at a point m0 ∈ M is the usual tangent space at m0 with the
Euclidean distance function defined by the Riemannian metric.

Proof. Let (x1, . . . , xn) be normal coordinates for a neighborhood U of the point m0 ∈ M .
Then, the estimate ds2 =

∑
i(dxi)

2 + O(|x|2) (i.e., gij = δij + O(|x|2)) relates the Riemannian
metric to the Euclidean metric

∑
i(dxi)

2 associated to the normal coordinates (see, for instance,
Lemma 13 in [51]). Let ρE be the Euclidean distance function associated to the Euclidean metric
tensor δij , and let ρg be the Riemannian distance function associated to gij . Let δt(x1, . . . , xn) =
(tx1, . . . , txn) be the Euclidean dilation. The estimate implies that |δ∗t (ρg−ρE)| = O(t2) uniformly
near m0. This estimate is stronger than that assumed above in Proposition 1.4.15. (Recall that
f(t) = O(t2) means that there is a constant c > 0 such that |f(t)|/t2 ≤ c.) Hence, Proposition
1.4.15 implies that the Gromov tangent cone to a Riemannian manifold is its standard manifold
tangent space, endowed with the Euclidean structure.

1.4.2 From the commutative to the noncommutative setting

In this section, we will illustrate the passage from the ordinary pointed Gromov–Hausdorff topol-
ogy to a (possible) quantum version of it. As a first step towards the noncommutative setting,
we shall rephrase the pointed Gromov–Hausdorff construction in quantum language. We want
to show that the above notion of pointed Gromov–Hausdorff convergence of a sequence of proper
metric spaces, can be rephrased in terms of the quantum Gromv–Hausdorff convergence of a suit-
able family of (order–unit) spaces of functions. In fact, as the pointed Gromov–Hausdorff limit
is essentially an inductive limit over the family of closed balls given by Gromov–Hausdorff limits
of sequences of closed balls with “almost” fixed radius (cf. Proposition 1.4.4), we will show that
the limit space can be recovered also by taking a (suitable) inductive family of quantum metric
spaces, each of which is the quantum Gromov–Hausdorff limit of the sequence of the spaces of
Lipschitz functions defined on (quotients of) the original closed balls. So, let us see how to do
this.

First of all, we have to “dualize” the construction, for in the quantum setting the main object
is no longer the metric space itself but a suitable set of functions on it. Therefore, since we want
to end up with an inductive family of quantum metric spaces, we have to pass from an injective
family of (subsets of) metric spaces to a projective one, in such a way that the resulting family of
quantum metric spaces (the spaces of Lipschitz functions) will be (isometrically) injective w.r.t.
the Lip–seminorms. To this aim, let (X,x, ρ) be a pointed proper metric space, and let B(x, r)
be the closed ball with center x and radius r > 0. We define a new distance on it as follows: let
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C(x, r), r > 0, be the complement in X of the open ball B(x, r), i.e. C(x, r) := X\B(x, r), and
let ρ• be the metric on B(x, r) given by

ρ•(x1, x2) := min (ρ(x1, x2), ρ(x1, C(x, r)) + ρ(x2, C(x, r))) , (1.45)

where ρ(y, C(x, r)) = inf{ρ(y, z) : z ∈ C(x, r)}. Thus, ρ• is the quotient metric w.r.t. the
equivalence relation defined by: y ∼ z if y = z or y, z ∈ C(x, r) (see, for instance, [72], Proposition
1.4.4). Let us denote by B

•(x, r) the quotient of B(x, r) w.r.t. this metric. Then, for x1, x2 ∈
B(x, r/2), we have clearly ρ•(x1, x2) = ρ(x1, x2). Hence, the (identity) map from B(x, r/2) into
B
•(x, r/2) sending x to itself is an isometry w.r.t. ρ on B(x, r/2) and to ρ• on B•(x, r/2).

1.4.17 Remark. Notice that B•(x, r), r > 0, coincides with the one–point compactification of
the open ball B(x, r) if, and only if, C(x, r) 6= ∅. In fact, if C(x, r) is not empty, we can identify
it with the point at infinity of B(x, r).

Now, we consider the unital C∗–algebra of (complex–valued) bounded continuous functions
on X, which are constant on C(x, r), r > 0, that is,

C(B•(x, r)) := {f ∈ Cb(X) : f(x)|C(x,r) ≡ const}, (1.46)

where Cb(X) is the C∗–algebra of (complex–valued) bounded continuous functions on X, and we
endow C(B•(x, r)) with the restriction of the usual (global) Lipschitz seminorm

L(f) := sup{|f(x)− f(y)|/ρ(x, y) : x 6= y}.

The corresponding subspace of real–valued Lipschitz functions

Lip(B•(r)) := Lip(B•(x, r), L) (1.47)

then becomes an order–unit space with a seminorm, and since the metric induced by L on the
state space, given by

ρL(µ, ν) = sup{|µ(f)− ν(f)| : f ∈ Lip(B•(r)), L(f) ≤ 1},

metrizes the w∗–topology, we get an injective sequence of (compact C∗–algebraic) quantum metric
spaces, that is,

Lip(B•(r1)) ↪→ Lip(B•(r2), r2 ≥ r1. (1.48)

Identifying pure states with points via the Gel’fand representation theorem [50], we have then
the following

1.4.18 Proposition. The metric ρL coincides with the quotient metric ρ• on B
•(x, r) for any

r > 0.

Proof. Indeed, let us define fy(w) := ρ•(w, y). Then, since we already know that ρ• is a distance,
it satisfies the triangle inequality, thus we have

Lρ(fy) = sup
{
|fy(w)− fy(z)|

ρ(w, z)
: w 6= z

}
= sup

{
|ρ•(w, y)− ρ•(z, y)|

ρ(w, z)
: w 6= z

}
≤ sup

{
ρ•(w, z)
ρ(w, z)

: w 6= z

}
≤ 1,
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and, taking w and z such that ρ•(w, z) = ρ(w, z), we see that Lρ(fy) = 1. Thus,

ρL(w, z) = sup {|g(w)− g(z)| : Lρ(g) ≤ 1} ≥ |fz(w)− fz(z)| = ρ•(w, z).

As for the reverse inequality, we have clearly ρL ≤ ρ (on X). So, if ρ(w, z) ≤ r/2, then ρ(w, z) =
ρ•(w, z) and thus ρL ≤ ρ•. If ρ(w, z) > r/2, since the functions in Lip(B•(r)) are constant
outside B(r), we have, for y ∈ C(x, r),

ρL(w, y) = sup{|f(w)| : f |C(x,r) ≡ 0, Lρ(f) ≤ 1} = ρ(w,C(x, r)),

and thus
ρL(w, z) ≤ ρL(w, y) + ρL(y, z) ≤ ρ(w,C(x, r)) + ρ(z, C(x, r)).

Therefore, ρL ≤ ρ•, and thus ρL = ρ• on B•(x, r), as claimed.

Now, let (X,x, ρ) be a pointed proper metric space, and let (X,x, λρ), λ > 0, be the corre-
sponding family of (pointed proper metric) spaces with rescaled metrics. We set ρλ := λρ, and
denote Xλ the space X with this metric. We want to show that the limit points in the metric
tangent cone TxX of X at x can be recovered “functionally” by a “quantum” procedure. To this
end, we replace the continuous parameter λ with an increasing (and divergent) sequence {λn}n∈N
of positive numbers, and denote by Xn the space X with the metric ρn := λnρ. We have the
following

1.4.19 Proposition. Suppose that the family {(X,x, ρn)}n∈N of (rescaled) metric spaces is pre-
compact in the pointed Gromov–Hausdorff topology. Then, with the same assumptions and nota-
tion as above, the sequence Lipn(B

•(r)) is precompact in the quantum Gromov–Hausdorff topology
for any r > 0.

Proof. In fact, let U be an ultrafilter on N, and let (XU , x, ρU ) be the pGH–limit over U of the
sequence {(Xn, x, ρn)}n∈N. From Proposition 1.4.4 then it follows that, for any r > 0, there exist
a positive infinitesimal sequence {εn}, a δ > 0 and an element Uδ ∈ U such that, for all n ∈ Uδ,
one has (to simplify notation, we omit the isometric embeddings):

(Bn(x, r + εn), ρn) ⊂ Nδ(BU (x, r), ρU ).

Thus, in particular, we have

(Bn(x, r), ρn) ⊂ Nδ(BU (x, r), ρU )

which implies, for the covering numbers,

n2δ(Bn(x, r), ρn) ≤ nδ(BU (x, r), ρU ), n ∈ Uδ.

Moreover, since ρ•n(y, z) ≤ ρn(y, z) for all y, z ∈ Bn
•(x, r), we have also

n2δ(Bn
•(x, r), ρ•n) ≤ n2δ(Bn(x, r), ρn).

Therefore, the sequence {(Bn
•(x, r), ρ•n)}n∈N is precompact in the Gromov–Hausdorff topology.

In view of Theorem 1.2.20, this implies that {Lipn(B
•(r))}n∈N is precompact in the quantum

Gromov–Hausdorff topology, as claimed.
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Now, by the previous Proposition, we see that, if the sequence {(Xn, x, ρn)}n∈N converges in
the pointed Gromov–Hausdorff topology to (XU , x, ρU ) over the ultrafilter U on N, then, for any
r > 0, the corresponding sequence of quantum metric spaces {Lipn(B

•(x, r))}n∈N will converge
to LipU (B•(x, r)) (over U) in the quantum Gromov–Hausdorff topology. In this way, we will get
an injective system of quantum metric spaces, that is,

LipU (B•(r1)) ↪→ LipU (B•(r2)), r2 ≥ r1. (1.49)

or, equivalently, considering the associated C∗–algebraic quantum metric spaces,

CU (B•(x, r1)) ↪→ CU (B•(x, r2)), r2 ≥ r1, (1.50)

where CU (B•(x, r)) := (C(B•
U (x, r)), LU ), r > 0.

Let (XU , x, ρU ) be the pGH–limit over U of the (precompact) sequence {(X,x, ρn)}n∈N. Then,
the C∗–inductive limit C(X•

U ) of the family {C(B•
U (x, r))}r>0, for r ↗ +∞, can be regarded as

a quantum version of the (pointed) metric space (XU , x, ρU ). (Notice that now (X•
U , ρLU ) is the

projective limit of the compact metric spaces (B•
U (x, r), ρLU ), and the metric ρLU on X

•
U is the

one induced by the (limit) Lipschitz seminorm LU .) Indeed, we have the following

1.4.20 Theorem. Let (X,x, ρ) be an (ordinary) pointed metric space, and let U be a free ultra-
filter over N. With the same assumptions and notations as above, let (XU , x, ρU ) ∈ TxX be the
limit over U of the sequence {(X,x, ρn)}n∈N in the pointed Gromov–Hausdorff topology, and let
(LipR(X•

U ), LU ) be the corresponding quantum limit. Then, the (proper) metric space (XU , x, ρU )
is isometrically homeomorphic to the subspace (X∞, x, ρLU ) of (X•

U , x, ρLU ) defined as:

X∞ := {y ∈ X•
U : ρLU (x, y) <∞} (1.51)

where ρLU is the metric on X
•
U induced by the (limit) Lipschitz seminorm LU .

Proof. In fact, by Proposition 1.4.18, we have, for any r > 0,

B
•(x, r)U := {y ∈ B•

U (x, 2r) : ρLU (x, y) ≤ r} = {y ∈ B•
U (x, 2r) : ρ•U (x, y) ≤ r} ' BU (x, r),

where ρ•U is the (quotient) metric on BU (x, 2r) defined by

ρ•U (x1, x2) := min (ρU (x1, x2), ρU (x1, CU (x, 2r)) + ρU (x2, CU (x, 2r))) ,

CU (x, 2r) := XU\BU (x, 2r), and B
•
U (x, 2r) is the quotient of BU (x, 2r) w.r.t. this metric (cf.

Proposition 1.4.18). Hence,

(B•(x, r)U , ρLU ) ' (BU (x, r), ρU ).

Moreover, since the family (BU (x, r), ρU ) is inductive, by taking the limit of (B•(x, r)U , ρLU ) for
r ↗ +∞, we obtain a metric space X∞ which is an isometric copy of the metric tangent space,
XU , of X at x.

Therefore, we see that the quantum metric space (LipR(X•
U ), LU ), obtained by means of this

“quantum procedure”, gives us precisely the same “metric information” about the metric tangent
cone of the original space X at x, that we would get by the classical pointed Gromov–Hausdorff
construction. (Let us observe thatX•

U can be regarded as the one–point (metric) compactification
of X∞, in which the point at infinity has infinite distance from all other points in X∞.)
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1.4.21 Remark. One might guess why we do not consider, in the construction above, the inverse
system of compact quantum metric spaces, as it comes out naturally when passing from a direct
system of (compact) spaces to the corresponding C∗–algebras of continuous functions, that is

LipU (B(x, r1))← LipU (B(x, r2)), r2 ≥ r1

where now LipU (B(x, r1)) := {f ∈ C(B(x, r1)) : LU (f) < ∞}, C(B(x, r1)) is the unital C∗–
algebra of continuous functions on the compact set B(x, r1), and the projection is the process of
restricting a function. In this case, each space, regarded as a quantum metric space, would be
a quantum metric subspace, for the quotient Lip–seminorm, of the successive one in the family.
So, we might consider the corresponding sequence of C∗–algebraic cQMS’s:

(C(B(x, r1)), LU )← (C(B(x, r2)), LU ).

Then, taking the inverse limit, we would get the commutative pro–C∗–algebra [52; 53] of all
continuous (bounded and unbouonded) functions on the (proper metric) space XU , which is
defined as follows: since XU is a proper metric space, i.e. a locally compact, separable Hausdorff
space, it is, in particular, a countably compactly generated Hausdorff space, that is, XU is the
union of an increasing sequence of compact subsets: XU = ∪nCn. For each compact subset
Cn ⊂ XU , let C(Cn) denote the C∗–algebra of (complex–valued) continuous functions on C.
Since Cm ⊆ Cn, m ≤ n, we have correspondingly a family of (surjective) ∗–homomorphism πnm
from C(Cn) onto C(Cm), given by restriction of functions on Cn to Cm. In this way, the family
{(C(Cm), πnm)}m∈N will be a projective (inverse) system of (commutative) unital C∗–algebras. The
corresponding projective limit is then a (commutative, unital) pro–C∗–algebra. In particular,
since the family is countable, it is a (commutative, unital) σ–C∗–algebra, and coincide with
the (∗–)algebra of all continuous (bounded or unbounded) functions on XU . In general, when
the space X is locally compact, one can canonically recover from the σ–C∗–algebra C(X) the
(σ–unital) C∗–algebra C0(X) of continuous functions vanishing at infinity [3]. Applying this
construction to the inverse system above, one then gets as inverse limit the σ–C∗–algebra C(XU )
on the tangent cone at x ∈ X.
Let us notice, however, that this construction is meaningful only when a (σ–unital) C∗–algebra
has a rich ideal structure (as in the case of C0(X), where ideals are given by the sets of functions
vanishing outside a given compact set). Since in the noncommutative realm, one often deals with
C∗–algebras which are simple, i.e. without non–trivial ideals (as the quantum torus below), this
approach would not produce any interesting result. This is one of the reasons why we prefer
to “dualize” the setting, and consider instead direct systems of C∗–algebraic quantum metric
spaces.

The final step will be now to pass to the full non–commutative setting, by taking as start-
ing object a compact (C∗–algebraic) quantum metric space. We want to reproduce the above
construction in a general noncommutative framework. As seen before, when dealing with the
pointed Gromov–Hausdorff convergence of ordinary metric spaces, non–compact metric spaces
naturally enter on the scene, so that a question arises: which should be the correct notion, if any,
of non–compact quantum metric space? A first step towards the extension to the non–compact
case was proposed by Latrémolière in his paper [45]. A natural way to remove the compactness
property is to consider, as starting point, a C∗–algebra without a unit, so that its state space is
no more w∗-compact (but not even w∗–locally compact). Let us recall Latrémolière’s construc-
tion: starting with a separable C*-algebra A and a seminorm L defined on a norm–dense subset
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dom(L) of the set Asa of selfadjoint elements of A, he first defines the bounded–Lipschitz distance
dL, dual to L, on the state space S(A) of A by setting, for all φ, ψ ∈ S(A):

dL(φ, ψ) = sup{|φ(a)− ψ(a)| : a ∈ BL},

where BL ≡ B1,1 := {a ∈ dom(L) : L(a) ≤ 1, ‖a‖ ≤ 1}, and then he proves that the metric dL
metrizes the w∗–topology on S(A) if, and only if, the set BL is totally bounded for the weak–
uniform topology on A. Correspondingly, he calls L (a densley defined seminorm on the set of
selfadjoint elements of a separable C∗–algebra A) a quasi-Lip–seminorm (a quasi-Lip–norm in
[45], Definition 2.8) if its dual bounded–Lipschitz distance dL induces (the restriction of) the
w∗–topology on the state space S(A) of A. Then, he gets as a result (cfr. Proposition 2.11 of
[45]) that (S(A), dL) is a complete path–metric space if there exists an approximate unit {en}n∈N
in Asa such that, for all n ∈ N, one has L(en) ≤ 1 and ‖en‖ ≤ 1.

Our approach is slightly different: we do not require the C∗–algebras to be necessarily non–
unital. Instead, the non–compactness will emerge as a consequence of the limiting process, as
in the situation described in the preceding paragraph. So, let {An}n∈N be an injective family of
(unital) C∗–algebras, each endowed with a (densely defined Lipschitz) seminorm Ln such that, if
ϕn : An → An+1 is the injective morphism, then Ln+1(ϕn(a)) = Ln(a), ∀a ∈ An. (In this case,
we will say that the seminorms Ln are compatible.) Given such a compatible family of seminorms,
we can inductively define a Lipschitz seminorm L on the (unital) C∗–inductive limit A∞ of the
family. Now, if Ln is a Lip–seminorm for any n, then the distance induced by (the restriction)
Ln (of L to each An) metrizes the (restriction of the) w∗–topology on each state space S(An).
We shall call limit–Lip–seminorm a Lipschitz seminorm L with the above property of inducing
by restriction the w∗–topology on the state space S(An) for each n.

1.4.22 Definition (Limit–Lip–seminorm). Let {An}n∈N be an injective family of C∗–algebras
and let A∞ = lim−→An be its C∗–inductive limit. Let L∞ be a Lipschitz seminorm on A∞. We
call L∞ a limit–Lip–seminorm if the restriction Ln of L∞ to each An is a Lip–seminorm, i.e. if
the topology induced by the distance ρLn(µ, ν) := sup{|µ(a) − ν(a)| : a ∈ (An)sa, Ln(a) ≤ 1} is
the restriction of the w∗–topology on S(A∞) to S(An), and diam(An, Ln) ≤ diam(An+1, Ln+1)
for each n ∈ N.

An order–unit space (A, e) with a limit–Lip–seminorm L defined on it, will be called simply
a Quantum Metric Space, compact or non–compact depending on whether L is itself a Lip-
seminorm or not.

Now, let (A,L) be a (C∗–algebraic) quantum metric space, that is, A is the selfadjoint part of
a separable unital C∗–algebra A, and L is a Lip–seminorm defined on it. We assume, moreover,
that we are given a nested family4 of (quantum metric) spaces in (A,L), each isometrically
embedded in the previous one, that is,

(A,L) ≡ (A1, L) ⊃ (A2, L) ⊃ (A3, L) ⊃ · · · ⊃ (Ak, L) ⊃ . . . , (1.52)

and such that diam(Ak, L) ≡ 2Rk → 0 as k →∞. (In analogy with the ordinary situation, where
a point in a metric space can be regarded as the limit of a nested family of balls centered at that
point, whose radii go to zero, we might think at such a family of nested quantum metric spaces

4By a nested family {An} of C∗–subalgebras of a C∗–algebra A, we mean the following: A ≡ A1 ⊃ A2 ⊃ A3 ⊃
· · · ⊃ An ⊃ · · · , and ∩nAn = CI.
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as the noncommutative counterpart of an ordinary point. But, for the moment, we will not yield
to a temptation of calling it a “noncommutative point”. We shall call such a family simply a
shrinking family of quantum metric spaces.) As done before in the commutative setting, given
a quantum metric space (A,L), we introduce the family of its rescaled copies (A, tL), t > 0.
So, we have a fixed (order–unit) space A, but its state space will be endowed with a family of
rescaled metrics, i.e. ρtL(µ, ν) = t−1ρL(µ, ν) (cf. Proposition 1.2.7). Now, let {tn}n∈N, be a
decreasing sequence of positive real numbers converging to zero. Correspondingly, for each n, we
get a nested family of subspaces in (A, tnL) given by

(A, tnL) ≡ (A1, tnL) ⊃ (A2, tnL) ⊃ (A3, tnL) ⊃ · · · ⊃ (Ak, tnL) ⊃ . . . (1.53)

with diam(Ak, tnL) = 2t−1
n Rk. (We shall take care in a while of the behavior of this numerical

sequence.) So, we can build up the following double sequence of compact quantum metric spaces:

(A,L)

(A1, t1L) ⊂ (A, t1L)

(A2, t2L) ⊂ (A1, t2L) ⊂ (A, t2L)
...

(An, tnL) ⊂ (An−1, tnL) ⊂ (An−2, tnL) ⊂ . . . ⊂ (A, tnL)
...

(1.54)

where the inclusions along each row are isometries into the respective images, and the quantum
metric spaces along each column (let k = 1, 2, . . . denote the column index) have diameters
given by diam(Ak, tnL) = 2t−1

n Rk. Let us notice now that, in order to prevent from pathological
situation, we shall require that the sequence of radii behaves asymptotically like an exponential,
in the sense that there exists an n0 ∈ N and a constant c > 0, such that, for all n > n0, one has

n ≤ c log
1
Rn
≤ n+ 1. (1.55)

When this happens, then obviously an+1 ≤ Rn ≤ an, with a ≡ e−
1
c (< 1), and so we can choose

as “dilation parameter” precisely t = a and set tk := ak. In this way, we have a control on the
asymptotics of the sequence of the radii of each subfamily, that is, we have

2an−k+1 ≤ diam(An, tkL) = 2t−1
k Rn ≤ 2an−k. (1.56)

(Let us notice that this can always be achieved. Indeed, let U be an ultrafilter over N. Then,
given two divergent sequence of (positive) real numbers {αn}n∈N and {βn}n∈N, one of which, say
{βn}, is exponential (βn = bn, b > 1), one can find an element U in U such that, for all n ∈ U ,
bn ≤ αn ≤ bn+1, that is, n ≤ (log b)−1 logαn ≤ n+ 1.)

Suppose now that the first vertical sequence {(An, tnL)} is precompact in the quantum
Gromov–Hausdorff topology. According to the quantum Gromov compactness theorem (see The-
orem 1.2.18), this means the following:
1) the diameters have a uniform bound, i.e. there exists a constantD > 0 such that diam(An, tnL)
≤ D;
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2) for any ε > 0, there exists a constant Kε > 0 such that Cov((An, tnL), ε) ≤ Kε for all n ∈ N.
In this case, thanks to the bounds in (1.56), we see that all the vertical sequences (An−k, tnL)
have diameters bounded from below5 and from above, so that condition 1) above is satisfied. As
for the precompactness condition 2), let us observe that in the original statement of the quantum
Gromov compactness theorem (cf. Theorem 13.5 in [63]), actually it suffices a weaker condition,
namely
2’) for any ε > 0, there exists a function G : R+ → N such that FinL((An, tnL), ε) ≤ G(ε) for all
n ∈ N, where, for a cQMS (A,LA), FinL((A,LA), ε) is defined as the smallest integer k such that
there is a cQMS (B,LB) such that distq(A,B) < ε and dimB ≤ k (dimB is the vector–space
dimension of B).

1.4.23 Lemma. Let (A,LA) and (B,LB) be compact quantum metric spaces. Then,

distq((A,LA), (B,LB)) = b =⇒ distq((A,αLA), (B,αLB)) = α−1b (1.57)

Proof. Indeed, by a simple rescaling argument, we have

L(αLA, αLB) = {αL : L ∈ L(LA, LB)},

hence, distραL
H (S(A), S(B)) = distα

−1ρL
H (S(A), S(B)) = α−1 distρL

H (S(A), S(B)), from which the
claim follows.

As a consequence, one has also the following relation:

FinL((A,αLA), ε) = FinL((A,LA),
ε

α
), (1.58)

and thus, in condition 2’) above, it suffices to take the function Gα(ε) := G( εα).
Therefore, we see that, under the assumption (1.56) of an exponential asymptotic behavior of

the sequence of radii, all the vertical sequences in (1.54) will be precompact, so we can take the
limit of each of them over any given ultrafilter U . In this way, we will end up with the following
injective family of (C∗–algebraic) quantum metric spaces:

(A1
U , LU ) ↪→ (A2

U , LU ) ↪→ (A3
U , LU ) ↪→ · · · ↪→ (AkU , LU ) · · · (1.59)

Finally, we take the injective limit (AU , LU ) := lim−→(AkU , LU ) of this family, and we call it a pointed
quantum Gromov–Hausdorff limit of {(A, tnL)}n∈N w.r.t. the family {(An, L)}n∈N. We call the
set of all such limit points w.r.t. any shrinking family of subspaces the quantum Tangent Cone
of (A,L).

Summing up, we can state the following

1.4.24 Theorem. Let (A,L) be a C∗–algebraic compact quantum metric space, let {An}n∈N be
a shrinking family of subspaces in A, and, for each n ∈ N, denote by Rn the radius of the cQMS
(An, L). Suppose that

(1) the radii Rn satisfy the following condition: there exists a constant c > 0 such that for all
n ∈ N, there holds

n ≤ c log
1
Rn
≤ n+ 1; (1.60)

5A uniform bound from below assures that any eventual limit point is non–trivial, that is, it does not consist
only of the multiples of the identity.
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(2) for a suitable sequence {tn}n∈N of positive real numbers, the sequence (An, tnL)n∈N is pre-
compact in the quantum Gromov–Hausdorff topology.

Then, for any ultrafilter U on N, the family {(A, tnL)}n∈N converges to (A,LU ) over U in the
pointed quantum Gromov–Hausdorff sense, as described above.

Proof. As seen, it suffices to take tn = e−n/c and then to apply the procedure illustrated above.

Therefore, we have sufficient conditions for a quantum metric space to admit (limit) points in
its quantum Tangent Cone in the sense specified above, and Theorem 1.4.20 shows that the notion
of quantum Tangent Cone extends the classical definition. It is worth noting that this “quantum
construction”, even in the commutative setting, actually produces more general objects than the
ordinary ones, depending on which family of subspaces one selects in the ambient (quantum)
metric spaces. This will be evident in the following section, where we will show an example of
quantum Tangent Cone to a proper quantum metric space, the quantum torus. Indeed, as we
shall see, when considering the ordinary torus as a particular case of the quantum torus, the
procedure illustrated above will produce a solenoid, due to a specific choice of subspaces that we
will consider.

1.4.25 Remark. Let (A∞, L∞) be the injective limit of a sequence (An, Ln) of (compact) C∗–
algebraic quantum metric space such that, for each n, diam(An, Ln) ≤ diam(An+1, Ln+1) and
limn→∞ diam(An, Ln) = +∞. We know that, since the family {An}n∈N is injective, the state
space S(A∞) of the limit algebra A∞ will be the projective limit of the state spaces S(An).
Nevertheless, suppose that, for each n, we have also isometric inclusions ιn of S(An) into S(A∞).
Then, given µ ∈ S(Am), let Bm(µ, r) = {ν ∈ S(Am) : ρLm(µ, ν) ≤ r} be the w∗–closed r–ball in
S(Am) centered at µ. Since ιm is an isometry, the set ιm(Bm(µ, r)) will be the w∗–closed r–ball
in S(A∞) centered at ιm(µ). As diam(An, Ln) ≤ diam(An+1, Ln+1), we can construct a system
of w∗–closed (in the relative topology) neighborhoods of ιm(µ) ∈ S(A∞), with non–decreasing
radii. Indeed, if we choose a suitable increasing sequence of positive numbers {rn} and take the
union over this family, we get, inside S(A∞), a metric space which is no longer compact. This is
precisely the quantum version of the metric space X∞ considered in Theorem 1.4.20.

1.5 A case study: the Quantum Torus

1.5.1 The Quantum Torus

We already introduced quantum (or noncommutative) n–tori in Example 1.2.22, but here we
specialize to the case n = 2. (The reader is referred to [23] for a detailed introduction to this
topic.) As seen in Remark 1.2.25, given θ ∈ R, we define the 2-dimensional quantum torus
Aθ as the universal C∗–algebra generated by two unitaries U , V , which satisfy the following
commutation relations:

UmV n = e2πi(mnθ)V nUm. (1.61)

Let S(Z2) denote the space of Schwartz functions over Z2. Then, the complex ∗–algebra generated
by U and V with coefficients in S(Z2), namely

Aθ := ∗–alg
{ ∑
m,n∈Z

am,ne
imP einQ : am,n ∈ S(Z2)

}
, (1.62)
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is a dense ∗–subalgebra of Aθ.
There is a natural action γ of the (ordinary) torus T2 on Aθ, defined on the generators by:

γ(s1,s2)(e
imP einQ) = e2πi(s1m+s2n)eimP einQ, (1.63)

and then extended by linearity to the whole Aθ.
Let Aθ denote the selfadjoint part of Aθ, i.e. Aθ := (Aθ)sa. We define a seminorm on Aθ by:

Lθ(a) := sup
{‖γ(s1,s2)(a)− a‖

`(s1, s2)
: (s1, s2) 6= (0, 0)

}
, (1.64)

where `(·, ·) is the length function on T2 ∼= R2/Z2, induced from the Euclidean one on R2 (that
is, the Euclidean distance from the origin).

