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Satisfying hard real-time constraints using
COTS components

Real-time embedded systems are increasingly being built using

Commercial Off-The-Shelf (COTS) components such as mass-produced

peripherals and buses to reduce costs, time-to-market, and increase

performance. Unfortunately, COTS hardware and operating systems

are typically designed to optimize average performance, instead of

determinism, predictability, and reliability, hence their employment

in high criticality real-time systems is still a daunting task.

In this thesis, we addressed some of the most important sources of

unpredictability which must be removed in order to integrate COTS

hardware and software into hard real-time systems. We first devel-

oped ASMP-Linux, a variant of Linux, capable of minimizing both

operating system overhead and latency. Next, we designed and imple-

mented a new I/O management system, based on real-time bridges,

a novel hardware component that provides temporal isolation on the

COTS bus and removes the interference among I/O peripherals. A

multi-flow real-time bridge has been also developed to address in-

terperipheral interference, allowing predictable device sharing. Fi-

nally, we propose PREM, a new execution model for real-time sys-

tems which eliminates interference between peripherals and the CPU,

as well as interference between a critical task and driver interrupts.

For each of our solutions, we will describe in detail theory aspects, as

well as prototype implementations and experimental measurements.

Keywords: real-time, COTS (Commercial Off-The-Shelf), oper-

ating system, Linux, computer architecture, scheduling, I/O drivers.
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Introduction

The term real-time pertains to computer applications whose correct-

ness is judged not only on whether the results are the correct ones,

but also on the time at which the results are delivered. A real-time

system is a computer system that is able to run real-time applica-

tions and meet the constraints of the task at hand. In particular, in

this thesis, we focus on hard real-time systems, which are high criti-

cality systems, where missing a deadline (in other words, delivering

the computation results too late with respect of a predefined time)

can lead to catastrophic events. For example, an airbag device is a

hard real-time system. When a crash happens the airbag must de-

ploy within a tight range of time: an early or late deployment would

be unuseful or even dangerous.

Traditionally, because of these strict requirements where the sys-

tem must not fail in any situation, hard real-time systems have been

constructed from hardware and software components specifically de-

signed for real-time. Developing these systems typically costs mil-

lions of dollars, in particular when they are employed in aircraft,

and the whole development process can be very long. The main rea-

son is that every single component (from the peripheral up to the

operating system) has to be designed, implemented, tested, and inte-

grated with the rest of the system. Moreover, nowadays many hard

real-time systems make intense use of media streaming, thus they re-

quire significant performance in terms of bus and network bandwidth,

processors, and memory. In this scenario, COTS (Commercial Off-

1



2 Introduction

The-Shelf) components are every day becoming more attractive for

real-time systems.

A COTS hardware or software component is a ready-to-use prod-

uct, available in the market. Due to mass production, COTS com-

ponents are significantly cheaper to produce than their application-

specific peers. They also evolve very rapidly, improving in perfor-

mance much faster than a custom real-time system. For example

consider Intel or AMD processors, modern video cards, network inter-

faces, system buses like PCI-E (PCI-Express), and even operating

systems like Linux.

Obviously, a custom component produced with a (relatively) small

number of pieces cannot easily match the performance of its COTS

equivalent. As a consequence COTS components are already used in

real-time systems with low criticality (also called soft real-time sys-

tems1), but they are not yet typically employed for hard real-time.

The reason is that COTS components are built having as a primary

design goal their average performance, and not worst case behaviors

and reliability. On the other hand, worst case behaviors and reli-

ability are the most important features for a real-time system, in

particular for high criticality systems, where failing or miss a time

deadline is unacceptable. For example, modern buses can transfer

data at speeds on the order of several Gigabyte per second, but in

case more entities are accessing the bus at the same moment, there is

no mechanism to prioritize a critical task, which may then be delayed

for an excessively long time and even potentially miss its deadline.

1More accurate definitions of real-time systems are given later, in chapter 1.
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Within this PhD program we started addressing some of the most

important sources of unpredictability that must be removed in order

to integrate COTS hardware and software in a hard real-time system.

In particular, we focused on:

• operating system overhead and latency,

• interference among peripherals,

• interference within peripherals (peripheral sharing),

• interference among peripherals and CPU.

The operating system overhead and operating system la-

tency are the first culprits for software interference2 in the execution

time of a task. To address this issue we designed and developed a vari-

ant of the Linux operating system, called ASMP-Linux [7], which

is described in detail in chapter 2.

Analyzing the system behavior when using COTS hardware com-

ponents, we identified as crucial the unpredictability caused by the

I/O subsystem and main memory. In fact, although COTS proces-

sors still have many open problems, they have started to appear in

hard real-time systems over the last few years. On the other hand,

bus, peripherals, and main memory access can still be bottlenecks for

the system, often introducing unpredictable delays.

Interference among peripherals is observable when more than

one peripheral asynchronously accesses the bus to read or write data

2Actually, we will see in chapter 1 that also some hardware interference, very

difficult to avoid, can slightly affect the measure of these delays.



4 Introduction

from main memory. This problem will be treated in detail in chap-

ter 3, together with our proposed solution: a novel real-time I/O

management system, based on real-time bridges [4]. Such a system,

transparent to end-user CPU applications, introduces two new types

of components into the COTS system, real-time bridges and a reser-

vation controller, to provide temporal isolation on the COTS bus and

remove the possibility of interference.

A real-time bridge evolution has been also developed to handle

interference within peripherals. Multi-flow real-time bridges [5],

described in chapter 4, deals with peripherals shared among tasks

with different criticalities, enforcing a real-time I/O scheduling within

shared peripherals and on the PCI-E bus.

Finally, we are currently working on a solution for interference

between peripheral and the CPU, observed when both access

main memory at the same time [45, 44]. Our solution, described

in chapter 5, proposes a new execution model, called PREM (PRe-

dictable Execution Model) [48], that combines new compiler tech-

niques and the real-time bridges and is able to enforce predictable

memory accesses while avoiding bus interference between tasks run-

ning on the CPU and peripherals.

Before we start discussing the challenges just introduced and our

proposed solutions, chapter 1 gives an overview of some general con-

cepts on real-time systems, COTS components, and definitions of

hardware and software sources of unpredictability.



Chapter 1

Real-time systems and COTS

components

This chapter introduces some key concepts regarding real-time sys-

tems and COTS (Commercial Off-The-Shelf) components (hardware

and operating systems). The main goal is giving the reader an

overview of the basic knowledge on these topics. Moreover the main

requirements of the real-time systems will be described in the context

of the limitations of the COTS components. This will give a general

idea of the challenges that we address later in this work.

1.1 Real-time systems

In the literature there are many different definitions of real-time sys-

tems. The following is the canonical definition from Donald Gillies

[2, 26]:

Definition 1. “A real-time system is one in which the correctness of

the computations not only depends upon the logical correctness of the

computation but also upon the time at which the result is produced.

If the timing constraints of the system are not met, system failure is

said to have occurred.”

5
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Along with definition 1, POSIX Standard 1003.1 defines “real-

time” for operating systems as:

Definition 2. “Real-time in operating systems is the ability of the

operating system to provide a required level of service in a bounded

response time.”

In both definitions is evident how time is one of the most impor-

tant aspects of a real-time system. The main reason for this is that

a real-time task is usually running on a, so called, Cyber-Physical

System, which, in other words, is a system where system’s compu-

tational interacts with physical elements [67]. It follows that such a

task must react to events that take place in the real world, and that

the response time is the key element of correctness for a real-time

system. If the answer to the event is delivered too late, it may be

useless, or worse, catastrophic events could happen in the real world.

Finally it is also important to emphasize that “react within a

deadline” needs not mean “react fast”. The deadline within the real-

time system must complete its computation and deliver its results

could be in the order of milliseconds, seconds, or minutes as well.

The only important thing is to complete the task before the deadline

is missed.

1.1.1 Hard and soft real-time

Real-time systems and applications can be classified in several ways.

One classification scheme divides them into two main classes: “hard”

real-time and “soft” real-time.
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A hard real-time system is characterized by the fact that meet-

ing the application’s deadlines is the primary metric of success. In

other words, failing to meet the application’s deadlines (timing re-

quirements, quality of service, latency constraints, and so on) is a

catastrophic event that must be absolutely avoided.

Conversely, a soft real-time system is suitable to run applications

whose deadlines must be satisfied “most of the time”, that is, the work

carried out by a soft real-time application retains some value even

if a deadline is missed. In soft real-time systems some design goals,

such as achieving high average throughput, may be as important, or

more important, than meeting application deadlines.

An example of a hard real-time application is a missile defense sys-

tem: whenever a radar system detects an attacking missile, the real-

time system has to compute all the information required for tracking,

intercepting, and destroying the target missile. If it fails, catastrophic

events may follow.

A very common example of soft real-time application is a video

stream decoder: the incoming data have to be decoded on the fly. If,

for some reason, the decoder is not able to translate the stream before

its deadline and a frame is lost, nothing catastrophic happens: the

user will likely not even take notice of the missing frame (the human

eye cannot distinguish images faster than one tenth of a second).

Needless to say, hard real-time applications put many more time

and resource constraints on the system than do soft real-time ap-

plications; thus hard real-time systems are difficult to design and

implement.

In this thesis, we focus on hard real-time systems.
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Figure 1.1: A real-time periodic task

1.1.2 Periodic and event-driver real-time applica-

tions

There exists also a classification scheme that divides real-time appli-

cations into “periodic” and “event-driven” classes.

As the name suggests, periodic applications execute a task pe-

riodically, and have to complete their job by a predefined deadline

within each period. In figure 1.1, we can note that the deadline need

not coincide with the end of the period.

A nuclear power plant monitor is an example of a periodic hard

real-time application, while a multimedia decoder is an example of a

periodic soft real-time application.

Conversely, event-driven applications give rise to processes that

spend most of the time waiting for some event. When an expected

even occurs, the real-time process waiting for that event must wake

up and handle it in such a way as to satisfy the predefined time

constraints.

The aforementioned missile defense system is an example of an

event-driven hard real-time application, while a network router might
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be an example of an event-driven soft real-time application.

Dealing with real-time applications, the operating system must

guarantee a sufficient amount of each resource (processor time, mem-

ory, network bandwidth, and so on) to each application so that it

succeeds in meeting its deadlines. Essentially, in order to effectively

implement a real-time system for periodic or event-driven applica-

tions a resource allocation problem must be solved. Clearly, the

operating system should assign resources to processes according to

their priorities, so that, for instance a high-priority task will never

be delayed by a low-priority task. Real-time scheduling theory is a

widely explored field; for an up-to-date survey of real-time theory see

[60].

In this thesis we focus on both event-driven and periodic hard

real-time applications. In particular we will study the case where

hard real-time applications run on COTS hardware and in a general-

purpose COTS operating system, like Linux.

In the following sections we will introduce the concept of jitter

(section 1.2) and how it affects the system’s predictability. In sec-

tion 1.3, we will describe the characteristics of COTS components

and why they are used in real-time systems. After that, in section

1.4, operating system overhead and latency will be also discussed as

main software sources of jitter. Finally, section 1.5 discusses COTS

hardware impact on system’s predictability.
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Figure 1.2: An example of jitter in a real-time periodic task

1.2 Jitter and predictability

In an ideal world a real-time process would run undisturbed from

the beginning to the end, directly communicating with the device

it is intended to control. In this situation a real-time process will

require always the same amount of time T to complete its task. Such

a system is said to be deterministic.

In the real world, however, there are several software layers be-

tween the device and the real-time process, and other processes and

services could be running at the same time competing for hardware

resources. Moreover, other devices might require attention and inter-

rupt the real-time execution. As a result, the amount of time required

by the real-time process to complete its task is actually Tx = T + ε,

where ε ≥ 0 is a delay caused by the system (hardware and software).

The variation in the values of ε is defined as the system’s jitter, a

measure of the non-determinism of a system. In figure 1.1 an ideal

case for a periodic task is showed, instead in figure 1.2 we can see

a more realistic case where a variable jitter increases the execution

time in a non-deterministic way.
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Determinism is a key factor for hard real-time systems: the larger

the jitter, the less deterministic the system’s response. Thus, jitter

is also an indicator of the hard real-time capabilities of a system:

if the jitter is greater than some critical threshold, the system can

be unsuitable for real-time. As a consequence, a real-time operating

system and the associated hardware components must be designed

so as to minimize the jitter observed by the real-time applications.

Jitter, by its nature, is not constant and makes the system behav-

ior unpredictable; for this reason, real-time application developers

must provide an estimated Worst Case Execution Time (WCET),

which is an upper bound (often quite pessimistic) of the real-time

application’s execution time. A real-time application meets its dead-

line if Tx ≤WCET. If it is not possible to estimate an upper bound

for the execution time, then the system is unpredictable and can-

not be used for real-time applications. In other words, hardware

components and operating systems for real-time must be designed to

minimize the jitter, as we already said, but also to follow predictable

behaviors, in order to have a computable WCET.

1.3 Commercial Off-The-Shelf components

With the term Commercial Off-The-Shelf (COTS) we refer to soft-

ware or hardware products ready-made and available for sale, lease,

or license to the general public [66].

Even tough traditionally, hardware and software for real-time sys-

tems have been specifically designed, lately real-time embedded sys-

tems are increasingly being built using Commercial Off-The-Shelf
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(COTS) hardware. Also open-source COTS operating system are

used, usually after some modifications, and nowadays many com-

mercial real-time operating systems are Linux-based.

Motivations for using COTS components include reduction of

overall system development time and costs (as components can be

bought or licensed instead of being developed from scratch) and re-

duced maintenance costs.

Since several years ago, most of the real-time embedded systems

that require high computational power make use of COTS proces-

sors, mainly for their high performance/cost ratio. Moreover inte-

grating high-speed COTS peripherals within a real-time system of-

fers substantial benefits in terms of cost reduction, time-to-market,

and overall performance. Since COTS components are already de-

signed, a system’s time-to-market can be reduced by reusing existing

components instead of creating new ones. Additionally, overall per-

formance of mass produced components is often significantly higher

than custom made systems. For example, a PCI-Express bus [42]

can transfer data three orders of magnitude faster than the real-time

SAFEbus [31].

1.3.1 COTS components’ challenges

COTS components are typically designed paying little or no atten-

tion to worst-case timing behaviors. Usually COTS designers aim to

improve average performance, instead of determinism, predictability,

and reliability.

Modern COTS processors are intrinsically parallel and so complex
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that it is not possible to predict when an instruction will complete.

For example cache misses, branch predictors, pipeline, out-of-order

execution, and speculative accesses could significantly alter the exe-

cution time of an in-flying instruction.

COTS buses, like PCI-E, can be very fast, but also completely

unpredictable. Bus arbitration policies and transactions’ scheduling

are “black-boxes”, and their implementation details are known only

by the original manufacturer.

Integrating COTS peripherals within a real-time system is also

a daunting task. The main reason is the unpredictable timing of

the I/O subsystem: some shared resources, such as the PCI-E bus

or the memory controller, require an arbitration among the hard-

ware devices, that is, a lock mechanism. Moreover, low priority data

transferred on the bus could steal bandwidth to real-time applica-

tions with higher priority. There are also “intrinsic indeterministic

buses” used to connect devices to the system or system to system,

such as Ethernet or PCI buses [57].

It is worth to say that COTS components have also other kinds

of drawbacks, other than the ones related to system’s determinism.

For example, as personal users we like to often update our system,

following every new technology in the market. On the other hand,

big companies that sell or use real-time systems can fear to be de-

pendent on a third-party component vendor, because future changes

to the product will not be under their control. Moreover components

integration can require much more work than it would if every single

component was designed for the same specific system.

However, at the end of the day, integration problems and compo-
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nents availability on the market can be paid by the fact the produc-

ing your own system (hardware and operating system), especially in

case of high performance requirements, can be even more expensive

or sometimes impossible. Looking at the predictability of the sys-

tem instead, using COTS components could seem implicitly giving

up on strict determinism, but, as a matter of fact, commercial and

industrial real-time systems often follow the five-nines rule:

Definition 3. The system is considered hard real-time if a real-time

application catches its deadline 99.999% of the times.

Consequently, real-time industry is already using COTS compo-

nents. And it is even more important that most of the companies

are investing considerable amount of money in research, foreseeing a

complete transaction from their dedicated systems to complete COTS

based systems.

1.4 Operating system overhead and latency

This section gives an overview of the software jitter measured by an

operating system. This will help to better understand the charac-

teristics required by a real-time operating system and, consequently,

the challenges that have to be faced using a COTS operating system,

like Linux. Before starting tough, it must be clear that predictability

is not the only feature required by a real-time operating system: it

is definitely the most important one, but also other features are re-

quired, like fault tolerance, or system partitioning. Anyway, in this
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Figure 1.3: Jitter

work we mostly focus on assuring predictability, hence other real-time

system’s features will not be covered in detail.

As discussed in [29, 51, 72], short, unpredictable activities such

as interrupts handling are the main causes of large jitter in computer

systems. As shown in Figure 1.3, the jitter seen by an operating

system is composed by two main components: the “operating system

overhead” and the “operating system latency”.

The operating system overhead is the amount of time the CPU

spends while executing system’s code—for example, handling the

hardware devices or managing memory—and code of other processes

instead of the real-time process’ code.

The operating system latency is the time elapsed between the in-

stant in which an event is raised by some hardware device and the

instant in which a real-time application starts handling that event.

Also periodic real-time applications suffer from operating system la-

tency: for example, the operating system latency may cause a pe-

riodic application to wake up with some delay with respect to the

beginning of its real-time period.

The definitions of overhead and latency are rather informal, be-
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cause they overlap on some corner cases. For instance, the operating

system overhead includes the time spent by the kernel in order to se-

lect the “best” process to run on each CPU; the component in charge

of this activity is called scheduler. However, in a specific case the time

spent while executing the scheduler is not accounted as operating

system overhead but rather as operating system latency: it happens

when the scheduler is going to select precisely the process that carries

on the execution of the real-time application. On the other hand, if

some non-real-time interrupts occur between a real-time event and

the wake-up of the real-time applications, the time spent by the ker-

nel while handling the non-real-time interrupts should be accounted

as overhead rather than latency.