1.5.1 Remark. Let us denote by δ1, δ2 the standard basic derivations on Aθ, defined on the
generators by:

δ1(Um) = 2πimUm, δ1(V n) = 0, δ2(Um) = 0, δ2(V n) = 2πinV n. (1.65)

(δ1 and δ2 can be thought of as the generators of the automorphisms group {γ(t1,t2) : (t1, t2) ∈
T2}.) Then, since

(α1δ1 + α2δ2)(a) = lim
t→0+

γ(exp (tα1δ1),exp (tα2δ2))(a)− a
t

,

by Proposition 1.2.13, the seminorm Lθ (1.64) can be equivalently computed as

Lθ(a) = sup{‖(α1δ1 + α2δ2)(a)‖ : α2
1 + α2

2 = 1}. (1.66)

Moreover, Aθ is exactly the ∗–algebra of smooth elements w.r.t. the action γ.

The seminorm Lθ is actually a Lip–seminorm, and (Aθ, Lθ) is a (compact) quantum metric
space (cf. Proposition 1.2.23)

1.5.2 Shrinking Families of Subalgebras

For any p ∈ N, p prime, we may consider the following C∗–subalgebras of Aθ:

A(pl,pl)
θ ≡ Ap

l

θ := C∗
{ ∑
m,n∈plZ

am,nU
mpl

V npl
: am,n ∈ S(plZ2)

}
(1.67)

= C∗
{ ∑
m,n∈Z

a′m,n(U
pl

)m(V pl
)n : a′m,n ∈ S(Z2)

}
,

and the corresponding (dense) ∗–subalgebras of smooth elements:

A(pl,pl)
θ ≡ Apl

θ := ∗–alg
{ ∑
m,n∈Z

a′m,nU
mpl

V npl
: a′m,n ∈ S(Z2)

}
. (1.68)

For notational convenience, we will consider only the case p = 2. Then, the family (A2l

θ , Lθ),
where A2l

θ = (A2l

θ )sa, will be the shrinking family, which we will use to construct the quantum
Tangent Cone.
We have the following identification:
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1.5.2 Proposition. We have (A2l

θ , Lθ) ∼= (A4lθ, 2lL4lθ) as (compact) quantum metric spaces.

Proof. Let A4lθ be the universal C∗–algebra generated by two unitaries Ũ , Ṽ satisfying the
commutation relations:

ŨmṼ n = e2πi(4
lmnθ)Ṽ nŨm.

As Ũ , Ṽ and U2l
, V 2l

satisfy the same commutation relations, by the universality property, for
each integer l there exists a ∗–homomorphism σl between the two C∗–algebras A4lθ and A2l

θ .
Since, for any ψ ∈ R, the C∗–algebras Aψ is known to be simple (cf. Theorem VI.1.4 in [23]),
σl is an isomorphism for any l. Let us denote by γ and γ′ the action of T2 on A2l

θ and on A4lθ,
respectively. Then, we have

σl(γ(s1,s2)(U
m2l

V n2l
)) = γ′(2ls1,2ls2)(Ũ

mṼ n) = γ′(2ls1,2ls2)(σl(U
m2l

V n2l
)),

and a simple computation gives us the following relation between the basic derivations:

2lδj(σl(a)) = σl(δj(a)), a ∈ A2l

θ j = 1, 2.

Hence, for every a ∈ A2l

θ , we get

Lθ(a) = sup{‖(α1δ1 + α2δ2)(a)‖ : α2
1 + α2

2 = 1}
= sup{‖2l(α1δ1 + α2δ2)(σl(a))‖ : α2

1 + α2
2 = 1} = 2lL4lθ(σl(a)),

proving the thesis.

By the previous Proposition, we see that the sequence of radii of the family {(A2l

θ , Lθ)}l∈N
satisfies the condition given in Theorem 1.4.24, since the radius of (A4lθ, 2lL4lθ), for each l, is
bounded by 2−l

∫
T2 `(r, s)dµ from above (cf. Theorem 1.2.12), hence the corresponding sequence

of diameters tends to zero.

1.5.3 Remark. We stress once again that the choice of the sequence {2l}l∈N is purely a conve-
nience. The same conclusions hold for any other choice {pl}l∈N, with p prime, or, more generally,
one could take any sequence of integers {ml}l∈N such that ml divides ml+1 for any l.

1.5.3 The Quantum Tangent Cone

In view of the definition of shrinking family of subspaces (cf. Section 1.4.2), the starting point
will be the following double sequence:

(Aθ, Lθ)

(A2
θ, 2

−1Lθ) ⊂ (Aθ, 2−1Lθ)

(A22

θ , 2
−2Lθ) ⊂ (A2

θ, 2
−2Lθ) ⊂ (Aθ, 2−2Lθ)

...
(A2l

θ , 2
−lLθ) ⊂ (A2l−1

θ , 2−lLθ) ⊂ · · · ⊂ (Aθ, 2−lLθ)
...

(1.69)
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where along each column all the QMS’s have the same (uniform) bound on the diameter, namely
2k
∫

T2 `(r, s)dµ (k = 1, 2, 3, . . . denotes the column index), while the inclusions along each row
are isometric inclusions.

By Proposition 1.5.2, the previous double sequence can be rewritten as

(Aθ, Lθ)

(A4θ, L4θ) ↪→ (Aθ, 2−1Lθ)

(A42θ, L42θ) ↪→ (A4θ, 2−1L4θ) ↪→ (Aθ, 2−2Lθ)
...

(A4lθ, L4lθ) ↪→ (A4l−1θ, 2−1L4l−1θ) ↪→ · · · ↪→ (Aθ, 2−lLθ)
...

(1.70)

where at each step the isometric inclusion is given by:

(Aτ/4l , 2−lLτ/4l) ∼= (A2
τ/4l+1 , 2−l−1Lτ/4l+1) ⊂ (Aτ/4l+1 , 2−l−1Lτ/4l+1). (1.71)

Now, let U be an ultrafilter over N, and let τ ∈ [0, 1) be the limit (mod1), over U , of
the sequence {4lθ}l∈N. Then, by Proposition 1.2.24, each vertical sequence (quantum Gromov–
Hausdorff) converges to the corresponding quantum torus (Aτ/4k , 2−kLτ/4k), k = 0, 1, 2, . . . .
Thus, taking the limit, over U , of each column, we get, finally, the following injective family of
quantum metric spaces:

(Aτ , Lτ ) ↪→ (Aτ/4, 2
−1Lτ/4) ↪→ · · · ↪→ (Aτ/4l , 2−lLτ/4l) ↪→ · · · (1.72)

The next step will be to take the injective limit of this sequence. To this aim, we first represent
the C∗–algebra Aτ on a suitable Hilbert space. So, for any τ ∈ R, let (π,H ≡ L2(Aτ , τ0)) be the
GNS representation associated to the faithful tracial state τ0 given by

τ0(A) = τ0(
∑
n,m∈Z

am,nU
mV n) := a0,0, A ∈ Aθ. (1.73)

Since τ0 is faithful, we shall identify each algebra with its image in B(H). Thus, we can find
two selfadjoint operators P and Q acting on H such that the corresponding unitaries U = eiP ,
V = eiQ satisfy the commutation relation defining the quantum torus Aτ . Then, for each l ∈ N,
we define A2−l

τ as the universal C∗–algebra generated by the two unitaries Ū = eiP
′
, V̄ = eiQ

′
,

with P ′ := 2−lP and Q′ := 2−lQ, subject to the commutation relations:

eimP
′
einQ

′
= e2πi(4

−lmnτ)einQ
′
eimP

′
, m, n ∈ Z. (1.74)

As before, we shall consider the dense ∗–subalgebras of smooth elements, given by

A2−l

τ := ∗–alg
{ ∑
m,n∈Z

a′m,ne
imP ′einQ

′
: a′m,n ∈ S(Z2)

}
. (1.75)
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Then, since eimP
′
einQ

′
= eim2−lP ein2−lQ, we can write A2−l

τ equivalently as

A2−l

τ = ∗–alg
{ ∑
p,q∈Z[2−l]

ap,qe
ipP eiqQ : ap,q ∈ S(Z2[2−l])

}
, (1.76)

where Z2[2−l] = {(p, q) := (m
2l ,

n
2l ) : m,n ∈ Z}, and ap,q = am/2l,n/2l := a′m,n. Thus, taking the

norm closure, we get

A2−l

τ = C∗
{ ∑
m,n∈Z

a′m,ne
imP ′einQ

′
: am,n ∈ S(Z2)

}
= C∗

{ ∑
p,q∈Z[2−l]

ap,qe
ipP eiqQ : ap,q ∈ S(Z2[2−l])

}
. (1.77)

Hence, A2−l

τ can be also viewed as the universal C∗–algebra generated by the two unitaries
eim2−lP , ein2−lQ satisfying the commutation relations:

eim2−lP ein2−lQ = e
2πi(mn

4l τ)ein2−lQeim2−lP , m, n ∈ Z. (1.78)

From the action of the torus T2 ∼= (R/2lZ)2 on A2−l

τ , we define, as before, a seminorm on
A2−l

τ ≡ A2−l

τ as:

Lτ (a) := sup
{‖γ′(s1,s2)(a)− a‖

`′(s1, s2)
: (s1, s2) 6= (0, 0)

}
, (1.79)

where the length function `′ on (R/2lZ)2, induced from that on R2, satisfies 2l`(s1, s2) =
`′(2ls1, 2ls2).

We can state the analogue of Proposition 1.5.2.

1.5.4 Proposition. We have (Aτ/4l , 2−lLτ/4l) ∼= (A2−l

τ , Lτ ) as (compact) quantum metric spaces.

Proof. We proceed as in the proof of Proposition 1.5.2. So, let Ū , V̄ denote the generators of
Aτ/4l . Since the unitaries Ū , V̄ and ei2

−lP , ei2
−lQ satisfy the same commutation relations, from

the universality property it follows that, for each l, there exists a ∗–homomorphism σl from Aτ/4l

onto A2−l

τ . Since Aτ/4l is simple ([23], Theorem VI.1.4), σl is an isomorphism for any l.
Now, let us denote by γ and γ′ the action of T2 on Aτ/4l and on A2−l

τ , respectively. Then, we
have

σl(γ(s1,s2)(Ū
mV̄ n)) = γ′(2ls1,2ls2)(e

im2−lP ein2−lQ) = γ′(2ls1,2ls2)(σl(Ū
mV̄ n)),

and, with a simple computation, we get:

2lδj(σl(a)) = σl(δj(a)), a ∈ Aτ/4l j = 1, 2.

Hence, for every a ∈ Aτ/4l , we obtain

Lτ (σl(a)) = sup{‖(α1δ1 + α2δ2)(σl(a))‖ : α2
1 + α2

2 = 1}
= sup{‖2−l(α1δ1 + α2δ2)(σl(a))‖ : α2

1 + α2
2 = 1} = 2−lLτ/4l(a),

and the thesis follows.
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The sequence (1.72) of (isometric) inclusions now can be written as

(Aτ , Lτ ) ↪→ (A2−1

τ , L2−1

τ ) ↪→ (A2−2

τ , L2−2

τ ) ↪→ · · · ↪→ (A2−l

τ , L2−l

τ ) ↪→ · · · (1.80)

What do we get as C∗–inductive limit of the sequence of C∗–algebras {A2−l

τ }l∈N? Clearly, we get
a C∗–algebra, which we denote by A∞τ , whose dense ∗–subalgebra of smooth elements is given
by

A∞
τ =

⋃
l∈N

A2−l

τ = ∗–alg
{⋃
l∈N

{ ∑
p,q∈Z[2−l]

ap,qe
ipP eiqQ : ap,q ∈ S(Z2[2−l])

}}
(1.81)

= ∗–alg
{ ∑
u,v∈Z[2−∞]

au,ve
iuP eivQ : au,v ∈ S(Z2[2−∞])

}
,

where Z[2−∞] = {2−nm : m ∈ Z, n ∈ N} is the (additive) group of 2–adic numbers. Notice that
A∞τ ≡ (A∞

τ )sa is endowed with a seminorm Lτ , defined by restriction to each subalgebra A2−l

τ .
Lτ is densely defined, and vanishes by construction only on the multiples of the identity, hence
it is a limit–Lip–seminorm and A∞τ is a quantum metric space (cf. Definition 1.4.22).

Finally, we can conclude saying that:
For each limit point τ ∈ [0, 1) of the sequence {4lθ}l∈N, L∞τ is a limit–Lip–seminorm and
(A∞τ , L

∞
τ ) belongs to the Quantum Tangent Cone of (Aθ, Lθ) induced by the family (A2l

θ , Lθ).

Let us see now which kind of limits we get by the above procedure. We must distinguish the
following cases.

1) Let θ ∈ Q, with θ = m
n , (m,n) = 1, and m < n. If n is a power of 2, then liml→∞ 4lθ =

0(mod1) and the sequence (1.80) becomes

(C∞(T2), L0) ↪→ (C∞(T2
1), L0) ↪→ (C∞(T2

2), L0) · · · ↪→ (C∞(T2
l ), L0) · · · , (1.82)

where

C∞(T2
l ) = ∗–alg

{
f(x, y) =

∑
p,q∈Z[2−l]

ap,qe
ipxeiqy : ap,q ∈ S(Z2[2−l])

}
, (1.83)

L0(f) = sup
{∥∥∥ ∑

p,q∈Z[2−l]

(α1p+ α2q)ap,qeipxeiqy
∥∥∥ : α2

1 + α2
2 = 1

}
, (1.84)

and T2
l denotes the 2l–fold covering of the torus T2(= T2

0), with projection map given by the
process of dividing by 2, i.e. T2

l+1 3 (x, y) 7→ (x/2, y/2) ∈ T2
l . The pointed quantum Gromov–

Hausdorff limit is then (C∞(S2
2 ), L0), where C∞(S2

2 ) is the algebra of smooth functions on the
projective limit of the family {T2

l }l∈N0 , which is, by definition, the 2–adic (2–dimensional) solenoid
group6 S2

2 , i.e. the (Pontryagin) dual of Z2[2−∞]. So, we see that the quantum tangent cone to
the ordinary torus contains more objects than the ordinary tangent space (i.e., the 2–dimensional
Euclidean space R2).

6It can be equivalently defined as follows (see, for instance, [38], Definition 10.12): let a := (a0, a1, a2, . . . )
be any sequence of integers all greater than 1, set u := (1, 0, 0, . . . ), and consider the additive (locally compact)
group R × 4a, where 4a is the additive group of a–adic integers. Let Nu be the subgroup of R × 4a given by
{(n, nu)}+∞n=−∞. The (one–dimensional) a–adic solenoid Sa is then defined as the quotient group R×4a/Nu.
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2) Let θ ∈ Q, with θ = m
n , (m,n) = 1, m < n, and n = 4kh, where 4k is the maximal

power of 4 dividing n. Then, the sequence {4l−k mh (mod1)}l∈N has at most h limit points among
the solutions of the congruence (4l

′
m ≡ h(modh))/h, i.e. in the set { 1

h ,
2
h , . . . , 1 −

1
h}, and the

sequence (1.80) becomes

(Aq, Lq) ↪→ (A2−1

q , Lq) ↪→ (A2−2

q , Lq) ↪→ · · · ↪→ (A2−l

q , Lq) ↪→ · · · (1.85)

with q ∈ { 1
h ,

2
h , . . . , 1−

1
h}. We shall call the pointed quantum Gromov–Hausdorff limit (A∞q , Lq)

the Noncommutative (or Quantum) Solenoid with rational parameter q.
3) Finally, when θ ∈ R\Q, then, for any φ ∈ [0, 1), there exits a subsequence, {4lkθ(mod1)}k∈N,

of {4lθ(mod1)}l∈N converging to φ, and Proposition 1.2.24 tells us that

lim
k→∞

4lkθ = φ(mod1)⇒ lim
qGH

(A4lkθ, L4lkθ) = (Aφ, Lφ) (1.86)

For a given subsequence {4lkθ(mod1)}k∈N, the family (1.80) becomes:

(Aφ, Lφ) ↪→ (A2−1

φ , Lφ) ↪→ (A2−2

φ , Lφ) ↪→ · · · ↪→ (A2−l

φ , Lφ) ↪→ · · · (1.87)

and we shall call the pointed quantum Gromov–Hausdorff limit (A∞φ , Lφ) the Noncommutative
(or Quantum) Solenoid with irrational parameter φ.

1.5.4 Quantum Subspaces of the Quantum Torus

We recall (see Definition 1.2.16) that a morphism ϕ : A → B between two compact quantum
metric spaces (A,LA) and (B,LB) is a linear positive map preserving the order–units and the
Lip–seminorms (i.e. LB = LA ◦ϕ), and that, if ϕ is surjective, the dual map S(ϕ) : S(B)→ S(A)
between the corresponding state spaces is an injective (affine) map. In this case, the image
(ϕ(A), LB) of (A,LA) in (B,LB) is called a quantum metric subspace of (B,LB). In this section,
we show that (A2l

θ , Lθ) is actually a quantum metric subspace of (Aθ, Lθ).
Let us recall that a Conditional Expectation of a C∗–algebra onto a subalgebra is a positive,

unital idempotent linear map7. We will show that the (2–dimensional) quantum torus admits
conditional expectations onto its subalgebras. First, consider the two following automorphisms
of Aθ: for any λ, µ on the unit circle (|λ| = |µ| = 1), let ρλ,µ be the endomorphism of Aθ given
by

ρλ,µ(U) = λU, ρλ,µ(V ) = µV, (1.88)

and let σ := ρλ̄,µ̄ρλ,µ. Since σ(U) = U and σ(V ) = V , we have σ = id. Thus, ρλ,µ is an
automorphism.

For each fixed A in Aθ, the map from T2 to Aθ given by f(λ, µ) = ρλ,µ(A) is norm continuous8.
We define two maps of Aθ into itself by the formulae9

Φ1,0(A) =
∫ 1

0
ρ1,e2πit(A)dt, Φ0,1(A) =

∫ 1

0
ρe2πit,1(A)dt. (1.89)

7Recall that a map Φ is contractive if ‖Φ‖ ≤ 1, idempotent if Φ2 = Φ, and a positive map is faithful if A ≥ 0
and Φ(A) = 0 implies that A = 0.

8To verify this, notice that it is true for all non-commuting plynomials in U, V, U∗, V ∗; but these are dense and
the automorphisms are contractive, so that the rest follows by a simple approximation argument.

9These integrals make sense as Riemann integrals since the integrand is a norm continuous function.
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1.5.5 Theorem. [23] Φ1,0 is positive contractive idempotent and faithful, and maps Aθ onto
C∗(U). Moreover,

Φ1,0(f(U)Ag(U)) = f(U)Φ1,0(A)g(U) (1.90)

for all f, g ∈ C(T). For any finite linear combination of {UmV n : m,n ∈ Z},

Φ1,0(
∑
m,n

am,nU
mV n) =

∑
m

am,0U
m. (1.91)

Finally, for every A in Aθ,

Φ1,0(A) = lim
n→∞

1
2n+ 1

n∑
j=−n

U jAU−j . (1.92)

The corresponding result for Φ2 obviously holds as well. Combining the two results, we obtain

1.5.6 Corollary. The map τ := Φ1,0◦Φ0,1 = Φ0,1◦Φ1,0 is the unique faithful unital scalar–valued
trace on Aθ, and is defined as

τ(A) = τ(
∑
n,m∈Z

am,nU
mV n) := a0,0. (1.93)

Next, we show that Aθ has conditional expectations onto each of its subalgebras A(2h,2k)
θ .

Pick any A in Aθ, and decompose it into the “even” and “odd” parts w.r.t. U in the following
way:

A =
∑
m,n∈Z

am,nU
mV n =

∑
m,n∈Z

a2m,nU
2mV n +

∑
m,n∈Z

a2m+1,nU
2m+1V n. (1.94)

Let A2,1
θ be the subalgebra generated by U2, V . Any element A ∈ Aθ can be written as

A = x+ yU, (1.95)

where

x =
∑
m,n∈Z

a2m,nU
2mV n, y =

∑
m,n∈Z

a2m+1,ne
−2πinθU2mV n. (1.96)

We define a linear map E2,0 from Aθ onto A2,1
θ by E2,0(A) ≡ E2,0(x+ yU) := x. Then, we have

E2,0(I) = I and

E2,0(A∗A) = E2,0((x+ yU)∗(x+ yU)) = E2,0(x∗x+ U∗y∗yU + x∗yU + U∗y∗x)
= x∗x+ U∗y∗yU ≥ x∗x = E2,0(A∗)E2,0(A),

showing that E2,0 is a positive map. (Notice that we can always write U∗y∗x as ỹ∗x̃U , with ỹ∗
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given by the following computation:

U∗y∗x = U∗(
∑
h,k∈Z

a2h+1,ke
−2πikθU2hV k)∗(

∑
m,n∈Z

a2m,nU
2mV n)

= U∗(
∑
h,k∈Z

a2h+1,ke
2πikθV −kU−2h)∗(

∑
m,n∈Z

a2m,nU
2mV n)

= (
∑
h,k∈Z

a2h+1,kV
−kU−2h−1)∗(

∑
m,n∈Z

a2m,nU
2mV n)

= (
∑
h,k∈Z

a2h+1,ke
−2πik(2h+1)θU−2h−1V −k)(

∑
m,n∈Z

a2m,nU
2mV n)

= (
∑
h,k∈Z

a−2h−1,−ke
−2πik(2h+1)θU2h+1V k)(

∑
m,n∈Z

a2m,nU
2mV n)

= (
∑
h,k∈Z

a−2h−1,−ke
−2πik(2h+1)θU2hV k)(

∑
m,n∈Z

a2m,nU
2m+1V n)

= (
∑
h,k∈Z

a−2h−1,−ke
−2πik(2h+1)θU2hV k)(

∑
m,n∈Z

a2m,ne
−2πinθU2mV n)U

= ỹ∗x̃U.)

Let (πτ ,Hτ ≡ L2(Aθ, τ)) be the GNS representation associated to the tracial state τ (1.93).
Since τ is faithful, we shall identify Aθ with πτ (Aθ) ⊂ B(Hτ ). By the previous considerations,
we can decompose the Hilbert space L2(Aθ, τ) into the direct sum of the even and odd subspaces
w.r.t. U :

Hτ = Heτ ⊕Hoτ , (1.97)

where Heτ = L2(Aθ, τ)e and Hoτ = L2(Aθ, τ)o. In fact, given A ∈ Heτ and B ∈ Hoτ , we have

(A,B)Hτ = τ(A∗B) = τ((
∑

a2m,nU
2mV n)∗(

∑
b2p+1,qU

2p+1V q))

= τ((
∑

a−2m,−ne
2πi2mnθU2mV n)(

∑
b2p+1,qU

2p+1V q))

= τ(
∑

a−2m,−ne
2πi2mnθb2p+1,qU

2mV nU2p+1V q)

= τ(
∑

a−2m,−ne
2πi2mnθe−2πi2mnθb2p+1,qU

2m+2p+1V n+q)

= τ(
∑

a−2m,−nb2p+1,qU
2m+2p+1V n+q)

= τ(
∑

c2h+1,kU
2h+1V k) = 0,

where c2h+1,k =
∑

m,n a−2m,−nb2h+1−2m,k−n.
Consequently, the C∗–algebra πτ (Aθ)(∼= Aθ) becomes a Z2-graded algebra:

A = A+ ⊕A− (1.98)
A+ : Heτ → Heτ , A+ : Hoτ → Hoτ (1.99)
A− : Heτ → Hoτ , A− : Hoτ → Heτ . (1.100)
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If we write A in matrix notation,

A =
(
ae ao
ao ae

)
, (1.101)

A+ =
(
ae 0
0 ae

)
, A− =

(
0 ao
ao 0

)
, (1.102)

we get, for the norm,

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

∥∥∥∥( ae ao
ao ae

)(
x1

x2

)∥∥∥∥
= sup

‖x‖=1

∥∥∥∥( aex1 + aox2

aox1 + aex2

)∥∥∥∥
= sup

‖x‖=1

(
‖aex1 + aox2‖2 + ‖aox1 + aex2‖2

) 1
2

≥ sup
‖x1‖=1

(
‖aex1‖2 + ‖aox1‖2

) 1
2 ≥ sup

‖x‖=1
‖aex‖ = ‖A+‖.

Since the composition of two conditional expectations is again a conditional expectation, we
obtain for each subalgebra of the form A2l

θ (= A2l,2l

θ ), a conditional expectation El from Aθ onto
A2l

θ , which, by duality, means that the corresponding order–unit subspaces are quantum metric
subspaces, once they are given the quotient seminorms.

So, we have to compare the two seminorms on A2,1
θ , the one given by restriction of that from

Aθ, and the quotient seminorn on A2,1
θ given by

L2(x) = inf{L(A) : y ∈ A2,1
θ }, A ∈ Aθ, A = x+ yU, x, y ∈ A2,1

θ . (1.103)

On the one hand, we have

L2,1(x) = inf
y∈A2,1

θ

L(A) ≤ L(A)y=0 = L(x). (1.104)

On the other hand, by the previous computations, we have

‖(α1δ1 + α2δ2)(A)‖ ≥ ‖(α1δ1 + α2δ2)(x)‖, ∀α1, α2 ∈ C, (1.105)

and thus,
L(A) = sup

α2
1+α2

2=1

‖(α1δ1 + α2δ2)(A)‖ ≥ ‖(α1δ1 + α2δ2)(x)‖, (1.106)

which implies, for every y ∈ A2,1
θ ,

L(A) = L(x+ yU) ≥ sup
α2

1+α2
2=1

‖(α1δ1 + α2δ2)(x)‖ = L(x), (1.107)

and, in particular,
L2,1(x) = inf

y∈A2,1
θ

L(A) ≥ L(x). (1.108)
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Finally, we get the desired equality between the two seminorms on A2,1
θ , namely

L2,1(x) = L(x). (1.109)

The above construction evidently holds true, if we pass from A2,1
θ to A2,2

θ = A2
θ, and, by

iteration, we get the following

1.5.7 Proposition. For each positive integer l, (A2l

θ , Lθ) is a quantum metric subspace of
(Aθ, Lθ).

We see that, by the previous Proposition, each QMS in the double sequence (1.80) is actually
a quantm metric subspace of the successive one in each row. So, as discussed in Remark 1.4.25,
given a state on the quantum solenoid A∞(·), for instance the trace τ defined above in (1.93), one

may consider the ball B∞(τ, r) := ιm(Bm(τ, r)) (ιl : S(A2−l

τ ) → S(A∞τ ) is the dual map of the
projection πl : A∞τ → A2−l

τ given by the conditional expectation), and then the space obtained
as union over all (admissible) r > 0, namely

X∞ :=
⋃
r>0

B
∞(τ, r).

Thus, for instance, for A∞0 = C∞(S2
2 ), we obtain the (isometric) copy of R2 embedded in the

2–adic solenoid S2
2 (see Theorem 10.13 in [38]). Therefore, we may say that C∞(S2

2 ) is some kind
of “compactification” of C∞(R2), in the sense that the weak closure in B(L2(R)) of the GNS
representations of the corresponding C∗–algebras of continuous functions coincide, as we shall
see in the next section.

1.5.5 The Weyl Unitaries and the Quantum Plane

The Quantum Plane

(The reader is referred to [73] for more details.)
Let us begin recalling the definition of the Quantum Plane.

1.5.8 Definition. Let θ ≥ 0. For t ≡ (t1, t2) ∈ R2, we define a unitary operator Wθ(t) on
L2(R2) by

(Wθ(t)g)(x1, x2) := ei(x1t1+x2t2)g(x1 +
1
2
θt2, x2 −

1
2
θt1). (1.110)

For f, g ∈ S(R2), we define the twisted product f ×θ g ∈ S(R2) by

(f ×θ g)(x1, x2) :=
1
2π

∫
R2

dt1 dt2 f̃(t1, t2)(Wθ(t)g)(x1, x2), (1.111)

with f̃ the Fourier transform of f . Finally, for f ∈ S(R2), we define the twisted multiplication
operator Wθ(f) on L2(R2) by

(Wθ(f))(g) := (f ×θ g). (1.112)

The unitaries Wθ(s), s ∈ R2 satisfy the Weyl Commutation Relations, i.e.

Wθ(s)Wθ(t) = e1θ(s2t1−s1t2)Wθ(s + t). (1.113)

One has then the following
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1.5.9 Proposition. [73]

(i) Let f, g ∈ S(R2) and a, b ∈ C. Then, aWθ(f) + bWτ (g) = Wθ(af + bg).

(ii) Let f, g, h ∈ S(R2). Then, (f ×θ g)×θ h = f ×θ (g×θ h). Thus, Wθ(f)Wθ(g) = Wτ (f ×θ g).

(iii) Wθ(t)∗ = Wθ(−t) for all t = (t1, t2) ∈ R2. For f ∈ S(R2), one has Wθ(f)∗ = Wθ(g), where
g(x1, x2) := f(−x1,−x2).

1.5.10 Definition. The Quantum Plane is the C∗–algebra generated by the operators Wθ(f) for
f ∈ S(R2).

The Weyl Commutation Relations

We can reinterpret the commutation relations defining the noncommutative torus as a discrete
form of the Weyl commutation relations. Indeed, let Wθ(m) be the unitary defined as

Wθ(m) := e−iπθm1m2Um1V m2 (1.114)

where m = (m1,m2) ∈ Z2. The operators Wθ(m) then satisfies, as above, the Canonical Com-
mutation Relations (CCR) in Weyl form:

Wθ(m)Wθ(n) = eiπσθ(m,n)Wθ(m + n) = e2iπσθ(m,n)Wθ(n)Wθ(m) (1.115)

with σθ the symplectic form
σθ(m,n) = θ(m1n2 −m2n1). (1.116)

(Notice that Wθ(m)∗ = Wθ(−m) and that products like
∏
kWθ(mk) are reducible to a single

Wθ(
∑

k mk) multiplied by a phase.) Thus, we can rewrite the noncommutative torus as

Aθ = C∗
{ ∑

m∈Z2

amWθ(m) : am ∈ S(Z2)
}
. (1.117)

Moreover, for each f ∈ C∞(T2), let
∑

m∈Z2 ame
2iπ(m,x) be its Fourier expansion and define

Wθ(f) :=
∑

m∈Z2

amWθ(m). (1.118)

Then,
Aθ = C∗{Wθ(f) : f ∈ C∞(T2)}. (1.119)

(We recall that A0
∼= C(T2).)

Consider now the quantum solenoid A∞τ in the Weyl form, namely

A∞τ = C∗
{ ∑

u∈Z2[2−∞]

auWτ (u) : au ∈ S(Z2[2−∞])
}

= C∗
{⋃
l∈N

{ ∑
q∈Z2[2−l]

aqWτ (q) : aq ∈ S(Z2[2−l])
}}

, (1.120)

and rewrite it as
A∞τ = C∗

{ ⋃
l∈N0

{
Wτ (f) : f ∈ C∞(T2

l )
}}

(1.121)
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where T2
l is the 2l–fold covering of T2. Then, we have evidently

A∞τ = C∗{Wτ (f) : f ∈ C∞(S2
2 )} (1.122)

Therefore, each element in the quantum tangent cone to the quantum torus can be regarded
as lying in this quantum plane, in the sense that there exists a representation, the tracial repre-
sentation, in which the corresponding weak closures are the same.

In fact, for x,y ∈ R2, let Wx,Wy be Weyl unitaries satisfying the following commutation
relations:

WxWy = e2iπστ (x,y)WyWx, (1.123)
στ (x,y) := τ(x1y2 − x2y1), (1.124)

and denote by Wτ the corresponding (Weyl) C∗–algebra:

Wτ := C∗{Wx : x ∈ R2}. (1.125)

Clearly, A∞τ ⊂ Wτ , butWτ is not the (τ–)quantum plane we are interested in. So, for f ∈ S(R2),
let us define first the operators

Wτ (f) :=
∫

R2

f̃(x)Wxdx, (1.126)

(f̃ denotes the Fourier transform of f) and then the “true” τ–quantum plane as

Pτ := C∗{Wτ (f) : f ∈ S(R2)}. (1.127)

Now, we want to represent Aτ and Pτ on L2(R) in such a way that:

π1(A∞τ )′′ = π2(Pτ )′′. (1.128)

(We denote by π2 the GNS representation induced by the tracial state τ on Pτ , defined as
τ(Wτ (f)) := f̃(0).) Since clearly π2(Pτ )′′ = π2(Wτ )′′, it suffices to show that

π1(A∞τ )′′ = π2(Wτ )′′. (1.129)

To this aim, let H = L2(R), and let Uα, Vβ be two strongly continuous groups of unitaries on H,
given by

(Uαf)(t) = f(t+ α), (Vβf)(t) = eiτ(t·β)f(t), α, β, t ∈ R2, f ∈ S(R) (1.130)

with (t · β) the usual scalar product in R2. Then, Uα, Vβ satisfy the following relations:

UαUα′ = Uα+α′ , VβVβ′ = Vβ+β′ , UαVβ = eiτ(α·β)VβUα. (1.131)

The Weyl unitaries Wx, x = (α, β) ∈ R2, are then given by

Wx = e−
i
2
τ(α·β)UαVβ, (1.132)

and satisfy the commutation relations:

WxWy = e
i
2
στ (x,y)Wx+y (1.133)
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with στ (x,y) = τ(x1y2 − x2y1), x = (x1, x2), y = (y1, y2). For f ∈ S(R), we define the action of
Wx on f by

(Wxf)(t) = e2iπτ(
1
2
x1x2+tx2)f(t+ x2). (1.134)

Given f, g ∈ S(R), let us consider

(Wxf, g)H =
∫

R
e2iπτ(

1
2
x1x2+tx2)f(t+ x1)g(t)dt; (1.135)

then, setting t = y − x1
2 , we obtain

(Wxf, g)H =
∫

R
e2iπτ(yx2)f(y +

x1

2
)g(y − x1

2
)dy =: V(f,g)(x1, x2). (1.136)

The bilinear map V(·,·) : S(R) × S(R) → S(R2) extends to a (bounded) bilinear map from
L2(R)× L2(R) to L2(R2) (see, for instance, Proposition 2.4 and Corollary 3.5 of [74]). Since we
can approximate any x ∈ R by a sequence of dyadic rationals {mk

2nk }k∈N, we finally get

w − lim
k→∞

Wτ (qk) = Wx. (1.137)

Hence,
π2(Wτ )′′ ⊂ π1(A∞τ )′′, (1.138)

and, as A∞τ ⊂ Wτ by construction, we obtain the reverse inclusion, hence the equality.
Hence, we have proven the following

1.5.11 Proposition. Let π1 and π2 be the tracial representation on L2(R) of the quantum
solenoid A∞τ (1.122) and of the quantum plane Pτ (1.127), respectively. Then, we have

π1(A∞τ )′′ = π2(Wτ )′′. (1.139)
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Chapter 2

Lip–von Neumann Algebras and
Ultraproducts

In the first two sections of this chapter, we will introduce the notion of Lip–spaces and Rigged
Lip–spaces, along with the corresponding ultraproduct construction, while the last section is
dedicated to the definition of Lip–von Neumann Algebras and their ultraproducts.

2.1 (Dual) Lip–spaces

We recall some basic facts about Lip–spaces (see [32] for more details).

2.1.1 Definition. We call Lip–space a triple (X, ‖ · ‖, L), where:

(i) (X, ‖ · ‖) is a Banach space,

(ii) L : X → [0,+∞] is finite on a dense vector subspace X0, where it is a norm,

(iii) the unit ball w.r.t. L, {x ∈ X : L(x) ≤ 1}, is compact in (X, ‖ · ‖).

We call Lip–norm a norm L satisfying properties (ii) and (iii) above.

We call radius of the Lip–space (X, ‖ · ‖, L), and denote it by rX , the maximum of ‖ · ‖ on
the unit ball w.r.t. L(·), hence

‖x‖ ≤ rXL(x), x ∈ X. (2.1)

This is the analogue of the radius of a compact quantum metric space (cf. Definition 1.2.5 and
Proposition 2.2 in [60]).

2.1.2 Remark. Notice that every quantum metric space (A,LA) may be viewed also as a Lip–
space, simply by setting, for any a in the domain of LA,

L(a) := max(LA(a),
1
rA
‖a‖).

The Rieffel’s Lip–seminorm LA can be then recovered as LA(a) = infλ∈R L(a − λeA) (cf. [32],
Proposition 2.2).
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2.1.3 Proposition. Let (X, ‖ · ‖, L) be a Lip–space. Then, the dual norm

L′(ξ) := sup
x∈X

|〈ξ, x〉|
L(x)

(2.2)

induces the w∗–topology on the bounded subsets of X ′, the Banach space dual of (X, ‖ · ‖), and
the radius rX is also equal to the radius, in the L′–norm, of the unit ball of (X ′, ‖ · ‖′)

Proof. First observe that L′(·), which is obviously a seminorm, is indeed a norm. In fact, if
L′(ξ) = 0, then ξ vanishes on X0, which is dense, i.e. ξ = 0.

Now, we consider the identity map ι from the closed unit ball B′
1 of X ′, endowed with the

w∗–topology, to the same set endowed with the topology induced by L′. Given r > 0, let
{xi : i = 1, . . . , n} be an r/2–net in {x ∈ X : L(x) ≤ 1}. Then, if ‖ξ‖′ ≤ 1 and L(x) ≤ 1,

|〈ξ, x〉| ≤ max
i=1,...,n

|〈ξ, xi〉|+ r/2.

Therefore, the w∗–open set in B′
1

U = {‖ξ‖′ ≤ 1 : max
i=1,...,n

|〈ξ, xi〉| < r/2},

is contained in the L′–open set in B′
1

V = {‖ξ‖′ ≤ 1 : L′(ξ) < r},

showing that ι is continuous. Since the domain is compact and the range is Hausdorff, ι is a
homeomorphism.

Finally, the radius of the unit ball of X ′ in the L′–norm is given by

sup
‖ξ‖′≤1

L′(ξ) = sup
ξ 6=0,x 6=0

|〈ξ, x〉|
L(x)‖ξ‖′

= sup
x 6=0

‖x‖
L(x)

sup
ξ 6=0

|〈ξ, x〉|
‖ξ‖′‖x‖

= rX .

2.1.4 Definition. A Dual Lip–space (DLS) is a dual Banach space X ′ with a dual Lip–norm L′

which metrizes the w∗–topology on bounded sets.

2.1.5 Proposition. (X, ‖ · ‖, L) is a Lip–space if, and only if, (X ′, ‖ · ‖′, L′) is a dual Lip–space.

Proof. If (X, ‖ · ‖, L) is a Lip–space, then (X ′, ‖ · ‖′, L′) is a dual Lip–space by the Proposition
2.1.3. Conversely, suppose that (X ′, ‖ · ‖′, L′) is a dual Lip–space. Then, identifying X with its
(isometric) image in the (Banach) bidual X ′′ of X, we may consider the set {x ∈ X : L(x) ≤ 1}
as a family of w∗–continuous functions on the w∗–compact set {ξ ∈ X ′ : ‖ξ‖′ ≤ 1} ⊆ {ξ ∈
X ′ : L′(ξ) ≤ rX}. Since |〈ξ, x〉| ≤ L(x)L′(ξ), we see that the family {x ∈ X : L(x) ≤ 1} is
equibounded by rX on {ξ ∈ X ′ : ‖ξ‖′ ≤ 1}. Moreover, as |〈ξ1, x〉 − 〈ξ2, x〉| ≤ L′(ξ1 − ξ2), and
L′ induces the w∗–topology on the bounded subsets of X ′, then the family {x ∈ X : L(x) ≤ 1}
is also w∗–equicontinuous. Therefore, by the Ascoli–Arzelà Theorem [66], {x ∈ X : L(x) ≤ 1}
is compact in the sup–norm ‖ · ‖∞, which coincides, on {ξ ∈ X ′ : ‖ξ‖′ ≤ 1}, with the original
(Banach) norm ‖ · ‖.
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For the applications, we need the fundamental notion of uniformity for families of Lip–spaces.

2.1.6 Definition. A family F of Lip–spaces is called uniform if for all ε > 0 there is nε ∈ N
such that, for any (X, ‖ · ‖, L) in F , {x ∈ X : L(x) ≤ 1} can be covered by nε ‖ · ‖–balls of radius
ε.

The next Lemma tells us that a uniform family of Lip–spaces is also uniformly bounded.

2.1.7 Lemma. [32] If F is a uniform family of Lip–spaces, then there is R > 0 such that
‖x‖ ≤ RL(x) for any (X, ‖ · ‖, L) in F , x ∈ X.

Proof. Let (X, ‖ · ‖, L) be a Lip–space such that {x ∈ X : L(x) ≤ 1} can be covered by n
balls of radius 1, and let x0 ∈ X, L(x0) = 1. Since the set {tx0 : t ∈ [0, 1]} is contained in
{x ∈ X : L(x) ≤ 1}, it is covered by at most n balls of radius 1, hence its length is majorised by
2n, and thus R ≤ 2n.

2.1.8 Notation. Let X be a normed (linear) space, and let X0 be a subset of X. We say that
X0 is ε–dense in X if, for any x ∈ X, one can find an x0 ∈ X0 such that ‖x − x0‖ < ε. When
the set X0 is discrete, we shall call it an ε–net. When the space involved carries more than one
norm, we will always specify the norm w.r.t. which a set will be dense in some other set.

We need two technical Lemmas.

2.1.9 Lemma. Let (X, ρ) be a metric space, BX(x, r) the open r–ball with center x, nr(Ω) the
least number of open balls of radius r which cover Ω ⊂ X, and νr(Ω) the largest number of disjoint
open balls of radius r centered in Ω. Then, one has

nr(Ω) ≥ νr(Ω) ≥ n2r(Ω).

Proof. For the first inequality, let BX(xi, r), i = 1, . . . , νr(Ω), be disjoint balls with centres
in Ω. Then, any r–ball of a covering of Ω may contain at most one of the xi’s. Indeed, if
xi, xj ∈ BX(x, r), then {x} ⊂ BX(xi, r) ∩BX(xj , r) 6= ∅, so that xi = xj .
As for the second inequality, we need to prove it only when νr is finite. So, let us assume that
{BX(xi, r)}νr(Ω)

i=1 are disjoint balls centered in Ω, and observe that, for any y ∈ Ω,

ρ(y,
νr(Ω)⋃
i=1

BX(xi, r)) := inf{ρ(y, z) : z ∈
νr(Ω)⋃
i=1

BX(xi, r)} < r,

otherwise BX(y, r) would be disjoint from
⋃νr(Ω)
i=1 BX(xi, r)), contradicting the maximality of

νr(Ω). Thus, for all y ∈ Ω, there is a j such that ρ(y,BX(xj , r)) < r, that is,

Ω ⊂
νr(Ω)⋃
i=1

BX(xi, r)),

which implies the thesis.

2.1.10 Lemma. Let (V, ‖ · ‖) be an n–dimensional normed space. Then, the ball of radius R can
be covered by (2R/ε)n balls of radius ε.
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Proof. Let us recall that, denoting by nε(Ω) the minimum number of balls of radius ε covering Ω,
and by νε(Ω) the maximum number of disjoint balls of radius ε contained in Ω, by the previous
Lemma, one gets nε(Ω) ≤ νε/2(Ω). Then, denoting by vol the Lebesgue measure and by Br
the ball of radius r w.r.t. the given norm, we get vol(BR) ≥ νε(BR)vol(Bε), and vol(BR) =
(R/ε)nvol(Bε), hence nε(BR) ≤ (2R/ε)n.

Finally, we have a useful characterization of uniformity in terms of finite approximability,
given by the following

2.1.11 Proposition. A family F of Lip–spaces is uniform if, and only if, there exists a constant
R as in Lemma 2.1.7, and, for any ε > 0, there is Nε ∈ N such that any Lip–space X in F has
a subspace V with dimV ≤ Nε, such that {x ∈ V : L(x) ≤ 1} is ε–dense in {x ∈ X : L(x) ≤ 1}.

Proof. Let F be uniform. The constant R exists by Lemma 2.1.7. Then, choose a covering of
{x ∈ X : L(x) ≤ 1} by Nε norm–balls of radius ε, and consider the vector space V generated by
their centers. Its dimension is clearly majorised by Nε.
As for the converse direction, take ε ≤ 1. The elements in {x ∈ V : L(x) ≤ 1} are contained in
{x ∈ V : ‖x‖ ≤ R}, hence any covering of the norm–ball of V of radius R with balls of radius ε
gives a covering of the Lip–norm unit ball in X with balls of radius 2ε. By Lemma 2.1.10, one
can realise the former covering with (2R/ε)Nε balls, hence the implication is proved.

2.2 (Dual) Rigged Lip–spaces

2.2.1 Definition. A Rigged Lip–space (RLS) is a Banach space X with a densely defined Lip–
norm L such that {x ∈ X : L(x) ≤ 1} is norm compact, and a further norm p, with p(x) ≤ ‖x‖.

A Dual Rigged Lip–space (DRLS) is a dual Banach space X ′ with a dual Lip–norm L′ which
metrizes the w∗–topology on bounded sets, and a (possibly infinite) norm p′, with p′(x′) ≥ ‖x′‖,
such that {x′ ∈ X ′

1 : p′(x) <∞} is w∗–dense in X ′
1.

We see that a rigged Lip–space is a Lip–space endowed with a further norm p smaller than
the Banach norm, while a dual rigged Lip–space is a dual Banach space endowed with a further
norm p′ greater than the dual Banach norm. As we shall see in the following, in the W ∗–algebraic
setting, where the dual Banach space will be a W ∗–algebra (or a von Neumann algebra), this
notion is somehow dual to that of Rieffel, which is essentially a C∗–algebraic construction, for
if the Banach space of normal linear functionals on W ∗–algebra is a rigged Lip–space, then its
dual, i.e. the W ∗–algebra itself, or better, its (norm) unit ball, will be the compact metric space
playing the role of the state space of a quantum metric space a la Rieffel.

2.2.2 Proposition. Let X be a Banach space, X ′ be its dual Banach space. (X ′, L′, p′) is a dual
rigged Lip–space (DRLS) if and only if (X,L, p) is a rigged Lip–space (RLS).

Proof. The fact that (X,L) is a Lip–space if, and only if, (X ′, L′) is a dual Lip–space follows
from Proposition 2.1.5. Therefore, we only have to check that {x′ ∈ X ′

1 : p′(x) <∞} is w∗–dense
in X ′

1 if, and only if, p is a norm on X. Assume that p is a norm on X. Since X is a Lip–space,
then, by Proposition 2.1.11, for any n we may find a finite subset Fn of {x ∈ X : L(x) ≤ 1} such
that ∪x∈FnB(x, 1/n) ⊃ {x ∈ X : L(x) ≤ 1}. Therefore, if Vn is the vector space generated by Fk,
k ≤ n, then {Vn}n∈N is an increasing sequence of finite–dimensional spaces whose union V∞ is
dense in X. For a given x′ ∈ X ′, with ‖x′‖ ≤ 1, x′|Vn is p–bounded, since Vn is finite–dimensional
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and p is a norm, hence, by the Hahn–Banach Theorem, we may find an extension x′n to the whole
X such that ‖x′n‖ ≤ 1 and p′(x′n) < ∞. We want to show that x′n → x′ in the w∗–topology.
Indeed, for any x ∈ X, let xn ∈ Vn be a sequence approximating x in norm. We have then

|〈(x′ − x′n), x〉| = |〈(x′ − x′n), (x− xn)〉| ≤ 2‖x− xn‖ → 0.

Conversely, if p is only a seminorm on X, namely there exists an x ∈ X, with ‖x‖ = 1 and
p(x) = 0, we get, for any x′ ∈ X ′ with p′(x′) < ∞, p′(x′) ≥ |〈x′, λx〉| = |λ| |〈x′, x〉| for any λ,
hence 〈x′, x〉 = 0. Therefore, if we choose x′ ∈ X ′ such that 〈x′, x〉 = 1, and pick a sequence {x′n}
w∗–converging to x′, then we get 〈x′n, x〉 → 1, namely x′n has eventually infinite p′–norm.

2.3 Ultraproducts of Lip–spaces

(The reader is referred to Section 1.3 for basic definitions and properties of ultrafilters and
ultrapowers for families of (metric or normed) spaces.)

2.3.1 Restricted Ultraproducts of (Dual) Lip–spaces

Given a sequence {(Xn, ‖ · ‖, Ln)}n∈N of Lip–spaces, let `∞(Xn,U) be the Banach ultraproduct
of the sequence {(Xn, ‖ · ‖)}n∈N of Banach spaces (see Definition 1.3.16), and denote by πU the
projection from `∞(Xn) onto `∞(Xn,U).

2.3.1 Definition. Given a sequence {(Xn, ‖ · ‖, Ln)}n∈N of Lip–spaces, we call restricted ultra-
product of the sequence, and denote it by `∞R (Xn,U), or simply by XU , the norm closure of the
image under πU of the subspace `∞R (Xn), defined as `∞R (Xn) := {{xn} ∈ `∞(Xn) : L({xn}) :=
supn Ln(xn) < +∞}.

The quotient norm ‖ · ‖U of the equivalence class xU of a sequence {xn} is defined as

‖xU‖U := inf
[yn]=xU

sup
n
‖yn‖, (2.3)

and, by Proposition 1.3.12, we see that ‖xU‖U = limU ‖xn‖ (see [1], 2.3).
Analogously, the quotient norm LU (xU ) of xU is defined as

LU (xU ) := inf
[yn]=xU

sup
n
Ln(yn). (2.4)

This, in particular, implies that LU (xU ) ≤ limU Ln(xn). In fact, for any ε > 0, there exists an
element U of the ultrafilter such that, for any n ∈ U , Ln(xn) ≤ limU Lm(xm) + ε. Then, if we
define yn = xn for n ∈ U and yn = 0 for n /∈ U , since [yn] = [xn], the result follows. Moreover, it
can be shown that the infimum in (2.4) is a minimum (see [32], Lemma 2.9), i.e. there exists a
sequence {x̃n} in the same equivalence class of {xn}, such that

LU (xU ) = lim
U
Ln(x̃n) = sup

n
Ln(x̃n). (2.5)

In particular, it follows that, for any element xU ∈ `∞R (Xn,U),

LU (xU ) = min
[xn]=xU

lim
U
Ln(xn). (2.6)
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2.3.2 Proposition. [32] Given a uniform sequence (Xn, ‖ · ‖, Ln) of Lip–spaces, the restricted
ultraproduct `∞R (Xn,U), endowed with the quotient norms ‖ · ‖U , LU , is a Lip–space. Moreover,
the radius rU for `∞R (Xn,U) is equal to limU rn, where rn is the radius of Xn.

Let {(X ′
n, ‖ ·‖′, L′n)}n∈N be a sequence of dual Lip–spaces, and let `∞(X ′

n,U) be the (Banach)
ultraproduct of the sequence {(X ′

n, ‖ · ‖′)}n∈N (see Definition 1.3.16).
The relation between `∞(X ′

n,U) and `∞R (Xn,U)′ is given in the following

2.3.3 Proposition. [32] Let {ξn : ξn ∈ X ′
n} be a uniformly bounded sequence, and consider the

functional ξU on `∞(Xn,U) given by ξU (xU ) := limU ξn(xn), with [xn] = xU ∈ `∞R (Xn,U). Then,
ξU is well–defined, ξU ∈ `∞R (Xn,U)′, and

L′U (ξU ) = lim
U
L′n(ξn). (2.7)

Proof. Let M > 0 be such that ‖ξn‖′ ≤ M , n ∈ N. We first prove that ξU is well–defined and
bounded. Indeed, if [x′n] = [xn] ∈ `∞R (Xn,U), then limU |ξn(x′n)−ξn(xn)| ≤M limU ‖x′n−xn‖ = 0.
Moreover, |ξU (xU )| ≤M limU ‖xn‖ = M‖xU‖, so that ‖ξU‖′U ≤M . Finally,

lim
U
L′n(ξn) = lim

U
sup

xn∈Xn

|ξn(xn)|
Ln(xn)

= sup
{xn}∈`∞R (Xn)

lim
U

|ξn(xn)|
Ln(xn)

= sup
{xn}∈`∞R (Xn)

limU |ξn(xn)|
limU Ln(xn)

= sup
xU∈`∞R (Xn,U)

sup
[xn]=xU

|ξU (xU )|
limU Ln(xn)

= sup
xU∈`∞R (Xn,U)

|ξU (xU )|
LU (xU )

= L′U (ξU ),

where in the last but one equality we used (2.6). Note also that, in that equality, the set of
allowed elements in the supremum on the right is tacitly assumed not to contain xU = 0, while
the set of allowed elements in the supremum on the left might also contain xU = 0, since in some
examples one may find sequences {xn} such that [xn] = 0 but limU Ln(xn) > 0. However, for
such sequences the numerator |ξU (xU )| is zero, therefore the supremum does not change.

Now, let `∞(X ′
n) := {{x′n} : x′n ∈ X ′

n, ‖{x′n}‖ := supn ‖x′n‖ < ∞}, the Banach space of
(uniformly) bounded sequences, on which we set L′({ξn}) := supn L′n(ξn). Let us consider the
subspace

K ′
L′,U := {{ξn} ∈ `∞(X ′

n) : lim
U
L′n(ξn) = 0}, (2.8)

and the corresponding quotient map

π′U : `∞(X ′
n)→ `∞(X ′

n)/K
′
L′,U . (2.9)

Let us notice that, in absence of further hypotheses, K ′
L′,U is not complete in the Banach norm,

but it becomes a Banach subspace as soon as we assume that the sequence {Xn} is uniform.
Indeed, in this case we have L′n(µn − νn) ≤ rn‖µn − νn‖ ≤ R‖µn − νn‖, where rn are the radii of
Xn (cf. Proposition 2.1.3).
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2.3.4 Definition. We define X ′
U as the image π′U (`∞(X ′

n)) of `∞(X ′
n) in `∞(X ′

n)/K
′
L′,U , with

the quotient norms ‖ · ‖′U and L′U , and call it the dual restricted ultraproduct of the family
{(X ′

n, ‖ · ‖′, L′n)}n∈N.

The pairing between `∞(X ′
n) and `∞(Xn), given by 〈{ξn}, {xn}〉 = limU ξn(xn), gives rise to

a pairing between `∞(X ′
n,U) and `∞(Xn,U) (see [68], Lemma 1, p. 77), hence to an isometric

map `∞(X ′
n,U)→ `∞(Xn,U)′. By composing this isometric map with the projection map from

`∞(Xn,U)′ to `∞R (Xn,U)′ (i.e., the dual of the inclusion map of `∞R (Xn,U) into `∞(Xn,U)), one
obtains a contraction π : `∞(X ′

n,U)→ `∞R (Xn,U)′. The fact that π is surjective is essentially the
content of the following

2.3.5 Theorem. [32] Given a uniform sequence (Xn, ‖ · ‖, Ln) of Lip–spaces, the ultraproduct
`∞(X ′

n,U) of the dual spaces projects on the dual `∞R (Xn,U)′ of the restricted ultraproduct. More-
over, given a sequence {ξn} in `∞(X ′

n), the element ξU in `∞(X ′
n,U) gives the null functional on

`∞R (Xn,U) if, and only if, limU L
′
n(ξn) = 0.

As a consequence, we see that the kernel of the map π : `∞(X ′
n,U) → `∞R (Xn,U)′ is (iso-

metrically) isomorphic to K ′
L,U for the respective (dual) Lip–norms. With the same notation as

above, we then have the following

2.3.6 Corollary. The dual restricted ultraproduct X ′
U of the family {X ′

n} is (isometrically) iso-
morphic to the Banach dual (XU )′ ≡ `∞R (Xn,U)′ of the restricted ultraproduct `∞R (Xn,U) of the
family {Xn}.

2.3.2 Restricted Ultraproduct of (Dual) Rigged Lip–spaces

Given a sequence {Xn} of RLS, let `∞(Xn) = {{xn} : xn ∈ Xn, ‖{xn}‖ := supn ‖xn‖ < ∞} be
the Banach space of bounded sequences, on which we set p({xn}) := supn pn(xn). We consider
the subspace `∞R (Xn) = {{xn} ∈ `∞(Xn) : L({xn}) := supn Ln(xn) < ∞} and, for a given
ultrafilter U , the subspace KU = {{xn} ∈ `∞(Xn) : limU ‖xn‖ = 0}. KU is a Banach subspace of
`∞(Xn), therefore we may consider the projection πU : `∞(Xn) → `∞(Xn)/KU to the quotient
space. Let us observe that such quotient is a Banach space, with the quotient Banach norm.

2.3.7 Definition. We define XU as the norm closure of πU (`∞R (Xn)) in `∞(Xn)/KU , with the
quotient norms pU , ‖ · ‖U , and LU . We call it the restrictred ultraproduct of RLS spaces. Let us
observe that, in general, pU is only a seminorm.

Similarly, given a sequence {X ′
n} of DRLS, let `∞(X ′

n) = {{x′n} : x′n ∈ X ′
n, ‖{x′n}‖ :=

supn ‖x′n‖ < ∞} be the Banach space of bounded sequences, on which we set L′({x′n}) :=
supn L′n(x

′
n). We consider the subspace `∞p′ (X

′
n) := {{x′n} ∈ `∞(X ′

n) : p′({x′n}) := supn p′n(x
′
n) <

∞} and, for a given ultrafilter U , the subspace K ′
L′,U = {{x′n} ∈ `∞(X ′

n) : limU L
′
n(x

′
n) = 0}, and

the quotient map π′U : `∞(X ′
n)→ `∞(X ′

n)/K
′
L′,U .

2.3.8 Definition. We define X ′
U as the image π′U (`∞(X ′

n)) of `∞(X ′
n) in `∞(X ′

n)/K
′
L′,U , with

the quotient norms p′U , ‖ · ‖U , and L′U . We call it the dual restrictred ultraproduct of DRLS
spaces.

As for Lip–spaces, we need the concept of uniformity, given in the following

63



2.3.9 Definition. A sequence Xn of RLS’s is uniform if the sequence {x ∈ Xn : L(x) ≤ 1} is
uniformly totally bounded, and, for any sequence {x′n} ∈ `∞(X ′

n), ‖{x′n}‖ ≤ 1, and any ε > 0,
we may find {y′n} ∈ `∞p′ (X ′

n), ‖{y′n}‖ ≤ 1, such that L′({x′n − y′n}) ≤ ε.

Then, we have the following

2.3.10 Theorem. Assume the sequence Xn is uniform. Then XU is a RLS, X ′
U is a DRLS, and

X ′
U is the dual of XU .

Proof. We already know that, by Proposition 2.3.2, XU is a Lip–space, X ′
U is a dual Lip–space,

and, by Corollary 2.3.6, X ′
U is the dual of XU , so we have only to check the rigged structure. In

view of Proposition 2.2.2, it is enough to show that {x′ ∈ X ′
U ,1 : p′U (x) <∞} is w∗–dense in X ′

U ,1.
By definition, for any {x′n} ∈ `∞(X ′

n), ‖{x′n}‖ ≤ 1, and any ε > 0, we may find {y′n} ∈ `∞p′ (X ′
n),

‖{y′n}‖ ≤ 1 such that L′({x′n − y′n}) ≤ ε, namely {x′n} can be approximated in L′—norm, hence
the claim follows.

2.4 Lip–von Neumann Algebras and Ultraproducts

In the following, we will consider concrete von Neumann algebras, but all the results are valid
for abstract W ∗–algebras as well, as we do not make any reference to the representing Hilbert
space.

2.4.1 Definition (Lip–von Neumann Algebra). A Lip–von Neumann algebra (LvNA) is a
von Neumann algebra M with a dual Lip–norm L′, which metrizes the w∗–topology on bounded
subsets, i.e. such that {x ∈ M : ‖x‖ ≤ 1} is w∗–compact in the topology induced by L′. Equiva-
lently, M∗ has a densely defined norm L such that {ω ∈M∗ : L(ω) ≤ 1} is norm compact.