As illustrated in Figure 1.3, operating system latency can be de-

composed in two components: the “interrupt latency” and the “sched-

uler latency”.

The interrupt latency is the time required to execute the interrupt

handler connected to the device that raised the interrupt, i.e., the

device that detected an event the real-time process has to handle.

The scheduler latency is the time required by the operating system

scheduler to select the real-time task as the next process to run and

assign it the CPU.

Interrupt latency, scheduler latency, and operating system over-

head reduce the system’s determinism and, thus, its real-time ca-

pabilities. It follows that, the main goals of a real-time operating

system must be to reduce software latency and overhead, and, over

all, to make them predictable. The best optimized operating system

could be able to manage operating system overhead with opportune
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scheduling policies. Anyway, it will still suffer from some operating

system latency, because the sources of those delays (interrupt and

scheduler latencies) are code that can be executed only between the

time when an event happens and its handling deadline expires.

1.5 Hardware jitter

As we just said, most of the system’s jitter is due to the operating

system, and in particular to:

• interrupts handling, and more in general devices related activ-

ities,

• hardware resources’ sharing (i.e., overhead and latency intro-

duce by a CPU scheduler, or locks needed to synchronize dif-

ferent users on the same resource),

• other periodic or sporadic activities important for the system

(i.e., disk cache flushing).

Anyway, while measuring operating system overhead and oper-

ating system latency we have to consider that part of those delays

could be also accounted to the underline hardware. This is specially

true when our system is running on COTS hardware.

Several hardware resources are shared among different hardware

components: caches, buses, and main memory, for example, can all

be sources of unexpected delays when two different hardware entities

are competing for the same resource. The execution time of a real-

time process, e.g., could be delayed by a peripheral when both try to
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access main memory at the same time: the process in consequence

of some cache misses, and the peripheral performing DMA (Direct

Memory Access) transactions. In this kind of situations the memory

bus and the memory itself would be a bottleneck: one or both of

the competing operations could indeed suffer for a delay, potentially

missing their deadline.

The indeterminism caused by the hardware cannot be reduced

by the software, thus no real-time operating system can have better

performances than those of the underlying hardware. In other words,

the execution time Tx of a real-time task will always be affected by

some jitter, no matter of how good the real-time operating system is.

1.6 Proposed solutions

In this work, in order to obtain hard real-time performance with strict

deadline using COTS componets, we propose:

• a variant of the Linux operating system, discussed in chapter

2, that significantly reduces operating system overhead and op-

erating system latency;

• a simple and flexible architectural modification, described in

chapters 3 and 4, that completely removes interferences among

and within peripherals;

• a new execution model, treated in chapter 5, that faces inter-

ferences between CPU and peripherals, schedules drivers activ-

ities, and is meant to support and integrate all the previous

solutions.



1.6. Proposed solutions 19

However, we will see how our new architecture does not mean to

directly modify COTS hardware components (which will not make

sense for COTS’ nature), but just to integrate them, in order to

make their behavior deterministic. Finally we developed prototypes

for each proposed component and, with our experimental results, we

can show how our solutions reduce, and in many cases remove, the

most important sources of unpredictabilities in COTS systems.
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Chapter 2

ASMP-Linux

Multiprocessor systems, especially those based on multi-core proces-

sors, and new operating system architectures could satisfy the ever

increasing computational requirements of embedded systems. Un-

fortunately, every time the level of parallelism is increased, more re-

sources have to be shared among different tasks. As we said in section

1.2, predictability is the first requirement of a real-time system, and

instead shared resources are the main origin of indeterminism. For

example, in [49] the authors experimented an increment of ∼ 200%

in the WCET when 2 cores and peripherals access memory at the

same time. In uni-processor systems the measured increment was

∼ 44% [44]. Hence, this increased unpredictability is among the most

important reasons why multiprocessor systems are not very common

yet in hard real-time environments.

In this chapter, we present ASMP-Linux, which stands forASym-

metric MultiProcessor Linux, and is a modified Linux kernel that can

be used in COTS multiprocessor embedded systems with hard real-

time requirements. It has been developed in 2007 within this PhD

program, and in 2008 was presented in the EURASIP Journal on

Embedded Systems [7].

ASMP-Linux provides a high responsiveness, open-source hard

21
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real-time operating system for multiprocessor architectures, using an

asymmetric kernel approach. We will see how ASMP-Linux is ca-

pable of providing hard real-time capabilities with COTS multipro-

cessor while maintaining the code simple and not impacting on the

performance of the rest of the system. Moreover, ASMP-Linux does

not require code changing or application re-compiling/re-linking. In

a conventional (symmetric) kernel, I/O devices and CPUs are consid-

ered alike, since no assumption is made on the system’s load. Asym-

metric kernels, instead, consider real-time processes and related de-

vices as privileged and shield them from other system activities.

The main advantages offered by ASMP-Linux to real-time ap-

plications are:

• Deterministic execution time (up to a few hundreds of nanosec-

onds).

• Very low system overhead.

• High performance and high responsiveness.

Clearly, all of the good things offered by ASMP-Linux have a

cost, namely at least one processor core dedicated to real-time tasks.

The current trend in processor design is leading to chips with more

and more cores. Because the power consumption of single-chip multi-

core processors is not exceedingly higher than that of single-core

processors, we can also expect that in a near future many embed-

ded systems will make use of multi-core processors. Nowadays, in

fact, most of the companies in the real-time industry are investigat-

ing multi-core solutions: soft real-time embedded systems are already
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available, and satisfing hard real-time constraints in multi-core sys-

tems is a very hot topic for modern research. Thus, even though

several issues have not to be solved yet, in a near future multi-core

systems could become very common for hard real-time systems too,

and the hardware requirements of real-time operating systems such

as ASMP-Linux will become quite acceptable as well.

In the rest of this chapter we will first review some background

information, so that the reader can better understand ASMP-Linux

and the main idea behind it: Section 2.1 describes the evolution of

single-chip multi-core processors; Section 2.2 gives an introduction to

system partitioning; Section 2.3 illustrates briefly the main character-

istics of other asymmetric kernels developed before ASMP-Linux.

After that ASMP-Linux will be described in detail. Section 2.4 dis-

cusses ASMP-Linux implementation, and section 2.5 lists the tests

performed on different computers and the results obtained.

2.1 Multiprocessor systems

As we discussed in the section 1.3, the increasing demand for com-

putational power leaded real-time embedded systems developers to

use general-purpose COTS processors, such as ARM, Intel, AMD, or

IBM’s POWER, instead of micro-controllers or Digital Signal Pro-

cessors (DSPs).

Furthermore, many hardware vendors started to develop and mar-

ket system-on-chip (SoC) devices, which usually include on the same

integrated circuit one or more COTS CPUs, together with other spe-

cialized processors like DSPs, peripherals, communication buses, and



24 2. ASMP-Linux

memory. System-on-chip devices are particularly suited for embed-

ded systems because they are cheaper, more reliable, and consume

less power than their equivalent multi-chip systems. Actually, power

consumption can be considered as a very important constraint in

some embedded systems [22].

In the quest for the highest CPU performances, hardware devel-

opers are faced with a difficult dilemma. On one hand, the Moore’s

Law does not apply to computational power any more, that is, com-

putational power is no longer doubling every 18 months as in the

past. On the other hand, power consumption continues to increase

more than linearly with the number of transistors included in a chip,

and the Moore’s Law still holds for the number of transistors in a

chip.

Several technology solutions have been adopted to solve this dilemma.

Some of them try to reduce the power consumption by sacrificing

computational power, usually by means of frequency scaling, voltage

throttling, or both. For instance, the Intel Centrino processor [16]

(first generation released in March 2003) has a variable CPU clock

rate ranging between 600 MHz and 1.5 GHz, which can be dynami-

cally adjusted according to the computational needs.

Other solutions try to get more computational power from the

CPU without increasing power consumption. For instance, a key

idea was to increase the Instruction Level Parallelism (ILP) inside a

processor; this solution worked well for some years, but nowadays the

penalty of a cache miss (which may stall the pipeline) or of a miss-

predicted branch (which may invalidate the pipeline) has become way

too expensive.
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Chip-Multi-Thread (CMT) [38] processors aim to solve the prob-

lem from another point of view: they run different processes at the

same time, assigning them resources dynamically according to the

available resources and requirements. Historically the first CMT pro-

cessor was a coarse-grained multithreading CPU (IBM RS64-II [8, 64])

introduced in 1998: in this kind of processor only one thread executes

at any instance. Whenever that thread experiments a long-latency

delay (such as a cache miss), the processor swaps out the waiting

thread and starts to execute the second thread. In this way the ma-

chine is not idle during the memory transfers and, thus, its utilization

increase.

Fine-grained multithreading processors improve the previous ap-

proach: in this case the processor executes the two threads in suc-

cessive cycles, most of the time in a round-robin fashion. In this

way the two threads are executed at the same time but, if one of

them encounters a long-latency event, its cycles are lost. Moreover,

this approach requires more hardware resources duplication than the

coarse-grained multithreading solution.

In Symmetric MultiThreading (SMT) processors two threads are

executed at the same time, like in the fine-grained multithreading

CPUs; however, the processor is capable of adjusting the rate at

which it fetches instructions from one thread flow or the other one

dynamically, according to the actual environmental situation. In this

way, if a thread experiments a long-latency event, its cycles will be

used by the other thread, hopefully without loosing anything.

Yet another approach consists of putting more processors on a

chip rather than packing into a chip a single CPU with a higher
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Figure 2.1: An example of dual core processor with shared L2 cache and

bus interface [70].

frequency. This technique is called chip-level multiprocessing (CMP),

but it is also known as “chip multiprocessor”; essentially it implements

symmetric multiprocessing (SMP) inside a single VLSI integrated

circuit. Multiple processor cores typically share a common second- or

third-level cache and interconnections. Figure 2.1 shows an example

of a dual core processor with shared L2 cache and bus interface.

In 2001 IBM introduced the first chip containing two single-threaded

processors (cores): the POWER4 [65]. Since that time, several other

vendors have also introduced their multi-core solutions: dual-core

and quad-core processors are nowadays widely used (e.g., Intel Dual

Core 2 [69] introduced in 2006, or AMD Opteron [19] introduced

in 2005) and single core processors are almost out of the market;

hexa-core processors (sometimes called six-core) are already on the
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shelves (like Intel Xeon Dunnington [14]), and eight-core processors

(also called octo-core) are starting to appear (like Intel Xeon Beckton

[71]).

In conclusion, McKenney’s forecast [39] that in a near future many

embedded systems will sport several CMP and/or CMT processors is

becoming reality. In fact, the small increase in power consumption is

justified by the large increment of computational power available to

the embedded system’s applications. Furthermore, the actual trend

in the design of system-on-chip devices is showing that such chips

starts including multi-core processors. Therefore, nowadays an em-

bedded system designer can create boards having many processors

almost “for free”, that is, without the overhead of a much more com-

plicated electronic layout or a much higher power consumption.

On the other hand real-time theory for multiprocessor systems

(about schedulability, static analysis, etc) is not very solid yet and

most of the big companies dealing with real-time systems are still

afraid of migrating to multiprocessors systems. In this work we

show how a partitioned multiprocessor system can be used in a real-

time environment to reduce and in some case eliminate the unpre-

dictability introduced by the operating system (see section 1.4).

2.2 System partitioning

The real-time operating system must guarantee that, when a real-

time application requires some resource, that resource is made avail-

able to the application as soon as possible. The operating system

should also ensure that the resources shared among all processes—
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the CPU itself, the memory bus, and so on—are assigned to the pro-

cesses according to a policy that take in consideration the priorities

among the running processes.

As long as the operating system has to deal only with processes,

it is relatively easy to preempt a running process and assign the

CPU to another, higher-priority process. Unfortunately, as discussed

in 1.4, external events and operating system critical activities, re-

quired for the correct operation of the whole system, occur at unpre-

dictable times and are usually associated with the highest priority

in the system. Thus, for example, an external interrupt could delay

a critical, hard real-time application that, deprived of the processor,

could eventually miss its deadline. Even if the application manages

to catch its deadline, the operating system may introduce a factor of

non-determinism that is tough to predict in advance.

Therefore, handling both external events and operating system

critical activities while guaranteeing strict deadlines is the main prob-

lem in real-time operating systems. Multiprocessor systems make this

problem even worse, because operating system activities are much

more complicated.

In order to cope with this problem, real-time operating systems

are usually partitioned horizontally or vertically. As illustrated in

Figure 2.2, horizontally partitioned operating systems have a bottom

layer (called hardware abstraction layer, or HAL) that virtualizes the

real hardware; on top of this layer there are several virtual machines,

or partitions, running a standard or modified operating system, one

for each application’s domain; finally, applications run into their own

domain as they were running on a dedicated machine.
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Figure 2.2: Horizontally partitioned operating system

In horizontally partitioned operating systems the real-time ap-

plications have an abstract view of the system; external events are

caught by the hardware abstraction layer and propagated to the do-

mains according to their priorities. While it seems counter-intuitive

to use virtual machines for hard real-time applications, this approach

works well in most of the cases, even if the hardware abstraction

layer—in particular the partitions scheduler or the interrupt dispatcher—

might introduce some overhead. Several Linux-based real-time op-

erating systems such as RTAI [20] (implemented on top of Adeos [79])

and some commercial operating systems like Wind River’s VxWorks [54]

use this software architecture.

In contrast with the previous approach, in a vertically partitioned
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operating system the resources that are crucial for the execution of

the real-time applications are directly assigned to the application

themselves, with no software layer in the middle. The non-critical

applications and the operating system activities not related to the

real-time tasks are not allowed to use the reserved resources. This

schema is illustrated in Figure 2.3.

Thanks to this approach, followed by ASMP-Linux, the real-

time specific components of the operating system are kept simple,

because they do not require complex partition schedulers or virtual

interrupt dispatchers. Moreover, the performances of a real-time ap-

plication are potentially higher with respect to those of the corre-

sponding application in a horizontally partitioned operating system,
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because there is no overhead due to the hardware abstraction layer.

Finally, in a vertically partitioned operating system, the non-real-

time components never slow down unreasonably, because these com-

ponents always have their own hardware resources different from the

resources used by the real-time tasks.

2.3 Asymmetric multiprocessor kernels

The idea of dedicating some processors of a multiprocessor system

to real-time tasks is not new. In an early description of the ARTiS

system included in [40], processors are classified as real-time and

non-real-time. Real-time CPUs execute non-preemptible code only,

thus tasks running on these processors perform predictably. If a

task wants to enter into a preemptible section of code on a real-time

processor, ARTiS will automatically migrate this task to a non-real-

time processor.

Furthermore, dedicated load-balancing strategies allow all CPUs

to be fully exploited. In a more recent article by the same group [37],

processes have been divided into three groups: highest priority (RT0),

other real-time Linux tasks (RT1+), and non-real-time tasks; fur-

thermore, a basic library has been implemented to provide func-

tions that allow programmers to register and unregister RT0 tasks.

Since ARTiS relies on the standard Linux interrupt handler, the sys-

tem latency may vary considerably: a maximum observed latency of

120 µsecs on a 4-way Intel Architecture-64 (IA-64) heavily loaded

system has been reported in [37].

A more drastic approach to reduce the fluctuations in the latency
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time has been proposed independently in [28] and [10]. In this ap-

proach, the source of real-time events is typically a hardware device

that drives an IRQ signal not shared with other devices. The asym-

metric multiprocessor (ASMP) system is implemented by binding the

real-time IRQ and the real-time tasks to one or more “shielded” pro-

cessors, which never handle non-real-time IRQs or tasks. Of course,

the non-real-time IRQs and non-real-time tasks are handled by the

other processors in the system. As discussed in [28] and [10], the

fluctuations of the system latency are thus significantly reduced.

It is worth noting that, since version 2.6.9 released in October

2004, the standard Linux kernel includes a boot parameter (isolcpus)

that allows the system administrator to specify a list of “isolated” pro-

cessors: they will never be considered by the scheduling algorithm,

thus they do not normally run any task besides the per-CPU ker-

nel threads. In order to force a process to migrate on a isolated

CPU, a programmer may make use of the Linux-specific system call

sched_setaffinity(). The Linux kernel also includes a mechanism

to bind a specific IRQ to one or more CPUs; therefore, it is easy to

implement an ASMP mechanism using a standard Linux kernel.

However, the implementation of ASMP discussed in this thesis,

ASMP-Linux, is not based on the isolcpus boot parameter.A clear

advantage of ASMP-Linux is that the system administrator can

switch between SMP and ASMP mode at run time, without reboot-

ing the computer. Moreover, as explained in Section 2.4.2, ASMP-

Linux takes care of avoiding load rebalancing for asymmetric pro-

cessors, thus it should be slightly more efficient than a system based

only on isolcpus.
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2.3.1 Other asymmetric systems

Although in this work we will concentrate on the real-time applica-

tions of asymmetric kernels, it is worth mentioning that these kernels

are also used in other areas. As an example, some multi-core chips

include different types of cores and require thus an asymmetric kernel

to handle each core properly. The IBM Cell Broadband Engine (BE)

discussed in [12], for instance, integrates a 64-bit PowerPC processor

core along with eight “synergistic processor cores”. This asymmetric

multi-core chip is the hearth of the Sony PS3 PlayStation console,

although other applications outside of the video game console mar-

ket, such as medical imaging and rendering graphical data, are been

considered.

2.4 ASMP-Linux implementation

ASMP-Linux has been originally developed as a patch for the 2.4

Linux kernel series in 2002 [28]. After several revisions and major

updates, ASMP-Linux was implemented as a patch for the Linux

kernel 2.6.19.1, the latest Linux kernel version available when this

implementation has been done.