2.4.2 Example (Commutative Lip–von Neumann algebras). Let us recall that every
commutative von Neumann algebra on a separable Hilbert space is isometrically ∗–isomorphic to
L∞(X) for some Radon integral on a compact, second countable Hausdorff space X. The predual
of L∞(X) will be then L1(X), and so, in order to get a (dual) Lip–norm L′ on L∞(X), it suffices
to construct a densely defined norm L on L1(X) such that the set {f ∈ L1(X) : L(f) ≤ 1} is
norm compact. So, in particular, if we are given a compact linear map T : C(X) → L1(X), by
setting LT (f) := ‖T (f)‖1, we get immediately a dual Lip–norm L′ on L∞(X) by setting

L′T (g) := sup {|〈f, g〉| : LT (f) ≤ 1} . (2.10)

For example, let k : X × X → C be a continuous function. Then, since X is compact, k ∈
L2(X ×X,µ× µ), and the corresponding linear map Tk : C(X)→ L1(X), given by

(Tkf)(s) :=
∫
k(s, t)f(t)dµ(t), f ∈ C(X), (2.11)

is compact for the L1–norm topology (see, for instance, Lemma 13.4 in [39]). Hence, we have a
plenty of dual Lip–norms on any given commutative von Neumann algebra acting on a separable
Hilbert space.

2.4.3 Definition. The LvNA’s (M,L′M ) and (N,L′N ) are said to be Lip–isometric if there is an
isometric ∗–isomorphism between them, namely a ∗–isomorphism ϕ : M → N , such that

L′N (ϕ(a)) = L′M (a), for any a ∈M. (2.12)
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Let {(Mn, L
′
n)}n∈N be a sequence of Lip–von Neumann algebras, with corresponding preduals

(Mn∗, Ln), and U an ultrafilter on N. As (Mn∗, Ln) is in particular a Lip–space, we may consider
the space `∞(Mn∗) = {{ωn} : ωn ∈ Mn∗, ‖{ωn}‖ = supn ‖ωn‖ < ∞}, the subspace `∞R (Mn∗) =
{{ωn} ∈ `∞(Mn∗) : L({ωn}) = supn Ln(ωn) < ∞}, KU = {{ωn} ∈ `∞(Mn∗) : limU ‖ωn‖ = 0},
and the quotient projection πU : `∞(Mn∗) → `∞(Mn∗)/KU . In view of Definition 2.3.1, the
restricted ultraproduct MU∗ of the family {Mn∗} is the norm closure of the image πU (`∞R (Mn∗))
of `∞R (Mn∗) in `∞(Mn∗)/KU , with the quotient norms ‖ · ‖U and LU .

Then, since (Mn, L
′
n) is a dual Lip–space, in view of Definition 2.3.4, we can construct the dual

restricted ultraproduct MU of the family {(Mn, L
′
n)} as the image π′U (`∞(Mn,U)) of `∞(Mn,U)

in `∞(Mn,U)/K ′
L,U , with the quotient norms ‖ · ‖U and L′U , where `∞(Mn,U) is the (Banach)

ultraproduct of the sequence {Mn}, on which we set L′({an}) = supn L′n(an), K
′
L′,U = {{an} ∈

`∞(Mn,U) : limU L
′(an) = 0} (which is not an ideal!), and π′U : `∞(Mn,U) → `∞(Mn,U)/K ′

L′,U
is the quotient projection.

If we want that the (restricted) ultraproduct of a family of LvNA’s is itself a LvNA, we need a
further condition on the Lip–norm. So, we introduce a “rigged structure” for Lip–von Neumann
algebras, given in the following

2.4.4 Definition (Rigged von Neumann Algebra). A Rigged von Neumann Algebra (RvNA)
is a Lip–von Neumann Algebra M with a dual Lip–norm L′ such that {a ∈ M : ‖a‖ ≤ 1} is L′–
compact, and setting

N(a) := sup
L′(b)≤1

max(L′(ab), L′(ba)), (2.13)

the set {a ∈M1 : N(a) <∞} is w∗–dense in M1.

2.4.5 Lemma. Let (M,L′, N) be a RvNA. Then,

(i) L′(ab) ≤ L′(a)N(b), L′(ba) ≤ L′(b)N(a).

(ii) N(ab) ≤ N(a)N(b), N(a∗) = N(a), hence MN := {a ∈M : N(a) <∞} is a ∗-algebra.

If we set
p′(a) := max(‖a‖, N(a)), (2.14)

(M,L′, p′) is dual rigged Lip–space.

Proof. Property (i) follows immediately by the Definition. As for (ii), L′(a1a2b) ≤ N(a1)L′(a2b),
hence

sup
L′(b)≤1

L′(a1a2b) ≤ N(a1) sup
L′(b)≤1

L′(a2b) ≤ N(a1)N(a2). (2.15)

Analogously, supL′(b)≤1 L
′(ba1a2) ≤ N(a1)N(a2). As a consequence, N(ab) ≤ N(a)N(b). Since

L′ is a dual Lip–norm, L′(a∗) = L′(a), hence N(a∗) = N(a) follows. The last statement is now
obvious.

We introduce now two types of uniformity, one for families of Lip–von Neumann algebras
(we call it weak uniformity), the other for families of rigged von Neumann algebras (strong
uniformity).

2.4.6 Definition (Weak Uniformity). A family (Mi, L
′
i), i ∈ I, of Lip–von Neumann algebras

is weakly uniform if it is uniformly totally bounded, i.e., if for any ε > 0 there is nε ∈ N such
that, for any i ∈ I, the unit ball {x ∈Mi : L′i(x) ≤ 1} can be covered by nε L′i–balls of radius ε.
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2.4.7 Definition (Strong Uniformity). A family (Mi, L
′
i), i ∈ I, of rigged von Neumann

algebras is strongly uniform if

(a) Uniform compactness: The family (Mi, L
′
i)i∈I is uniformly totally bounded.

(b) Uniform normalizer condition: ∀ε > 0, ∃K > 0 : ∀i ∈ I, a ∈ (Mi)1 ∃b ∈ (Mi)1: Ni(b) ≤ K
and L′i(a− b) ≤ ε.

2.4.8 Remark. Since, by Lemma 2.4.5, each (Mi, L
′
i, p

′
i), with p′i(a) = max(‖a‖, Ni(a)), is a

dual rigged Lip–space, in view of Definition 2.3.9 we see that the notion of strong uniformity for
families of RvNA’s coincides with the notion of uniformity for families of dual rigged Lip–spaces.

We end this chapter with the following fundamental

2.4.9 Theorem. Let {Mn}n∈N be a (strongly) uniform sequence of RvNA, U a free ultrafilter,
and define

`∞p′ (Mn) :=
{
{an} ∈ `∞(Mn) : p′({an}) := sup

n
p′n(an) <∞

}
.

Then,

(i) AU := π′U (`∞p′ (Mn)−‖·‖) is a C∗-algebra.

(ii) Let A′′U be the weak closure of AU in the direct sum of the GNS representations associated
with all states in (MU )∗. Then (A′′U )∗ = (MU )∗, hence A′′U is isomorphic with MU as a
Banach space.

(iii) MU is a LvNA.

Proof. (i). By Lemma 2.4.5 above, if ‖{an}‖ < ∞, N({an}) := supnNn(an) < ∞, and
limU L

′
n(bn) = 0, then

lim
U
L′(anbn) ≤ lim

U
Nn(an)L′n(bn) ≤ N({an}) lim

U
L′n(bn) = 0,

and analogously, limU L
′
n(bnan) = 0. This shows that the space K ′

L′,U is a bimodule for `∞p′ (Mn),
which is a ∗–algebra by Lemma 2.4.5 (ii). Notice that this result extends to the norm closure of
`∞p′ (Mn). Indeed, if {an} belongs to the norm closure and ‖{an}‖ = supn ‖an‖ ≤ K, then, for any
ε > 0, we can find a {bn} ∈ `∞p′ (Mn), such that ‖{an − bn}‖ < ε. Therefore, if limU L

′
n(cn) = 0

and rU := supn rn <∞, then

lim
U
L′n(ancn) ≤ lim

U
L′n((an − bn)cn) + lim

U
L′n(bncn)

≤ rU‖{an − bn}‖‖{cn}‖ ≤ rU‖{cn}‖ε.

The result then follows by the arbitrariness of ε.
(ii). Set SU := {ω := [ωn] ∈ MU∗ : ωn ∈ (Mn∗)1,+}, and observe that SU is a closed convex

subset of MU∗ whose linear span is the whole MU∗. Then, consider the embedding ι of SU into the
set of states of AU . The embedding ι is indeed isometric, since the unit ball of AU is w∗–dense
in (MU )1, where MU = π′U (`∞(Mn)). Then, consider the representation

πU :=
⊕
ω∈SU

πω,
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where (πω,Hω, ξω) is the GNS representation associated to ω. Clearly, ι(SU ) consists of vector
states for πU .

For any ω ∈ SU , a dense set of vectors in Hω is given by aξω, with a := [an], {an} ∈ `∞p′ (Mn),
so the corresponding states are given by 〈ωa, b〉 = 〈ω, a∗ba〉. Let us observe that

L(ωa) = sup
〈ω, a∗ba〉
L′(b)

= sup
〈ω, a∗ba〉
L′(a∗ba)

L′(a∗ba)
L′(b)

≤ L(ω)N(a)2,

namely ωa ∈ SU . This shows that all vector states of πU are given by norm–limits of convex
combinations of states in SU , namely are represented by elements of SU . On the other hand,
normal states are given by converging series of vector states, hence ι(SU ) contains all normal
states for πU , which implies the thesis.

(ii). By part (ii), MU is a von Neumann algebra, and, by Corollary 2.3.6, it is a dual Lip–
space, hence a Lip-von Neumann algebra.

67



68



Chapter 3

The Dual Quantum
Gromov–Hausdorff Distance distqGH∗.

3.1 Effros–Maréchal Topology

Let H be a (fixed) Hilbert space, and let vN(H) be the set of von Neumann algebras acting on
H. We can endow the space vN(H) with a certain natural topological structure. The definition
of this topology goes back to the works of Effros [22] and Maréchal [46]. There are at least three
different – but actually equivalent – ways to describe the Effros–Maréchal topology, as shown by
Haagerup and Winslow in the two papers [35], [36]. The first one is the original definition due
to Maréchal:

3.1.1 Definition. The Effros–Maréchal topology is the weakest topology on vN(H) in which the
maps

vN(H) 3M 7→ ‖ϕ|M‖

are continuous on vN(H) for every ϕ ∈ B(H)∗.

If H is separable, then vN(H) is a Polish space in this topology [46], hence metrizable.
The second and third definitions need some preliminary notions to be introduced. First, we

recall how to define a topology on the family of closed subsets of a compact Hausdorff space (cf.
[21]).

3.1.2 Notation. We recall that, if X is a set and {xα}α∈A is a net in X based on directed set
A and Y is a subset of X, we say that {xα}α∈A is frequently in Y if, for every α ∈ A there exists
some β ≥ α, β ∈ A, such that xβ is in Y .
We say that {xα}α∈A is eventually in Y if there exists a γ ∈ A such that xβ is in Y for any β ≥ γ.

3.1.3 Definition. Let X be a compact Hausdorff space, and let c(X) the set of closed subsets of
X. For x ∈ X, denote by ω(x) the set of open neighborhoods of x. Let {Cα} ⊆ c(X) be a net,
and define

limCα := {x ∈ X : ∀U ∈ ω(x), U ∩ Cα 6= ∅ eventually} (3.1)
limCα := {x ∈ X : ∀U ∈ ω(x), U ∩ Cα 6= ∅ frequently}. (3.2)

69



Then, it can be shown [21] that there is a unique topology on c(X), called the convergence
topology, in which convergence is given by

Cα −→
ct

C ⇐⇒ limCα = C = limCα

for a net {Cα} ⊆ c(X) and C ∈ c(X).
Let c0(X) be the set of non empty closed subsets of the compact metric space (X, ρ), and let

distH(C1, C2) = max
(

sup
x∈C1

{
inf
y∈C2

ρ(x, y)
}
, sup
x∈C2

{
inf
x∈C1

d(x, y)
})

(3.3)

be the Hausdorff distance on c0(X) induced by ρ.

3.1.4 Theorem. [21] Let (X, ρ) be a compact metric space and let {Cn}n∈N ⊂ c0(X) be a
sequence of closed subsets. Then,

Cn −→
ct

C ⇐⇒ lim
n→∞

distH(Cn, C) = 0. (3.4)

As unit balls in von Neumann algebras are weak operator (wo–)compact, one may define
inferior and superior limits in vN(H) (or, more in general, in the set SA(M) of all von Neumann
subalgebras of a given M , if M 6= B(H)), using the above concepts on unit balls. So, we have
the second definition of the Effros–Maréchal Topology:

3.1.5 Definition. Let {Nα} ⊆ SA(M) be a net. The Effros-Maréchal topology is described by
the following notion of convergence

Nα → N ⇐⇒ lim(Nα)1 = N1 = lim(Nα)1,

where the subscript 1 denotes the (closed) unit ball.

Let x ∈ B(H), and denote by so∗(x) the set of (open) neighborhoods of x w.r.t. the strong∗

operator topology.

3.1.6 Definition. Let {Nα} ⊆ SA(M) be a net. We define

lim inf Nα := {x ∈M : ∀U ∈ so∗(x), U ∩Nα 6= ∅ eventually} (3.5)

3.1.7 Theorem. [35] Let {Nα} ⊆ SA(M) be a net. Then lim inf Nα ∈ SA(M).

Let U(M) denote the unitary group of M .

3.1.8 Theorem. [35] Let {Mα} ⊆ SA(M) be a net. Then, we have

U(lim inf Nα) = lim(Nα)1 ∩ U(M), (3.6)

and
lim inf Nα =

∨
{n ∈ SA(M)|N1 ⊆ lim(Nα)1}, (3.7)

where the unit balls are equipped with the (compact) wo-topology, and ∨ denotes the usual supre-
mum in SA(M). In particular, if lim(Nα)1 = N1 for some N ∈ SA(M), then lim inf Nα = N .
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This theorem tells us that lim inf Nα is the largest element in SA(M) whose unit ball is
contained in lim(Nα)1. This motivates the following

3.1.9 Definition. For a net {Nα} ⊆ SA(M), we define

lim supNα := (lim(Nα)1)′′,

i.e. lim supNα is the smallest element of SA(M) whose unit ball contains lim(Nα)1.

Finally, we give the third definition of the Effros-Maréchal topology:

3.1.10 Definition. Let {Nα} ⊆ SA(M) be a net. The Effros–Maréchal topology is described by
the following notion of convergence

Nα → N ⇐⇒ lim inf Nα = N = lim supNα.

The equivalence of these three definitions is the content of the following

3.1.11 Theorem. [35] Let {Nα} ⊆ SA(M) be a net, and N ∈ SA(M). Then the following
statements are equivalent:

(i) lim inf Nα = N = lim supNα,

(ii) lim(Nα)1 = N1 = lim(Nα)1,

(iii) ‖ϕ|Nα‖ → ‖ϕ|N‖ for all ϕ ∈M∗.

Hence, if M is separable, the topology on SA(M) defined by (i)–(iii) is Polish by Corollary 2 of
[46].

Proof. (i) ⇒ (ii). Assuming (i), by Theorem 3.1.8 and Definition 3.1.9 we get:

N1 = (lim inf Nα)1 = lim(Nα)1 (3.8)
⊆ lim(Nα)1 ⊆ (lim supNα)1 = N1. (3.9)

(ii) ⇒ (i). Assuming (ii), by Theorem 3.1.8 we get

N ⊆ lim inf Nα ⊆ lim supNα = (lim(Nα)1)′′ = N ′′ = N.

(ii) ⇔ (iii). Let CS(M) be the set of all wo–closed, convex, balanced subsets of M1. The
convergence topology on CS(M) is compact (cf. [21]), and it makes the functions

E 7→
(

sup
x∈E
|ϕ(x)|

)
ϕ∈M∗

continuous on CS(M) (in the product topology for the range); as it is injective by the Hahn–
Banach Theorem, it is a homeomorphism. Restricting to {N1 : N ∈ SA(M)}, we get the claim.
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We specialize now to the separable case. By the above considerations, we know that the
Effros–Maréchal topology is metrizable, second countable and complete, i.e. SA(M) is a Polish
space. We want to construct a metric on SA(M) which induces the Effros–Maréchal topology. To
this aim, take any distance ρ on M inducing the wo–topology on bounded subsets of M (which
coincides with the σ–weak topology on bounded sets).1 The corresponding Hausdorff distance
between unit balls of von Neumann algebras in SA(M) will be then the desired metric, that is,

distEM (Nα, Nβ) := distH((Nα)1, (Nβ)1)

= max

(
sup

x∈(Nα)1

{
inf

y∈(Nβ)1
ρ(x, y)

}
, sup
x∈(Nβ)1

{
inf

x∈(Nβ)1
ρ(x, y)

})
(3.11)

Thus, in view of Theorem 3.1.4, we have the following

3.1.12 Theorem. Assume that M∗ is separable, and let {Nn} ⊆ SA(M) be a sequence. Then.
for every free ultrafilter U on N, the following statements are equivalent:

(i) Nn → N over U in the Effros-Maréchal topology;

(ii) limU distEM (Nn, N) = 0.

3.2 The Distance distqGH∗

As seen in the previous section, given a (separable) Hilbert space H and two von Neumann
subalgebras of B(H), it is possible to define a Hausdorff–like distance between them. As in the
case of ordinary (compact) metric spaces, one may proceed from the Hausdorff distance between
closed subsets of a (concrete) metric space to the Gromov–Hausdorff distance, which is a pseudo–
distance between (abstract) metric spaces. This pseudo–distance then becomes a true distance
on the space of isometry equivalence classes of compact metric spaces. This is indeed one of the
ideas which inspired our construction.

Let M , N be two Lip–von Neumann algebras with dual Lip–norms L′M , L′N . We want
to introduce a Gromov–Hausdorff–type notion of distance between them. In order to get the
distance–zero property (i.e., the property that, when two LvNA’s are at distance zero, then they
are isometrically Lip–isomorphic), we need to consider not only the original algebras M and N ,
but also the 2 × 2–matrix algebras M2(M) and M2(N) with entries in M and N , respectively.
We introduce some notation.

3.2.1 Notation. For a LvNA M , we still denote by L′M the dual Lip–norm onM2(M) induced
by that on M as follows:

L′M ((aij)) := max
i,j=1,2

(L′M (aij)), (aij) ∈M2(M). (3.12)

Notice that L′M gives back the original Lip–norm, when restricted to the copy ofM diagonally em-
bedded inM2(M). Moreover, we will denote by XM the positive part of the unit ballM2(M)1,+
ofM2(M).

1For example, one could take the following distance, which is known to satisfy the requirement (see, for instance,
[69]):

ρ(x, y) :=
X

n

1

2n
|(ξn, (x− y)ξn)|, x, y ∈ M1, (3.10)

where {ξn}n∈N is a dense set of vectors in the unit ball of H.
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Let L′(M,N) denote the set of all (dual) Lip–norms L′ = L′M⊕N on the direct sum M ⊕N ,
such that L′M⊕{0} = L′M and L′{0}⊕N = L′N .

3.2.2 Definition. Let (M,L′M ) and (N,L′N ) be Lip–von Neumann algebras. We define the dual
quantum Gromov–Hausdorff distance between them, by setting

distqGH∗(M,N) := inf{distL
′

H (XM , XN ) : L′ ∈ L′(M,N)}, (3.13)

where XM :=M2(M)1,+ and XN :=M2(N)1,+.

We need to show that distqGH∗ is a metric. It is clearly symmetric in M and N .

3.2.3 Theorem (Triangle Inequality). Let (M1, L
′
1), (M2, L

′
2), (M3, L

′
3) be Lip–von Neumann

algebras. Then

distqGH∗(M1,M3) ≤ distqGH∗(M1,M2) + distqGH∗(M2,M3). (3.14)

Proof. Let 1 ≥ ε > 0 be given. Then, we can find an L′12 ∈ L′(M1,M2) such that

distL
′
12

H (XM1 , XM2) ≤ distqGH∗(M1,M2) + ε/2.

Similarly, we can find L′23 ∈ L′(M2,M3) such that

distL
′
23

H (XM2 , XM3) ≤ distqGH∗(M2,M3) + ε/2.

We define
L′13(x1, x3) := inf

x2∈M2

(L′12(x1, x2) + L′23(x2, x3)).

We shall prove that it is a seminorm, whose restrictions to M1 and M3 are L′1 and L′3, respectively.
Indeed, the positive homogeneity is clear, and we have

L′13(x1 + y1, x3 + y3) = inf
x2∈M2

(L′12(x1 + y1, x2) + L′23(x2, x3 + y3))

= inf
x2+y2∈M2

(L′12(x1 + y1, x2 + y2) + L′23(x2 + y2, x3 + y3))

= inf
x2,y2∈M2

(L′12(x1 + y1, x2 + y2) + L′23(x2 + y2, x3 + y3))

≤ inf
x2,y2∈M2

(L′12(x1, x2) + L′12(y1, y2) + L′23(x2, x3) + L′23(y2, y3))

= inf
x2∈M2

(L′12(x1, x2) + L′23(x2, x3)) + inf
y2∈M2

(L′12(y1, y2) + L′23(y2, y3))

= L′13(x1, x3) + L′13(y1, y3).

Then, let us check the restriction requirement: since L′23(x2, 0) = L′2(x2) = L′12(0, x2), we have

L′13(x1, 0) = inf
x2∈M2

(L′12(x1, x2) + L′23(x2, 0))

= inf
x2∈M2

(L′12(x1, x2) + L′2(x2)) ≤ L′12(x1, 0) = L′1(x1),

and, since L′12(x1, x2) = L′12((x1, 0) + (0, x2)) ≥ |L′1(x1)− L′2(x2)|,

L′13(x1, 0) ≥ inf
x2∈M2

(|L′1(x1)− L′2(x2)|+ L′2(x2)) = L′1(x1),
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and so L′13(x1, 0) = L′1(x1). Similarly, L′13(0, x3) = L′3(x3). Now, in order to get a norm, we
simply define

L′13,δ(x1, x3) := (1− δ)L′13(x1, x3) + δL1(x1) + δL3(x3), 0 < δ ≤ 1.

Clearly, the restrictions of L′13,δ to M1 and M3 are still L′1 and L′3. Finally, we have to show
that the unit ball (M1 ⊕M3)1 is L′13,δ–compact. But any L′–norm on M1 ⊕M3, which restricts
to the given Lip–norms, satisfies this requirement, since one has L′(x1, x3) ≤ L′1(x1) + L′3(x3).
Therefore, L′13,δ, 0 < δ ≤ 1, is a Lip–norm on M1 ⊕M3.

Now, suppose that we have distL
′
12

H (XM1 , XM2) = d12 and distL
′
23

H (XM2 , XM3) = d23. By
definition of Hausdorff distance, for any given x1 ∈ XM1 , we can find an x2 ∈ XM2 – call it
f(x1) – such that L′12(x1, x2) = L′12(x1, f(x1)) ≤ d12, and, analogously, for any x2 ∈ XM2 , a
corresponding x3 ∈ XM3 – call it g(x2) – with L′23(x2, x3) = L′23(x2, g(x2)) ≤ d23. In other
words, for any given x1 ∈ XM1 , we can find an x3 = g(f(x1)) ∈ XM3 , such that

L′13,δ(x1, g(f(x1))) ≤ (1− δ)(L′12(x1, f(x1)) + L′23(f(x1), g(f(x1)))) + 2δ ≤ d12 + d23 + 2δ.

Similarly, for any given x3 ∈ XM3 , we can find an x1 = h(k(x3)) ∈ XM1 , such that

L′13,δ(h(k(x3)), x3) ≤ (1− δ)(L′12(h(k(x3)), k(x3)) + L′23(k(x3), h(k(x3)))) + 2δ ≤ d12 + d23 + 2δ.

Since this holds for any x1 in XM1 and x3 in XM3 , taking δ = ε, we obtain

dist
L′13,ε

H (XM1 , XM3) ≤ distL
′
12

H (XM1 , XM2) + distL
′
23

H (XM2 , XM3) + 2ε
≤ distqGH∗(M1,M2) + distqGH∗(M2,M3) + 3ε.

Therefore, taking the infimum on the l.h.s., we obtain

distqGH∗(M1,M3) ≤ distqGH∗(M1,M2) + distqGH∗(M2,M3) + 3ε,

and so, by the arbitrariness of ε, the thesis follows.

We may characterize the radius of a LvNA by the following

3.2.4 Proposition. Let (M,L′M ) be a Lip–von Neumann algebra, and let R be its radius (as
dual Lip–space). Then, we have

R = distqGH∗(M, {0}), (3.15)

where ({0}, L′0) is the trivial LvNA with only one element.

Proof. By definition, one has

R = sup
x∈M

L′M (x)
‖x‖

= sup
‖x‖≤1

L′M (x).

Since L′M : M → R+ is w∗–continuous and the unit ball M1 is w∗–compact, the above supremum
is actually a maximum, i.e. there exists an x0 ∈M1 such that R = L′M (x0). Now, we have clearly
distqGH∗(M, {0}) ≤ R. Indeed, for any L′ ∈ L′(M, {0}), we have L′(x⊕ 0) = L′M (x), and thus

distqGH∗(M, {0}) = distL
′

H (XM , {0}) ≤ R.
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On the other hand, one has {0} ⊂ Nr(XM , L
′) for any r > 0 and, since L′(x⊕ 0) ≤ L′M (x0) = R

for any x ∈ XM , XM ⊂ Nr({0}, L′) for any r > R2. Recalling that

distL
′

H (XM , {0}) = inf{r > 0 : {0} ⊂ Nr(XM , L
′) andXM ⊂ Nr({0}, L′)},

we see that distL
′

H (XM , {0}) ≥ R. Hence, distqGH∗(M, {0}) = R, and the proof is complete.

As a consequence, we have (cf. Theorem 1.2.17 (4)):

3.2.5 Lemma. Let (M,L′M ), (N,L′N ) be Lip–von Neumann algebras, and let RM , RN be the
respective radii. Then,

|RM −RN | ≤ distqGH∗(M,N) ≤ RM +RN . (3.16)

Proof. Indeed, let d = distqGH∗(M,N). Given ε > 0, we can find L′ ∈ L′(M,N) such that
distL

′
H (XM , XN ) < d+ ε. Then, for any x ∈ XM , there is an y ∈ XN such that

L′M (x) ≤ L′(x⊕ y) + L′N (y) < d+ ε+RN .

Since ε is arbitrary, it follows that
RM ≤ d+RN .

Reversing the roles of M and N , we obtain also

RN ≤ d+RM ,

and the first inequality is proven. As for the second one, it follows evidently by

L′(x⊕ y) ≤ L′M (x) + L′N (y) ≤ RM +RN , x ∈ XM , y ∈ XN ,

and the proof is now complete.

Finally, we want to show that, if two Lip–von Neumann algebras have distance distqGH∗ equal
to zero, then they are isometrically ∗–isomorphic, i.e. Lip–isomorphic (cf. Definition 2.4.3). The
following proof is inspired by Rieffel’s proof of the same property for the quantum Gromov–
Hausdorff distance between compact quantum metric space (cf. Section 1.2.3).

In order to prove this distance–zero property, we must allow (Lip)–seminorms as well. In fact,
let us denote by L̃′(M,N) the set of lifts of all the seminorms on M ⊕ N which restrict to the
original Lip–norms L′M and L′N on each direct summand M and N in M ⊕N .

3.2.6 Lemma. If (M,L′M ) is a Lip–von Neumann algebra, then also (M2(M), L′M ) is a LvNA.

Proof. Indeed, we haveM2(M)∗ ∼=M2(M∗). Therefore, if the unit ball M1 of M is w∗–compact
in the topology induced by L′M , then M2(M1) will be w∗–compact in the topology induced by
the lift of L′M to M2(M). Since M2(M)1 is a w∗–closed subset of M2(M1), it follows that also
M2(M)1 is w∗–compact in the topology induced by (the lift of) L′M .

2We recall that, for a given L′ ∈ L(M, N), we denote by Nr(XM , L′) the set

{z ∈M2(M)⊕M2(N) : ∃x ∈ XM s.t. L′(z − (x⊕ 0)) < r},

and analogously for Nr(XN , L′).
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3.2.7 Lemma. The family L̃′(M,N) of seminorms on XM⊕XN is uniformly (w∗–)equicontinuous.

Proof. For any ε > 0, and any given x0 ∈ XM , y0 ∈ XN , let

N (x0, ε/2) = {x ∈ XM : L′M (x− x0) < ε/2},
N (y0, ε/2) = {y ∈ XN : L′N (y − y0) < ε/2},

so that N (x0, ε/2) ⊕ N (y0, ε/2) is a (w∗–)neighborhood of x0 ⊕ y0. If x ⊕ y ∈ N (x0, ε/2) ⊕
N (y0, ε/2), then, for any L̃′ ∈ L̃′(M,N), we have

|L̃′(x⊕ y)− L̃′(x0 ⊕ y0)| ≤ |L̃′(x⊕ y)− L̃′(x⊕ y0)|+
|L̃′(x⊕ y0)− L̃′(x0 ⊕ y0)|

≤ L′N (y − y0) + L′M (x− x0) < ε,

hence, L̃′ is uniformly (w∗–)equicontinuous.

3.2.8 Lemma. Let {L′n}n∈N be a uniform sequence in L′(M,N) ⊂ L̃′(M,N) and let L̃′0 be its
limit. Then, L̃′0 ∈ L̃′(M,N).

Proof. Notice that the limit of a (convergent) uniform sequence of seminorms is a seminorm.
Indeed, fix ε > 0, and let nε ∈ N be such that |L′n(x)− L̃′0(x)| ≤ ε for all n ≥ nε. Then,

L̃′0(x+ y) ≤ L′n(x+ y) + ε ≤ L′n(x) + L′n(y) + ε ≤ L̃′0(x) + L̃′0(y) + 3ε,

and, for α ∈ R,

L̃′0(αx) ≤ L′n(αx) + ε = |α|L′n(x) + ε ≤ |α|L̃′0(x) + 2ε
L̃′0(αx) ≥ L′n(αx)− ε = |α|L′n(x)− ε ≤ |α|L̃′0(x)− 2ε.

By arbitrariness of ε, we see that L̃′0 is a seminorm. Since the restriction requirement clearly
holds also for L̃′0, it follows that L̃′0 ∈ L̃′(M,N), as claimed.

By the previous Lemma, we see that all the conditions in the definition of a Lip–norm are
closed conditions, except the norm–zero condition (i.e., the fact that L′(x) = 0 ⇒ x = 0). It is
precisely for this reason that one drops this requirement and allows seminorms.

3.2.9 Lemma. Let L̃′ ∈ L̃′(M,N). For each x ∈ XM there is at most one y ∈ XN such that
L̃′(x⊕−y) = 0, and similarly for each y ∈ XN .

Proof. If L̃′(x⊕−y) = 0 = L̃′(x⊕−y′), then

L′N (y − y′) = L̃′(0⊕ y − 0⊕ y′) ≤ L̃′(−x⊕ y) + L̃′(x⊕−y′) = 0,

so that y′ = y.

Now, we can prove the following

3.2.10 Theorem. Let (M,L′M ) and (N,L′N ) be Lip–von Neumann algebras. If

distqGH∗(M,N) = 0,

then there is an isometric ∗–isomorphism between (M,L′M ) and (N,L′N ), i.e. they are Lip–
isometric.
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Proof. If distqGH∗(M,N) = 0, then there is a sequence {L′n} of Lip–norms on M ⊕ N , whose
restrictions to M and N are L′M and L′N respectively, such that

distL
′
n

H (XM , XN ) <
1
n
.

Clearly, L′n ∈ L̃′(M,N) for each n ∈ N, and the sequence {L′n} on XM⊕XN is uniformly bounded
by 2 max(RM , RN ) (cf. Lemma 3.2.5), where RM (resp., RN ) is the radius of (M,L′M ) (resp.,
(N,L′N )). Since it is also (w∗–)equicontinuous by Lemma 3.2.7, we can apply the Ascoli–Arzelà
Theorem [66] to conclude that it admits a uniformly convergent subsequence. For simplicity, we
still denote this subsequence by {L′n}. Let L̃′0 be its limit. Since L̃′(M,N) is (uniformly) closed,
L̃′0 must be a seminorm, and it realizes the distance zero, since, given ε > 0, we can find an nε
such that for all n ≥ nε, we have |L̃′0(x⊕−y)− L̃′n(x⊕−y)| < ε/2, and thus

L̃′0(x⊕−y) ≤ |L̃′0(x⊕−y)− L̃′n(x⊕−y)|+ L̃′n(x⊕−y)
≤ ε/2 + L̃′n(x⊕−y).

Hence, for any x ∈ XM , if we take the infimum over all y ∈ XN , we obtain, for n sufficiently
large,

inf
y∈XN

L̃′0(x⊕−y) ≤ ε/2 + inf
y∈XN

L̃′n(x⊕−y) < ε/2 + ε/2 = ε.

Thus, L̃′0 determines an isometry ϕ from XM onto XN , by the condition that, for each x ∈ XM ,
there is at most one y ∈ XN with L̃′0(x⊕−y) = 0 (cf. Lemma 3.2.9). Set y = ϕ(x). We want to
show that ϕ is an affine map. To this aim, let x1, x2 ∈ XM and let y1, y2 be the corresponding
elements in XN for which L̃′0(xi ⊕−yi), i = 1, 2. Then, for any t ∈ [0, 1], we have

L̃′0(tx1 + (1− t)x2 ⊕−(ty1 + (1− t)y2))
= L̃′0(t(x1 ⊕−y1) + (1− t)(x2 ⊕−y2))
≤ tL̃′0(x1 ⊕−y1) + (1− t)L̃′0(x2 ⊕−y2) = 0,

and thus
ϕ(tx1 + (1− t)x2) = ty1 + (1− t)y2 = tϕ(x1) + (1− t)ϕ(x2),

showing that ϕ is affine.
Now, since ϕ is an affine bijective map from M2(M)1,+ = {x ∈ M2(M) : 0 ≤ x ≤ IM2(M)}

onto M2(N)1,+ = {y ∈ M2(N) : 0 ≤ y ≤ IM2(N)}, it is automatically positive and unital,
namely

0 ≤ x1 ≤ x2 ≤ IM2(M) ⇒ 0 ≤ x2 − x1 ≤ IM2(M) ⇒
0 ≤ ϕ(x2 − x1) ≤ IM2(N) ⇒ ϕ(x1) ≤ ϕ(x2),

and

ϕ(IM2(M)) ≥ y ⇒ ϕ(IM2(M)) ≥ IM2(N)

ϕ(x) ≤ IM2(N) ⇒ ϕ(IM2(M)) ≤ IM2(N),

i.e. ϕ(IM2(M)) = IM2(N). Evidently, ϕ extends to a (bijective) positive linear map fromM2(M)
ontoM2(N). It remains to show that ϕ is of the form id2⊗φ, with φ a (bijective) positive linear
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map between M and N .
So, let a ∈M1,+ and consider

ϕ

((
a 0
0 0

))
=

 ϕ11

((
a 0
0 0

))
0

0 0

 ,

ϕ

((
0 0
0 a

))
=

 0 0

0 ϕ22

((
0 0
0 a

))  .

Since we have
L̃′((aij)⊕ (ϕij(aij))) = max

ij
(L̃′(aij ⊕ ϕij((aij))) = 0,

it then follows that

ϕ11

((
a 0
0 0

))
= ϕ22

((
0 0
0 a

))
,

and so we can conclude that there exists a (bijective) positive linear map φ between M1,+ and
N1,+, such that

ϕ

((
a 0
0 0

))
=
(
φ(a) 0

0 0

)
and

ϕ

((
0 0
0 a

))
=
(

0 0
0 φ(a)

)
.

Concerning the off–diagonal elements, one can always find λ, µ ∈ R such that, given b ∈ M1,+,
one has (

λIM µb
µb λIM

)
∈M2(M)1,+.

Then, reasoning as above, we obtain

ϕ

((
λIM µb
µb λIM

))
=
(

λIN µφ(b)
µφ(b) λIN

)
.

Reversing the roles of M and N , we see that also ϕ−1 :M2(N)→M2(M) is a unital, 2–positive
(bijective linear) map. Thus, ϕ extends to a unital 2–order isomorphism between M and N ,
which, by a result due to Choi [15], is automatically a ∗–isomorphism.

Let us observe that we might define the distance distqGH∗ in the following equivalent way.
Given two Lip–von Neumann algebras (M,L′M ), (N,L′N ), we consider all the Lip–von Neumann
algebras (R,L′R) such that there exist positive isometric (both for the C∗–norms and the Lip–
norms) embeddings

hM :M2(M)→M2(R), L′R(hM (·)) = L′M (·),
hN :M2(N)→M2(R), L′R(hN (·)) = L′N (·),

and we denote by L′R ≡ L′R(M,N) the set of all such triples (R, hM , hN ). We then define

distRqGH∗(M,N) := inf{distRH(hM (XM ), hN (XN )) : (R, hM , hN ) ∈ L′R}. (3.17)
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3.2.11 Proposition. For any pair of Lip–von Neumann algebras (M,L′M ), (N,L′N ), we have:

distqGH∗(M,N) = distRqGH∗(M,N). (3.18)

Proof. Clearly, distqGH∗(M,N) ≥ distRqGH∗(M,N), since R = M ⊕N is just a particular choice,
and, on the r.h.s., we take the infimum over all such choices. For the reverse inequality, let
1 ≥ ε > 0 and (R, hM , hN ) ∈ L′R be given. We will construct a (Lip–)norm L′ ∈ L′(R,R) such
that the two copies of XR are ε–close to each other, i.e. L′(x⊕−x) ≤ εL′R(x) for any x ∈ R. In
fact, setting

L′(x⊕ y) := max(L′R(x+ y), εL′R(x), εL′R(y)), 0 < ε ≤ 1, (3.19)

then L′ is clearly a norm which satisfies the requirement, and restricts to L′R on each summand.
(Indeed, L′(x⊕ 0) = max(L′R(x), εL′R(x)) = L′R(x), and similarly L′(0⊕ y) = L′R(y).) We define
L′M⊕N on XR ⊕XR as follows:

L′M⊕N :=
{
L′ on hM (XM )⊕ hN (XN )
0 on XR ⊕XR\hM (XM )⊕ hN (XN )

Then, since L′M⊕N ∈ L′(hM (M), hN (N)) implies L′M⊕N◦(hM⊕hN ) ∈ L′(M,N), and L′ ≥ L′M⊕N ,
we have

distqGH∗(M,N) ≤ dist
L′M⊕N

H (hM (XM ), hN (XN ))
≤ distR⊕RH (hM (XM )⊕ {0}, {0} ⊕ hN (XN ))
≤ distR⊕RH (hM (XM )⊕ {0}, {0} ⊕ hM (XM )) + distR⊕RH ({0} ⊕ hM (XM ), {0} ⊕ hN (XN ))
= distR⊕RH (hM (XM )⊕ {0}, {0} ⊕ hM (XM )) + distRH(hM (XM ), hN (XN ))
≤ rε+ distRH(hM (XM ), hN (XN )),

where r is the radius of R. By the arbitrariness of ε, the thesis follows.

3.2.12 Theorem. distqGH∗ is a metric on the space of Lip–isomorphism equivalence classes of
Lip–von Neumann algebras.

Proof. By Theorem 3.2.10, we already know that, if distqGH∗(M,N) = 0, then M and N are
Lip–isomorphic.
We show now the reverse implication. Let ϕ : M → N be a Lip–isomorphism from (M,L′M ) onto
(N,L′N ). We set R := N ⊕ N , hM := (id2⊗ϕ) ⊕ 0, hN := 0 ⊕ (id2⊗ι), where ι is the identity
map on N , and we define the following (Lip–)norm on R:

L′R,ε(ϕ(x)⊕ ι(y)) := max(L′N (ϕ(x)− y), εL′M (x), εL′N (y)).

where ε ∈ (0, 1]. Notice that L′R,ε(hM (x)) = L′M (x) for any x ∈ M2(M), and L′R,ε(hN (y)) =
L′N (y) for any y ∈M2(N). Then, by the previous Proposition, we have

distqGH∗(M,N) ≤ distRH(hM (XM ), hN (XN )).

Moreover, we have also, by construction,

hM (XM ) ⊂ Nε(hN (XN ), L′R,ε), hN (XN ) ⊂ Nε(hM (XM ), L′R,ε)

Hence, distRH(hM (XM ), hN (XN )) < ε, and, by the arbitrariness of ε, we get the claim.
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3.2.13 Remark. Let us notice that the distance distqGH∗ does not appear to be complete,
essentially because we do not have an estimate for the Lip–norm L′(xy) of products of elements,
much like in the Rieffel’s setting (see [32]). Also in this case, it should be possible to develop
a theory for dual operator systems (see, for instance, [48; 54] for a definition), and show that
a Cauchy sequence of LvNA’s is always converging to a dual operator system. But this will be
possibly object of further work.

3.3 distqGH∗ and Ultraproducts

In this section we study the relation between the distance distqGH∗ and the ultraproduct construc-
tion. To this aim, we need a suitable notion of finite–dimensional approximation for a uniform
family of LvNA’s. In view of the fact that the distance between LvNA’s is actually a distance
between the positive part of the unit ball of the (2 × 2–)matrices with entries in the algebras,
the natural setting in which this finite–dimensional approximability can be expressed is that of
(finite–dimensional) Lip–operator subsystems, that is, dual Lip–spaces with a matrix ordered
structure. So, let us recall the definition of (abstract) operator systems.

3.3.1 Definition (Operator Systems). An operator system V is a complex vector space with
a conjugate linear involution ∗ : v ∈ V → v∗ ∈ V (we will call such an X a ∗–vector space),
satisfying

(i) V is matrix ordered, that is,

(i’) for any p ∈ N, there is a proper cone Mp(V )+ ⊂ Mp(V )sa, where Mp(V )sa :=
{(vij) ∈Mp(v) : (vij)∗ := (v∗ji) = (vij)},

(i”) for any p, q ∈ N, (aij) ∈Mqp(C), (aij)∗Mq(V )+(aij) ⊂Mp(V )+;

(ii) V has a matrix order–unit, i.e. there is an element e ∈ Vsa such that, with ep :=
diag(e, . . . , e) ∈ Mp(V )+, for any v ∈ Mp(V )sa, there is an r > 0 such that v + rep ∈
Mp(V )+;

(iii) the matrix order–unit e is Archimedean, i.e. if v ∈Mp(V ) is such that v+ rep ∈Mp(V )+,
for all r > 0, then v ∈Mp(V )+.

Given two operator systems V and W , we say that a linear map ϕ : V → W is n–positive if
the map idn⊗ϕ :Mn⊗V →Mn⊗W is positive, and if idn⊗ϕ is positive for all n ∈ N, then we
say that ϕ is completely positive. A completely positive (resp. unital completely positive) linear
map will be referred to as a c.p. (resp. u.c.p.) map. If ϕ : V → W is a unital m–positive map
with m–positive inverse for m = 1, . . . , n, then ϕ is a unital n–order isomorphism, and if ϕ is
u.c.p. with c.p. inverse then ϕ is a unital complete order isomorphism. (The reader is referred
to [48] for more details on operator systems and operator spaces.)

Operator systems are characterized concretely by the following

3.3.2 Theorem. [16] If V is an operator system, then there exists a Hilbert space H, an operator
system W ⊆ B(H), and a complete order isomorphism ϕ : V → W with ϕ(e) = IH. Conversely,
every (concrete) ∗–vector subspace of B(H) containing IH is an operator system.

In particular, since every unital C∗–algebra is an operator system, any unital ∗–vector sub-
space of a C∗–algebra is naturally an operator system.
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3.3.3 Definition. By a Lip–operator system, we mean an operator system concretely given as a
unital ∗–vector subspace of a Lip–von Neumann algebra.

3.3.4 Remark. We ought to stress that this notion of Lip–operator system and that of Lip–
normed operator system introduced by Kerr in [43] are actually different, as a consequence of the
fact that the (dual) Lip–norm on the operator system is precisely the restriction of the (dual)
Lip–norm on the ambient von Neumann algebra.

3.3.5 Lemma. If a family F of Lip–operator systems is uniformly totally bounded, then also the
corresponding familyM2(F) := {M2(V ) : V ∈ F} of 2×2 matrices is uniformly totally bounded.

Proof. Indeed, let V ∈ F be a Lip–operator system. Then, given ε > 0, there is nε ∈ N such
that, for any V ∈ F , the unit ball {x ∈ V : ‖x‖ ≤ 1} can be covered by nε L′–balls of radius ε.
Let us denote by {xi}nε

i=1 the respective centers. Then, the n4
ε L

′–balls of radius ε and centers in
M2({xi : i = 1, . . . , nε}), i.e. the 2 by 2 matrices with entries in {xi : i = 1, . . . , nε}, will cover
M2(V1). Since M2(V )1 ⊂ M2(V1), we can find n4

ε elements {x̃j}n
4
ε
j=1 in M2(V )1 such that the

corresponding L′–balls of radius 2ε centered in them will cover M2(V )1.

Let F be a (uniform) family of Lip–operator systems. Then,

3.3.6 Lemma. If the family M2(F) := {M2(V ) : V ∈ F} is uniformly totally bounded, then
also the corresponding family M2(F̃)+ := {M2(V )+ : V ∈ F} of 2 × 2 positive matrices is
uniformly totally bounded.

Proof. Indeed, let {xi}, i = 1, . . . , nε, be an ε–net in M2(V )1, V ∈ F , and let B(xi, ε) be the
(open L′–)ball with center xi and radius ε. Thus, we have

⋃nε
i=1B(xi, ε) ⊇ M2(V )1, and, since

M2(V )1,+ is a subset of M2(V )1, we can find j1, j2, . . . , jn′ε ∈ {1, . . . , nε} such that B(xjk , ε) ∩
M2(V )1,+ 6= ∅. As a consequence, for each jk, k = 1 . . . n′ε, we can find an x̃jk in B(xjk , ε) ∩
M2(V )1,+, k = 1, . . . , n′ε, such that

n′ε⋃
k=1

B(x̃jk , 2ε) ⊃M2(V )1,+.

As n′ε ≤ nε and the family M2(F) is uniform, the claim follows.

The next one is simply Lemma 2.1.7 rephrased in terms of LvNA’s.

3.3.7 Lemma. If a familiy F of Lip–von Neumann algebras is uniformly totally bounded, then
there exists R > 0 such that L′(x) ≤ R‖x‖ for any (M,L′) ∈ F , x ∈M .

Proof. Let n ∈ N be such that, for any (M,L′) ∈ F , M1 can be covered by n L′–balls of radius
1, and let x0 ∈ M , ‖x0‖ = 1. Since the set {tx0 : t ∈ [0, 1]} is contained in M1, it is covered by
at most n balls of L′–radius 1, so its length is majorised by 2n, i.e. R ≤ 2n.

Notice that, by Lemma 3.3.5, the previous Lemma holds as well for the corresponding family
{(M2(M), L′) : M ∈ F} of 2 × 2 matrix algebras, with the same constant R. (In fact, we have
L′((xij)) = maxij L′(xij) = L′(xi0j0) ≤ R‖xi0j0‖ ≤ R‖(xij)‖.)
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3.3.8 Proposition. A familiy F of Lip–von Neumann algebras is uniformly totally bounded if,
and only if, there exists an R > 0 as in Lemma 3.3.7, and, for any ε > 0, there exists Nε ∈ N
such that any (M,L′) ∈ F has an operator subsystem V with dimV ≤ Nε and {x ∈ V : ‖x‖ ≤ 1}
is ε–dense in M1 in the L′–norm.

Proof. Suppose F is uniformly totally bounded, and let (M,L′) ∈ F . If we choose a covering of
M1 by nε balls of L′–radius ε/2 and consider the operator system V generated by their centers,
then evidently dimV ≤ 2nε + 1 ≡ Nε and {x ∈ V : ‖x‖ ≤ 1} is ε–dense in M1 in the L′–norm.

Viceversa, since the elements of {x ∈ V : ‖x‖ ≤ 1} are contained in {x ∈ V : L′(x) ≤ R}, any
covering of the latter with L′−balls of radius ε/2 gives a covering of M1 with L′–balls of radius
ε, and, by Lemma 2.1.10, such a covering of {x ∈ V : L′(x) ≤ R} can be realised with (4R/ε)Nε

balls.

We can now extend the definition of the distance distqGH∗ to include Lip–operator systems
as well. In fact, given two operator subsystems Vi of the LvNA’s Mi, i = 1, 2, respectively, we
simply define the distance between them as the restriction of the corresponding distance between
the respective ambient algebras, that is

distqGH∗(V1, V2) := inf{distL
′

H (Y1, Y2) : L′ ∈ L′(M1,M2)}, (3.20)

where we set Yi := M2(Vi)1,+ ⊂ M2(Mi)1,+, i = 1, 2. Let us notice that, however, when
restricted to Lip–operator systems, distqGH∗ is no longer a metric, but only a pseudo–metric, for
distqGH∗(V1, V2) = 0 does not imply, in general, that V1 and V2 are (Lip–)isomorphic as operator
systems. They are just 2–order isomorphic.

3.3.9 Lemma. Let V be an operator subsystem of the LvNA M , and let ε ∈ (0, 1]. IfM2(V )1,+
is ε–dense in M2(M)1,+ in the L′–norm, then distqGH∗(V,M) < ε.

Proof. Indeed, given ε ∈ (0, 1], if we set L′(v ⊕ w) := max(L′(v − w), εL′(v), εL′(w)), v ∈ V ,
w ∈ M , then L′ ∈ L′(M,M), and, by density, for any x ∈ XM , we can find an y ∈ YV such
that L′(x ⊕ y) < ε, hence XM ⊂ Nε(YV , L′). Viceversa, since YV ⊂ XM , we get immediately
YV ⊂ Nε(XM , L

′) for any ε > 0. Thus, we have distL
′

H (YV , XM ) < ε, and the thesis follows.

3.3.10 Lemma. Let (Vn, L′n) be a uniform sequence of dual Lip–spaces, and, for any ultrafilter
U , let (VU , L′U ) be its (dual restricted) ultraproduct. Then, for any x ∈ (VU )1, there exists a
sequence {x̃n}n∈N in `∞(Vn) realising it such that x̃n ∈ (Vn)1 for any n.

Proof. Given x ∈ (VU )1, we may choose sequences {xkn} realising it such that ‖xkn‖ ≤ ‖x‖(1+ 1
k ).

Then, we set

Uk :=
{
n ≥ k : L′n(x

i
n − xjn) ≤

1
i
, i ≤ j ≤ k

}
,

U0 := N,

and observe that Uk ∈ U , Uk+1 ⊆ Uk, and
⋃
k≥0 Uk/Uk+1 = N. Now, we define

x̃n =
k

k + 1
xkn, n ∈ Uk/Uk+1,
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and thus ‖x̃n‖ ≤ ‖x‖. It remains to show that π′U ({x̃n}) = x. Indeed, if n ∈ Ui, then there exists
k ≥ i such that n ∈ Uk\Uk+1, and thus

L′n(x̃n − xin) ≤ L′n(x̃n − xkn) + L′n(x
k
n − xin) ≤

1
k + 1

L′n(x
k
n) +

1
i

≤ R

k + 1
‖xkn‖+

1
i
≤ (R+ 1)

1
i
,

where R is as in Lemma 3.3.7. Since n is eventually in Ui w.r.t. U , we get

L′U (π′U ({x̃n})− x) = lim
U
L′n(x̃n − xin) ≤ (R+ 1)

1
i
,

and by arbitrariness of i, π′U ({x̃n}) = x.

3.3.11 Remark. Let us notice that the sequence constructed in the previous Lemma also realises
the minimum in the formula defining the quotient norm ‖x‖ = inf{supn ‖yn‖ : π′U ({yn}) = x},
for this implies that ‖x‖ ≤ limU ‖yn‖. In fact, given ε > 0, there exists an element U of the
ultrafilter such that, for any n ∈ U , ‖yn‖ ≤ limU ‖ym‖ + ε. Then, we may define xn = yn for
n ∈ U and xn = 0 for n /∈ U , so that π′U ({xn}) = π′U ({yn}). Therefore, if we choose yn as in the
Lemma above, we get

‖x‖ = lim
U
‖x̃n‖ = sup

n
‖x̃n‖. (3.21)

3.3.12 Remark. Let (VU , L′U ) be the (restricted) ultraproduct of a uniform sequence {(Vn, L′n)}
of N–dimensional dual Lip–spaces. Assume that the (restricted) ultraproduct VU has the same
dimension N . (Let us observe that, if {Vn} is a sequence of finite–dimensional vector space
with supn dimVn ≤ D, then the dimension of `∞(Vn) clearly satisfies the same bound. Since
the restricted ultraproduct is a quotient of `∞(Vn), its dimension can not increase, and thus
dimVU ≤ D.).

Let {e(i)}Ni=1, N = dimVU , be a (vector) basis for VU , with ‖e(i)‖ = 1, i = 1, . . . , N . By
Lemma 3.3.10, we can always choose a sequence {ẽ(i)n }n∈N realising e(i), such that ‖ẽ(i)n ‖ ≤ 1
and the vectors ẽ(i)n , i = 1, . . . , N , are linearly independent for n eventually in some element
of the ultrafilter. Indeed, let Uld ⊂ N be such that, for any m ∈ Uld,

∑N
i=1 α

(i)
m ẽ

(i)
m = 0 with

α
(i)
m , i = 1, . . . , N , not all zero. We want to show that Uld /∈ U . Assume that maxi(α

(i)
m ) = 1,

and let α(i) = limU α
(i)
m , so that maxi(α(i)) = 1 as well. Then, since L′m(

∑N
i=1 α

(i)
m ẽ

(i)
m ) = 0, we

get limU L
′
m(
∑N

i=1 α
(i)
m ẽ

(i)
m ) = 0, hence L′U (

∑N
i=1 α

(i)e(i)) = 0, which implies
∑N

i=1 α
(i)e(i) = 0.

But the elements e(i), i = 1, . . . , N , are linearly indipendent, and maxi(α(i)) = 1. Therefore,
Uld /∈ U , as claimed. It follows that ẽ(i)n , i = 1, . . . , N , are linearly independent for n eventually
in Uli := N\Uld ∈ U .

Moreover, since L′U (e(i)) 6= 0, we may suppose that L′n(ẽ
(i)
n ) 6= 0 for n eventually in some

Ui ∈ U , and then take the intersection U0 := ∩Ni=1Ui. Now, if we define

e(i)n :=
L′U (e(i))

L′n(ẽ
(i)
n )

ẽ(i)n ,

then we get a new system of linearly independent elements in Vn, such that ‖e(i)n ‖ ≤ 2, and
L′n(e

(i)
n ) = L′U (e(i)) ≡ ki ≤ R, with R as in Lemma 3.3.8. Indeed, consider the following subset
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of N:
U

(r)
i :=

{
n ∈ N : |L′n(e(i)n )− L′U (e(i))| ≤ rL′U (e(i))

}
.

Then, U (r)
i ∈ U , and taking r ≤ 1

2 , we get L′n(e
(i)
n ) ≥ (1− r)L′U (e(i)), hence

L′U (e(i))

L′n(e
(i)
n )
≤ 1

1− r
≤ 2,

for any n in U (r)
0 :=

(
∩Mi=1U

(r)
i

)
∩ U0 ∩ Uli ∈ U .

3.3.13 Lemma. Let (VU , L′U ) be the (dual) restricted ultraproduct of a family {(Vn, L′n)}n∈N of
finite–dimensional dual Lip–spaces. Then, there exist a linear map Tn : VU → Vn and, given
ε > 0, an element Uε ∈ U such that, for any n ∈ Uε, we have

|L′n(Tn(x))− L′U (x)| ≤ εL′U (x) (3.22)

for any x ∈ VU .

Proof. Let (VU , L′U ) be the (dual restricted) ultraproduct of {(Vn, L′n)}n∈N, and let {e(i)}Mi=1,
M = dimVU , be a (vector) basis for VU , with ‖e(i)‖ = 1 for i = 1, . . . ,M . By Lemma 3.3.10 and
the Remark above, we can always choose the sequence {e(i)n }n∈N realising e(i), such that ‖e(i)n ‖ ≤ 2
and L′n(e

(i)
n ) = L′U (e(i)) ≡ ki ≤ R for each i = 1, . . . ,M (and n eventually in some element of the

ultrafilter). Consider now the vector subspace Ṽn = l.s.{e(i)n : i = 1, . . . ,M} ⊆ Vn, and define the
map Tn : VU → Ṽn by its action on the basis:

Tn(e(i)) = e(i)n , i = 1, . . . ,M.

Then, Tn is linear and
sup{L′n(Tn(x)) : L′U (x) ≤ 1} ≤ K

where

K := max

{
M∑
i=1

ki|λi| : L′U (
M∑
i=1

λie
(i)) = 1

}
.

We have clearly π′U ({Tn(x)}) = x. In fact, for any x =
∑M

j=1 λje
(j), we have

L′U (x) = L′U (
M∑
j=1

λie
(j)) = lim

U
L′n(

M∑
j=1

λie
(j)
n )

= lim
U
L′n(

M∑
j=1

λiTn(e(j))) = lim
U
L′n(Tn(

M∑
j=1

λie
(j)))

= lim
U
L′n(Tn(x)),

Now, let δ be a positive number and let {y(1), y(2), . . . , y(m)} be a finite δ–net in the unit sphere
of VU (i.e. for any x with L′U (x) = 1, there is a y(j), L′U (y(j)) = 1, such that L′U (x − y(j)) ≤ δ),
and set

U
(δ)
1 :=

m⋂
k=1

Uy(k) ,
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where, for x ∈ VU , we set

Ux :=
{
n ∈ N : |L′n(Tn(x))− L′U (x)| ≤ ε

2
L′U (x)

}
∈ U .

Then, for n ∈ U (δ)
1 and x ∈ VU with L′U (x) = 1, we have

|L′n(Tn(x))− L′U (x)|

≤ min
k=1,...,m

(
L′n(Tn(x− y(k))) + L′U (x− y(k)) + |L′n(Tn(y(k)))− L′U (y(k))|

)
≤ min

k=1,...,m

(
(K + 1)L′U (x− y(k)) + |L′n(Tn(y(k)))− L′U (y(k))|

)
≤ (K + 1)δ +

ε

2
.

Now, taking δ = ε
2(K+1) and Uε = U

(δ)
0 ∩ U (δ)

1 , with U (δ)
0 as in the previous Remark, we get

|L′n(Tn(x))− L′U (x)| ≤ ε, n ∈ Uε,

as claimed.

Given a pair of Lip–operator subsystems (V1, L
′
1), (V2, L

′
2) in the LvNA’s (M1, L

′
1), (M2, L

′
2)

respectively, we consider all the Lip–operator systems (V,L′V ) such that there exist two linear
embeddings

φ1 : V ↪→ V1, φ2 : V ↪→ V2,

with the property that, for any v ∈ V ,

L′V (v) = L′1(φ1(v)) = L′2(φ2(v)),

and we define new norms on V by

‖v‖1 := ‖φ1(v)‖, ‖v‖2 := ‖φ2(v)‖.

Let us denote by V12 the set of all triples (V, φ1, φ2) with the properties above (notice that V12

contains at least the “identity triple”, i.e. (C, ι1, ι2)), and define, for any x ∈ V1, y ∈ V2,

(L̃′)V (x⊕ y) = inf
v,v′∈V

(L′1(x− φ1(v)) + L′2(φ2(v′)− y) + L′V (v − v′)). (3.23)

Then, we have the following

3.3.14 Lemma. (L̃′)V is a (Lip–)seminorm on V1 ⊕ V2 (viewed as a Lip–subspace of the LvNA
M1 ⊕M2), which restricts to L′1, L

′
2 on V1, V2 respectively.

Proof. First, we claim that (L̃′)V is a seminorm. Let us check it. We have

(L̃′)V ((x1 + x2)⊕ (y1 + y2)) ≤ (L̃′)V (x1 ⊕ y1) + (L̃′)V (x2 ⊕ y2).
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Indeed,

(L̃′)V ((x1 + x2)⊕ (y1 + y2))
= inf

v,v′∈V

(
L′1((x1 + x2)− φ1(v)) + L′2(φ2(v′)− (y1 + y2)) + L′V (v − v′)

)
= inf

v1+v2,v′1+v′2∈V

(
L′1((x1 + x2)− φ1(v1 + v2))

+ L′2(φ2(v′1 + v′2)− (y1 + y2))) + L′V ((v1 + v2)− (v′1 + v′2))
)

= inf
v1,v′1,v2,v

′
2∈V

(
L′1((x1 + x2)− (φ1(v1) + φ1(v2)))

+ L′2(φ2(v′1) + φ2(v′2)− (y1 + y2))) + L′V ((v1 − v′1) + (v2 − v′2))
)

≤ inf
v1,v′1∈V

(
L′1(x1 − φ1(v1) + L′2(φ2(v′1)− y1)) + L′V (v1 − v′1)

)
+ inf
v2,v′2∈V

(
L′1(x2 − φ1(v2)) + L′2(φ2(v′2)− y2) + L′V (v2 − v′2)

)
≤ (L̃′)V (x1 ⊕ y1) + (L̃′)V (x2 ⊕ y2).