One of the design goals of ASMP-Linux is simplicity: because

Linux developers introduce quite often significant changes in the ker-

nel, it would be very difficult to maintain the ASMP-Linux patch if

it was intrusive or overly complex. Actually, most of the code specific

to ASMP-Linux is implemented as an independent kernel module,

even if some minor changes in the core kernel code—mainly in the
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scheduler, as discussed in Section 2.4.2—are still required.

Another design goal of ASMP-Linux is architecture-independency:

the patch can be easily ported to many different architectures, besides

the IA-32 architecture that has been adopted for the experiments re-

ported in Section 2.5.

It should be noted, however, that in a few cases ASMP-Linux

needs to interact with the hardware devices (for instance when deal-

ing with the local timer, as explained in Section 2.4.3). In these cases,

ASMP-Linux makes use of the interfaces provided by the standard

Linux kernel; those interfaces are, of course, architecture-dependent

but they are officially maintained by the kernel developers.

It is also worth noting that what ASMP-Linux can or cannot

do depends ultimately on the characteristics of the underlying sys-

tem architecture. For example, in the IBM’s POWER5 architecture

disabling the in-chip circuit that generates the local timer interrupt

(the so-called decrementer) also disables all other external interrupts.

Thus, the designer of a real-time embedded system must be aware

that in some general-purpose COTS architectures it might be simply

impossible to mask all sources of system jitter.

ASMP-Linux is released under the version 2 of the GNU General

Public License [25], and it is available at [6] to all the developers

who wish to work with it. Actually it is very interesting how, after

almost 3 years, we are still receiving feedback from people working

on ASMP-Linux.
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Figure 2.4: ASMP-Linux partitioning

2.4.1 System partitions

ASMP-Linux is a vertically partitioned operating system. Thus, as

explained in Section 2.2, it implements two different kinds of parti-

tions:

System partition It executes all the non-real-time activities, such

as daemons, normal processes, interrupt handling for non crit-

ical devices, and so on.

Real-time partition It handles some real-time tasks, as well as any

hardware device and driver that is crucial for the real-time per-

formances of that tasks.

In an ASMP-Linux system there is exactly one system parti-

tion, which may consist of several processors, devices, and processes;
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moreover, there should always exist at least one real-time partition

(see Figure 2.4). Additional real-time partitions might also exist,

each handling one specific real-time application.

Each real-time partition consists of a processor (called shielded

CPU, or shortly s-cpu), nirq ≥ 0 IRQ lines assigned to that processor

and corresponding to the critical hardware devices handled in the

partition, and ntask ≥ 0 real-time processes (there could be no real-

time process in the partition; this happens when the whole real-time

algorithm is coded inside an interrupt handler).

Each real-time partition is protected from any external event or

activity that does not belong to the real-time task running on that

partition. Thus, for example, no conventional process can be sched-

uled on a shielded CPU and no normal interrupt can be delivered to

that processor.

2.4.2 Process handling

The bottom rule of ASMP-Linux while managing processes is the

following:

Every process assigned to a real-time partition must run

only in that partition; furthermore, every process that

does not belong to a real-time partition cannot run on

that partition.

It should be noted, however, that a real-time partition always in-

clude a few peculiar non-real-time processes. In fact, the Linux ker-

nel design makes use of some processes, called kernel threads, which
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execute only in Kernel Mode and perform system-related activities.

Besides the idle process, a few kernel threads such as ksoftirqd [9] are

duplicated across all CPUs, so that each CPU executes one specific

instance of the kernel thread. In the current design of ASMP-Linux,

the per-CPU kernel threads still remain associated with the shielded

CPUs, thus they can potentially compete with the real-time tasks

inside the partition. As we shall see in Section 2.5, this design choice

has no significant impact on the operating system overhead and la-

tency.

The ASMP-Linux patch is not intrusive because the standard

Linux kernel already provides support to select which processes can

execute on each CPU. In particular, every process descriptor con-

tains a field named cpus_allowed, which is a bitmap denoting the

CPUs that are allowed to execute the process itself. Thus, in order

to implement the asymmetric behavior, the bitmaps of the real-time

processes are modified so that only the bit associated with the cor-

responding shielded CPU is set; conversely, the bitmaps of the non-

real-time processes are modified so that the bits of all shielded CPUs

are cleared.

A real-time partition might include more than one real-time pro-

cess. Scheduling among the real-time partition is still achieved by

the standard Linux scheduler, so the standard Linux static and dy-

namic priorities are honored. In this case, of course, it’s up to the

developer of the real-time application to ensure that the deadlines of

each process are always caught.

The list of real-time processes assigned to a real-time partition

may also be empty: this is intended for those applications that do
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not need to do anything more than handling the interrupts coming

from some hardware device. In this case, the device handled in a

real-time partition can be seen as a smart device, that is, a device

with the computational power of a standard processor.

The ASMP-Linux patch modifies in a few places the scheduling

algorithm of the standard Linux kernel. In particular, since version

2.6, Linux support the so-called scheduling domains [9]: the proces-

sors are evenly partitioned in domains, which are kept balanced by

the kernel according to the physical characteristics of the CPUs. Usu-

ally, the load in CMP and CMT processors will be equally spread on

all the physical chips. For instance, in a system having two physical

processors chip0 and chip1, each of which being a 2-way CMT CPU,

the standard Linux scheduler will try to put two running processes in

such a way to assign one process to the first virtual processor of chip0

and the other one to the first virtual processor of chip1. Having both

processes running on the same chip, one on each virtual processor,

would be a waste of resource: an entire physical chip kept idle.

However, load balancing among scheduling domains is a time-

consuming, unpredictable activity. Moreover, it is obviously useless

for shielded processors, because only predefined processes can run on

each shielded CPU. Therefore, the ASMP-Linux patch changes the

load balancing algorithm so that shielded CPUs are always ignored.

2.4.3 Interrupts handling

As mentioned in Section 1.2, interrupts are the major cause of jitter

in real-time systems, because they are generated by hardware devices



2.4. ASMP-Linux implementation 39

Loc−APIC 3

CPU3

Loc−APIC 2

CPU2

Loc−APIC 1

CPU1

Loc−APIC 0

CPU0

I/O−APIC

DISK NET
device
User

Figure 2.5: A SMP using Intel io-apic

asynchronously with respect to the process currently executed on a

CPU. In order to understand how ASMP-Linux manages this prob-

lem, a brief introduction on how interrupts are delivered to processors

is required.

Most uni-processor and multiprocessor systems include one or

more Interrupt Controller chips, which are capable to route interrupt

signals to the CPUs according to predefined routing policies. Two

routing policies are commonly found: either the Interrupt Controller

propagates the next interrupt signal to one specific CPU (using, for

example, a round-robin scheduling), or it propagates the signal to all

the CPUs. In the latter case, the CPU that first stops the execu-

tion of its process and starts to execute the interrupt handler sends

an acknowledgment signal to the Interrupt Controller, which frees



40 2. ASMP-Linux

the others CPUs from handling the interrupt. Figure 2.5 shows a

typical configuration for a multiprocessor system based on the IA-32

architecture.

A shielded process must receive only interrupts coming from se-

lected, crucial hardware devices, otherwise the real-time application

executing on the shielded processor will be affected by some unpre-

dictable jitter. Fortunately, recent Interrupt Controller chips—such

as the I/O Advanced Programmable Interrupt Controller (I/O-APIC)

found in the Intel architectures—can be programmed in such a way

to forward interrupt signals coming from specific IRQ lines to a set

of predefined processors.

Thus, the ASMP-Linux patch instruments the Interrupt Con-

troller chips to forward general interrupts only to non-shielded CPUs,

while the interrupts assigned to a given real-time partition are sent

only to the corresponding shielded CPU.

However, a shielded processor can also receive interrupt signals

that do not come from an Interrupt Controller at all. In fact, mod-

ern processors include an internal interrupt controller—for instance,

in the Intel processors this component is called Local APIC. This

internal controller receives the signals coming from the external In-

terrupt Controllers and sends them to the CPU core, thus interrupt-

ing the current execution flow. However, the internal controller is

also capable to directly exchange interrupt signals with the inter-

rupt controllers of the other CPUs in the system; these interrupts

are said Inter–Processor Interrupts, or IPI. Finally, the internal con-

troller could also generate a periodic self-interrupt, that is, a clock

signal that will periodically interrupt the execution flow of its own
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CPU core. This interrupt signal is called local timer.

In multiprocessor systems based on Linux, Inter–Processor Inter-

rupts are commonly used to force all CPUs in the system to perform

synchronization procedures or load balancing across CPUs, while the

local timer is used to implement the time-sharing policy of each pro-

cessor. As discussed in the previous sections, in ASMP-Linux load

balancing never affects shielded CPUs. Furthermore, it is possible to

disable the local timer of a shielded CPU altogether. Of course, this

means that the time-sharing policy across the processes running in

the corresponding real-time partition is no longer enforced, thus the

real-time tasks must implement some form of cooperative scheduling.

2.4.4 Real-time inheritance

During its execution, a process could invoke kernel services by means

of system calls. The ASMP-Linux patch slightly modifies the service

routines of a few system calls, in particular those related to process

creation and removal: fork(), clone(), and exit(). In fact, those

system calls affect some data structures introduced by ASMP-Linux

and associated with the process descriptor.

As a design choice, a process transmits its property of being part

of a real-time partition to its children; it also maintains that property

even when executing an exec()-like system call. If the child does not

actually need the real-time capabilities, it can move itself to the non-

real-time partition (see next section).
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2.4.5 ASMP-Linux interface

ASMP-Linux provides a simple /proc file interface to control which

CPUs are shielded, as well as the real-time processes and interrupts

attached to each shielded CPU. The interface could have been de-

signed as system calls but this choice would have made the ASMP-

Linux patch less portable (system calls are universally numbered)

and more intrusive.

Let’s suppose that the system administrator wants to shield the

second CPU of the system (CPU1), and that she wants to assign to

the new real-time partition the process having PID X and the inter-

rupt vector N. In order to do this, she can simply issue the following

shell commands:

/bin/echo 1 > /proc/asmp/cpu1/shielded

/bin/echo X > /proc/asmp/cpu1/pids

/bin/echo N > /proc/asmp/cpu1/irqs

The first command makes CPU1 shielded.1 The other two com-

mands assign to the shielded CPU the process and the interrupt

vector, respectively. Of course, more processes or interrupt vectors

can be added to the real-time partition by writing their identifiers

into the proper pids and irqs files as needed.

To remove a process or interrupt vector it is sufficient to write

the corresponding identifier into the proper /proc file prefixed by

the minus sign (“-”). Writing 0 into the file

1Actually, the first command could be omitted in this case, because issuing

either the second command or the third one will implicitly shield the target CPU.
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/proc/asmp/cpu1/shielded

turns the real-time partition off: any process or interrupt in the par-

tition is moved to the non-real-time partition, then the CPU is un-

shielded.

The /proc interface also allows the system administrator to con-

trol the local timers of the shielded CPUs. Disabling the local timer

is as simple as typing:

/bin/echo 0 > /proc/asmp/cpu1/localtimer

The value written in the localtimer file can be either zero (timer

disabled) or a positive scaling factor that represents how many ticks—

that is, global timer interrupts generated by the Programmable Inter-

val Timer chip—must elapse before the local timer interrupt is raised.

For instance, writing the value ten into the localtimer file sets the

frequency of the local timer interrupt to 1/10 of the frequency of the

global timer interrupts.

Needless to say, these operations on the /proc interface of ASMP-

Linux can also be performed directly by the User Mode programs

through the usual open() and write() system calls.

2.5 Experimental data

ASMP-Linux provides a good foundation for an hard real-time op-

erating system on COTS multiprocessor systems. To validate this

claim, we performed two sets of experiments.

The first test, described in Section 2.5.2, aims to evaluate the

operating system overhead of ASMP-Linux: the execution time of
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a real-time process executing a CPU-bound computation is measured

under both ASMP-Linux and a standard Linux 2.6.19.1 kernel, with

different system loads, and on several hardware platforms.

The second test, described in Section 2.5.3, aims to evaluate the

operating system latency of ASMP-Linux: the local timer is repro-

grammed in such a way to raise an interrupt signal after a predefined

interval of time; the interrupt handler wakes a sleeping real-time pro-

cess up. The difference between the expected wake-up time and the

actual wake-up time is a measure of the operating system latency.

The test has been carried on under both ASMP-Linux and a stan-

dard Linux 2.6.19.1 kernel, with different system loads, and on several

hardware platforms.

2.5.1 Experimental environments

Two different platforms were used for the experiments; Table 2.1

summarizes their characteristics and configurations.

ID Architecture CPUs
Freq. RAM

GHz GB

S1 IA-32 SMP HT 8 virt. 1.50 3

S2 IA-32 SMP 4 phys. 1.50 3

S3 IA-32 CMP 2 cores 1.83 1

Table 2.1: Characteristics of the test platforms

The first platform is a 4-way SMP Intel Xeon HT [15] system run-

ning at 1.50 GHz; every chip consists of two virtual processors (HT
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stands for HyperThreading Technology [13]). The operating system

sees each virtual processor as a single CPU. This system has been

tested with HT enabled (configuration “S1”) and disabled (configura-

tion “S2”).

The second platform (configuration “S3”) is a desktop computer

based on a 2-way CMT Intel processor running at 1.83 GHz. The

physical processor chip contains two cores [17]. This particular ver-

sion of the processor was the one used in laptop systems, optimized

for power consumption.

The Intel Xeon HT processor is a coarse-grained multithreading

processor; on the other side, the Intel Dual Core is a multi-core pro-

cessor (see Section 2.1). These two platforms covered the spectrum of

modern CMP/CMT processors at the time this work has been done.

However, nowadays, the situation would not be much different. The

Intel Dual Core technology is still in the shelves, and, more in gen-

eral, all modern CPUs are using a multi-core approach. Moreover,

at least for the aspects that concern this work, we can consider that

there are not significant differences between the tested multi-core

platform and the modern ones. Instead, for what concern the 4-way

SMP Intel Xeon HT, even though multithreading technology seems

to not be interesting anymore for real-time systems, the multi-chip

approach is still very common. So, actually, configurations S2 and

S3 still reflect the most common options we can find in the market.

On the other hand, configuration S1 gives us additional information

about a multithreading solution, which can be still interesting, even

though the market seems taking a different direction: we will in fact

observe what happens when more resources are shared among differ-
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ent cores.

Finally, we believe that mostly multi-core processors are of partic-

ular interest to real-time embedded system designers. In fact, multi-

core CPUs performs better than the multi-chip ones, in term of power

consuming and heat dissipation. These two aspects can be very im-

portant in some embedded systems, and, for this reason, low-power

versions of COTS processors have often been used in embedded sys-

tems precisely because they make the heat dissipation problems much

easier to solve.

System loads

For each platform, the following system loads have been considered:

IDL The system is mostly idle: no User Mode process is runnable

beside the real-time application being tested. This load has

been included for comparison with the other system loads.

CPU CPU load : the system is busy executing kp CPU-bound pro-

cesses, where p is the number of (virtual) processors in the

system, and k is equal to 16 for the first test, and to 128 for

the second test.

AIO Asynchronous I/O load : the system is busy executing kp I/O-

bound processes, where k and p are defined as above. Each

I/O-bound process continuously issues non-blocking write op-

erations on disk.

SIO Synchronous I/O load : the system is busy executing kp I/O-

bound processes, where k and p are defined as above. Each
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I/O-bound process continuously issues synchronous (blocking)

write operations on disk.

MIX Mixed load : the system is busy executing k
2
p CPU-bound

processes, k
2
p asynchronous I/O-bound processes, and k

2
p syn-

chronous I/O-bound processes, where k and p are defined as

above.

Each of these workloads has a peculiar impact on the operating

system overhead. The CPU workload is characterized by a large

number of processes that compete for the CPUs, thus the overhead

due to the scheduler is significant. In the AIO workload, the write

operations issued by the processes are asynchronous, but the kernel

must serialize the low-level accesses to the disks in order to avoid

data corruption. Therefore, the AIO workload is characterized by a

moderate number of disk I/O interrupts and a significant overhead

due to data moving between User Mode and Kernel Mode buffers.

The SIO workload is characterized by processes that raise blocking

write operations to disk: each process sleeps until the data have been

written on the disk. This means that, most of the times, the processes

are waiting for an external event and do not compete for the CPU.

On the other hand, the kernel must spend a significant portion of

time handling the disk I/O interrupts. Finally, in the MIX workload

the kernel must handle many interrupts, it must move large amounts

of data, and it must schedule many runnable processes.

For each platform, we performed a large number of iterations of

the tests by using:

N A normal (SCHED_NORMAL) Linux process (just for comparison).
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Rw A “real-time” (SCHED_FIFO) Linux process statically bound on a

CPU that also gets all external interrupt signals of the system.

Rb A “real-time” (SCHED_FIFO) Linux process statically bound on a

CPU that does not receive any external interrupt signal.

Aon A process running inside a real-time ASMP-Linux partition

with local timer interrupts enabled.

Aoff A process running inside a real-time ASMP-Linux partition

with local timer interrupts disabled.

The IA-32 architecture could not reliably distribute the exter-

nal interrupt signals across all CPUs in the system (this was the

well-known “I/O APIC annoyance” problem). Therefore, two sets of

experiments for real-time processes have been performed: Rw repre-

sents the worst possible case, where the CPU executing the real-time

process handles all the external interrupt signals; Rb represents the

best possible case, where the CPU executing the real-time process

handles no interrupt signal at all (except the local timer interrupt).

The actual performance of a production system is in some point be-

tween the two cases.

2.5.2 Evaluating the OS overhead

The goal of the first test is to evaluate the operating system overhead

of ASMP-Linux. In order to achieve this, a simple, CPU-bound

conventional program has been developed. The program includes a

function performing n millions of integer arithmetic operations on a
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tight loop (n has been chosen, for each test platform, so that each

iteration last for about 0.5 sec); this function is executed 1000 times,

and the execution time of each invocation is measured.

The program has been implemented in five versions (N, Rw, Rb,

Aon, and Aoff), and each program version has been executed on all

platforms (S1, S2, and S3).

As discussed in the previous Section 1.2, the data Tx coming from

the experiments are the real execution times resulting from the base

time T effectively required for the computation plus any delay in-

duced by the system. Generally speaking, Tx = T + εh + εl + εo,

where εh is a non-constant delay introduced by the hardware, εl is

due to the operating system latency, and εo is due to the operating

system overhead. The variations of the values εh + εl + εo give raise

to the jitter of the system. In order to understand how the operating

system overhead εo affects the execution time, estimations for T , εh,

and εl are required.

In order to evaluate T and εh, the “minimum” execution time re-

quired by the function—the base time—has been computed on each

platform by running the program with interrupts disabled, that is,

exactly as if the operating system were not present at all. The base

time corresponds to T + εh; however, the hardware jitter for the per-

formed experiments is negligible (roughly, some tens of nanoseconds,

on the average) because the test has been written so that it makes lit-

tle use of the caches and no use at all of memory, it does not execute

long latency operation, and so on. Therefore, we can safely assume

that εh ≈ 0 and that the base time is essentially the value T . On

the S1 and S2 platforms, the measured base time was 466.649 msec,
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while on the S3 platform the measured base time was 545.469 msec.

Finally, because the test program is CPU-bound and never blocks

waiting for an interrupt signal, the impact of the operating system

latency on the execution time is very small (εl ≈ 0). One can thus

assume that Tx ≈ T + εo.

Therefore, in order to evaluate εo, the appropriate base times

has been subtracted from the measured execution times. These dif-

ferences are statistically summarized for the MIX workload in Ta-

bles 2.2, 2.3, and 2.4.2 Note that in this way we also subtract the

hardware overhead, εh, which is supposed to be roughly the same in

all the iterations, from the data.

Proc Avg StDev Min Max

N 20275.784 6072.575 12.796 34696.051

Rw 28.459 12.945 10.721 48.837

Rb 27.461 9.661 3.907 42.213

Aon 30.262 8.306 8.063 41.099

Aoff 27.847 7.985 6.427 38.207

Table 2.2: Operating system overheads for the MIX workload (in mil-

liseconds) on configuration S1.

Platform S1 shows how the asymmetric approach does not provide

real-time performance for HyperThreading architectures. In fact, in

those processors, the amount of shared resources is significant, there-

fore a real-time application running on a virtual processor cannot be

executed in a deterministic way regardless of the application running
2Results for all workloads are reported in Tables A.1, A.2, and A.3 included

in appendix A.
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Proc Avg StDev Min Max

N 18513.615 5996.971 1.479 33993.351

Rw 4.215 0.226 3.913 10.146

Rb 1.420 0.029 1.393 1.554

Aon 1.490 0.044 1.362 1.624

Aoff 0.000 0.000 0.000 0.000

Table 2.3: Operating system overheads for the MIX workload (in mil-

liseconds) on configuration S2.

Proc Avg StDev Min Max

N 20065.194 6095.807 0.606 32472.931

Rw 3.477 0.024 3.431 3.603

Rb 0.554 0.031 0.525 0.807

Aon 0.556 0.032 0.505 0.811

Aoff 0.000 0.000 0.000 0.000

Table 2.4: Operating system overheads for the MIX workload (in mil-

liseconds) on configuration S3.

on the other virtual processors.

The test results for platform S2 and S3, instead, clearly state

that ASMP-Linux does an excellent job in reducing the impact of

operating system overhead on real-time applications.

Platform S3 is the most interesting to us because provide a good

performance/cost ratio (where cost is intended in both money and

power consumption senses). For lack of space, in the following anal-

ysis we will focus on that platform, unless other platforms are clearly

stated.

Figure 2.6 shows how platform S3 performs with the different



52 2. ASMP-Linux

Figure 2.6: OS maximum overhead comparison

workloads and test cases Rw, Rb, Aon, and Aoff (we do not show

results from the N test case because its times are several orders of

magnitude higher than the others). Each box in the figure represents

the maximum overhead measured in all experiments performed on the

specific workload and test case. Since the maximum overhead might

be considered as a rough estimator for the real-time characteristics

of the system, it can be inferred that all workloads present the same

pattern: Aoff is better than Aon, which in turn is roughly equivalent

to Rb, which is finally much better than Rw. Since all workloads are

alike, from now on we will specifically discuss the MIX workload—

likely the most representative of a real-world scenario.

Figures 2.7, 2.8, 2.9, and 2.10 show the samples measured on

system S3 with MIX workload. Each dot represents a single test;
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Figure 2.7: Scatter Rw graphic for system S3, MIX workload

Figure 2.8: Scatter Rb graphic for system S3, MIX workload



54 2. ASMP-Linux

Figure 2.9: Scatter Aon graphic for system S3, MIX workload

Figure 2.10: Scatter Aoff graphic for system S3, MIX workload
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its y-coordinate corresponds to the difference between the measured

time and the base value, as reported in Table 2.4. (Notice that the

y-axis in the four plots have different scales).

The time required to complete each iteration of the test varies

according to the operating system overhead experimented in that

measurement: for example, in system S3, with a MIX workload, each

difference can be between 3.431 msec and 3.603 msec for the Rw test

case.

Figure 2.7 clearly shows that at the beginning of the test the

kernel was involved in some activity, which terminated after about

300 samples. We identified this activity in creating the processes that

belonged to the workload: after some time all the processes have been

created and that activity is no longer present. Figure 2.7 also shows

how, for the length of the experiment, all the samples are affected

by jitter, thus they are far from the theoretical performance of the

platform.

Figures 2.8 and 2.9 show that the operating system overhead

mainly consists of some short, regular activities: we identify those

activities with the local timer interrupt (which, in fact, is not present

in Figure 2.10). Every millisecond the local timer raised an interrupt

(the highest priority kernel activity) and the CPU executed the inter-

rupt handler instead of the real time application. It can be noticed

that Rb performs slightly better than Aon. As a matter of fact, the

two test cases are very similar: in Rb the scheduler always selects the

test program because it has SCHED_FIFO priority, while in Aon the

scheduler selects the “best” runnable process in the real-time ASMP

partition—this normally means the test program itself, but in a few
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cases it might also select a per-CPU kernel thread, whose execution

makes the running time of the test program longer.

It is straightforward to see in Figure 2.10 how ASMP-Linux

in the Aoff version has a deterministic behavior, with no jitter, and

catches the optimal performance that can be achieved on the plat-

form (i.e., the base time mentioned above). On the other hand, using

ASMP-Linux in the Aon version only provides soft real time perfor-

mance, comparable with those of Rb.

Figure 2.11: Inverse density functions for overhead on system S3, MIX

workload, configuration Rw.

Figures 2.11, 2.12, 2.13, 2.14 show inverse Cumulative Densitive

Function (CDF) of the probability (x-axis) that a given sample is less

than or equal to a threshold execution time (y-axis). For example,

in Figure 2.11, the probability that the overhead in the test is less

than or equal to 3.5 msec is about 80%. We think this figure clearly

explains how the operating system overhead can damage the perfor-

mance of a real time system. Different operating system activities
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Figure 2.12: Inverse density functions for overhead on system S3, MIX

workload, configuration Rb.

Figure 2.13: Inverse density functions for overhead on system S3, MIX

workload, configuration Aon.

introduce different amounts of jitter during the execution of the test,

resulting in a non-deterministic response time. Moreover, the figure

states how the maximum overhead can be significantly higher than
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Figure 2.14: Inverse density functions for overhead on system S3, MIX

workload, configuration Aoff.

the average operating system overhead. Once again, the figure shows

how ASMP-Linux in the Aon version is only suitable for soft real

time application, as well as Rb.

2.5.3 Evaluating the operating system latency

The goal of the second test is to evaluate the operating system la-

tency of ASMP-Linux. In order to achieve this, the local timer (see

Section 2.4.3) has been programmed in such a way to emulate an

external device that raises interrupts to be handled by a real-time

application.

In particular, a simple program that sleeps until awakened by the

operating system has been implemented in five versions (N, Rw, Rb,

Aon, and Aoff). Moreover, a kernel module has been developed in

order to simulate an hardware device: it provides a device file that
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can be used by a User Mode program to get data as soon as they

are available. The kernel module reprograms the local timer in such

a way to raise a one-shot interrupt signal after a predefined time

interval. The corresponding interrupt handler awakes the process

blocked on the device file and returns to it a measure of the time

elapsed since the timer interrupts occurred.

The data coming from the experiments yield the time elapsed

since the local timer interrupt is raised and the User Mode program

starts to execute again. Each test has been repeated 10 000 times;

the results are statistically summarized for the MIX workload in Ta-

ble 2.5.3

The delay observed by the real-time application is εh + εl + εo.

Assuming as in the previous test εh ≈ 0, the observed delay is es-

sentially due to the operating system overhead and to the operating

system latency. Except for the case “N”, one can also assume that the

operating system overhead is very small because, after being awoken,

the real time application does not do anything but issuing another

read operation from the device file. This means that the probability

of the real-time process being interrupted by any kernel activity in

such a small amount of time is very small. In fact, the real-time ap-

plication is either the only process that can run on the processor (Aon

and Aoff), or it has always greater priority than the other processes in

the system (Rw and Rb). Thus, once awakened, the real-time task is

selected right away by the kernel scheduler and no other process can

interrupt it. Therefore, the delays shown in Table 2.5 are essentially

3Results for all workloads are reported in Tables A.4, A.5 and A.6 included

in appendix A.
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Proc Avg StDev Min Max

N 13923.606 220157.013 6.946 5.001 · 106

Rw 10.970 8.458 6.405 603.272

Rb 10.027 5.292 6.506 306.497

Aon 8.074 1.601 6.683 20.877

Aoff 8.870 1.750 6.839 23.230

(a) Configuration S1

Proc Avg StDev Min Max

N 24402.723 331861.500 4.904 4.997 · 106

Rw 5.996 1.249 4.960 39.982

Rb 5.511 1.231 4.603 109.964

Aon 5.120 0.275 4.917 9.370

Aoff 5.441 0.199 5.207 6.716

(b) Configuration S2

Proc Avg StDev Min Max

N 182577.713 936480.576 1.554 9.095 · 106

Rw 1.999 1.619 1.722 66.883

Rb 1.756 0.650 1.548 63.985

Aon 1.721 0.034 1.674 3.228

Aoff 1.639 0.025 1.602 2.466

(c) Configuration S3

Table 2.5: Operating system latencies for the MIX workload (in mi-

croseconds)
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due to both the interrupt and the scheduler latency of the operating

system.

Figure 2.15: OS maximum latency comparison

Figure 2.15 shows how platform S3 performs with the different

workloads and test cases Rw, Rb, Aon, and Aoff (we do not show

results from the N test case because its times are several orders of

magnitude higher than the others). Each box in the figure represents

the maximum latency measured in all experiments performed on the

specific workload and test cases.

As we said, the probability that some kernel activity interrupts

the real time application is very small, yet not null. An Inter–

Processor Interrupt (IPI) could still be sent from one processor to

the one running the real time application (even for the Rb test) in

order to force process load balancing. This is, likely, what happened

to Rw and Rb, since they experiment a large, isolated maximum.

As in the previous test, from now on we will restrict ourselves in

discussing the MIX workload, which we think is representative of all
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Figure 2.16: Scatter Rw graphics for system S3, MIX workload.

Figure 2.17: Scatter Rb graphics for system S3, MIX workload.
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Figure 2.18: Scatter Aon graphics for system S3, MIX workload.

Figure 2.19: Scatter Aoff graphics for system S3, MIX workload.
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the workloads (see Tables A.4, A.5 and A.6 included in appendix A).

Figures 2.16, 2.17, 2.18, and 2.19 show the samples measured on

system S3 with MIX workload. Each dot represents a single test;

its y-coordinate corresponds to the latency time, as reported in Ta-

ble 2.5. (The y-axis in the four plots have different scales; thus,

for example, the scattered points in Figure 2.19 would appear as a

straight horizontal line on Figure 2.17).

Figures 2.20, 2.21, 2.22, and 2.23 show inverse Cumulative Densi-

tive Function (CDF) of the probability (x-axis) that a given sample

is less than or equal to a threshold execution time (y-axis). For ex-

ample, in Figure 2.23, the probability that the latency measured in

the test is less than or equal to 1.6 µsec is about 98%. In the Aoff

test case a small jitter is still present; nonetheless, it is so small that

it could be arguably tolerated in many real-time scenarios.

Figure 2.20: Inverse density functions for latency on system S3, MIX

workload, configuration Rw.
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Figure 2.21: Inverse density functions for latency on system S3, MIX

workload, configuration Rb.

Figure 2.22: Inverse density functions for latency on system S3, MIX

workload, configuration Aon.

2.5.4 Final consideration

The goal of these tests was to evaluate ASMP-Linux on different

platforms. In fact, each platform has benefits and drawbacks: for ex-

ample, platform S1 is the less power consuming architecture because
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Figure 2.23: Inverse density functions for latency on system S3, MIX

workload, configuration Aoff.

the virtual processors are not full CPUs; however, as we expected,

ASMP-Linux does not provide hard real-time performances on this

platform. Conversely, ASMP-Linux provides hard real-time perfor-

mances when running on platform S2; however, this platform is the

most expensive in terms of cost, surface, and power consumption,

thus we do not think it will fit well with embedded systems’ con-

straints. Platform S3 is a good tradeoff between the previous two

platforms: ASMP-Linux still provides hard real-time performance

even if the two cores share some resources, resulting in reduced chip

surface and power consumption. Moreover, the tested processor has

been specifically designed for power-critical system (such as laptops),

thus we foreseen it could be largely used in embedded systems, as it

happened with its predecessor single-core version.



Chapter 3

Real-time bridge

In chapter 2 we saw how the software jitter, described in section

1.4, can be minimized by using ASMP-Linux. However, working

only at the operating system level, it is not possible to reduce the

other important source of unpredictability, that is the hardware jitter,

introduced in section 1.5.

In this chapter we describe a novel real-time I/O management

system, designed to address this problem. In particular, we focus on

the jitter observed by peripherals when they access main memory.

We know that COTS buses (like PCI, or PCI-E) do not guaran-

tee timeliness, and the system may experience severe timing degrada-

tion in the presence of high-bandwidth I/O peripherals (see [45, 44]).

The proposed framework introduces two new components in the tra-

ditional I/O architecture: a real-time bridge, and a reservation con-

troller. These are used to transparently put the I/O subsystem of

a COTS-based embedded system under the discipline of real-time

scheduling. This work has been published in the proceedings of the

30th IEEE Real-Time Systems Symposium [4].

The chapter is organized as follows. First, in section 3.1, we

discuss the modern COTS I/O subsystems and the current real-time

I/O requirements. In section 3.2, we elaborate on the design of the

67
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novel real-time I/O management system. In section 3.3 the supported

real-time scheduling algorithms are discussed. Sections 3.4 and 3.5

give detailed information on the new components we developed. In

section 3.6 we focus on the limitations of our architecture. In section

3.7, we demonstrate, on physical hardware, that timing violations can

occur without our real-time I/O management system, but with our

system we can prevent I/O deadline misses. We finish with related

work in section 3.8.

3.1 COTS I/O subsystems and real-time

As we discussed in chapter 1, integrating high-speed COTS peripher-

als within a real-time system offers several benefits like cost reduction,

time-to-market, and overall performance. On the other hand, it can

be a daunting task, since COTS components are typically designed

paying attention to average performance and not to worst-case timing

behaviors.

In this chapter, we focus on I/O subsystems with high bandwidth

requirements; a modern real-time system such as a search and res-

cue helicopter [52] may include several high-bandwidth components

such as a Doppler navigation system, a forward look-ahead infrared

radar, a night vision system, and several types of communication

systems. Modern I/O components such as these can inject signifi-

cant traffic onto the I/O bus. For example, a single real-time high-

definition video may consume an I/O bandwidth of tens to hundreds

of Mbps [1].

While priority-based real-time scheduling is a standard practice
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for the CPU, it is currently not supported by COTS peripherals and

interconnect systems (e.g., PCI bus [42]). Due to the lack of real-time

prioritization, data I/O transactions traveling through the COTS bus

into or out of main memory can suffer unpredictable delay and cause

deadline misses [41]. Unfortunately, end-to-end real-time guarantees

can not be achieved unless both tasks and I/O data transactions

are properly processed in a prioritized manner. We address this

challenge by introducing a real-time I/O management system that

supports a wide range of priority-based scheduling policies, retains

backward compatibility with existing COTS-based components, and

achieves high real-time bus utilization without degrading peripherals’

throughput.

The proposed framework acts like a “transparent layer” that does

not add any additional burden at the operating system or user level,

except for assigning a certain priority to each real-time I/O flow.

Such I/O flows may be highly variable depending on content, so that

a worst-case I/O interference pattern may not occur during initial

testing. Furthermore, overprovisioning for transient, but rare load

spikes may raise costs and lead to an underutilized system; on the

other hand, ignoring this problem can cause dangerous system insta-

bilities and even deadline misses of safety critical real-time tasks [59].

Predictability within the I/O subsystem is essential to meet the de-

mand of future cyber-physical systems.
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3.2 Real-time I/OManagement System De-

sign

Before describing our real-time I/O management system for pre-

dictable I/O performance on a COTS system, we first describe the

way in which a COTS system typically works.

A COTS system may include several commercial peripherals, such

as video acquisition boards or network cards, plugged into standard

buses, such as PCI or PCI-E, on a commercial motherboard. As

figure 3.1 shows, data from these boards would travel through a se-

ries of bridges and buses (the specifics depend on the model of the

motherboard), until it reaches main memory, where the CPU can

read it through the Front Side Bus (FSB). Alternatively, the CPU

could write data into main memory and instruct the COTS periph-

erals to retrieve it. For example, a network card could be instructed

to upload packets which are stored in RAM.