Next, (L̃′)V (x⊕ y) = 0 if, and only if, there exists v ∈ V such that φ1(v) = x and φ2(v) = y, i.e.
x = φ1 ◦ φ−1

2 (y).
Moreover, (L̃′)V restricts to L′1 and L′2. In fact, we have

(L̃′)V (x⊕ 0) ≤ L′1(x),

and

(L̃′)V (x⊕ 0) = inf
v,v′∈V

(
L′1(x− φ1(v)) + L′2(φ2(v′)) + L′V (v − v′)

)
≥ inf

v,v′∈V

(
|L′1(x)− L′1(φ1(v))|+ L′2(φ2(v′)) + |L′V (v)− L′V (v′)|

)
.

We must distinguish the various cases:

(1) if L′V (v) ≥ L′V (v′), then

|L′1(x)− L′1(φ1(v))|+ L′2(φ2(v′)) + |L′V (v)− L′V (v′)|
= |L′1(x)− L′1(φ1(v))|+ L′2(φ2(v′)) + L′V (v)− L′V (v′)
= |L′1(x)− L′1(φ1(v))|+ L′V (v),

and thus

inf
v,v′∈V

(|L′1(x)− L′1(φ1(v))|+ L′2(φ2(v′)) + L′V (v)− L′V (v′))

= inf
v∈V

(|L′1(x)− L′1(φ1(v))|+ L′V (v)) = L′1(x);

(2) if L′V (v′) ≥ L′V (v), then

|L′1(x)− L′1(φ1(v))|+ L′2(φ2(v′)) + |L′V (v)− L′V (v′)|
= |L′1(x)− L′1(φ1(v))|+ L′2(φ2(v′))− L′V (v) + L′V (v′)
= |L′1(x)− L′1(φ1(v))|+ 2L′2(φ2(v′))− L′V (v)

=
{
L′1(x)− 2L′1(φ1(v)) + 2L′2(φ2(v′)) if L′1(x) ≥ L′1(φ1(v))

2L′2(φ2(v′))− L′1(x) if L′1(x) ≤ L′1(φ1(v))
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and thus

inf
v,v′∈V

(L′1(x)− 2L′1(φ1(v)) + 2L′2(φ2(v′)) = L′1(x)

inf
v′∈V

(2L′2(φ2(v′))− L′1(x)) = L′1(x).

In all cases, we get
(L̃′)V (x⊕ 0) ≥ L′1(x),

hence
(L̃′)V (x⊕ 0) = L′1(x).

Exactly in the same way, one can show that (L̃′)V (0⊕ y) = L′2(y), and the proof is complete.

Let us notice that, in order to get a (Lip–)norm and not only a seminorm, it suffices to define,
for ε ∈ (0, 1],

(L′)V := max
(
(L̃′)V (x⊕ y), εL′1(x), εL′2(y)

)
. (3.24)

3.3.15 Remark. Obviously, the same conclusion of the previous Lemma remain valid if we pass
from the Lip–operator subsystems (V1, L

′
1), (V2, L

′
2) in the LvNA’s (M1, L

′
1), (M2, L

′
2), to the cor-

responding Lip–operator subsystems (M2(V1), L′1), (M2(V2), L′2) in the LvNA’s (M2(M1), L′1),
(M2(M2), L′2) respectively, and we consider all the Lip–operator systems (M2(V ), L′V ) with the
linear embeddings

id2 ⊗ φ1 :M2(V ) ↪→M2(V1), id2 ⊗ φ2 :M2(V ) ↪→M2(V2).

3.3.16 Theorem. Let {(Vn, L′n)} be a uniformly totally bounded sequence of finite–dimensional
(dual) Lip–operator systems. Let U be an ultrafilter on N, and let (VU , L′U ) be the restricted
ultraproduct of {(Vn, L′n)}. Then, given ε > 0, there exists an element Uε ∈ U such that, for all
n ∈ Uε,

distqGH∗(Vn, VU ) < ε.

Proof. So, let (VU , L′U ) be the restricted ultraproduct of the sequence {(Vn, L′n)}n∈N, and let
ε > 0 be given. Since we want to show that there exists an element Uε ∈ U such that, for all
n ∈ Uε, distqGH∗(Vn, VU ) < ε, we have to estimate the Hausdorff distances between (Yn, L′n) and
(YU , L′U ), where Yn =M2(Vn)1,+ and YU =M2(VU )1,+.

We assume, for the moment, that dimVn = dimVU = d. Let {e(i)}di=1 and {e(i)n }di=1, be two
(vector) basis for VU and Vn respectively (constructed as in Lemma 3.3.13), and assume that
(0 <)L′n(e

(i)
n ) = L′U (e(i)) = ki(≤ R) for any n in some U1 ∈ U and i = 1, . . . , d (cf. Remark

3.3.12). For n ∈ U1, we endow the spaces Vn with the `1–norm w.r.t. the given basis {e(i)n },
namely

`′n(
d∑
i=1

λie
(i)
n ) :=

d∑
i=1

ki|λi|, (3.25)

and we denote by V̂n the space Vn with this new (Lip–)norm. Fix ε′ < 1, and let Tn and U (ε′)
2 be

as in Lemma 3.3.13. Then, for any x ∈ Vn, n ∈ U1 ∩ U (ε′)
2 , we have

L′n(x) = L′n(Tn ◦ T−1
n (x)) = L′n(Tn(xU )) ≥ (1− ε′)L′U (xU )

≥ c(1− ε′)`′U (xU ) = c(1− ε′)
d∑
i=1

ki|λi| = c(1− ε′)`′n(x),
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where c = inf{L′U (yU ) : `′U (yU ) = 1} > 0. Therefore, we get

‖x‖ ≥ 1
R
L′n(x) ≥

c

R
(1− ε′)`′n(x).

Consider now the family {(V̂n, ‖ · ‖, `′n)}, n ∈ U1 ∩ U (ε′)
2 . It is uniform, since the V̂n’s are finite–

dimensional and the radii

R′n = sup
x6=0

`′n(x)
‖x‖

≤ R

c(1− ε′)

are uniformly bounded. Moreover,

lim
U
`′n(xn) = 0 ⇐⇒ lim

U
L′n(xn) = 0,

since, for any x ∈ Vn(≡ V̂n as vector space), x =
∑d

i=1 λie
(i)
n , and

c(1− ε′)`′n(x) ≤ L′n(x) ≤ `′n(x).

Hence, as vector space, V̂U = VU .
Let us notice that, if X ⊆ M2(M) and Y ⊆ M2(N) are Lip–operator systems and L′1, L

′
2 ∈

L′(M,N) are Lip–norms, then L′1(x⊕ y) ≥ L′2(x⊕ y) implies distL
′
1

H (X,Y ) ≥ distL
′
2

H (X,Y ). From
this we see that the Hausdorff distance between (V̂n, `′n) and (V̂m, `′m) will be greater than the
Hausdorff distance between (Vn, L′n) and (Vm, L′m).

Now, take V = Cd with the standard (orthonormal) basis {f (i)}. We define the `′–norm of an
element z =

∑d
i=1 αif

(i) as `′V (z) :=
∑d

i=1 |αi|ki, where ki = L′n(e
(i)
n ), the maps φn(U) : V → Vn(U)

by
φn(f (i)) = e(i)n , φU (f (i)) = e(i), i = 1, . . . , d,

and the induced norms as

‖v‖n := ‖φn(v)‖, `′n(
d∑
i=1

λie
(i)
n ) :=

d∑
i=1

ki|λi|,

‖v‖U := ‖φU (v)‖, `′U (
d∑
i=1

λie
(i)) :=

d∑
i=1

ki|λi|,

We have then

`′n(φn(
d∑
i=1

λif
(i))) = `′n(

d∑
i=1

λiφn(f (i))) = `′n(
d∑
i=1

λie
(i)
n )

=
d∑
i=1

|λi|ki = `′V (
d∑
i=1

λif
(i)),

and similarly,

`′U (φU (
d∑
i=1

λif
(i))) = `′V (

d∑
i=1

λif
(i))
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i.e. `′n(φn(v)) = `′U (φU (v)) = `′V (v) for each v ∈ V , n ∈ U1 ∩ U (ε′)
2 . Then, it follows that, for any

x ∈ V̂n and y ∈ V̂U ,

(˜̀′nU )V (x⊕ y) = inf
v,v′∈V

(`′n(x− φn(v)) + `′U (φU (v′)− y) + `′V (v − v′)) = 0,

and thus, if ‖x‖ ≤ 1 and ‖y‖ ≤ 1,

(`′nU )V (x⊕ y) = max
(

(˜̀′nU )V (x⊕ y), 1
n
`′n(x),

1
n
`′U (y)

)
= max

(
1
n
`′n(x),

1
n
`′U (y)

)
≤ 1
n

max
(

R

c(1− ε′)
, R

)
≡ 1
n
R̂.

By setting U (ε)
3 := {n ∈ N : n > 3R̂

2ε } ∈ U , we see that, for all n ∈ U1 ∩ U (ε′)
2 ∩ U (ε)

3 , we get

distqGH∗(Vn, VU ) ≤ distL
′
nU

H ((Yn, L′n), (YU , L
′
U ))

≤ dist`
′
nU
H ((Y ′

n, `
′
n), (Y

′
U , `

′
U )) <

2
3
ε.

Lastly, we have to consider the case when d = dimVU < dimVn = d′. This means that, in
order to get a complete basis for the Vn’s from that of VU as before, we have to add further
(linearly independent) elements. That is to say, when passing to the quotient, we “lose” one or
more dimensions, in the sense that, for m ∈ {d+1, . . . , d′}, limU L

′
n(e

(m)
n −

∑d
i=1 λie

(i)
n ) = 0, with

the λi’s not all zero. We assume for simplicity that dimVU = dimVn − 1, i.e. we are losing only
one dimension. But then we can find an element U (ε)

4 of the ultrafilter such that, if we write
vn ∈ Vn as

vn =
d′∑
i=1

µie
(i)
n =

d′−1∑
i=1

µie
(i)
n + µd′e

(d′)
n

=
d′−1∑
i=1

(µi + µd′λi)e(i)n + µd′(e(d
′)

n −
d′−1∑
i=1

λie
(i)
n ),

then, for n ∈ U (ε)
4 ,

L′n(vn −
d′−1∑
i=1

(µi + µd′λi)e(i)n ) = L′n(µd′(e
(d′)
n −

d′−1∑
i=1

λie
(i)
n )) ≤ 1

3
ε,

that is to say, for all n ∈ U (ε)
4 and vn ∈ (Vn)1, we have

inf
v∈(eVn)1

L′n(vn − v) ≤
1
3
ε,

where Ṽn is the subspaces of Vn spanned by {e(i)n : i 6= d′}. Hence, if we consider the sequence
{Ṽn} instead of the original one, for all n ∈ U (ε)

4 the “error” that we get is less than ε/3, and
thus

distqGH∗(Ṽn, Vn) ≤
1
3
ε.
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Finally, setting Uε := U1 ∩ U (ε′)
2 ∩ U (ε)

3 ∩ U (ε)
4 ∈ U , for n ∈ Uε we obtain

distqGH∗(Vn, VU ) < ε,

and the proof is complete.

Now we are ready to pass to the algebraic setting. So, let (Mn, L
′
n) be a sequence of Lip–von

Neumann algebras, with corresponding preduals (Mn∗, Ln), and let U be an ultrafilter on N.
Recall that the (dual) restricted ultraproduct MU is defined as the image π′U (`∞(Mn)) in the
quotient `∞(Mn)/K ′

L′,U , where

`∞(Mn) = {{an} : an ∈Mn, ‖{an}‖ = sup
n
‖an‖ <∞},

K ′
L′,U = {{an} ∈ `∞(Mn) : lim

U
L′n(an) = 0}

As a first result, we want to show that, if a sequence of LvNA’s converges in the distance
distqGH∗ , then the limit is exactly the (dual) restricted ultraproduct over any given ultrafilter
over N.

3.3.17 Proposition. Let {(Mn, L
′
n)} be a convergent sequence of Lip–von Neumann algebras in

the distance distqGH∗. Then, {(Mn, L
′
n)} is weakly uniform.

Proof. We shall apply Proposition 3.3.8. Since the sequence is convergent, there exists a ∆ > 0
such that distqGH∗(Mn,M) ≤ ∆ for any n ∈ N. Let (M,L′M ) be the qGH∗–limit of the sequence.
By Lemma 3.2.5, we have |Rn − R| ≤ distqGH∗(Mn,M) ≤ ∆, where Rn and R are the radii of
(Mn, L

′
n) and (M,L′M ) respectively. Hence, supnRn is finite.

Now, by definition of qGH∗–convergence, given ε > 0, there exists an nε ∈ N, such that for
any n > nε, we can find a Lip–norm L′nM ∈ L′(Mn,M) such that distL

′
nM

H (Xn, XM ) < ε/16,
where Xn :=M2(Mn)1,+. This means that, for any x ∈ XM , we can find a sequence {xn}n∈N,
xn ∈ Xn, such that L′nM (xn ⊕ x) < ε/16. By a standard argument, it follows that the same
holds true for all x ∈ M2(M)1. Indeed, since any x ∈ M2(M)1 can be written in the form
x = z1 − z2 + i(z3 − z4) with zi ∈ XM , i = 1, . . . , 4, we have

L′nM (xn ⊕ x) = L′nM ((zn)1 ⊕ z1 − (zn)2 ⊕ z2 + i((zn)3 ⊕ z3 − (zn)4 ⊕ z4))) < ε/4,

where (zn)i ∈ Xn, i = 1, . . . , 4, and zn = (zn)1 − (zn)2 + i((zn)3 − (zn)4) ∈ M2(Mn)1. Then, by
taking the diagonal copies of (Mn)1,+ and (M)1,+ in Xn and XM respectively, we see that also any
x ∈M1 admits an approximating sequence {xn}n∈N, xn ∈ (Mn)1, such that L′nM (xn ⊕ x) < ε/4.

Let V be an ε/2–dense (for the L′M–norm) finite–dimensional operator subsystem in M ,
take any vector basis {xi}dε

i=1 ⊂ (V )1 for V , and let {xin}n∈N, {xin}
dε
i=1 ⊂ (Mn)1 be a sequence

approximating xi, i = 1, . . . , dε. We define Vn to be the operator subsystem in Mn generated by
the set {xin}

dε
i=1. We have clearly dimVn ≤ dε. Moreover, we can find an n′ε such that, for all

m > n′ε, one has L′mM (xim ⊕ xi) < ε/(4Kε), where

Kε := max{
dε∑
i=1

|αi| : ‖
dε∑
i=1

αixi‖ ≤ 1} <∞ (ε > 0).
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In this way, given y ∈ (V )1, there exists a ym ∈ (Vm)1 such that L′mM (ym ⊕ y) < ε/4. We set
Nε := max(nε, n′ε). Then, for any n > Nε and x ∈ (Mn)1, we can find yn ∈ (Vn)1, and two
elements x̃ ∈M1, y ∈ (V )1, such that

L′nM (x⊕ x̃) < ε/4, L′nM (yn ⊕ y) < ε/4, and L′M (x̃− y) < ε/2.

Hence, we get

L′n(x− yn) = L′nM ((x− yn)⊕ 0) = L′nM ((x− yn)⊕ (x̃− y)− 0⊕ (x̃− y))
≤ L′nM (x⊕ x̃− yn ⊕ y) + L′nM (0⊕ (x̃− y))
≤ L′nM (x⊕ x̃) + L′nM (yn ⊕ y) + L′M (x̃− y) < ε,

which implies that (Vn)1 is ε–dense in (Mn)1, for all n > Nε. Since a finite family of LvNA’s is
clearly uniformly totally bounded, we can conclude that the whole family {(Mn, L

′
n)} is uniformly

totally bounded, and the proof is complete.

3.3.18 Theorem. Let (Mn, L
′
n) be a sequence of Lip–von Neumann algebras converging to the

LvNA (M,L′) in the distance distqGH∗. Then, for any ultrafilter U , we have M = MU and
M∗ = MU∗.

Proof. Since the sequence (Mn, L
′
n) is convergent, by the previous Proposition it is weakly uni-

form, thus we can consider the (dual) restricted ultraproduct MU over any given ultrafilter U
on N. Moreover, for any ε > 0, there exists nε ∈ N, such that for any n,m > nε, we can find
a Lip–norm L′nm ∈ L′(Mn,Mm) such that distL

′
nm

H (Xn, Xm) < ε/2. Fix n > nε, and consider
the sequence {Mn ⊕Mm}m∈N. For any ultrafilter U on N, the (dual) restricted ultraproduct
of {Mn ⊕Mm}m∈N naturally identifies with Mn ⊕MU and we get a (dual) Lip–norm L′nU on
Mn ⊕MU as limU L

′
nm (cf. Propositin 2.3.3), where, for m > nε, we take care to choose L′nm as

above. Set Xn :=M2(Mn)1,+, XU :=M2(MU )1,+. Then, we have

distqGH∗(M,MU ) ≤ distqGH∗(M,Mn) + distqGH∗(Mn,MU )
< ε/2 + distqGH∗(Mn,MU ).

Now, in order to show that distqGH∗(Mn,MU ) ≤ ε/2, it suffices to verify that distL
′
nU

H (Xn, XU ) ≤
ε/2, where L′nU = limU L

′
nm. By construction, for any x ∈ Xn, we can find an ym ∈ Xm (m > nε)

such that L′nm(x, ym) < ε/2. If we set yU = π′U ({ym}), then obviously yU ∈ XU and

L′nU (x⊕ yU ) = lim
m→U

L′nm(x⊕ ym) ≤ ε/2,

hence Xn ⊂ Nε/2(XU , L
′
nU ). Viceversa, for any y ∈ XU , with y = π′U ({ym}), ym ∈ Xm, we

can find, for m > nε, an xm ∈ Xn such that L′nm(xm ⊕ ym) < ε/2. If we take the (w∗–)limit
x = limm→U xm ∈ Xn, then limm→U L

′
n(x− xm) = 0, and thus

L′nU (x⊕ y) = lim
m→U

L′nm(x⊕ ym)

≤ lim
m→U

(L′nm((x− xm)⊕ 0) + L′nm(xm ⊕ ym)) ≤ ε/2,

showing that XU ⊂ Nε/2(Xn, L
′
nU ), i.e. distL

′
nU

H (Xn, XU ) ≤ ε/2, as claimed. Therefore,

distqGH∗(M,MU ) < ε

and, since ε was arbitrary, we get the thesis.
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Next, we want to prove some partial converse, namely we establish some precompactness
conditions, in the topology induced by distqGH∗ , for uniform sequences (Mn, L

′
n) of (rigged or

Lip–)von Neumann algebras.

3.3.19 Theorem. Let (Mn, L
′
n) be a (weakly) uniform sequence of Lip–von Neumann alge-

bras. Then, for any ultrafilter U over N, the restriction of (Mn, L
′
n) to U is a Cauchy sequence

w.r.t. the distance distqGH∗, that is, for any ε > 0 there exists an element Uε ∈ U such that
distqGH∗(Mm,Mn) < ε for m,n ∈ Uε.

Proof. Let U be an ultrafilter on N, and let ε > 0 be given. Set ε′ := ε/4. Then, by uniformity
(cf. Lemmas 3.3.5, 3.3.6), for each n, there exists an ε′–net {x(i)

n }
Nε′
i=1 ⊂ M2(Mn)1,+ w.r.t. the

L′n–norm. We may suppose that {x(i)
n }n∈N is a sequence in `∞(M2(Mn)) such that ‖x(i)

n ‖ ≤ 1,
for all n ∈ N and i ∈ {1, . . . , Nε′} (cf. Lemma 3.3.10). Let M2(Vn) be the Lip–operator system
generated by the set {xin}

Nε′
i=1, where Vn is the smallest unital ∗–vector subspace in Mn containig

the N4
ε′ elements (xhk)in, h, k = 1, 2, i = 1, . . . Nε′ . Then, by Lemma 3.3.9, for all m,n ∈ N, we

have

distqGH∗(Mm,Mn) ≤ distqGH∗(Mm, Vm) + distqGH∗(Vm, Vn)
+distqGH∗(Vn,Mn)

< 2ε′ + distqGH∗(Vm, Vn).

Now, notice that {Vn, L′n)}n∈N is a uniform sequence of finite–dimensional (dual) Lip–operator
systems, and thus, let (VU , L′U ) be its (dual restricted) ultraproduct over U . Then, by Theorem
3.3.16, we can find an element Ũε′ ∈ U such that, for any h, k ∈ Ũε′ , we have

distqGH∗(Vh, Vk) < 2ε′.

Then, setting Uε ≡ Ũε′ , we finally get

distqGH∗(Mm,Mn) < ε

for all m,n ∈ Uε, as claimed.

For a weakly uniform family of LvNA’s, without further hypothesis, we have the following

3.3.20 Theorem. Let {(Mn, L
′
n)}n∈N be a weakly uniform sequence of Lip–von Neumann alge-

bras, and let U be an ultrafilter over N. Suppose that the restricted ultraproduct MU over U is a
LvNA. Then, the qGH∗− limit over U of {(Mn, L

′
n)} coincides with the ultraproduct MU . Hence,

in particular, it is a Lip–von Neumann algebra.

Proof. Indeed, let U be a free ultrafilter on N, and (MU , L
′
U ) the restricted ultraproduct of the

sequence {(Mn, L
′
n)}n∈N. Since, by hypothesis, MU is a Lip–von Neumann algebra, the positive

part (MU )1,+ of the unit ball MU is totally bounded in the Lip–norm L′U . Then, alsoM2(MU )1,+
is totally bounded. Therefore, for any given ε > 0, we can find an ε–net {x(i)}Nε

i=1 ⊂M2(MU )1,+
w.r.t. the L′U–norm. (We may suppose, for simplicity, that x(i) 6= 0 for all i.) Let {x(i)

n }n∈N be
a sequence in `∞(M2(Mn)+)3 realising x(i) as in Lemma 3.3.10, i.e. such that ‖x(i)

n ‖ ≤ 1, for
3In fact, let x ∈ M2(MU )+, and let {x̃n} be a sequence realising it. We may assume that all the x̃n are

selfadjoint, and, since x ≥ 0, there exists U ∈ U and a (bounded) sequence {αn} of positive real numbers
converging to zero such that x̃n ≥ −αnIn for all n ∈ U . Then, limU L′n(x̃n +αnIn) = L′U (x), and so we may define
the sequence {xn} ∈ `∞(M2(Mn)+) by setting xn = xn + αnIn for n ∈ U and xn = 0 for n /∈ U .
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all n ∈ N and i ∈ {1, . . . , Nε}. We want to show that, for n sufficiently large, the set {x(i)
n }Nε

i=1

satisfies the same property forM2(Mn)1,+ w.r.t. L′n, with ε replaced by 2ε.
In fact, given a sequence {yn} ∈ `∞(M2(Mn)) with 0 ≤ yn ≤ In for all n ∈ N (In is the identity
in M2(Mn)), one has yU = π′U ({yn}) ∈ M2(MU )1,+, and so there is at least one x(j) ∈ {x(i)}Nε

i=1

with L′U (yU − x(j)) < ε. Hence, we can find an element U (ε)
1 of the ultrafilter U such that

L′n(yn − x
(j)
n ) ≤ limU L

′
n(yn − x

(j)
n ) + ε = L′U (yU − x(j)) + ε < 2ε for all n ∈ U (ε)

1 .
Now, for each n ∈ U

(ε)
1 , let M2(Vn) and M2(VU ) be the Lip–operator systems generated by

the sets {xin}
Nε
i=1 and {xi}Nε

i=1, respectively, where Vn and VU are the smallest unital ∗–vector
subspaces in Mn and MU containing (xhk)in and (xhk)i, h, k = 1, 2, i = 1, . . . Nε, respectively.
Then, by Lemma 3.3.9, we have

distqGH∗(Mn,MU ) ≤ distqGH∗(Mn, Vn) + distqGH∗(Vn, VU )
+distqGH∗(VU ,MU )

< 3ε+ distqGH∗(Vn, VU ), n ∈ U (ε)
1 .

Since (M2(VU ), L′U ) is the (dual restricted) ultraproduct of the sequence {(M2(Vn), L′n)}n∈N of
Lip–operator systems, by Theorem 3.3.16, we can find an element U (ε)

2 , such that, for all n ∈ U (ε)
2 ,

we have
distqGH∗(Vn, VU ) < ε.

Hence, for all n ∈ U (ε)
1 ∩ U (ε)

2 , we get

distqGH∗(Mn,MU ) < 4ε,

and, by arbitrariness of ε, the thesis follows.

As a consequence, for a strongly uniform family of RvNA’s, we get:

3.3.21 Corollary. If (Mn, L
′
n) is a strongly uniform sequence of rigged von Neumann algebras,

then qGH∗−limit limn→UMn is a Lip–von Neumann algebra.

Proof. By Theorem 2.4.9, the (restricted) ultraproductMU is a Lip–von Neumann algebra. Since,
by the previous Theorem, the qGH∗−limit of the sequence (Mn, L

′
n) coincides with the restricted

ultraproduct (MU , L
′
U ), it is a Lip–von Neumann algebra as well.
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Chapter 4

Dual Quantum GH Distance,
Ultraproducts and Quantum Fields.

For the reader’s convenience, we shall recall the basic assumptions of Algebraic Quantum Field
Theory (AQFT). (For a detailed introduction to this subject, the reader is referred to the mono-
graph [33].)

1. (Locality) We assume that the local observables of the theory generate a local net over the
Minkowski space R4, i.e. a map O → A(O) from the set of open, bounded regions O ⊂ R4

to unital C∗–algebras on a suitable Hilbert space H, which preserves inclusions, that is,

A(O1) ⊆ A(O2) if O1 ⊆ O2. (4.1)

The net {A(O) : O ⊂ R4} is supposed to satisfy the the principle of locality (or Einstein’s
causality), according to which observables in spacelike separated regions commute,

A(O1) ⊆ A(O2)′ if O1 ⊆ O′2, (4.2)

where O′ denotes the spacelike complement of O and A(O)′ the set of operators in B(H)
which commute with all operators in A(O). The C∗–algebra A given by the C∗–inductive
limit by all the local algebras A(O) is called the quasi–local algebra, and is assumed to act
irreducibly on H.

2. (Covariance) There exists on H a strongly continuous unitary representation U of the
Poincaré group P↑+, which induces automorphisms of the net as follows: for each (Λ, x) ∈ P↑+
there is an α(Λ,x) ∈ Aut(A) given by

α(Λ,x)(a) := U(Λ, x)aU(Λ, x)−1, a ∈ A, (4.3)

and, for any region O,
α(Λ,x)(A(O)) = A(ΛO + x). (4.4)

A reasonable extra-requirement will be that the operator-valued functions

(Λ, x) 7→ α(Λ,x)(a), a ∈ A, (4.5)
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are continuous in the norm topology. This assumption does not impose any essential re-
strictions of generality. In fact, by the continuity of the representation U and by the
boundedness of the operators a, these funtions are always continuous in the strong opera-
tor topology, and thus by convolution with suitable test functions, one can always produce
a local net satisfying this strengthened continuity condition, which is dense in the original
net w.r.t. the strong operator (so–)topology. In other words, the subnet still contains the
relevant information about the physical states. (In order to preserve uniqueness, one also
requires that the local algebras A(O) are maximal, in the sense that any operator in the
so–closure R(O) of A(O) satisfying the above condition, is already contained in A(O).
Possibly by enlarging the local algebras, the net can be always assumed to comply with
this maximality condition.)

3. (Spectrum Condition). The joint spectrum of the generators of the unitary representation
of the spacetime translations is contained in the closed forward lightcone V +. Moreover,
there is a unique (up to a phase) vector Ω ∈ H, representing the vacuum, which is invariant
under the action of U , that is,

U(Λ, x)Ω = Ω, (Λ, x) ∈ P↑+. (4.6)

The vector state induced by Ω is called the vacuum state. Since it is characterized by the
existence of a vacuum state, this particular representation of A is called the vacuum repre-
sentation, and may be regarded as the defining representation of the theory. (Notice that
all the other vector states in the original Hilbert space H induce by the GNS contruction,
the identical representation of the quasi–local algebra A.) The other states of physical in-
terest correspond to (positive, linear and normalized) functionals ω on A, which are locally
normal w.r.t. the vacuum representation, i.e. such that the restrictions ω|A(O) of all these
states to any local algebra can be represented by vectors ΩO in the vacuum Hilbert space
H as

ω(a) = (ΩO, aΩO), a ∈ A(O). (4.7)

The algebraic approach to relativistic quantum field theory has proven to be an efficient
setting for the structural analysis of properties of physical systems at the upper end of the
spatio–temporal scale. Examples are the classification of the possible statistics and superselection
structure of particles, collision theory and the clarification of the infrared properties of theories
with long range forces [33]. However, at the lower end of the scale the algebraic point of view has
been, for a long time, less successful. Basic phenomena such as the parton picture or the notion
of asymptotic freedom did not fit appropriately in the algebraic setting, due to the absence, in
this approach, of the analogue of the renormalization group [4], which allows one to transform a
theory at given scale into the corresponding theories at other scales.