Our proposed real-time I/O management system, shown in con-

text in Figure 3.2, adds two types of components to the existing

COTS system.

The first type is a reservation controller, which implements the

system-wide policy for accessing the bus. It can be thought of as

a high-level arbiter which instructs the real-time bridges to either

communicate on the bus, or yield to other devices.

The other type of component we introduce is a real-time bridge

which is interposed between each peripheral and the communication

bus. Each real-time bridge provides the actuation mechanism to



3.3. Enforcing real-time scheduling 71

Figure 3.1: A common COTS system architecture.

enforce peripheral bus access.

For rapid development, we implemented both of these components

in hardware on field programmable gate arrays (FPGAs), although

an industrial application would likely use an Application Specific In-

tegrated Circuit (ASIC). We describe these devices in section 3.4

and section 3.5 and elaborate on details involved in making the pro-

totypes.

3.3 Enforcing real-time scheduling

We now describe the way in which our proposed architecture can

be used to provide real-time guarantees for peripheral traffic. Par-

ticularly, we are interested in determining the classes of schedulers

that can be implemented using multiple real-time bridges connected

to a reservation controller. We address the following question: can
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Figure 3.2: The proposed real-time I/O management system adds a

reservation controller and real-time bridge to the COTS-

based node.

any real-time monoprocessor scheduling algorithm be used with our

hardware framework? Although we show that the answer is no, we

are still able to employ a large class of monoprocessor schedulers.

Since there are many classifications of scheduling algorithms, we

start by showing a definition that provides a more formal framework

on which to reason about implementable schedulers.

Definition 4 (Scheduling Servers / Scheduling Algorithms). Con-

sider a set of tasks requesting access to a single shared resource. Each

task (or group of tasks) has an associated scheduling server which,

based on the task’s (tasks’) activity, forwards scheduling parameters

to the scheduling algorithm. At any time instant t, the scheduling

algorithm grants the shared resource to at most one scheduling server

based on the value of all received scheduling parameters.
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The provided definition is general enough to encompass all com-

mon real-time schedulers for a single shared resource. For example,

consider scheduling periodic tasks according to rate monotonic. The

scheduling server for each task forwards a static_priority param-

eter equal to the inverse of the task period, and a ready boolean

parameter which is true if and only if the task has remaining compu-

tation time. The fixed priority scheduling algorithm then selects the

task with highest static_priority and a true ready parameter

to execute.

A budget-based server for aperiodic tasks, such as a sporadic

server, would be more complex, but would still output the same

static_priority and ready parameters. In particular, the server’s

ready parameter is true if and only if the served task has remain-

ing execution and there is available budget. However, the set of

scheduling parameters changes based on the scheduling algorithm.

For instance, an EDF server would need to output both a ready

boolean value and a dynamic absolute_deadline parameter.

The logical division between the scheduling servers and the schedul-

ing algorithm corresponds to the physical implementation within the

reservation controller. Each scheduling server is implemented by a

single VHDL hardware module. The module receives the data_rdy

signal from the corresponding real-time bridge and computes the

scheduling parameters (the boolean ready value and the static_priority

value). Global scheduling logic, such as the logic shown in code block

3.1, then implements the scheduling algorithm, receiving scheduling

parameters and producing block signals for all scheduling servers.

However, in the case of fixed priority scheduling, static_priority
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is a design-time parameter which is absorbed in the implementation

of the global scheduling logic as an optimization.

The main drawback of such a design, however, is that each schedul-

ing server must make scheduling decisions based only on the task’s

data_rdy (active) value.

Definition 5 (Active-Dynamic Server). A scheduling server is an

active-dynamic server if run-time task behavior can be governed using

only one piece of task-related knowledge, whether the task is active

(immediately executable) or not.

Proposition 1. Our I/O scheduling mechanism can implement any

scheduling framework where all scheduling servers are active-dynamic

servers.

Next, we provide some examples of servers that are active-dynamic,

and some examples of servers that are not.

Lemma 1. Under fixed priority scheduling, both a periodic task server

and the sporadic server are active-dynamic servers.

Proof. A scheduling server servicing a periodic task needs only out-

put the static_priority for the task, and a dynamic ready pa-

rameter which is equal to the active value of the task.

A sporadic server is active-dynamic because the rules governing its

replenishment time and replenishment amount can be obeyed know-

ing only the task’s active value (and other non-task parameters such

as the current time). According to the rules of a sporadic server,

the replenishment time is determined as soon as the task becomes

active (an aperiodic task requests execution) and there is available
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budget. The replenishment time is computed by simply summing

the current time with the static server period. The replenishment

amount, computed when the server becomes inactive, is equal to

the consumed budget. This is computed by measuring the duration

of time the task was both active and unblocked (which can be given

through feedback from the scheduling algorithm). Determining when

the server becomes inactive is done by checking if the task is finished

or the budget is exhausted. Since all the server rules can be evaluated

based only on the active status of the task, a sporadic server is an

active-dynamic server.

Lemma 2. Consider a sporadic task feasibly scheduled under EDF

with relative deadline greater than its interarrival time. The server

for such task is not an active-dynamic server.

Proof. Consider two successive jobs j and j + 1 of the sporadic task.

Since the interarrival time between jobs is less than the relative dead-

line, job j+1 could arrive in the system before job j is finished. Since

the server has no way to know when j+1 arrived based on the active

status of the task, it can not set the deadline for job j + 1.

Also notice that there exist non budget-based servers, such as

the total bandwidth server [63], which require arrival-time informa-

tion about aperiodic job execution time and therefore are not active-

dynamic servers.
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3.4 Reservation Controller

Multiple peripherals must cooperate to prevent a timeliness reduc-

tion caused by mutual interference. The reservation controller cen-

tralizes decision making and coordinates multiple real-time bridges

by instructing them to either forward or buffer peripheral traffic.

Presently, we consider each peripheral as generating a single real-

time I/O flow. In chapter 4, we discuss a real-time bridge extension

that supports device virtualization and allows multiple real-time I/O

flows per physical device (with potentially different priorities). Fur-

thermore, we only consider I/O flows directed to main memory, and

not to other peripherals1.

As described in section 3.1, and shown later in our evaluation in

section 3.7, allowing multiple COTS peripherals to simultaneously ac-

cess main memory can result in unpredictable bandwidth allocation.

As such, we allow only a single real-time flow to transmit at any one

time. Therefore, we can consider the time allocated among all real-

time bridges by the reservation controller as a shared resource akin to

a monoprocessor CPU. In this analogy, each I/O flow is equivalent to

a real-time task, and each I/O data chunk in the flow is equivalent to

a job; transfer times for I/O data chunks are equated to computation

times and can typically be derived by dividing the I/O data amount

by the achievable throughput of the real-time bridge.

Coordination between the reservation controller and each real-

time bridge is achieved using two physical wires. Each real-time

1Our methodology will be extended to cover inter-peripheral communication

in our future work.
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bridge communicates one boolean value, data_rdy, to the reservation

controller. This value indicates that data is buffered and ready to

be sent on the bus. In turn, the reservation controller sends one

boolean value back to the real-time bridge, block, which instructs

the bridge to either block I/O traffic or permit bus access. Real-time

bridges instructed to block do not attempt to gain access to the bus,

mandating the bus arbiter grants the unblocked peripherals access to

the bus to send their data.

With only these two signals, many kinds of bus scheduling policies

can be enforced. Consider, for example, scheduling four real-time

bridges according to a static-priority bus scheduling scheme, such

as rate monotonic (RM). Let blocki be the block command sent

to the ith real-time bridge, and let data_rdyi be the indicator of

buffered data coming from the ith real-time bridge. Let the bridges

be physically connected to the reservation controller in the order of

their priorities (in the order of their rates for RM), from the highest

priority bridge, i = 0, to the lowest priority bridge, i = 3. In order

to provide static-priority scheduling on the I/O bus, the reservation

controller hardware would implement the logical expressions in code

block 3.1.

Our framework, however, can also support a large class of mono-

processor scheduling algorithms which handle sporadic and aperiodic

tasks using real-time servers [11]. In our prototype, for instance,

we have implemented support for sporadic servers [3] under fixed-

priority scheduling (see section 3.4.1). Notice that the servers are

implemented on the reservation controller and not on the associated

real-time bridges. This decision has two major advantages.



78 3. Real-time bridge

Code 3.1 These logical expressions, implemented in hardware on

the reservation controller, provide a static-priority I/O scheduler for

a four-peripheral system.
block0 := ¬(data_rdy0)

block1 := ¬(block0 ∧ data_rdy1)

block2 := ¬(block0 ∧ block1 ∧ data_rdy2)

block3 := ¬(block0 ∧ block1 ∧ block2 ∧ data_rdy3)

First, it removes the need for precise clock synchronization among

real-time bridges and the reservation controller. Since all scheduling

servers use the same physical clock, server budgets can be precisely

calculated without clock skew.

Second, it simplifies the interface between each real-time bridge

and the reservation controller by reducing the number of physical

wires to just two, data_rdy and block. This becomes a concern for

algorithms like EDF, where each server must communicate a pre-

cise deadline timestamp to the scheduling algorithm, which requires

dozens of bits of information. By centralizing all scheduling servers

on the reservation controller, the number of physical wires is reduced,

simplifying the electrical design.

3.4.1 Prototype Details

In our prototype, the reservation controller is built using the Xil-

inx ML505 Evaluation Platform [74] which features an XC5VLX50T

FPGA. We created VHDL hardware code to implement the rate

monotonic scheduling algorithm [36] for strictly periodic tasks, as

well the sporadic server algorithm [62] to schedule aperiodic periph-
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eral bus traffic.

The implementation itself is split into two types of hardware com-

ponents:

• servers for each real-time bridge,

• a global scheduling algorithm.

Each server generates a ready signal, and the global schedul-

ing algorithm in this case executes the task with the highest static

priority and an asserted ready signal.

Logically speaking, the parameter generating servers output val-

ues to the global scheduling algorithm, which then chooses one of

them for execution (although in practice some design-time values

such as the static_priority become absorbed in the global schedul-

ing algorithm as an optimization). For example, the parameters gen-

erated by both the strictly periodic server and the sporadic server are

ready and static_priority, although the logic necessary to com-

pute these are more complicated in the case of sporadic servers. Since

the parameters output are the same, we can mix sporadic servers and

strictly periodic servers within the same global scheduling algorithm.

The global scheduling algorithm in this case executes the task with

the highest static_priority and an asserted ready signal.

In terms of FPGA area utilization, our implementation is lightweight.

We synthesized a two layer reservation controller with four sporadic

servers scheduled according to a global RM scheduling policy. The re-

sultant implementation used 531 of the 28,800 available slice registers

(1.8%), and 668 of the available 28,800 slice look up tables (LUTs)
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(2.3%). The number I/O buffers used, which is associated with the

chip’s pinout, was also low (9 out of 480, 1.9%). These numbers

lead us to conclude that the design will easily scale to concurrently

manage dozens of I/O peripherals.

3.5 Real-time bridge

In order to provide real-time guarantees on bus communication, bus

access must be controlled according to the policy dictated by the

reservation controller. Since off-the-shelf peripherals are unlikely to

have such a mechanism built-in, we interpose a device between each

peripheral and the bus in order to provide this functionality to our

real-time I/O management system. In addition to restricting bus ac-

cess, real-time bridges also provide an important additional service

to connected peripherals. Each real-time bridge provides a buffer

which is able to store pending traffic while bus access is prohibited.

This allows high-bandwidth peripherals to be blocked from the bus

for relatively long periods of time without suffering from data loss

due to full internal buffers on the COTS peripheral. Combined with

a communication guarantee provided by the reservation controller’s

scheduling policy, this guarantees the I/O system will deliver all com-

munication traffic by its I/O deadline.

3.5.1 Prototype Details

We envision a final general real-time bridge using a setup similar

to the ML455 [76] (see figure 3.3), an FPGA development platform
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Figure 3.3: Since the ML455 FPGA development platform contains both

a PCI-X edge and a PCI-X socket, it can be interposed be-

tween a PCI-X peripheral and a PCI-X COTS bus and there-

fore function as a real-time bridge.

which can be directly interposed between a COTS bus and a COTS

peripheral. This device contains both a PCI-X edge connector and

a PCI-X socket slot connected to the same Virtex 4 FPGA chip,

which would allow various types of peripherals to use the exact same

real-time bridge.

However, in order to rapidly develop a complete prototype, we

focused our effort on a real-time bridge for one specific peripheral.

We targeted a network interface card on the ML505 FPGA Evalua-

tion Platform [74]. This device features both an Ethernet hardware

interface as well as a one-lane PCI-E edge connector both connected

to the same Virtex 5 FPGA chip.

We first describe the hardware components of the System-on-Chip
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Figure 3.4: Our real-time bridge prototype is a System-on-Chip imple-

mented on the ML505 FPGA Evaluation Platform.

(SoC) design, and then elaborate on the software development effort.

Hardware design

A logical outline of the important hardware components in the net-

work interface card version of the real-time bridge is shown in Figure

3.4. We now describe each of these in the order of the dataflow

through the real-time bridge during normal operation. Consider the

case where a packet arrives through the Ethernet connection.

First, the physical hardware interacts with the Tri-state Eth-

ernet MAC (TEMAC) hardware block. This is a fixed hardware

block on the FPGA, and is the COTS peripheral that the real-time

bridge is managing. This block maintains a set of memory addresses

where to place packets after they are received. After the packet ar-
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rives to the TEMAC, it gets stored into the FPGA DRAM and

an interrupt is raised to the Microblaze Soft CPU [75] which pro-

vides information on where the packet was stored and the size of the

received data.

The Microblaze processor is a soft CPU, meaning that is imple-

mented using the reconfigurable logic on the FPGA. We developed

a driver running on the Microblaze that will take the addresses and

lengths of the packets and put them into a download queue of data

to be sent to the main system. This queue exists in two parts. The

potentially long tail of the queue is stored into the FPGA DRAM,

whereas a bounded number of entries (say 128) of the front of the

queue are stored in hardware on the bridge DMA engine.

The bridge DMA engine, which is a hardware block we created

specifically for the real-time bridge, manages actually moving the

data out of FPGA DRAM and transferring it into the host CPU’s

main memory. Along with the queue of data needing to be trans-

ferred, the bridge DMA engine manages the block and data_rdy

signals on the real-time bridge. When block is asserted, the bridge

DMA engine will not transfer data out of FPGA memory. The

data_rdy signal is asserted whenever any data is in the hardware

queue.

The DMA transfers themselves are abstracted as an address to

address copy on the Processor Local Bus (PLB). The PLB / PCI-E

bridge handles the process of translating a write transaction on the

PLB bus to a write transaction on the PCI-E bus. When the bridge

DMA engine is unblocked by the reservation controller and performs a

DMA operation, the memory containing the packet in FPGA DRAM
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is copied into the Host DRAM. After the transaction is complete,

an interrupt is raised on theHost CPU, which then takes the packet

data and passes it to the network stack for processing.

Sending packets out from the main CPU works in a similar way,

but in the reverse order. The main CPU stores the packet data

in Host DRAM and then writes the addresses to an upload queue

which has the tail in Host DRAM and the front part on the bridge

DMA engine. When the bridge DMA engine is unblocked, it transfers

the packets from Host RAM into FPGA DRAM (the PCI / PLB

Bridge will again do address translation) and raises an interrupt to

the Microblaze Soft Processor. Our driver on the Microblaze then

sends the TEMAC hardware block the addresses and lengths of the

packet data in FPGA DRAM. Finally, the TEMAC hardware sends

the data over the physical Ethernet medium.

Software Design

The software architecture for the real-time bridge is paramount to

our real-time I/O management system’s applicability. Although the

hardware design may be generalized for a particular bus interface

and therefore reused, each unique COTS peripheral requires some

software effort to be transparently controlled by a real-time bridge.

In particular, each peripheral requires two drivers, a host driver to

run on the main CPU, and an FPGA driver to run on the real-

time bridge bridge’s Microblaze Soft CPU. A logical layout of their

interactions is show in Figure 3.5.

One advantage of using COTS peripherals is that it is common for
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Figure 3.5: The real-time bridge software architecture consists of a host

driver and an FPGA driver.

stable, open-source Linux drivers to already exist for peripherals that

we are interested in controlling, which simplifies the software effort.

Thus, in order to maximize code reuse, we run the Linux kernel on

both the real-time bridge and the host CPU.

The real-time bridge’s FPGA runs PetaLinux version 0.30rc1 [50],

a Linux port for the Microblaze Soft CPU based on version 2.6.20

of the Linux kernel. The host system runs a Linux kernel, version

2.6.29.

Importantly, the driver on the main system is designed to make

the real-time bridge completely transparent to the end user and end-

user applications. In Figure 3.5, the Host DMA Interface portion of

the host driver and the FPGA DMA Interface portion of the FPGA

driver can be reused in all real-time bridges. The high-level and

low-level driver portions can be extracted from an open-source Linux

driver for the targeted COTS peripheral. We now elaborate on each

of the drivers.
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The host driver, which is a kernel module running on the main

CPU, creates a network card interface for the real-time bridge. From

the user’s perspective, there is no difference between using a network

card directly and using a network card through a real-time bridge.

To handle incoming traffic from the network, the host driver allo-

cates memory for incoming packets and maintains the available ad-

dresses hardware queue on the bridge DMA engine. When a packet

arrives, the bridge DMA engine uses these addresses to store packet

data and then may raise an interrupt. To reduce overhead, the bridge

DMA engine does not raise an interrupt for every packet transferred.

Instead an interrupt is raised when any of these conditions becomes

true:

• one or more packets have been transferred, and the bridge DMA

engine has no more packets ready to be transferred,

• one or more packets have been transferred, and the block line

becomes asserted,

• the number of transferred packets since the last interrupt reaches

a design-time parameter.

Every time an interrupt is raised, the driver, without making a

copy, delivers the packet addresses and lengths to the Linux network

layer. The Linux network layer then processes and frees the packets.

Finally, the driver refills the bridge DMA engine’s available addresses

hardware queue with new addresses to replace those that were con-

sumed.
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For outgoing traffic, the driver receives packets from the Linux

network layer and puts their lengths and addresses into the outgoing

packet hardware queue on the bridge DMA engine. If the outgoing

packet hardware queue fills up, the driver blocks the network layer

until some packets have been transferred. The network layer, in turn,

stores the backlogged packet information in a software queue. After

the packet data is transferred to FPGA DRAM, an interrupt is raised

by the bridge DMA engine using the same rules as incoming packets,

to inform the driver that the memory associated with the transferred

packets can be freed.

The only dependence of the host driver on the COTS peripheral

is the type of interface that is exported to Linux. This means that,

if we were to design a real-time bridge for a different type of network

interface card, the host driver would remain the same. To adapt

the driver for a different class of peripherals, only the Linux interface

would need be changed2. In terms of driver reuse, the Linux interface

is contained in the high-level driver. Even if a Linux driver does not

exist for the specific COTS peripheral we are using, all drivers for

the same type of peripheral will contain the same Linux interface and

therefore the same high-level driver. Thus, for developing the host

driver, any existing driver for the same type of peripheral that we

are using will reduce software effort.

The FPGADriver runs on the PetaLinux kernel on the real-time

bridge. The driver consists of an FPGA DMA Interface, and the low-

level driver for the TEMAC hardware block. The driver deals only

2The Linux interface determines the class of the device (character device,

block device, or network interface), and the relevant device file operations.
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with lengths and addresses of packets, and does not make copies or

perform any processing in order to minimize the performance impact

of the slow 125MHz Microblaze Processor.

Incoming and outgoing packets work as expected, with a few intri-

cacies. When incoming packets become queued, perhaps because the

block signal is asserted to the real-time bridge, the incoming packet

hardware queue may become full. In this case, the driver maintains a

software queue to store incoming packets until space becomes avail-

able in the incoming packet hardware queue. Therefore, packet drops

and retransmissions are avoided resulting in better performance of

network protocols like TCP. Additionally, the FPGA driver shares

information with the Host Driver in order to propagate network pa-

rameters such as the MAC address and the Maximum Transmission

Unit (MTU).

Even though the FPGA driver has direct interaction with the

COTS hardware, most of the code can be reused from either the

already-developed FPGA DMA interface, or the low-level driver por-

tion of an existing Linux driver. For example, in our network card

real-time bridge prototype, we use the existing TEMAC driver until

the packets are ready to be given to the Linux network stack and

then instead instruct the bridge DMA engine to send them to host

memory. For outgoing packets, the data received from the bridge

DMA engine is sent to the TEMAC hardware block using the same

interface that the PetaLinux network layer uses.

In the worst case, if no driver source code is available for the

COTS peripheral we want to control, the development effort required

to develop the entire driver is still strictly less than the non-COTS
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approach: building application specific hardware in addition to the

entire driver.

3.6 Architecture’s limitations

Two additional architectural attributes need to be considered when

developing the proposed real-time I/O management system. First,

the I/O transfer time is only valid if the device receives the achiev-

able throughput on the front side bus (FSB). Since the CPU main

memory access is not regulated by the reservation controller, it may

concurrently access main memory. Second, for performance reasons,

typical COTS buses do not allow individual bus transactions to be

preempted and so they must run always to completion. This means

that although we may activate a real-time bridge’s block signal, the

bridge will still need to complete its current transaction before relin-

quishing control of the bus, which may affect the schedulability. We

address these concerns in order.

The first concern is that there may still be contention on main

memory even if all other peripherals do not transmit on the bus.

The CPU may concurrently attempt to access main memory. From a

general framework perspective, we would need to pessimistically ac-

count for any increase in bus transfer time due to uncontrolled CPU

interference through a technique similar to that used to analyze the

reverse problem, CPU main memory delay because of peripheral in-

terference [45]. However, there is a key difference which makes the

analysis easier, in that PCI-E and PCI transactions are typically

buffered within the interconnect. This means that unless the main
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memory bandwidth is exceeded, the peripheral will not notice any

increase in transfer time because of the CPU accessing main memory

(the reverse, however, is not true because the interconnect does not

typically buffer CPU main memory access). In a typical COTS archi-

tecture, the cumulative bandwidth consumed by the CPU and each

individual high-speed peripheral does not exceed the bandwidth of

main memory, so calculating the I/O transfer time is straightforward.

The next concern is that, since individual bus transactions must

be allowed to run to completion because of the COTS bus, the reser-

vation controller’s block command is not acted upon immediately.

In order to evaluate the impact of this delay, we computed its max-

imum value. A typical single lane PCI-E device has an achievable

bus throughput of 250MB/sec where each bus transaction is 4KB.

This results in single bus transaction time of 16 microseconds. Since

this is three orders of magnitude less than our I/O period (a high

resolution video stream at 50 frames per second has an I/O period

of 20ms), we consider its effect negligible for the schedulers we eval-

uate. However, if the reservation controller uses a scheduler that

switches between devices with the same granularity as the single bus

transaction time (for example a least slack first scheduler), then this

effect would need to be taken into account (for example by adding an

executing output from each the real-time bridge to measure exact

bus access time).
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3.7 Evaluation

The goal of our evaluation is twofold. First, we demonstrate that

there is a problem using COTS interconnect for a real-time system.

We present an I/O task set which results in I/O deadline misses

when running on a standard COTS bus. Next, we run the same

I/O task set within our scheduling framework, and show that all

deadlines are met. This demonstrates the non-real-time nature of

COTS interconnect, and validates the correctness of our solution.

Performing direct measurements on a high performance COTS

I/O system such as PCI-E is difficult: the PCI-E protocol imple-

ments point-to-point connections between each peripheral and the

rest of the system running at the very high speed of 2.5 GHz, mak-

ing it hard to directly observe. In order to make the most accurate

measurements, we used dedicated hardware on the reservation con-

troller. Our trace acquisition hardware module polls the state of

the data_rdy and block signals with a one microsecond resolution.

Any changes in these signals, along with an associated timestamp,

are output over the reservation controller ML505’s serial port where

they can be received by an external computer for processing.

The most notable feature of our hardware setup is the Asus P5W

DH Motherboard, which features four PCI-E slots (two PCIE1 and

two PCIE16), an Intel 975X system controller (northbridge). For

the real-time I/O system, we use a Xilinx ML505 Evaluation Plat-

form [74] for the Reservation Controller, and connect it to three other

ML505 traffic generators with PCIE1 connections (real-time bridges),

and to one Xilinx ML555 PCI Express Development Board [78] with
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a PCIE8 bus interface (programmed to act as PCI-E traffic genera-

tor). Figure 3.6 shows a picture of our evaluation testbed.

Figure 3.6: Real-time bridge evaluation testbed.

Using a PC platform permits easy access to all PCI slots, how-

ever, to derive meaningful measurements, we changed the FSB clock

frequency obtaining a theoretical memory bandwidth of 2.4 Gbyte/s,

which is in line with typical values for embedded platforms. At this

purpose we slowed down the Front Side Bus to 400MHz, and use a

single RAM chip3.

To make our experiments more easily repeatable, we instructed

the real-time bridge prototype to generate synthetic traffic instead

of using traffic received by the TEMAC over the network. Our pe-

riodic task generating drivers run on the main CPU, and since our
3In this way, Double-Data-Rate signaling is disabled [68].
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Board Data Size Transfer Time Budget Period

ML555 4.0 MB 4.4 ms 5 ms 8 ms

ML505 1.1 MB 7.5 ms 9 ms 72 ms

ML505 1.1 MB 7.5 ms 9 ms 72 ms

ML505 1.1 MB 7.5 ms 9 ms 72 ms

Table 3.1: Our experiments using four flows.

I/O schedule uses periods on the order of milliseconds, it is difficult

to exactly synchronize all synthetic tasks. For this reason, we ran the

tests for many hyperperiods, and show here the traces from the most

closely aligned arrival times, which correspond to the near-critical

instants. The arrival times of the presented traces are never sepa-

rated by more than 0.8 milliseconds. As we said, additionally we

implemented a traffic generator using an ML555 PCI Express De-

velopment Board [78] with a faster 8 lane PCI-E connection. The

synthetic traffic generator is programmed to send a constant amount

of data to main memory every period and obeys the I/O scheduling

commands from the reservation controller.

The task set used in our experiments consists of four real-time

flows competing for main memory. The task parameters (data size,

transfer time, period) are shown in Table 3.1. The tasks’ periods are

harmonic, and the total utilization does not exceed 100%, so the task

set is schedulable under RM.

In the first experiment, the COTS bus is used without the reser-

vation controller. Traffic gets sent on the bus as soon as it arrives,

increasing the execution time of the ML555’s periodic task from 4.4

ms to over 8 ms (an increase of 82%) when the tasks start at a near-
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critical instant. This causes a deadline miss (see Figure 3.7).

Figure 3.7: The trace of a standard COTS I/O system reveals a deadline

miss if the tasks are released at a near-critical instant.

In the second experiment, each peripheral is handled by a sporadic

server (whose corresponding budget and period are shown in Table

3.1) and all the servers are scheduled according to Rate Monotonic

with total utilization 5
8

+ 9
72

+ 9
72

+ 9
72

= 1. By using the proposed

real-time I/O management system, the task set is now successfully

scheduled without missing deadlines because the traffic is prioritized.

A trace of one hyperperiod starting at a near-critical instant is shown

in Figure 3.8.

3.7.1 Network performance and overhead test

An important detail of this implementation is that the (compara-

tively) slow Microblaze processor does minimal processing (working



3.7. Evaluation 95

Figure 3.8: The trace of the task set running with the real-time I/O

management shows the system preventing deadline misses

by prioritizing traffic.

with only the addresses and lengths) and no copying of the potentially

high-bandwidth packet data. This allows our prototype implementa-

tion to achieve a network throughput of about 100 Mbps for upload

and 80 Mbps for download, which coincides exactly with Xilinx’s

TEMAC performance benchmarks for our setup (ML505, 125MHz

Microblaze, 1500 Maximum Transmission Unit (MTU)) [27]. Perfor-

mance can be further improved by using a larger MTU. Additionally,

without the Microblaze bottleneck, the bridge DMA engine was able

to send data at 207 MBps, which approaches the theoretical limit of

a PCI-E single lane connection (250 MBps).

It is worth noticing that the proposed real-time I/O management

system introduces additional latency compared with a COTS periph-

eral communicating directly to the PCI-E bus. This is one tradeoff

that is made in order to provide control of peripheral bus access.

We ran an experiment to get an idea of the effect of this addi-
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tional latency by sending ping packets to the main CPU through

our real-time bridge I/O management system (with the real-time

bridge scheduled as the highest-priority sporadic server) and send-

ing ping packets directly to the FGPA’s PetaLinux OS. Surprisingly,

the packet round-trip times through our bus scheduling prototype

(2.40ms) were actually lower than the round-trip times for the pack-

ets processed immediately on the FPGA (2.62ms). Hence, it is faster

to place the packet data in the bridge DMA engine, assert data_rdy

to the reservation controller, wait for the block signal to be de-

asserted, receive access to the PCI-E bus, transmit the data into

Host DRAM, process the ping on the host’s 2.66 GHz CPU, and re-

verse the entire process for the ping response, than to handle the ping

packet directly on the slower 125 MHz Microblaze processor. This

experiment demonstrates the efficiency of our implementation.

3.8 Related work

In earlier work, Pellizzoni et al. proposed a coscheduling framework

between CPU and I/O peripherals to guarantee main memory latency

for tasks running on the CPU [45, 44]. The authors proposed to

use passive Peripheral gate (P-gate) devices to block and unblock

peripherals (possibly reducing I/O throughput and causing internal

peripheral buffers to overflow) and to synchronize I/O activity with

tasks executing on the CPU.

Although this technique was effective for predicting each task’s

worst-case execution time (WCET) in spite of I/O traffic spikes, it

did not guarantee the timeliness of I/O traffic. To the best of our
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knowledge, our real-time I/O management system provides signifi-

cant advancement over the current state of the art. In fact, while it

remains compatible with the cited timing analysis to guarantee main

memory latency for tasks running on the CPU, the real-time I/O

management system provides the following novel features:

1. it enforces predictable bandwidth reservations for I/O COTS

peripherals,

2. it does not require synchronization between the CPU scheduler

and the I/O subsystem

3. it facilitates lossless reshaping (under given assumptions) of

bursty traffic from a network of distributed real-time nodes.

Finally, it is worth noticing that the proposed real-time I/O man-

agement system is completely transparent to main CPU applications:

in fact, we were able to use a network card through our real-time

I/O management system prototype without any user-end application

modifications.

Apart from the work done by Pellizoni et al. [45, 44], several pa-

pers address the problem of interference at the main memory level.

Empirical approaches can estimate the impact of PCI-bus load on

task computation time based on experimental measurements of ref-

erence tasks [58]. Alternately, analytical approaches exist to bound

I/O interference [32]. However, the analysis is restricted to a single

DMA controller using predictable cycle-stealing arbitration, and can

not be applied to a COTS system. There is also analysis to esti-

mate the impact of mutual interference among processing cores. For



98 3. Real-time bridge

example, static analysis can compute cache access delay in a multi-

processor system [55]. However, these results focus on deriving the

increase in task execution time while neglecting the effect of delay on

communication flows.

Modeling complex COTS interconnections and estimating delay

and buffer requirements for peripheral flows can be done in an AADL-

based environment [41]. An event-based model may be used to es-

timate delay for both computation and communication activities in

a multicore system-on-chip [56]. However, lack of precise knowledge

of COTS behavior implies that these analyses must make pessimistic

assumptions, which can lead to high delay and buffer sizes. Our

real-time I/O management system removes such unpredictability by

forcing an implicit bus schedule.



Chapter 4

Real-time management of

shared COTS peripherals

The hardware framework described in chapter 3 supports a single

real-time flow through each real-time bridge. Therefore, if the con-

trolled peripheral is shared among two or more tasks with different

real-time priorities it is not possible to distinguish the different data

flows and, as a consequence, schedule them properly.

In this chapter we describe a similar architecture based on a

multi-flow real-time bridge [5], which is an improved real-time

bridge capable to export to the host system several virtual devices

mapped on the same physical peripheral. With this new feature,

multiple real-time flows can be scheduled within the same real-time

bridge, giving the whole architecture the following main improve-

ments:

• possibility of sharing a peripheral also among tasks with differ-

ent priorities,

• increased peripheral utilization,

• increased system scalability (reducing the number of peripher-

als and bridges needed).

99
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In the following sections, we first give an overview of the new

features and benefits of the multi-flow real-time bridge (section 4.1).

Then we describe design and implementation details for our pro-

totype (section 4.2). Finally, in section 4.3, the new experiments’

results are discussed.

4.1 Multi-flow real-time bridge overview

Using the real-time bridge, described in chapter 3, it is possible to

enforce a real-time scheduling for I/O transactions on COTS buses

like PCI-E. Each real-time bridge can control one peripheral. More-

over, all the data traffic that goes through the bridge is considered

as a single real-time flow and scheduled with the same priority.

With such architecture we obtained excellent results, avoiding

interferences among different peripherals (see section 3.7). However,

we could not address interference within I/O peripherals. As an

evolution of the real-time bridge, we designed and implemented a

new component, called multi-flow real-time bridge, that allows

multiple real-time flows through a single bridge. This new bridge has

been defined multi-flow because it is able to distinguish different data

flows, which vary in real-time importance, and send to the reservation

controller (see section 3.4) the needed information to schedule each

flow according to its own priority.

The main contribute of this new feature is the possibility of shar-

ing a peripheral among tasks with different priorities, being able to

enforce a real-time scheduling for the different flows. In a single-flow

real-time bridge, if two or more tasks are accessing the same periph-
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eral (which means also the same bridge), they may delay each other

transaction, since the policy to schedule transactions within a real-

time bridge is just FIFO (First-In First-Out). When the competing

tasks have the same priority this might be acceptable, but it needs

to be managed with a proper design of the real-time system. In-

stead, when the tasks have different criticality, a lower priority task

might delay a higher priority one, and potentially make the critical

task misses its deadline. A multi-flow real-time bridge is capable to

avoid this kind of interferences within an I/O peripheral, schedul-

ing one flow at the time, according to a predeterminated real-time

scheduling policy. Hence, peripheral sharing is now safe, and it is not

needed anymore to have a peripheral and a bridge for each priority

level. In section 4.3, we show some experimental results on our pro-

totype that demonstrate the interference within the peripheral and

how the multi-flow real-time bridge can solve this problem.

Being able of sharing a device has some direct, positive conse-

quences: the devices’ utilization and the system scalability are in-

creased, while the cost of the system is reduced. For example, we

could imagine a hard real-time system where there are four tasks

with different priorities:

• task1 has the highest priority and requires 10% of the device

bandwidth;

• task2 has a lower priority than task1 and requires 50% of the

device bandwidth;

• task3 has a lower priority than task2 and requires 70% of the

device bandwidth.
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• task4 has a lower priority than task3 and requires 40% of the

device bandwidth.

Using a single-flow real-time bridges we would need four devices and

four bridges in order to assure a proper real-time scheduling. With

multi-flow real-time bridges we could use only two devices and two

bridges, having task1 and task3 sharing the same bridge, and task2

and task4 using the other one. As a consequence, the device utiliza-

tion is definitely higher (two device with 80% and 90%, instead of

four with 10%, 50%, 70%, and 40%). Moreover, the whole system

will be less expensive and more scalable (since there will be space for

more devices, hence more tasks).

As usual, a trade-off must be paid, and, compared to a single-flow

real-time bridge, a multi-flow real-time bridge requires:

• more memory for buffers,

• more complex drivers,

• a hardware or software logic to distinguish different flows,

• in case of a software logic a faster CPU is needed.