In the algebraic approach, quantum fields, which are a basic ingredient in the conventional
approach to the renormalization group, are regarded as a kind of coordinatization of the local
algebras and therefore do not appear explicitly in this setting. This is justified by the observation
that different irreducible sets of field operators which are relatively local to each other yield the
same scattering matrix [5]. Thus, the physical content of a theory does not depend on a particular
choice of fields. The absence of quantum fields in the algebraic setting causes problems, however,
if one wants to apply the ideas of the renormalization group. In the conventional framework of
quantum field theory, the renormalization group transformations Rλ, λ > 0, act on the underlying
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quantum fields φ(x) by scaling the spacetime coordinates x, accompanied by a multiplicative
renormalization, Rλ : φ(x) → φλ(x) := Nλφ(λx). In this way, one maps the theory at the
original scale, say λ = 1, onto the corresponding theory at scale λ whithout changing the value of
the fundamental physical constants, i.e. the speed of light c and Planck’s constant ~. Moreover,
by the multiplicative renormalization factor Nλ, the scale of field strength is adjusted in such a
way that the mean values and mean square fluctuations of the fields in some fixed reference state
are of the same order of magnitude at small scales. Thus, the quantum fields are employed to
identify at each scale λ a set of operators with a fixed physical interpretation, and these operators
can then be used to compare the properties of the theory at different scales.

4.1 The Buchholz–Verch Scaling Limit Construction

In the papers [12; 13], Buchholz and Verch answered the question of how to implement the
renormalization group in the AQFT setting, and provided a solution within a mathematical
framework suitable for the structural analysis of local nets at small scales. Their approach is
based on the following observations.

(i) According to the geometrical significance of the renormalization group, the transformations
Rλ should map the given net O → A(O) at the original spatio–temporal scale λ = 1 onto the
corresponding net O → Aλ(O) := A(λO) at scale λ, namely

Rλ : A(O)→ Aλ(O) (4.8)

for every region O ⊂ R4. Since space and time are scaled in the same way, the value of the speed
of light c is kept fixed under these maps.

(ii) The condition that ~ remains constant under renormalization group transformations can
be expressed in the algebraic setting as follows. If one scales space and time by λ and does not
want to change the unit of action, one has to rescale energy and momentum by λ−1. The energy–
momentum scale can be set by determining the energy and momentum which is transferred by
the action of observables to physical states. Hence, if Ã(Õ) denotes the subspace of all (quasi–
local) observables which, at the original scale λ = 1, can transfer energy–momentum contained
in the set Õ ⊂ R4, and if Ãλ(Õ) := Ã(λ−1Õ) denotes the corresponding space at scale λ, then
the transformations Rλ should induce a map

Rλ : Ã(Õ)→ Ãλ(Õ) (4.9)

for every Õ. (An analogous relation should hold for the angular momentum transfer.)
(iii) In the case of dilation invariant theories the transformations Rλ are expected to be

isomorphisms, yet this will not be true in general since the algebraic relations between observables
may depend on the scale. But since the transformations Rλ are designed to identify observables
at different scales, they still ought to be continuous, bounded maps, uniformly in λ.

The above conditions subsume the physical constraints imposed on the renormalization group
transformations Rλ, although they do not fix these maps. In fact, there exists an abundance of
such maps for any given λ > 0. But all of these maps identify the same net at scale λ, they merely
reshuffle the operators within the local algebras in different ways. Since the basic hypothesis of
algebraic quantum field theory is that the physical information of a theory is contained in the net,
it should thus not matter which map one picks for the short distance analysis of a theory. One may
consider any one of them or all of them. Buchholz and Verch adopt the latter point of view, which
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can be conveniently expressed by introducing the concept of scaling algebra. Roughly speaking,
the scaling algebra consists of operator–valued functions λ : a → Rλ(a), λ > 0, which are the
orbits of the local observables a under the action of all admissible transformations Rλ. If the
renormalization group transformations Rλ comply with the specific properties indicated above,
then the scaling algebra still has the structure of a local net on which the Poincaré group acts in
a continuous manner. Moreover, the renormalization group induces an additional symmetry of
this net: the scaling transformations. The states of physical interest can be lifted to the scaling
algebra, and the transformed states have, at arbitrarily small scales, limits which are vacuum
states. As a result, if the underlying theory is invariant under dilations and satisfies the Haag–
Swieca compactness criterion [34], then it is invariant under the action of the renormalization
group and coincides with its scaling limit. (This is the case, for instance, of the massless free
scalar field, see [13].)

We shall illustrate the basic features of the Buchholz–Verch construction. So let us assume
that the net (A, αP↑+) is defined at spatio–temporal scale λ = 1. Then, the Poincaré transforma-
tions at any other scale λ > 0 are given by

α
(λ)
(Λ,x) := α(Λ,λx), (Λ, x) ∈ P↑+ (4.10)

Notice that (Aλ, α
(λ)

P↑+
) defines again a local, Poincaré covariant net over the Minkowski space.

Thus, one keeps the Minkowski space fixed – or, better, one keeps the causal structure of the
Minkowski space fixed, and re-labels the spacetime regions O 7→ Oλ := λO – and interpret
the properties of the underlying theory at small scales in terms of the modified theories (nets)
(Aλ, α

(λ)

P↑+
). In general, the nets (Aλ, α

(λ)

P↑+
) will describe distinct theories for different values of λ

(with different energy–momentum spectrum, collision cross sections, etc.). Within the algebraic
setting, these differences find a formal expression in the fact that the corresponding nets are
non–isomorphic. Conversely, any two local, Poincaré–covariant nets, which are isomorphic, are
physically indistinguishable, and consequently represent the same theory. We recall the notion
of net isomorphism in the following

4.1.1 Definition. For j = 1, 2, let (O → A(j)(O), α(j)

P↑+
) be two local, Poincaré covariant nets on

Minkowski space with C∗–inductive limits A(j). The two nets are said to be isomorphic if there
is an isomorphism φ : A(1) → A(2), which preserves localization,

φ(A(1)(O)) = A(2)(O), O ⊂ R4, (4.11)

and intertwines the Poincaré transformations,

φ ◦ α(1)
(Λ,x) = α

(2)
(Λ,x) ◦ φ, (Λ, λx) ∈ P↑+. (4.12)

Any such isomorphism φ is called a net isomorphism. A net isomorphism which maps a given
net onto itself is called an internal symmetry.

According to this definition, the nets (Aλ, α
(λ)

P↑+
) are isomorphic for different values of λ if, and

only if, dilations are a (geometrical) symmetry of the underlying theory. The physical content
of the theory is then invariant under changes of the spatio–temporal scale. In general, in the
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interesting cases, the underlying theory does not possess such a symmetry. Consequently, one
cannot exploit the notion of net–isomorphism. However, one can use the renormalization group
transformations Rλ in order to compare the properties of the theory at different scales. Since what
really matters is to have control on the phase–space properties of the orbits λ → Rλ(a), λ > 0,
of local observables a ∈ A under renormalization group transformations, it suffices that these
transformations do not change the fundamental physical units c and ~, which can be expressed
by the uniform (w.r.t. λ) continuity in the following sense:

sup
λ>0
‖α(Λ,λx)(Rλ(a))−Rλ(a)‖ → 0 for (Λ, x)→ (1, 0). (4.13)

One considers functions a : R+ → A from the domain R+ of the scaling parameter λ to the
underlying algebra of observables, with the following algebraic structure: given two functions a,
b and µ1, µ2 ∈ C, we set for λ > 0

(µ1a+ µ2b)λ := µ1aλ + µ2bλ

(a · b)λ := aλ · bλ (4.14)
(a∗)λ := a∗λ.

In this way, we get a unital ∗–algebra, with unit (I)λ = I. Moreover, since we are only interested
in uniformly bounded functions, it is natural to introduce the norm

‖a‖ := sup
λ>0
‖aλ‖, (4.15)

which is in fact a C∗–norm. The induced action of the Poincaré transformations on the functions
is then given by

(α(Λ,x)(a))λ := α(Λ,λx)(aλ) (4.16)

It follows that the continuity requirement (4.13) can be expressed in the simple form

sup
λ>0
‖α(Λ,x)(a)− a‖ → 0 for (Λ, x)→ (1, 0). (4.17)

It remains only to impose on the functions the localization condition.

4.1.2 Definition. Let O ⊂ R4 be any open, bounded region. Then A(O) denotes the set of all
uniformly bounded functions a which are continuous with respect to Poincaré transformations in
the sense of relation (4.17) and satisfy

aλ ∈ A(λO), λ > 0. (4.18)

Since each A(λO) is a C∗–algebra, it follows that A(O) is a C∗–algebra as well: it is stable
under the algebraic operations (4.14) and complete with respect to the C∗–norm (4.15). It is
also evident from the definition that A(O) is monotonous w.r.t. O,

A(O1) ⊂ A(O2) if O1 ⊂ O2. (4.19)

Thus, the assignment O → A(O) defines a net of C∗–algebras over the Minkowski space, which
satisfies also locality and Poincaré covariance (see [12] for details).
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4.1.3 Definition. The local, covariant net (A, αP↑+) is called the scaling net of the underlying

theory. The C∗–inductive limit of all the local algebras A(O) is called scaling algebra and is
denoted by A.

The principal objective is then to study the properties of the physical states of the underlying
theory at arbitrarily small scales. To this end, one lifts these states to the scaling algebra and
study their behaviour under scaling transformations.

4.1.4 Definition. Let ω be a state on the underlying global algebra A. Its canonical lift ω on
the scaling algebra A is defined by

ω(a) := ω(aλ=1), a ∈ A. (4.20)

Conversely, given any state ω on the scaling algebra A, let (π,H,Ω)) be the corresponding
GNS–representation, and denote by

Aπ := A/ker(π) (4.21)

the quotient of A w.r.t. the kernel ker(π) of π. Then, Aπ ' π(A). Let us denote by ψ
the canonical isomorphism between these algebras, given by ψ(Aπ) = π(A), where Aπ is the
equivalence class of A ∈ A modulo ker(π). The projection of ω to the quotient Aπ is then given
by

proj(ω) := (Ω, ψ(·)Ω) (4.22)

The physical interpretation of the states ω will be based on their projections proj(ω), regarded
as states on the net

O → Aπ(O) := A(O)/ker(π) (4.23)

on the Minkowski space. These nets are again local. Moreover, if ker(π) is invariant under the
Poincaré transformations αP↑+

, one can also define an automorphic action of the Poincaré group

on Aπ, setting for (Λ, x) ∈ P↑+
α
π
(Λ,x)(a

π) := (α(Λ,x)(a))
π (4.24)

In this way, any suitable state ω on A determines a local, covariant net (Aπ, απ
P↑+

), and a distin-

guished state proj(ω) on Aπ.
Now, let us consider the family of states on A given by

ωλ := ω ◦ σλ, (4.25)

where σλ : A(O)→ A(λO) are the scaling transformations, as a net directed towards λ = 0. The
aim is to determine the properties of states at small scales with the help of the functions a ∈ A.
However, one finds that ∩λ>0A(λO)− = C · I, hence any function a, such that aλ converges in
norm for λ↘ 0, inevitably converges to a multiple of the identity. Consequently, such functions
are not suitable to test the properties of states in the scaling limit, since they have the same
limit in every state on A. This is the reason why one does not assume from the outset that the
elements of A are continuous at λ = 0. As a consequence, the nets {ωλ}λ>0 are not convergent.
This apparent difficulty can be handled, however, with the help of the Banach–Alaoglu Theorem
[55], according to which every bounded set in the dual space of a Banach space is precompact
in the w∗–topology. Applying this theorem to the family of states {ωλ}λ>0, one sees that this
family contains (many) subnets which converge in the w∗–topology for λ↘ 0.
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4.1.5 Definition. Let ω be a state on A and ω its canonical lift on A. Each w∗–limit point of
the net {ωλ}λ>0 for λ ↘ 0 is called a scaling limit state of ω. The scaling limit states of ω are
denoted by ω0,ι, ι ∈ I, with I some index set, and the set of all scaling limit states of ω is denoted
by SL(ω).

Recall that a physical state on the underlying thory A is defined to be a state which is locally
normal w.r.t. the underlying vacuum representation. Then, the underlying theory is said to
have a unique scaling limit, if all the scaling limit nets derived from physical states on A, are
isomorphic, and if there is a net–isomorphism which connect also the respective vacuum states,
the theory is said to have a unique vacuum structure in the scaling limit.

4.2 The distqGH∗–Ultraproduct Construction

In this section, we shall illustrate the approach based on the ultraproduct construction. In this
setting, the scaling net will be given by a limit point in the distance distqGH∗ , of a suitable
sequence of local von Neumann algebras through the ultraproduct construction. First, we have
to analyse the requirements needed for a local net O → R(O) to be a (strongly) uniform family
of rigged von Neumann algebras.

To this end, let O → R(O) be a local net of von Neumann algebras acting in the vacuum
representation, H the generator of time translations, ϕ a suitable postive unbounded function,
and set

L′(a) := ‖ϕ(H + 1)−1aϕ(H + 1)−1‖. (4.26)

In the following, we shall investigate the conditions under which the net O → (R(O), L′),
where O ⊂ R4 is a bounded region in Minkowski spacetime and L′ is given by (4.26), is a local
net of rigged von Neumann algebras.

We begin by showing first that L′ is a Lip–norm. To this aim, we will use the following result
by Buchholz and Porrmann [11].

4.2.1 Theorem. Let O → R(O) be the net of von Neumann algebras for the free scalar field
(any mass) in dimension 3 + 1. Then, for any bounded region O and any β > 0, the following
map is compact:

R(O) 3 a 7→ e−βHae−βH ∈ B(H). (4.27)

As known, a linear map between Banach spaces is compact if the image K of the unit ball is
totally bounded, namely if, for any ε > 0, the number of balls of radius ε needed to cover K is
finite. We shall denote, as usual, by nε(K) such (minimal) number.

4.2.2 Theorem. Let O → R(O) be a net of local observables, and assume that, for a given
region O, the map 4.27 is compact for β = 1, namely nε := nε(e−HR(O)1e−H) is finite for any
ε > 0. Choose a function ϕ ∈ C([0,+∞)) with the following properties:

• ϕ is increasing;

• ϕ(0) = 1;

• limt→+∞ ϕ(t) = +∞.
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Then, the following map is also compact:

R(O) 3 a 7→ ϕ(H)−1aϕ(H)−1 ∈ B(H). (4.28)

Proof. Choose ε > 0, let T ≡ Tε such that ϕ(T ) = 3/ε, and set c ≡ cε := mint∈[0,T ] ϕ(t)e−t.
Consider now the function ψ(t) := max(ϕ(t), cet), and observe that ψ(t) = ϕ(t) for t ≤ T .
Therefore

0 ≤ sup
t≥0

(ϕ(t)−1 − ψ(t)−1) ≤ sup
t≥T

ϕ(t)−1 =
ε

3
.

Since ψ(t) ≥ cet, the map a 7→ ψ(H)−1aψ(H)−1 is compact, thus we can find x1, . . . , xn ∈
ψ(H)−1R(O)1ψ(H)−1, n ≡ nε/3(ψ(H)−1R(O)1ψ(H)−1), such that

n⋃
i=1

B(xi, ε/3) ⊃ ψ(H)−1R(O)1ψ(H)−1.

In this way, for any a ∈ R(O)1, we get an i ∈ {1, . . . , n} such that

‖ψ(H)−1aψ(H)−1 − xi‖ < ε/3.

Then, we have

‖ϕ(H)−1aϕ(H)−1 − xi‖
≤ ‖ψ(H)−1aψ(H)−1 − xi‖+ ‖ψ(H)−1aψ(H)−1 − ϕ(H)−1aϕ(H)−1‖
≤ ε/3 + ‖(ψ(H)−1 − ϕ(H)−1)aψ(H)−1‖+ ‖ϕ(H)−1a(ψ(H)−1 − ϕ(H)−1)‖
≤ ε/3 + 2‖ψ(t)−1 − ϕ(t)−1‖∞ ≤ ε,

which means that

nε(ϕ(H)−1R(O)1ϕ(H)−1) ≤ nε(ψ(H)−1R(O)1ψ(H)−1),

which implies the thesis.

4.2.3 Remark. For example, the functions ϕ(t) = (1 + t)n, n ≥ 1 satisfy the hypothesis above.

For completeness, we give also an estimate on the order of compactness of the map (4.28).

4.2.4 Lemma. Let X, Y be Banach spaces, S, T : X → Y linear maps such that T is compact
and, for a suitable constant c > 0, ‖Sx‖ ≤ c‖Tx‖ for any x ∈ X. Then

nε(SX1) ≤ nε/c(TX1).

Proof. By hypothesis, ST−1 is bounded on TX with norm ≤ c, hence we may extend it to a
bounded operator R from TX to Y , and thus S = RT . For a given ε > 0, choose x1, . . . , xn ∈
TX1, n ≡ nε/c(TX1), such that

n⋃
i=1

B(xi, ε/c) ⊃ TX1.

In this way, for any x ∈ X1 we get an i ∈ {1, . . . , n} such that ‖Tx − xi‖ < ε/c. Then
‖Sx−Rxi‖ ≤ c‖Tx− xi‖ < ε, namely

n⋃
i=1

B(Rxi, ε) ⊃ SX1,

which implies the thesis.
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4.2.5 Corollary. Let O → R(O) be a net of local observables, and assume that, for a given
region O, the map (4.27) is compact for β = 1. Then, for ε small enough,

nε((H + 1)−nR(O)1(H + 1)−n) ≤ nδ(e−HR(O)1e−H), δ =
3
ε
e−2( n
√

3/ε−1).

Proof. With the same notations as in the proof of Theorem 4.2.2, we have

‖ψ(H)−1aψ(H)−1‖ ≤ c−2‖e−Hae−H‖,

and by the previous Lemma, we get

nε/3(ψ(H)−1R(O)1ψ(H)−1) ≤ nδ(e−HR(O)1e−H),

with δ = ε
3c

2. Now, choosing ϕ(t) = (1 + t)n, n ≥ 1, and ε such that et ≥ (1 + t)n for
t ≥ T ≡ n

√
3/ε− 1, then, setting c = (1 + T )ne−T , we get

nε((H + 1)−nR(O)1(H + 1)−n) ≤ nδ(e−HR(O)1e−H), δ =
3
ε
e−2( n
√

3/ε−1).

Now, let us recall the definition of (p–)nuclear maps.

4.2.6 Definition. Let X and Y be Banach spaces, and let Θ be a linear map from X into Y .

(i) The map Θ is said to be compact, if the image of the unit ball of X through Θ is totally
bounded in Y .

(ii) The map Θ is said to be p–nuclear, p ∈ R+, if there exist functionals ei ∈ X∗ and elements
yi ∈ Y , such that, in the sense of strong convergence,

Θ(·) =
∑
i

ei(·)yi, (4.29)

and

‖Θ‖p = inf

(∑
i

‖ei‖p‖yi‖p
)1/p

, (4.30)

where the infimum is taken w.r.t. all the possible choices of ei ∈ X∗ and yi ∈ Y in the
representation of Θ as in (4.29). The norm ‖ · ‖ in (4.30) is called the p–norm, but it is
only a quasi–norm if p < 1. For p = 1 one obtains the nuclear maps.

In order to show that the norm (4.26) metrizes the w∗–topology on bounded subsets, we shall
need a notion of uniformity, w.r.t. the (scaling) parameter, of the maps involved.

4.2.7 Definition. Let X and Y be Banach spaces, and let Θr, r ∈ R+(≡ {x ∈ R : x > 0}), be
linear maps from X into Y .

(i) The family of maps Θr is said to be uniformly compact, if the images of the unit ball of X
through Θr are uniformly totally bounded in Y , i.e. for any ε > 0, there exists N ∈ N such
that the covering numbers nε,r := nε(Θr(X1)) satisfy nε,r ≤ N for all r > 0.
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(ii) The family of maps Θr is said to be uniformly (p)–nuclear, p ∈ R+, if Θr is nuclear for all
r > 0, and there exists a continuous function F : R+ ∪ {0} → R+ such that

‖Θr‖p ≤ F (r). (4.31)

Let Or be the standard double cone of radius r > 0 around the origin.

4.2.8 Assumption (Uniform nuclearity). We shall assume that ∀r0 > 0 there exists d > 0
such that ∀r ≤ r0, with r/β ≤ d, the maps

Ξβ,r : R(Or)→ B(H), a 7→ e−βHae−βH (4.32)

are nuclear, uniformly in r/β.

Actually, it suffices the weaker condition of uniform compactness.

4.2.9 Assumption (Uniform compactness). The maps

Θr : R(Or) → B(H), (4.33)
a 7→ (I + rH)−1a(I + rH)−1

are uniformly compact w.r.t. r.

4.2.10 Theorem. Uniform nuclearity implies uniform compactness.

Proof. It follows from Corollary 4.2.5.

Le us notice that uniform compactness seems to be a reasonable assumption, since it holds,
for instance, in the (real scalar) free field case, as we shall see in the following section. For the
moment, we only quote this result.

4.2.11 Theorem. Uniform nuclearity holds for the real scalar free field of mass m ≥ 0 in s ≥ 3
spatial dimensions.

4.2.12 Lemma. Let A : X → Y a compact operator between Banach spaces, and assume that Y
is separable and A∗ : Y ∗ → X∗ is injective. Then, setting L′(y′) = ‖A∗y′‖, L′ is a norm on Y ∗,
inducing the w∗–topology on Y ∗

1 .

Proof. Since A∗ is injective, L′ is a norm. We now show that any w∗–compact set C is L′–closed.
Indeed, a sequence {y′n} ⊂ C is L′–converging if and only if A∗y′n is norm–converging in X∗.
So, let x′ be its limit. We may assume, by possibly passing to a subsequence, that {y′n} is also
w∗–converging to some y′ ∈ C. Then, for any x ∈ X,

〈x′, x〉 = lim
n
〈A∗y′n, x〉 = lim

n
〈y′n, Ax〉 = 〈y′, Ax〉 = 〈A∗y′, x〉,

namely A∗y′n → A∗y′ in norm, or, equivalently, y′n → y′ in the L′–norm. As a consequence, the
identity map from ι : (C,L′)→ (C,w∗) is a continuous map.
Now observe that, since C is w∗–compact, it is bounded, and since A∗ is compact, A∗C is totally
bounded, or, equivalently, C is L′–totally bounded. By the observation above, C is L′–compact,
namely ι is a homeomorphism.
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The following Theorem tells us that (R(Or), L′r), r > 0, is a RvNA w.r.t. the norm

Nr(a) = max
(
‖(I + rH)a(I + rH)−1‖, ‖(I + rH)−1a(I + rH)‖

)
. (4.34)

4.2.13 Theorem. Assume that the net O → R(O) satisfies uniform compactness. Then, setting
L′r(a) = ‖(I + rH)−1a(I + rH)−1‖, (R(Or), L′r) is a RvNA, with Nr(a) ≤ ‖a‖+ r‖[H, a]‖.

Proof. Indeed, let Ar : B(H)∗ → R(Or)∗ be given by Arφ = (I + rH)−1φ(I + rH)−1|R(Or),
and observe that A∗r : R(Or) → B(H) is given by A∗ra = (I + rH)−1a(I + rH)−1. By uniform
compactness, Ar and A∗r are compact, uniformly in r.
We now set L′r(a) = ‖A∗ra‖ = ‖(I + rH)−1a(I + rH)−1‖. By Lemma 4.2.12, it is not difficult to
see that (R(Or), L′r) is a Lip–von Neumann algebra. Indeed,

Nr(a) = max
(
‖(I + rH)a(I + rH)−1‖, ‖(I + rH)−1a(I + rH)‖

)
≤ ‖a‖+ r‖[H, a]‖,

since we have

‖(I + rH)−1a(I + rH)‖ = ‖(I + rH)−1(a+ rHa− r[H, a])‖
= ‖a− (I + rH)−1rδ(a)‖ ≤ ‖a‖+ r‖(I + rH)−1[H, a]‖
≤ ‖a‖+ r‖[H, a]‖,

and analogously ‖(I + rH)a(I + rH)−1‖ ≤ ‖a‖ + r‖[H, a]‖. Since H is the generators of a
strongly continuous one–parameter group of automorphisms, the set of elements a ∈ R(Or) with
r‖[H, a]‖ <∞ is w∗–dense [49; 9], and thus we get the claim.

Finally, we want to show that the net O → R(O) form a (strongly) uniform family of RvNA’s.
Assuming that the uniform compactness condition holds true, in order to get the uniform nor-
malizer condition, we shall make the following

4.2.14 Assumption (Uniform inner regularity). For any family aλ ∈ R(Oλ), supλ ‖aλ‖ ≤ 1,
and for any ε > 0, there exist an r < 1 and a family a′λ ∈ R(Orλ), supλ ‖a′λ‖ ≤ 1, such that

L′λ(aλ − a′λ) = ‖(I + λH)−1(aλ − a′λ)(I + λH)−1‖ < ε. (4.35)

As we shall see, uniform inner regularity holds in the (real scalar) free field case.

4.2.15 Remark. Let us recall that a (local) net O → R(O) is said to be inner regular, if the
following relation holds:

R(O) =
(
∪Ô⊂⊂OR(Ô)

)′′
, (4.36)

where Ô ⊂⊂ O means that the closure of Ô is contained in the interior of O. (Notice that this
conditions is fulfilled, for instance, in the free field case.) This implies, in particular, that each
element in R(O) can be approximated in the weak–operator topology by elements from R(Ô).
Since the weak–operator topology coincides with the w∗–topology on bounded subsets, we see
that uniform inner regularity is simply a strengthening of inner regularity (restricted to the unit
balls of the local algebras).

Finally, we can show that under the uniform compactness and the uniform inner regularity
assumptions, the rescaled family (R(Oλ), L′λ) of RvNA’s is (strongly) uniform (cf. Definition
2.4.7).
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4.2.16 Theorem. Let O → R(O) be a local net as above, satisfying uniform compactness and
uniform inner regularity. Then, for any O, the family Oλ → R(Oλ) is a (strongly) uniform
family of rigged von Neumann algebras. Therefore, for any ultrafilter U , the Lip–vNA’s R(O)U =
qGH∗ − limU R(Oλ) form a net, which we call the qGH∗–scaling limit net.

Proof. By uniform inner regularity, any family aλ ∈ R(Oλ) may be uniformly L′–approximated
by a family a′λ ∈ R(Orλ). The latter will be approximated by

aδλ :=
∫

1
δ
g(
t

δ
)αλt(a′λ)dt,

where g is a positive function with integral 1 and support contained in [−1, 1]. We have ‖aδλ‖ ≤ 1,
Nλ(aδλ) ≤ 1 + 1

δ

∫
|g′(t)|dt and aδλ ∈ R(Oλ) as soon as r + δ ≤ 1. Now, we estimate L′λ(a

′
λ − aδλ).

First observe that, setting a := a′λ, a
δ := aδλ, gδ(t) := 1

δ g(
t
δ ), and letting E(x) be the spectral

measure of H, we have

(I + λH)−1aδ(I + λH)−1 =
∫
gδ(t)(I + λH)−1e−iλtHaeiλtH(I + λH)−1dt

=
∫
gδ(t)

(∫
(1 + λx)−1e−iλtxdE(x)

)
a

(∫
eiλty(1 + λy)−1dE(y)

)
dt

=
∫
gδ(t)

(∫
(1 + x)−1e−itxdE(x/λ)

)
a

(∫
eity(1 + y)−1dE(y/λ)

)
dt.

Then, we see that ∫
(1 + x)−1e−itxdE(x/λ) =

∫
e−itx

1 + it(1 + x)
(1 + x)2

E(x/λ)dx.

As a consequence,

(I + λH)−1aδ(I + λH)−1

=
∫
dx dy

E(x/λ)aE(y/λ)
(1 + x)2(1 + y)2

(
g̃δ(x− y) + (x− y)ĝδ ′(x− y) + (1 + x)(1 + y)g̃δ ′′(x− y)

)
.

Hence, we get

‖(I + λH)−1(aδ − a)(I + λH)−1‖

≤ ‖a‖

(∫
R2

+

|g̃δ(x− y)− 1|
(1 + x)2(1 + y)2

dx dy +
∫

R2
+

|(x− y)g̃δ ′(x− y)|
(1 + x)2(1 + y)2

dx dy +
∫

R2
+

|g̃δ ′′(x− y)|
(1 + x)(1 + y)

dx dy

)

Setting β := x− y, and assuming that g is an even function, the first integral may be rewritten
as

2
∫ ∞

0
dβ|g̃δ(β)− 1|h(β), where h(β) =

1
|β|3

(
|β|(|β|+ 2)
(|β|+ 1)

− 2 log(|β|+ 1)
)
,

where
∫∞
0 dβ 2h(β) = 1. Changing variable, the first integral may finally be rewritten as

2
∫ ∞

0
dβ|g̃(β)− 1|1

δ
h(
β

δ
)→ 0 when δ → 0,
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since 1
δh(

β
δ ) approximates the Dirac delta in 0, and g̃(0) = 1. With the same calculations, we

get, for the second integral,

2
∫ ∞

0
|g̃δ ′(β)|βh(β)dβ = 2

∫ ∞

0
δ|g̃ ′(δβ)|βh(β)dβ,

and the latter converges to the average of βh(β) on R, which is 0. As for the third integral, we
get, for a suitable bounded function k(β),

2
∫ ∞

0
|g̃δ ′′(β)|k(β)dβ = 2δ

∫ ∞

0
δ|g̃ ′′(δβ)|k(β)dβ ≤ 2δ‖g̃ ′′‖1‖k‖∞ → 0.

In view of Theorem 4.2.13, the uniform normalizer condition is proven, and so the family is
(strongly) uniform. Given a sequence {λn}n∈N with λn ↘ 0, and an ultrafilter U on N, let
R(O)U = qGH∗ − limU R(Oλn) be the ultraproduct of R(Oλn) over U . Since the net structure
clearly passes to the ultraproduct, the proof is complete.

4.2.1 Relations with the Buchholz-Verch Construction

We want to analyse the relation between our construction and the Buchholz-Verch construction
of the scaling algebra w.r.t. the renormalization group (scaling) transformations.

The scaling algebra

We define the qGH∗–scaling algebra as follows: since Nλ(a) ≤ ‖a‖+ λ‖[H, a]‖,

A(O) := {{aλ} ∈ `∞(R(λO)) : sup
λ
Nλ(aλ) <∞}−‖·‖ (4.37)

= {{aλ} ∈ `∞(R(λO)) : sup
λ
λ‖[H, a]‖ <∞}−‖·‖

= {{aλ} ∈ `∞(R(λO)) : sup
λ
‖αλt(aλ)− aλ‖ → 0, t ∈ R, t→ 0}.