In the next section, discussing our prototype implementation, we

will see how these new requirements can be easily satisfied. For

example, for a network card, the amount of memory used for each

flow is less than one Megabyte. Increasing the number of flows, the

amount of memory needed increases linearly; i.e. for 8 flows we need

about 8 Megabytes, which is still reasonable. The new prototype

runs a software logic to distinguish the different flows using an IBM
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Power PC 400MHz, which is a quite common processor for embedded

systems, and more than enough to accomplish the multi-flow real-

time bridge requirements. Finally, the drivers are more complex,

but just in that parts which are independent from the controlled

device, and have been already developed for our prototype. As a

consequence, changing the controlled device would require just small

changes, like we already discussed in section 3.5. Moreover, increasing

the number of supported flows is a completly dynamic process, so it

does not require any change in the software.

4.2 Multi-flow real-time bridge design and

implementation

As we said for the single-flow real-time bridge in section 3.5, we

envision a final implementation using a setup similar to the Xilinx

ML455 [76] (see figure 3.3 in page 81), where a COTS peripheral can

be connected to a real-time bridge, which is directly connected to a

COTS bus.

However, also in this case, in order to rapidly develop a complete

prototype, we decided to use a Xilinx ML507 Evaluation Platform

[77], which features an XC5VFX70T FPGA, and a 400 MHz IBM

Power PC processor1. We also targeted the same network card in-

terface, a Tri-state Ethernet MAC (TEMAC), which will act as the

controlled COTS peripheral.

1For the single-flow real-time bridge we used a Xilinx ML505 [74] with a

Microblaze soft CPU [75].
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Figure 4.1: Our multi-flow real-time bridge prototype is a System-on-

Chip implemented on the ML507 FPGA Evaluation Plat-

form. In this case only two real-time flows are supported,

but more bridge DMA engines could be easily added.

To allow multiple real-time flows through a single real-time bridge

we needed to replicate the bridge DMA engine for each flow we would

like to support. Figure 4.1 shows an overview of the hardware com-

ponents of a 2-flow real-time bridge prototype; it is possible to no-

tice that, in order to support two real-time flows, a second bridge

DMA engine has been added. Each bridge DMA engine has its own

data_rdy and block pin, thus each flow can be separately scheduled.

Moreover, since the scheduling wires interact only with the bridge

DMA engine, the reservation controller does not need to be modi-

fied. In fact, in this design there is no difference between scheduling

bridge DMA engines resident in the same bridge or in different ones.

It is also worth noticing that an IBM Power PC processor is now
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replacing the Microblaze Soft CPU used in the single-flow real-time

bridge. The Power PC runs at 400 MHz, which is much faster than

the Microblaze, running at only 125 MHz; this allowed us to imple-

ment a complete software logic to distinguish different flows, without

introducing any significant delay. Anyway, as a direct consequence,

the original real-time bridge drivers needed to be widely modified

to support device virtualization, and incoming data routing : these

concepts will be explained in detail in the following section.

4.2.1 Multi-flow real-time bridge software details

In the hardware design the main difference between a single-flow and

a multi-flow real-time bridge is that the second one has multiple

bridge DMA engines available. This allows us to schedule different

flows within the same peripheral according to the priority assigned to

the bridge DMA engine. However a logic to split the incoming and

out-coming data is still needed. Every time a block of data needs

to be transferred from main memory to the device (write operation)

we need to commit this transfer to one of the available bridge DMA

engines, according with the priority of the task that initiates the

transaction. Equally, when a transfer is required from the the device

to main memory (read operation) the right bridge DMA engine must

be selected.

To easily distinguish these logic flows we developed a driver for

the host system that supports device virtualization. In other words,

the multi-flow real-time bridge exposes a separate memory I/O block

for each bridge DMA engine and the host driver, instead of creating a
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Figure 4.2: Software architecture overview of a 2-flow real-time bridge.

single device interface, creates as many virtual devices as the amount

of bridge DMA engines probed. From the user point of view this

approach is completely transparent: multiple device interfaces are

exported in User Mode and each of them can be accessed like it is

the only one using the physical device.

Figure 4.2 shows an overview of the software architecture when

two bridge DMA engines are present. Comparing this scheme with

the one in figure 3.5 (page 85) we can notice how the low level driver,

running in the FPGA, is still implemented like a common layer. Con-

versely, all the other components run a different instance for each

bridge DMA engine. In particular, each instance of the high level

driver creates a distinct software interface for the device: for exam-
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ple, it could be a character device or a network interface, depending

on the type of controlled peripheral.

The device virtualization approach in now used also in commer-

cial devices, like the Intel 82598 10 Gigabit Ethernet Controller [18].

In this case, a hardware virtualization is realized to optimize the de-

vice sharing among several virtual machines: the main purpose is

offloading data sorting and data copying from the virtual machine

monitor (VMM) software layer to the hardware. In term of aver-

age performance, our multi-flow real-time bridge prototype is slower

compared with the Intel 82598, but this is just a limitation of the ac-

tual implementation. Instead, from the design point of view, we are

able to offer a similar device virtualization feature, but also a global

real-time I/O bus scheduling within the peripheral and among differ-

ent peripherals, which is completely innovative and very important

in hard real-time systems.

For a better understanding of the multi-flow real-time bridge de-

sign, let the two cases, read and write operations, be treated sepa-

rately and explained in the context of our implementation: a multi-

flow real-time bridge controlling a Gigabit Ethernet network card.

Having in mind a specific device will make the general design just

easier to understand, but all the basic concepts could still be applied

to other kinds of device. For a network card, we can think of a write

operation (memory to device) like an out-coming packet (upload),

and of a read operation (device to memory) like an incoming one

(download): this will be the terminology used for the rest of this

section.
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Upload

One of the goals we want to achieve with the multi-flow real-time

bridges is that the priority assigned to each task is reflected also

when the task is using a peripheral and, as a consequence, accessing

the bus. In order to do this, in our design each bridge DMA engine

has a different priority (assigned by the reservation controller), and

for each one of them a virtual network device (eth0, eth1, etc. . . )

is exported in User Mode. Each network device can be configured

with its own IP address. Hence, tasks can be bound with the right

virtual network device, according with their priorities. For example,

the highest priority task could use eth0 (let it be the highest priority

bridge DMA engine) and lower priority tasks could be bound to other

virtual devices. Writing data to a certain virtual device will activate

only the corresponding bridge DMA engine, so that the packet will

be consequently prioritized.

It is evident how this approach is completely transparent to the

application, which does not need any modification. All is needed is to

configure the real-time application to use a specific (virtual) device,

which is needed in any case; for example, with a network card this

means only assigning the right IP address to the virtual device and

having the task communicating in the related network.

Download

Every time a packet arrives it is delivered in the FPGA main memory,

and the FPGA driver is activated by an interrupt. At this point, in

order to forward the packet to the host system, a bridge DMA engine
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needs to be selected, according to the priority of the packet itself.

Since we are scheduling data flows, the packet priority is directly

related to the destination task, which needs to be guessed reading

the packet.

A hook for a filter function is provided by the FPGA driver and,

knowing the network protocols used, a special custom function could

be easily written. Anyway, for a common application we can imagine

that the IP protocol is used, and the proper filter function has been

implemented. In this case, assuming that each task is using a virtual

device with its own IP address, reading the destination IP field in the

IP header is enough to select the right bridge DMA engine. It follows

that the packet will get access to the bus according to its priority.

A special policy needs to be applied for broadcast packets. In

our implementation the default filter function can be configured to

send all the broadcast traffic to a certain bridge DMA engine, or to

equally distribute them among all the available bridge DMA engine.

Also in this case a custom filter function can be written. However we

assume that in a hard real-time system, the traffic pattern and the

used protocols are well know, and by reading the packet it should be

easy to identify the final destination.

Hardware implementation

As we will see in the section 4.3, this software implementation does

not introduce any significant delay. However, as a future work or for

an ASIC implementation, the hardware support for device virtual-

ization could be improved, for example using multiple PCI functions
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and MSI-X vectors. Moreover, the filter function for incoming traffic

could be implemented as a hardware block.

4.3 Evaluation

To show the advantages of our I/O management system, and evaluate

the implementation of our prototype, we performed three kinds of

experiments, measuring:

1. interference among I/O peripherals,

2. interference within I/O peripherals,

3. network performance of our prototype.

For the first experiment, we obtained the same results already dis-

cussed in section 3.7 (page 91) and performed with real-time bridge.

This is reasonable since, dealing with interference among different

peripherals, nothing changed between real-time bridges and the new

multi-flow real-time bridge implementation.

The other two experiments are discussed in the following sections.

4.3.1 Interference within I/O peripherals

The goal of the second experiment is to demonstrate that, although

giving each device guaranteed main memory access is a significant

improvement to a COTS system (as shown in the first experiment),

more control may still be necessary. Particularly, if real-time tasks

with different priorities are using the same peripheral, it is desirable
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Source Budget Period

bridge DMA engine #0 4 ms 6 ms

ML555 4 ms 21 ms

bridge DMA engine #1 5 ms 42 ms

Table 4.1: Our second experiment has three flows on two peripherals

(both bridge DMA engines are on the same peripheral).

to create prioritized virtual channels through the peripheral, where

traffic destined for the high priority task is given its own reservation

and is scheduled differently than traffic destined for the lower priority

task.

The task set used in our experiments consists of three real-time

flows on two devices. The multi-flow real-time bridge device contains

two bridge DMA engines with traffic of different priorities. The task

parameters (budget, period) are shown in Table 4.1. The transfer

time is slightly less than the allocated sporadic server budget. The

tasks’ periods are harmonic, and the total utilization does not exceed

100%, so the task set is schedulable (4
6

+ 4
21

+ 5
42
≈ 0.98 < 1).

In the first run, the devices transmit data without the reservation

controller. Since both bridge DMA engine are co-located on the same

multi-flow real-time bridge, their traffic is interleaved and the transfer

time of the task corresponding to bridge DMA engine #0 increases

from less than 4 ms to over 6 ms, missing its I/O deadline (Figure

4.3). The bottleneck here is not main memory bandwidth, but rather

peripheral bus bandwidth. Such a case may arise if, for example, two

real-time tasks of different priorities attempt to send data at the same
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Figure 4.3: The bus-access trace of a system with two DMA engines on

the same multi-flow real-time bridge reveals the low priority

flow interfering with the high priority flow, causing a deadline

miss.
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Figure 4.4: The bus-access trace of the same task set shows the real-

time I/O management system prioritizing bus access among

real-time flows, preventing a deadline miss.

time out over the same network card.

In the second run, each virtual flow is schedule by a sporadic

server according to the parameters in Table 4.1. By using the pro-

posed real-time I/O management system, the task set is now suc-

cessfully scheduled without missing deadlines because the traffic is

prioritized. An execution trace is shown in Figure 4.4. Notice that

because there is a medium-priority real-time flow from the ML555,

the lower priority traffic from bridge DMA engine #1 is not trans-

ferred immediately after bridge DMA engine #0’s traffic completes.

Such system-aware I/O scheduling is not possible on any hardware

virtualized network card (since they are aware only of flows going

through the one device), which reveals another advantage of using

our I/O management system.



114 4. Real-time management of shared COTS peripherals

TCP RX UDP RX TCP TX UDP TX

MontaVista Linux 209 307 393 492

Real-time bridge 543 750 331 345

Table 4.2: TEMAC bandwidth in Mbit/sec mesuared with NetPerf.

MTU was set to 1500 bytes.

4.3.2 Network performance

In order to measure the network bandwidth that our prototype can

achieve, we used NetPerf [33], a standard benchmark suite. We also

compared our results with the one discussed in the Xilinx Application

Note 1127 [30]. It is worth to notice that, in Xilinx’s test, MontaVista

Linux 4.0 is installed on the FPGA and NetPerf runs directly on the

Power PC. On the contrary, in our test NetPerf runs on the host

system and the Linux installation on the real-time bridge runs only

the FPGA driver, as discussed in section 4.2.1. In this way all the the

operations needed to handle the TCP/IP protocol stack are executed

on the main system, which is much faster than the FPGA. On the

other hand, running NetPerf on the main system, we need to transfer

the packets between main memory and the FPGA DRAM and, for

incoming traffic, we also run on the FPGA a software filter to select

the right bridge DMA engine for each packet.

Table 4.2 shows compared results between MontaVista Linux and

our multi-flow real-time bridge. We can see how the real-time bridge

is much faster in download (145%–160% increment), but it is slower

in upload (16%–30% loss). The speed up in download is mainly due
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to the fact that we offload TCP/IP computation from the FPGA to

the main system. We instead measured a loss in upload bandwidth

due to the implementation of the PCI-E bridge that we are using

on the real-time bridge, where read operations performe much slower

than write ones. Anyway, this is just a limitation of the current

implementation and not of the general design.

Another interesting result is that, performing tests using 1 or 2

bridge DMA engines we measured the same bandwidth. With just

one bridge DMA engine the filter function for incoming traffic and

the device virtualization are both disabled. It follows that, enabling

them does not introduce any evident overhead, even though they are

completely software implemented.
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Chapter 5

PREM: PRedictable

Execution Model

With ASMP-Linux and multi-flow real-time bridges we are able to

mitigate, and in some cases to remove, software jitter and internal-

and inter-peripheral interference. However, other two important sources

of indeterminism have not been addressed yet:

• in ASMP-Linux, if the real-time task running on a shielded

processor needs to use a peripheral, the interference between

the driver that controls the peripheral and the task cannot be

managed;

• using only our novel I/O management system, based on multi-

flow real-time bridges and a reservation controller, we are not

able to prevent interferences between a peripheral and the CPU,

when they access memory at the same time.

Solving also these two issues would open the possibility to build a

fully predictable system, running on COTS components.

In this chapter, we introduce a novel system execution model,

the PRedictable Execution Model (PREM[48]), which, in contrast to

the standard COTS execution model, coschedules at a high level all

117
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active COTS components in the system, such as CPU cores and I/O

peripherals, and the interrupts of critical device drivers.

The chapter is organized as follows. Section 5.1 introduce the

general concepts of PREM. Section 5.2 discusses related work. In

Section 5.3 we describe PREM’s main contribution: a co-scheduling

mechanism that schedules I/O interrupt handlers, task memory ac-

cesses and I/O peripheral data transfers in such a way that access

to shared COTS resources is serialized achieving zero or negligible

contention during memory accesses. Then, in sections 5.4 and 5.5 we

discuss the challenges in term of hardware architecture and code or-

ganization that must be met to predictably compile real-time tasks.

Finally, in section 5.6 we detail our prototype testbed, including our

compiler implementation based on the LLVM Compiler Infrastruc-

ture [34], and provide an experimental evaluation.

5.1 Introduction

To exploit the high average performance of COTS components with-

out experiencing the long delays occasionally suffered by real-time

tasks, we need to control the operating point of each COTS shared

resource and maintain it below saturation limits. This is necessary

because the low-level arbiters of the shared resources are not typically

designed to provide real-time guarantees. We believe that this is in-

deed possible by carefully rethinking the execution model of real-time

tasks and by enforcing a high-level coscheduling mechanism among

all active COTS components and the drivers in the system. Briefly,

the key idea is to coschedule active components so that contention
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for accessing COTS shared resources (caches, memories, buses) is

implicitly resolved by the high-level coscheduler without relying on

low-level, non-real-time arbiters. Several challenges had to be over-

come to realize the PRedictable Execution Model:

• Task execution times suffer high variance due to internal CPU

architecture features (caches, pipelines, etc.) and unknown

cache miss patterns. This source of temporal unpredictabil-

ity forces the designer to make very pessimistic assumptions

when performing schedulability analysis. To address this prob-

lem, PREM uses a novel program execution model with three

main features:

1. jobs are divided into a sequence of non-preemptive schedul-

ing intervals;

2. some of these scheduling intervals (named predictable

intervals) are executed predictably and without cache-

misses by prefetching all required data at the beginning

of the interval itself;

3. the execution time of predictable intervals is kept con-

stant by monitoring CPU time counters at run-time.

• as we already discussed, I/O peripherals with DMA master

capabilities contend for physically shared resources, including

memory and buses, in an unpredictable manner. To address

this problem, we use real-time bridges, described in chapters 3

and 4, and introduce a new peripheral scheduler, controlled by
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the main CPU, that puts the COTS I/O subsystem under the

discipline of real-time scheduling.

• combining our I/O management system with a new compiler

pass, we enforce a coscheduling mechanism that serializes ar-

bitration requests of active components (CPU cores, I/O pe-

ripherals, and interrupts). During the execution of a task’s

predictable interval, a scheduled peripheral can access the bus

and memory without experiencing delays due to cache misses

caused by the task’s execution.

Our PRedictable Execution Model can be used with a high level

programming language like C by setting some programming guide-

lines and by using a modified compiler to generate predictable exe-

cutables. The programmer provides some information, like beginning

and end of each predictable execution interval, and the compiler gen-

erates programs which perform cache prefetching and enforce a con-

stant execution time in each predictable interval. In light of the above

discussion, we argue that real-time embedded applications should be

compiled according to a new set of rules dictated by PREM. At the

price of minor additional work by the programmer, the generated

executable becomes far more predictable than state-of-the-art com-

piled code, and when run with the rest of the PREM system, shows

significantly reduced worst-case execution time.
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5.2 Related work

Several solutions have been proposed in prior real-time research to

address different sources of unpredictability in COTS components,

including real-time handling of peripheral drivers, real-time compila-

tion, and analysis of contention for memory and buses. For peripheral

drivers, Facchinetti et al. [23] proposed using a non-preemptive inter-

rupt server to better support the reusing of legacy drivers. Addition-

ally, analysis can be done to model worst-case temporal interference

caused by device drivers [35]. For real-time compilation, a tight cou-

pling between compiler and worst-case execution time (WCET) ana-

lyzer can optimize a program’s WCET [24]. Alternatively, a compiler-

based approach can provide predictable paging [53]. For analysis of

contention for memory and buses, existing techniques can analyze

the maximum delay caused by contention for a shared memory or

bus under various access models [46, 56]. All these works attempt

to analyze or control a single resource, and obtain safe bounds that

are often highly pessimistic. Instead, PREM is based on a global

coschedule of all relevant system resources.