Instead, the Buchholz-Verch scaling algebra is the following (see Definition 4.1.2):

A(O)BV = {{aλ} ∈ `∞(R(λO)) : sup
λ
‖αλx(aλ)− aλ‖ → 0, x ∈ R4, x→ 0}. (4.38)

4.2.17 Remark. Since supλ ‖αλx(aλ) − aλ‖ → 0 as x → 0 implies supλ ‖αλt(aλ) − aλ‖ → 0
as t → 0, one has A(O)BV ⊆ A(O). Notice that the reverse inclusion needs not to hold in
general. Nevertheless, on the level of von Neumann algebras the two constructions produce
the same results, at least in the case of the (real scalar) free field. In fact, let πλ, λ > 0, be
the representation of A(O) on H given by a 7→ aλ, and let π0 be the Buchholz–Verch limit
representatioin (extended to A(O)). Then, we ask that the following holds true:

(a) for any λ > 0,
(πλA(O)BV )′′ = πλA(O)′′ = R(λO); (4.39)

(b)
(π0A(O)BV )′′ = π0A(O)′′. (4.40)
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As for (a), since elements a of A(O)BV can be obtained by smearing operators from the original
net over the Poincaré group with suitable test functions of arbitrarly small support (cf. the
discussion in [12; 13]), then, choosing a delta sequence as test functions, πλ(a) converges to the
original operator from R(O) in the strong operator topology. If we assume that the the net
O → R(O) is inner regular, namely

R(O) =
(
∪Ô⊂⊂OR(Ô)

)′′
,

(which is fulfilled in the free field case), then we obtain (πλA(O)BV )′′ = R(λO). Since the
inclusion (πλA(O)BV )′′ ⊂ πλA(O)′′ ⊂ R(λO) clearly holds, we get the equality.
As for (b), it is not evident whether it holds in general. However, for the only models where
the scaling limit has been computed so far, i.e. the free scalar field in 2 + 1, 3 + 1 spacetime
dimensions, it actually holds true. Indeed, in [13] it is shown that π0A(O)BV = A0(O), where
O → A0(O) is the local net of the free massless scalar field, and the main argument in the proof
of the inclusion π0A(O)BV ⊃ A0(O) (see the proof of Lemma 3.3 in [13]), is compactness in the
sense of Haag–Swieca [34], which involves the energy operator, i.e. the properties of the time
translations group only. Hence, the same arguments can be applied to the possibly larger algebra
π0A(O), so that one gets (π0A(O))′′ = A0(O), the strong closure of A0(O).
In conclusion, it is worth noting that, in order to get the same local net on the level of C∗–
algebras as well, one should modify the definition of qGH∗–limit to include a larger symmetry
group rather than time translations only, as the strongly continuous unitary implementation of
the symmetry group in the limit representation plays an important role in physics. However,
while the Buchholz–Verch construction is essentially based on the C∗–algebraic nature of the
limiting process, our construction involves instead the von Neumann algebraic aspects of the
local theory. Therefore, so far, the problem of selecting, via the action of the symmetry group, a
particular weakly dense C∗–subnet of the original (Poincarè covariant) net of local von Neumann
algebras, does not appear to affect, in a relevant manner, the study of the small scales behavior
of the theory. This is the reason why, basically for mathematical simplicity, in our analysis
we restrict to the subgroup given by time–translations, assuming the (norm) continuity of the
(operator–valued) functions λ 7→ aλ only w.r.t. this subgroup.

The representation

The qGH∗–representation is defined as follows:

R(O)U =
⊕
ω∈SU

πω(A(O))′′, (4.41)

where SU 3 ω if 〈ω, a〉 = limU 〈ωλ, aλ〉, with {ωλ} in B(H)∗ and L({ωλ}) = supλ Lλ(ωλ) <∞ (cf.
Theorem 2.4.9), where, for any λ > 0,

Lλ(ωλ) := sup{ |〈ωλ, x〉|
L′λ(x)

: x ∈ R(Oλ)}

= sup{ |〈ωλ, (I+λH)y(I+λH)〉|
‖y‖ : y ∈ (I + λH)−1R(Oλ)(I + λH)−1}.

Instead, the Buchholz-Verch representations are the following:

R(O)U = πω(A(O)BV )′′, (4.42)
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where 〈ω, a〉 = limU 〈ω, aλ〉, ω ∈ B(H)∗.
Since πω(A(O)BV )′′ = πω(A(O))′′, we have the following

4.2.18 Corollary (to Theorem 4.2.16). With the assumptions above, the qGH∗–scaling limit
net O → R(O)U is local, and any Buchholz–Verch scaling limit net of the original theory embeds
as a subrepresentation in the qGH∗–scaling limit net associated with some ultrafilter.

4.3 Applications to the (real scalar) Free Field

In their second paper [13], Buchholz and Verch computed the scaling limit theories of the free
scalar fields of any mass m ≥ 0 in s = 2, 3 space dimension, which turns out to be the massless
free scalar field in the same spacetime dimensions. In the following, we shall illustrate this result,
but first we need to recall some notations and definitions. So, let us consider the Weyl algebra
W◦ over D(Rs), s = 2, 3, the space of complex–valued test–functions with compact support
in the configuration space Rs, namely the ∗–algebra generated by the unitary operators W (f),
f ∈ D(Rs) obeying the Weyl relations:

W (f)W (g) = e−
i
2
σ(f,g)W (f + g), f, g ∈ D(Rs), (4.43)

where the symplectic form σ is given by

σ(f, g) := Im
∫
dsxf(x)g(x). (4.44)

Then, the action of the spatial translations Rs on the Weyl operators is given by

αx(W (f)) := W (τxf), x ∈ Rs, (4.45)

where (τxf)(y) := f(x − y). For any given mass m ≥ 0, we define the corresponding time
translations by

α
(m)
t (W (f)) := W (τ (m)

t f), t ∈ R. (4.46)

We write f̃(p) = (2π)−s/2
∫
dxf(x)e−ix·p for the Fourier transform of f , and splitting f into

f = fR + ifI , with fR = Ref and fI = Imf , we define

(τ (m)
t f)e(p) := (cos(tωm(p)) + iωm(p)−1 sin(tωm(p)))f̃R(p)

+i(cos(tωm(p)) + iωm(p) sin(tωm(p)))f̃I(p),

where ωm(p) :=
√

p2 +m2. Notice that (τ (m)
t f) has support in a ball of radius r + |t|, if f has

support in a ball of radius r, hence D(Rs) is stable under the action of τ (m)
t . By the formulas

above, it is evident that the automorphisms αx and α(m)
t commute for arbitrary m ≥ 0, but the

time translations corresponding to different values of m do not commute. We define also the
action of lenght scale transformation (dilations) on W◦ by

σλ(W (f)) := W (δλf), λ > 0, (4.47)

where
(δλf)(x) := λ−

s+1
2 fR(λ−1x) + iλ−

s−1
2 fI(λ−1x).
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It is evident that, if supp(f) ⊂ O, then supp(δλf) ⊂ λO. (Indeed, by definition, for any x /∈ λO,
then λ−1x /∈ O, hence fR(λ−1x) = fI(λ−1x) = 0.) Then, there holds the following relation
between Poincaré–transformations and dilations:

σλ ◦ α
(λm)
Λ,x = α

(m)
Λ,λx ◦ σλ, λ > 0. (4.48)

Next, we define the vacuum states of mass m ≥ 0 on W◦ by

ω(m)(W (f)) := e−
1
2
‖f‖2m , (4.49)

where

‖f‖2m :=
1
2

∫
Rs

dsp
∣∣∣ωm(p)−1/2f̃R(p) + iωm(p)1/2f̃I(p)

∣∣∣2 . (4.50)

Then, ω(m) ◦ α(m)
Λ,x = ω(m) and ω(m) ◦ σλ = ω(λm).

Now, we consider the GNS–representation (π(0),H(0),Ω(0)) ofW◦ induced by the massless vacuum
state ω(0), and for each m ≥ 0, we define a net O 7→ R(m)(O) of von Neumann algebras on H(0)

by

R(m)(ΛOr + x) :=
{
π(0)(α(m)

Λ,x (W (g))) : supp(g) ⊂ Or
}′′
, (4.51)

where Or is any double cone with base the open ball Br in the time t = 0 plane. Due to the local
normality of the different states ω(m), m ≥ 0, with respect to each other (see [20]), these nets are
isomorphic to the nets generated by the free scalar field of mass m on the respective Fock spaces.
Moreover, the automorphisms α(m)

Λ,x extend to the local von Neumann algebras R(m)(O) and act
covariantly on the net, i.e.

α
(m)
Λ,xR

(m)(O) = R(m)(ΛO + x). (4.52)

However, notice that for m different from the mass of the chosen standard state, the time trans-
lations α(m)

t are not unitarly implemented in the underlying Hilbert space. We have, finally,

σλ(R(0)(O)) = R(0)(λO) =
{
π(0)(W (δλf)) : supp(f) ⊂ O

}′′
. (4.53)

As discussed in Section 4.1, in order to get a scaling algebra on which the renormalization
group transformations act in a canonical manner, one has to pass from the local net of von Neu-
mann algebras to a corresponding subnet of C∗–algebras consisting of operators which transform
strongly continuously under the action of Poincaré transformations or, more generally, spacetime
translation. For simplicity, one restricts to the latter case, and consider for fixed m the weakly
dense subnet of O → R(m)(O), given by

A(m)(O) := {a ∈ R(m)(O) : lim
x→0
‖α(m)

x (a)− a‖ = 0}. (4.54)

This net still transforms covariantly under the Poincaré transformations, and, in the case m = 0,
also under the dilations σλ. Its C∗–inductive limit will be denoted by A(m), and the various
vacuum states extend to this algebra by local normality, due to the Eckmann and Fröhlich
Theorem [20].

Then, one has the following
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4.3.1 Theorem. [13] Let s = 2, 3, m ≥ 0, and let ω(m)
0,ι be any scaling limit state of the theory

(A(m), α(m), ω(m)) of a free scalar field of mass m in (1 + s)–dimensional Minkowski–spacetime.
Then, the associated scaling limit theory (A(m)

0,ι , α
(m;0,ι), ω

(m)
0,ι ) is net–isomorphic to the theory

(A(0), α(0), ω(0)) of the massless free scalar field in the same spacetime dimensions, and the cor-
responding net–isomorphism connects ω(m)

0,ι and ω(0).

4.3.2 Remark. This result implies that, according to the classification in [12], these free field
theories have a unique quantum scaling limit with a unique vacuum structure. A similar theorem
holds for the scaling limit theories of the local nets if one imposes the continuity requirement
(4.54) for the whole Poincaré group (cf. [6], Section 7.2).

In the following, we shall verify that the free field net complies with all the regularity as-
sumption one needs in order to apply the ultraproduct construction, so that, by uniqueness,
the ultraproduct also will coincide with the Buchholz–Verch scaling limit, though at the von
Neumann algebraic level only, as specified in Remark 4.2.17.

4.3.1 Uniform Nuclearity

(This section is due to H. Bostelmann.)
We want to show uniform nuclearity of the map

Ξβ,O : R(m)(O)→ B(H), A 7→ e−βHAe−βH , (4.55)

in the case of a (real scalar) free field of mass m ≥ 0 in s ≥ 3 spatial dimensions. For simplicity,
we restrict to standard double cones O = Or of radius r around the origin, and denote the
corresponding map by Ξβ,r.

The local algebras R(m)(Or) are generated (via weak closure) by the Weyl algebras W◦(Or).
In terms of the free field φ and its time derivative ∂0φ in the time–0 plane, their elements (the
Weyl operators) can be written as

W (f) = exp i
(
φ(Re f)− ∂0φ(Im f)

)
, f ∈ D(Br). (4.56)

Here Br ⊂ Rs is the ball of radius r around the origin. The single particle Hilbert space (“mo-
mentum space”) will be denoted by K, with energy operator ω(p) =

√
p2 +m2.

In order to prove nuclearity of Ξβ,r, we will use methods as in [6, Section 7.3].
Here we aim at estimates for the nuclear norm of Ξβ,r that are uniform in β/r, valid for small

values of r and β.
We will need some multi–index notation as in [6]. Given n ∈ N0(= N∪{0}), we consider multi–

indexes ν = (ν1, . . . , νn) ∈ ({0, 1}×Ns
0)
n, namely each νj has the form νj = (νj0, νj1, . . . , νjs) with

νj0 ∈ {0, 1}, and νjk ∈ N0 for 1 ≤ k ≤ s. These indices will be used for labeling derivatives in
configuration space, ∂νj = ∂

νj0

0 . . . ∂
νjs
s . Correspondingly, we consider pνj := ω(p)νj0p

νj1

1 . . . p
νjs
s

as a function in momentum space. We set

νj ! =
s∏

k=0

νjk! , ν! =
n∏
j=1

νj ! , |νj | =
s∑

k=0

νjk , |ν| =
n∑
j=1

|νj |. (4.57)

As shown in [6, Lemma 7.6], the Weyl operators can be expanded in a series:

A =
∞∑
n=0

∑
ν

σn,ν(A)φn,ν (4.58)
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for all A ∈ W◦(Or), in the sense of matrix elements between vectors of finite energy and finite
particle number. Here the quadratic forms φn,ν are defined as

φn,ν = :
n∏
j=1

∂νjφ : (0), (4.59)

and the functionals σn,ν ∈ R(m)(Or)∗ are given by

σn,ν(A) =
in(−1)

P
j νj0

n! ν!
(
Ω
∣∣[∂(1−ν10)

0 φ(hν1), [. . . [∂
(1−νn0)
0 φ(hνn), A] . . . ]Ω

)
. (4.60)

We set hνj (x) =
∏s
k=1 x

νjk

k h(x), where h ∈ D(Rs) is a certain test function which is equal to 1
for |x| ≤ r. (The functionals σn,ν (at fixed r) are independent of the choice of h. They formally
depend on r, but in a way that is compatible with restriction to smaller algebras.)

Our task is to extend (4.58) to a norm–convergent expansion of the map Ξβ,r. To that end,
we need estimates of the forms and functionals involved (cf. [6, Lemma 7.7]).

4.3.3 Lemma. Given s ≥ 3, m ≥ 0, and r0 > 0, there exists a constant c such that the following
holds for any n, ν.

‖e−βHφn,νe−βH‖ ≤ cn (n!)1/2 ν! (2
√
s/β)|ν|+n(s−1)/2 for any β > 0, (a)

‖σn,ν |R(m)(Or)‖ ≤ c
n (n!)−1/2(ν!)−1 (3r)|ν|+n(s−1)/2 for any r ≤ r0. (b)

Proof. Part (b) is proven in [6, Lemma 7.7], while part (a) needs a slightly extended argument,
using techniques from [11].

We first note that for any functions f1, . . . , fk ∈ K which are in the domain of ω−1/2, one has
“energy bounds” of the form

‖e−βHa∗(f1) . . . a∗(fk)‖ ≤ ‖e−βH/2a∗(e−βω/2f1) . . . a∗(e−βω/2fk)‖

≤
( k
eβ

)k/2 k∏
j=1

‖ω−1/2e−βω/2fj‖;
(4.61)

(see [11, Lemma 3.3]). Due to the damping factor e−βω/2, we can then extend this relation to
functions fj which do not necessarily decay at large momenta, but are polynomially bounded, in
particular to polynomials in the momentum components.

Now, writing φn,ν as a sum of 2n creator–annihilator products, and applying (4.61) as well as
its adjoint form, we obtain

‖e−βHφn,νe−βH‖ ≤
(4n
eβ

)n/2 n∏
j=1

‖ω−1/2e−βω/2pνj‖. (4.62)

For the single–particle space norms, one uses scaling arguments to obtain the estimate

‖ω−1/2e−βω/2pνj‖ ≤ c1 νj !
(2
√
s

β

)|νj |+s/2−1
for all β > 0, (4.63)

where c1 is a constant (depending on s). Note that the condition s ≥ 3 enters here. Inserted into
(4.62), this gives

‖e−βHφn,νe−βH‖ ≤
(2c21n
e
√
s

)n/2
ν!
(2
√
s

β

)|ν|+n(s−1)/2
. (4.64)

This implies (a) by an application of Stirling’s formula.
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We can now prove nuclearity by summing the norm estimates above.

4.3.4 Theorem. Let s ≥ 3, m ≥ 0. For any r0 > 0, there exists a constant d and a smooth
function F : [0, d]→ R+ such that for any r ≤ r0 and r/β ≤ d, the map Ξβ,r is nuclear, and its
nuclear norm obeys the estimate

‖Ξβ,r‖1 ≤ F (r/β).

Proof. Due to (4.58), we know that

Ξβ,r =
∞∑
n=0

∑
ν

σn,ν(·) e−βHφn,νe−βH (4.65)

on a weakly dense set of operators, and with convergence in a dense set of matrix elements. If we
can prove norm–convergence of the series, then density arguments imply nuclearity of the map
(along with an estimate for the nuclear norm).

Let r0 > 0 be fixed in the following, and r ≤ r0. From Lemma 4.3.3, we obtain the estimate

‖σn,ν |R(m)(Or)‖‖e
−βHφn,νe

−βH‖ ≤ c2n z|ν|+n(s−1)/2, where z = 6
√
s
r

β
. (4.66)

We need to sum this over n and ν. We factorize the sum over multi–indexes ν into components,
and obtain ∑

n

∑
ν

‖σn,ν |R(m)(Or)‖‖e
−βHφn,νe

−βH‖ (4.67)

≤
∞∑
n=0

c2nzn(s−1)/2
n∏
j=1

∑
νj0∈{0,1}

zνj0

s∏
k=1

∞∑
νjk=0

zνjk .

Assuming z < 1, the sum over νjk converges as a geometric series. The sum over νj0 is estimated
by introducing a factor of 2. This yields for sufficiently small z,∑

n

∑
ν

‖σn,ν |R(m)(Or)‖‖e
−βHφn,νe

−βH‖ (4.68)

≤
∞∑
n=0

(2c2z(s−1)/2

(1− z)s
)n

=
(
1− 2c2z(s−1)/2

(1− z)s
)−1

.

That implies norm–convergence of the sum in (4.65), and, re-inserting z = 6
√
sr/β, gives the

proposed estimate on ‖Ξβ,r‖1.

4.3.5 Remark. Notice that the argument is largely the same as in [6, Theorem 7.10]. It turns
out from the proof that the estimate can be much more refined, if required. Indeed, since scale–
independent norm estimates for the individual terms of the series are known, it should be possible
to obtain direct estimates on the ε–content of the map. Finally, the restriction to a real scalar
field is chosen only for simplicity. So, the same methods should apply to free theories with any
finite number of fields, bosonic or fermionic, of any finite spin.
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4.3.2 Uniform Inner Regularity

We want to show uniform inner regularity of the norm

L′λ(aλ) = ‖(1 + λH)−1aλ(1 + λH)−1‖, aλ ∈ R(m)(Oλ) (4.69)

in the case of the (real scalar) free field of mass m ≥ 0 in s ≥ 2 spatial dimensions. Namely, we
want to show that, for any family aλ ∈ R(m)(Oλ), with supλ ‖aλ‖ ≤ 1, and for any ε > 0, there
exist r < 1 and a′λ ∈ R(m)(Orλ) such that

L′λ(aλ − a′λ) = ‖(I + λH)−1(aλ − a′λ)(I + λH)−1‖ < ε.

Now, we know that, for any regular representation of the Weyl algebra, and in particular for the
m–mass representation π(m) : W◦(Rs) → B(H(m)), i.e. the GNS–representation induced by the
(vacuum) state ω(m)(W (f)) = e−

1
2
‖f‖2m , the map(

L2(Rs), ‖ · ‖m
)
3 f 7→ π(m)(W (f)) ∈ π(m)(W◦(Rs))′′ (4.70)

is weak–operator continuous. Since the weak–operator topology coincides with the w∗–topology
on bounded sets, and the map aλ 7→ L′λ(aλ) is continuous in the w∗–topology by the nuclearity
condition, it suffices to show that any aλ ∈ R(m)(Oλ)1 can be uniformly approximated from the
inside (i.e., with elements from R(m)(Orλ), r < 1) in the w∗–topology. (Notice that, since the
support of function is, by definition, a closed set, the local algebras R(m)(O) are “continuous
from the inside”, i.e. for each increasing family of open regions Oi, with Oi ⊂⊂ Oj , i < j, and⋃
iOi = O, we have R(m)(O) =

(⋃
iR(m)(Oi)

)′′
, that is to say, the net is inner regular (see

Remark 4.2.15 above).)
As first, we consider the case m = 0. In this particular case, the dilation operator δλ acting

on test functions is an isometry from L2(Rs) onto itself, w.r.t. the norm

‖f‖20 =
1
2

∫
Rs

dsp
∣∣∣ω0(p)−1/2f̃R(p) + iω0(p)1/2f̃I(p)

∣∣∣2 .
Thus, given f ∈ S(Rs) with supp(f) ⊂ Oλ, we just take the function δrf , which has support in
Orλ, since

‖δλ(f − δrf)‖0 = ‖f − δrf‖0 → 0 as r → 1.

Hence, given ε > 0, we can find an r < 1 such that

L′λ(π
(0)(W (δλf))− π(0)(W (δrλf))) < ε.

Now, any aλ ∈ (π0(W(Oλ))′′)1 can be approximated in the w∗–topology by finite linear com-
binations of Weyl unitaries

∑N
i=1 αiW (δλfi), with

∑N
i=1 |αi| ≤ 1. We then apply a standard

ε/2–argument. Namely, given ε > 0, we can find n0 ∈ N such that, for any N ≥ n0, we have

L′λ

(
aλ −

N∑
i=1

αiπ
(0)(W (δλfi))

)
<
ε

2
,

and, with the same ε > 0 fixed, we can also find an ri < 1 for each unitary such that

L′λ(π
(0)(W (δλfi))− π(0)(W (δriλfi))) <

ε

2
.
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Then, setting r = max(r1, . . . , rN ) < 1, a′λ =
∑N

i=1 αiπ
(0)(W (δriλfi))) ∈ (π(0)(R(0)(Orλ))′′)1, and

taking N ≥ n0, we obtain

L′λ(aλ − a′λ)

≤ L′λ

(
aλ −

N∑
i=1

αiπ
(0)(W (δλfi))

)
+ L′λ

(
N∑
i=1

αiπ
(0)(W (δλfi))−

N∑
i=1

αiπ
(0)(W (δriλfi))

)
<

ε

2
+
ε

2
= ε.

We consider now the case m > 0. We recall the following estimates:

4.3.6 Lemma. [27] Let O ⊂ Rs be bounded. Then, for any f ∈ S(Rs) real–valued, supp(f) ⊂ O,

‖f‖1/2,m :=
(∫

Rs

dspωm(p)|f̃(p)|2
)1/2

≤ c(m,O)‖f‖1/2,0, (4.71)

‖f‖−1/2,m :=
(∫

Rs

dspω−1
m (p)|f̃(p)|2

)1/2

≤ ‖f‖−1/2,0. (4.72)

Proof. Let χ1(p) be the characteristic function of the unit ball in Rs. Then, it is easy to see that

ωm(p) =
√
|p|2 +m2 ≤

√
1 +m2|p|+mχ1(p),

and thus

‖f‖21/2,m =
∫

Rs

dspωm(p)|f̃(p)|2

≤
√

1 +m2‖f‖21/2,0 +
∫
|p|≤1

dsp |f̃(p)|2.

Now, let ϕ ∈ D(Rs) be such that ϕ ≡ 1 on suppf . Then,∫
|p|≤1

dsp |f̃(p)|2 =
∫
dspχ1(p)

∣∣∣∣∫ dskf̃(k)ϕ̃(p− k)
∣∣∣∣2

=
∫
dspχ1(p)

∣∣∣∣∫ dsk (|k|1/2f̃(k))(|k|−1/2ϕ̃(p− k)
∣∣∣∣2

≤
∫
dspχ1(p)

(∫
dsk |k||f̃(k)|2

)(∫
dsk |k|−1|ϕ̃(p− k)|2

)
= ‖f‖1/2,0

∫
dsp dskχ1(p)|k|−1|ϕ̃(p− k)|2.

Hence, we get ‖f‖1/2,m ≤ c(m,O)‖f‖1/2,0, where

c(m,O) = 4
√

1 +m2 +
(
m

∫
dsp dskχ1(p)|k|−1|ϕ̃(p− k)|2

)1/2

.

More easly, since ω−1
m (p) ≤ |p|−1, we obtain the second inequality:∫

Rs

dspω−1
m (p)|f̃(p)|2

≤
∫

Rs

dsp |p|−1|f̃(p)|2 = ‖f‖−1/2,0.
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Therefore, if m > 0, we see that

‖δλf − δrλf‖2m

=
1
2

∫
Rs

dsp
∣∣∣ωm(p)−1/2λ

s−1
2 (f̃R(λp)− r

s−1
2 f̃R(rλp)) + iωm(p)1/2λ

s+1
2 (f̃I(λp)− r

s+1
2 f̃I(rλp))

∣∣∣2
=

1
2

∫
Rs

dsp
∣∣∣ωλm(p)−1/2(f̃R(p)− r

s−1
2 f̃R(rp)) + iωλm(p)1/2(f̃I(p)− r

s+1
2 f̃I(rp))

∣∣∣2
= ‖fR − δrfR‖2λm + ‖fI − δrfI‖2λm
≤ c(λm,Oλ)‖fR − δrfR‖20 + ‖fI − δrfI‖20, (4.73)

where the last inequality clearly follows from the previous Lemma. Now, since we are interested
in the limit λ→ 0, we can restrict λ to the interval (0, 1), and we get finally

‖δλf − δrλf‖2m ≤

(
sup

λ∈(0,1)
c(λm,Oλ)

)
‖fR − δrfR‖20 + ‖fI − δrfI‖20

≤ c(m,O)‖fR − δrfR‖20 + ‖fI − δrfI‖20,

whence, the family of operators {δrλ}r∈(0,1) is (strongly) continuous, uniformly w.r.t. λ ∈ (0, 1),
and so we can apply the argument above. Thus, we can summarize in the following

4.3.7 Proposition. For any O ⊂ Rs and any λ > 0, the Lip–norm L′λ (4.69) on the local
algebras R(m)(Oλ) of the (real scalar) free field satisfies the uniform inner regularity in the vacuum
representation, for any mass m ≥ 0.

Therefore, in view of Theorem 4.2.16, we see that, for anym ≥ 0 and s ≥ 3 spatial dimensions,
the local qGH∗–scaling limit net O → R(m)(O)U exists for any ultrafilter U . Moreover, by
Corollary 4.2.18 and Theorem 4.3.1, for m ≥ 0 and s = 3 spatial dimensions, the Buchholz–
Verch scaling limit net in the vacuum sector embeds as a subrepresentation in the qGH∗–scaling
limit net associated with U .

In fact, we represent all the (local) algebras involved on the same Hilbert space H, which is
the Hilbert space associated to the standard representation of the Weyl algebra W◦ induced by
the mass zero vacuum state ω(0). Let (A(m)

0,ι , α
(m;0,ι), ω

(m)
0,ι ) be the Buchholz–Verch scaling limit

theory, and denote by ω(m)
λ the restriction to R(m)(Oλ) of the vacuum state ω(m). Let U be an

ultrafilter over N, and let {λn}n∈N be a suitable sequence of positive real numbers converging to
zero. On the one hand, we have the Buchholz–Verch scaling limit state

ω
(m)
0,ι (a) = lim

U
ω

(m)
λn

(a), a ∈ A(O)BV . (4.74)

On the other hand, since one has (cf. Lemma 3.2 (a) in [13])

lim
U
‖(ω(m) − ω(0))|R(0)(Oλn )‖ = 0, (4.75)

and R(m)(Oλ) ∼= R(0)(Oλ) by the Eckmann–Fröhlich Theorem [20], then we get as qGH∗–scaling
limit state exactly the equivalence class ω(0) ≡ [ωλn ] of the mass zero vacuum state ω(0), namely

ω(0)(a′) = lim
U
ω

(m)
λn

(a′λn
), a′ ∈ A(O). (4.76)
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(We recall that, since the norms L′λn
on the local algebras R(m)(Oλn) are dual Lip–norms, we

have
L({ω(m)

λn
}) = sup

n
Lλn(ω(m)

λn
) <∞,

where, for any λ > 0,

Lλ(ω
(m)
λ ) := sup{ |〈ω

(m)
λ , x〉|
L′λ(x)

: x ∈ R(m)(Oλ)}

= sup{ |〈ω
(m)
λ , (I+λH)y(I+λH)〉|

‖y‖ : y ∈ (I + λH)−1R(m)(Oλ)(I + λH)−1}.

Indeed, as ω(m)(·) = (Ω, π(m)(·)Ω) is the vacuum state and HΩ = 0, we have clearly

ω
(m)
λ ((I + λH)y(I + λH)) = (Ω, (I + λH)y(I + λH)Ω) = (Ω, yΩ) ≤ ‖y‖,

for any y ∈ (I + λH)−1R(m)(Oλ)(I + λH)−1. Hence ω(0) ∈ SU (cf. the proof of Theorem 2.4.9).)
Since (A(m)

0,ι , α
(m;0,ι), ω

(m)
0,ι ) is net–isomorphic to the theory (A(0), α(0), ω(0)) of the massless free

scalar field in the same spacetime dimensions, and the corresponding net–isomorphism connects
ω

(m)
0,ι and ω(0), we finally obtain (cf. Section 4.2.1)

π
ω

(m)
0,ι

(A(m)
0,ι (O)) ∼= πω(0)(A(0)(O)BV )′′ = πω(0)(A(O))′′. (4.77)
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[21] E. Effros. Convergence of closed subsets in a topological space. Proc. Amer. Math. Soc. 16
(1965), 929–931.

[22] E. Effros. Global structure in von Neumann algebras. Trans. Amer. Math. Soc. 121 (1966),
434–454.

[23] K.R. Davidson. C∗-algebras by example. Fields Institute Monographs, 6. Amer. Math. Soc.,
Providence, RI, 1996.

[24] M.P. do Carmo. Riemannian geometry. Birkhäuser, 1992.
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