Instead of using COTS components, other researchers have dis-

cussed new architectural solutions that can greatly increase system

predictability by removing significant sources of interference. Instead

of a standard cache-based architecture, a real-time scratchpad ar-

chitecture can be used to provide predictable access time to main

memory [73]. The Precision Time (PRET) machine [21] promises

to simultaneously deliver high computational performance together

with cycle-accurate estimation of program execution time. While our



122 5. PREM: PRedictable Execution Model

PRedictable Execution Model borrows some ideas from these works,

it exhibits one key difference: our model can be applied to existing

COTS-based systems, without requiring significant architectural re-

design. This approach allows PREM to leverage the advantage of

the economy of scale of COTS systems, and support the progressive

migration of legacy systems.

5.3 System model

We consider a typical COTS-based real-time embedded system com-

prising of a CPU, main memory and multiple DMA peripherals.

While in this first design of PREM we restrict our discussion to single-

core systems with no hardware multithreading, we believe that our

predictable execution model is also applicable to multicore systems.1

The CPU can implement one or more cache levels. We focus

on the last cache level, which typically employs a write-back policy.

Whenever a task suffers a cache miss in the last level, the cache

controller must access main memory to fetch the newly referenced

cache line and possibly write-back a replaced cache line. Peripherals

are connected to the system through COTS interconnect such as PCI

or PCI-E [42].

DMA peripherals can autonomously initiate data transfers on the

interconnect. We assume that all data transfers target main memory,

that is, data is always transferred between the peripheral’s internal

buffers and main memory. Therefore, we can treat main memory as a
1We will present a predictable execution model for multicore systems as part

of our planned future work.
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single resource shared by all peripherals and by the cache controller.

The CPU executes a set Γ = {τ1, . . . , τN} of N real-time periodic

tasks. Each task can use one or more peripherals to transfer input

or output data to or from main memory. We model all peripheral

activities as a set of M periodic I/O flows ΓI/O = {τ I/O1 , . . . , τ
I/O
M }

with assigned timing reservations, and we want to schedule them

in such a way that only one flow is transferred at a time. At this

purpose, we use the real-time bridges described in chapters 3 and 4.

However, the reservation controller discussed in 3.4 has been replaced

with a slightly different device, called peripheral scheduler.

Figure 5.1: Real-Time I/O Management System.

As we can see in figure 5.1, the peripheral scheduler is directly

connected to the system through the PCI-E bus. This device, receiv-

ing information from the tasks compiled according to PREM’s rules,

will control the real-time bridges, scheduling the I/O peripherals traf-

fic and the interrupts, in order to avoid any kind of interference in the

bus. For simplicity, in the rest of this chapter we assume that each
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peripheral services a single task. However, this assumption can be

easily lifted by supporting peripheral virtualization with multi-flow

real-time bridges.

The peripheral scheduler, in order to allow an I/O transaction

on the bus, must be sure that the CPU will not access main mem-

ory within a certain interval of time. Unfortunately, when a typical

real-time task is executed on a COTS CPU, cache misses are unpre-

dictable, making it difficult to avoid low-level contention for access to

main memory. To overcome this issue, we propose a set of compiler

and OS techniques that enable us to predictably schedule all cache

misses during a given portion of a task execution. The code for each

task τi is divided into a set of Ni scheduling intervals {si,1, . . . , si,Ni
},

which are executed sequentially at run-time. The timing require-

ments of τi can be expressed by a tuple {{ei,1, . . . , ei,Ni
}, pi, Di},

where pi, Di are the period and relative deadline of the task, with

Di ≤ pi, and ei,j is the maximum execution time of si,j, assuming

that the interval runs in isolation with no memory interference. A

job can only be preempted by a higher priority job at the end of

a scheduling interval. This ensures that the cache content can not

be altered by the preempting job during the execution of an inter-

val. We classify the scheduling intervals into compatible intervals and

predictable intervals.

Compatible intervals are compiled and executed without any spe-

cial provisions (they are backwards compatible). Cache misses can

happen at any time during these intervals. The task code is allowed

to perform OS system calls, but blocking calls must have bounded

blocking time. Furthermore, the task can be preempted by interrupt
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Figure 5.2: Predictable Interval with constant execution time.

handlers of associated peripherals. We assume that the maximum

execution time ei,j for a compatible interval can be computed based

on traditional static analysis techniques. However, to reduce the

pessimism in the analysis, we prohibit peripheral traffic from being

transmitted during a compatible interval. Ideally, there should be

a small number of compatible intervals which are kept as short as

possible.

Predictable intervals are specially compiled to execute according

to the PREM model shown in figure 5.2, and exhibit three main

properties.

First, each predictable interval is divided into two different phases.

During the initial memory phase, the CPU accesses main memory to

perform a set of cache line fetches and replacements. At the end

of the memory phase, all cache lines required during the predictable

interval are available in last level cache.

Second, the second phase is know as the execution phase. During
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this phase, the task performs useful computation without suffering

any last level cache misses. Predictable intervals do not contain any

system calls and can not be preempted by interrupt handlers. Hence,

the CPU does not perform any external main memory access during

the execution phase. Due to this property, peripheral traffic can

be scheduled during the execution phase of a predictable interval

without causing any contention for access to main memory.

Third, at run-time, we force the execution time of a predictable

interval to be always equal to ei,j. Let emem
i,j be the maximum time

required to complete the memory phase and eexeci,j to complete the

execution phase. Then offline we set ei,j = emem
i,j + eexeci,j and at run-

time, even if the memory phase lasts for less than emem
i,j time units, the

overall interval still completes in exactly ei,j. This property greatly

increases task predictability without affecting CPU worst-case guar-

antees.

Figure 5.3: Example System-Level Predictable Schedule
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Figure 5.3 shows a concrete example of a system-level predictable

schedule for a task set comprising two tasks τ1, τ2 together with two

I/O flows τ I/O1 , τ
I/O
2 which service τ1 and τ2 respectively. Both tasks

and I/O flows are scheduled according to fixed priority, with τ1 hav-

ing higher priority than τ2 and τ
I/O
1 higher priority than τ I/O2 . We set

Di = pi and assign to each I/O flow the same period and deadline as

its serviced task and a transmission time equal to 4 time units. As

shown in Figure 5.3 for task τ1, this means that the input data for a

given job is transmitted in the period before the job is executed, and

the output data is transmitted in the period after. Task τ1 has a sin-

gle predictable interval of length e1,2 = 4 while τ2 has two predictable

intervals of lengths e2,2 = 4 and e2,3 = 3. The first and last interval

of both τ1 and τ2 are special compatible intervals. These intervals

are needed to execute the associated peripheral driver (including in-

terrupt handlers) and set up the reception and transmission buffers

in main memory (i.e. read and write system calls). More details

are provided in section 5.6. I/O flows can be scheduled both during

execution phases and while the CPU is idle. The described scheme

can be modeled as a hierarchical scheduling system [61], where the

CPU schedule of predictable intervals supplies available transmission

time to I/O flows.

5.4 Architectural constraints and solutions

Predictable intervals are executed in a radically different way com-

pared to the speculative execution model that COTS components are

typically designed to support. In this section, we detail the challenges



128 5. PREM: PRedictable Execution Model

and solutions to implement the PRedictable Execution Model on top

of a COTS architecture.

5.4.1 Caching and prefetch

Our general strategy to implement the memory phase consists of two

steps:

1. we determine the complete set of memory regions that are ac-

cessed during the interval. Each region is a continuous area in

virtual memory. In general, its start address can only be deter-

mined at run-time, but its size A is known at compile time.

2. During the memory phase, we prefetch all cache lines that con-

tain instructions and data for required regions; most COTS

instruction sets include a prefetch instruction that can be used

to load specific cache lines in last level cache.

Step (1) will be detailed in section 5.5. Step (2) can be successful

only if there is no cache self-eviction, that is, prefetching a cache line

never evicts another line loaded during the same memory phase. In

the remainder of this subsection, we describe self-eviction prevention.

Most COTS CPUs implement the last-level cache as an N -way

set associative cache. Let B be the total size of the cache and L be

the size of each cache line in bytes. Then the byte size of each of the

N cache ways is W = B/N . An associative set is the set of all cache

lines, one for each way, which have the same index in cache; there are

W/L associative sets. Last level cache is typically physically tagged

and physically indexed, meaning that cache lines are accessed based
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on physical memory addresses only. We also assume that last level

cache is not exclusive, that is, when a cache line is copied to a higher

cache level it is not removed from the last level.

Figure 5.4: Cache organization with one memory region

Figure 5.4 shows an example where L = 4,W = 16 (parameters

are chosen to simplify the discussion and are not representative of

typical systems). The main idea behind our conflict analysis is as

follows: we compute the maximum amount of entries in each asso-

ciative set that are required to hold the cache lines prefetched for all

memory regions in a scheduling interval. Based on the cache replace-

ment policy, we then derive a safe lower bound on the amount of

entries that can be prefetched in an associative set without causing

any self-eviction.
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Consider a memory region of size A. The region will occupy at

most K = dA−1
L
e+ 1 cache lines. As shown in Figure 5.4 for a region

with A = 15, K = 5, the worst case is produced when the region uses

a single byte in its first cache line. Assume now that virtual memory

addresses coincide with physical addresses. Then since the region is

contiguous and there are W/L cache lines in each way, the maximum

number of entries used in any associative set by the region is d K
W/L
e.

For example, the region in Figure 5.4 requires two entries in the set

with index 0. We then derive the maximum number of entries for

the entire interval by summing the entries required for each memory

region. Unfortunately, this is not generally true if the system employs

paged virtual memory. If the page size P is smaller than the sizeW of

each way, the index of each cache line inside the cache way is different

for virtual and physical addresses. In the example of Figure 5.4 with

P = 8, the number of entries for the memory region is increased

from 2 to 3. We consider two solutions: 1) if the system supports it,

we can select a page size multiple of W just for our specific process.

This solution, which we employed in our implementation, solves the

problem because the index in cache for virtual and physical addresses

is the same no matter the page allocation. 2) We use a modified

page allocation algorithm in the OS. Note that a suitable allocation

algorithm could decrease the required number of associative entries

by controlling the allocation in physical memory of multiple regions.

We plan to pursue this solution in our future work.

Due to space constraints, a thorough discussion of cache replace-

ment policies is provided in [43]. Let Q be the maximum number of

entries in any associative set required by the scheduling interval. Fur-
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thermore, let Q′ be the number of such entries relative to cache lines

that are accessed multiple times during the memory phase; in our

implementation, this only includes the cache lines that contain the

small amount of instructions of the memory phase itself, so Q′ = 1.

In [43] we prove the following:

Theorem 3. A memory phase will not suffer any cache self-eviction

if Q is at most equal to:

• N : for FIFO or LRU replacement policy;

• N/(2Q′
) +Q′: for pseudo-LRU replacement policy;

• 1: for random replacement policy.

Finally, for systems implementing paged virtual memory, we em-

ploy the following three assumptions:

• the CPU supports hardware Translation Lookaside Buffer (TLB)

management;

• all pages used by predictable intervals are locked in main mem-

ory;

• the TLB is large enough to contain all page entries for a pre-

dictable interval without suffering any conflict.

Under such assumptions, each page used in a predictable interval

can cause at most one TLB miss during the memory phase, which

requires a number of fetches in main memory equal to at most the

level of the page table.
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5.4.2 Interval length enforcement

As described in section 5.3, each predictable interval is required to ex-

ecute for exactly ei,j time units. If ei,j is set to be at least emem
i,j +eexeci,j ,

the computation in the execution phase is guaranteed to terminate

at or before the end of the interval. The interval can then enter

active wait until ei,j time units have elapsed since the beginning of

its memory phase. In our implementation, elapsed time is computed

using a CPU performance counter that is directly accessible by the

task; therefore, neither OS nor memory interaction are required to

enforce interval length.

5.4.3 Scheduling synchronization

In our model, peripherals are only allowed to transmit during a pre-

dictable interval’s execution phase or while the CPU is idle. To

compute the peripheral schedule, the peripheral scheduler must thus

know the status of the CPU schedule. Synchronization can be achieved

by connecting the peripheral scheduler to a peripheral interconnec-

tion as shown in figure 5.1. Scheduling messages can then be sent

by either a task or the OS to the peripheral scheduler. In particular,

at the end of each memory phase the task sends to the peripheral

scheduler the remaining amount of time until the end of the current

predictable interval. Note that propagating a message through the

interconnection takes non-zero time. Since this time is typically neg-

ligible compared to the size of a scheduling interval2, we will ignore

2In our implementation we measured an upper bound to the message propa-

gation time of 1us, while we envision scheduling intervals with a length of 100-
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it in the rest of our discussion.

Finally, to avoid executing interrupt handlers during predictable

intervals, a peripheral should only raise interrupts to the CPU dur-

ing compatible intervals of its serviced task. As we describe in sec-

tion 5.6, in our I/O management scheme peripherals raise interrupts

through their assigned real-time bridge. Since the peripheral sched-

uler communicates with each real-time bridge, it is used to block

interrupt propagation outside the desired compatible intervals. Note

that blocking real-time bridge interrupts to the CPU will not cause

any loss of input data because the real-time bridge is capable of in-

dependently acknowledging the peripheral and storing all incoming

data in the bridge local buffer.

5.5 Programming model

Our system supports COTS applications written in standard high-

level languages such as C. Unmodified code can be executed within

one or more compatible intervals. To create predictable intervals,

programmers add source code annotations as C preprocessor macros.

The PREM real-time compiler creates code for predictable intervals

so that it does not incur cache misses during the execution phase and

the interval itself has a constant execution time.

In order to create a predictable interval, the programmer should

first perform the cache and architecture analysis as presented in previ-

ous section, then based on the results and task information, partition

1000us.
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the task into intervals. Compatible intervals can be handled in the

conventional way while each predictable interval is encapsulated into

a single function. All code within the function, and any functions

transitively called by this function is executed as a single predictable

interval. Due to current limitations of our static code analysis, we

impose several constraints upon the code within a predictable inter-

val:

1. Only scalar and array-based memory accesses should occur

within a predictable interval; there should be no use of pointer-

based data structures.

2. The code can use data structures, in particular arrays, that are

not local to functions in the predictable intervals, e.g. they are

allocated either in global memory or in the heap3. However,

the programmer should specify the first and last address that

is accessed within the predictable interval for each non-local

data structure. In general, it is difficult for the compiler to

determine the first and last access to an array within a piece of

code. The compiler needs this information to be able to load

the relevant portion of each array into the last-level cache.

3. The functions within a predictable interval should not be called

recursively. As described below, the compiler will inline callees

into callers to make all the code within an interval contiguous in

virtual memory. Furthermore, no system calls should be made

by code within a predictable interval.
3Note that data structures in the heap must have been previously allocated

during a compatible interval.
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4. Code within a predictable interval may only have direct calls.

This alleviates the needs for pointer-analysis to determine the

targets of indirect function calls; such analysis is usually im-

precise and would bloat the code within the interval.

5. No stack allocations should occur within loops. Since all vari-

ables must be loaded into the cache at function entry, it must

be possible for the compiler to safely hoist the allocations to

the beginning of the function which initiates the predictable

interval.

While these constraints may seem restrictive, some of these fea-

tures are rarely used in real-time C code e.g., indirect function calls,

and the others are met by many types of functions. We believe that

the benefit of faster, more predictable behavior for program hot-

spots outweighs the restrictions imposed by our programming model.

Furthermore, existing code that is too complex to be compiled into

predictable intervals can still be executed inside compatible intervals.

Therefore, our model permits a smooth transition for legacy systems.

Notice that, the compiler can be used to verify that all of the

aforementioned restrictions are met. Simple static analysis can de-

termine whether there is any irregular data structure usage, indirect

function calls, or system calls. During compilation, the compiler em-

ploys several transforms to ensure that code marked as being within

a predictable interval does not cause a cache miss.

First, the compiler inlines all functions called (either directly or

transitively) during the interval into the top-level function defin-

ing the interval. This ensures that all program analysis is intra-
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procedural and that all the code for the interval is contiguous within

virtual memory.

Second, the compiler can transform the program so that all cache

misses occur during the memory phase, which is located at the begin-

ning of the predictable scheduling interval. To be specific, it inserts

code after the function prologue to prefetch the code and data needed

to execute the interval. Based on the described constraints, this in-

cludes three types of contiguous memory regions: (1) the code for the

function; (2) the actual parameters passed to the function and the

stack frame (which contains local variables and register spill slots);

and (3) the data structures marked by the programmer as being ac-

cessed by the interval.

Third, the compiler inserts code to send scheduling messages to

the peripheral scheduler as will be described in section 5.6. Finally,

the compiler emits code at the end of predictable interval to enforce

its constant length. In particular, the compiler identifies all return

instructions within the function and adds the required code before

them.

5.6 Evaluation

In order to verify the validity and practicality of PREM, we imple-

mented the key components of the system. In this section, we de-

scribe our evaluation, first introducing the new peripheral scheduler,

and some new features introduced on the real-time bridges, followed

by the corresponding software driver and OS calibration effort. We

then discuss our compiler implementation and analyse its effective-
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ness on a DES benchmark. Finally, using synthetic tasks we measure

the effectiveness of the PREM system as a function of cache stall

time, and show traces of PREM when running on COTS hardware.

5.6.1 PREM hardware components

As discussed in section 5.3, in order to enforce its real-time I/O

scheduling PREM uses slightly modified real-time bridges and a new

peripheral scheduler, based on the reservation controller (see section

3.4). Here, we briefly describe the additions to these components

which we made to provide the mechanism for PREM execution. First

we discuss the real-time bridge component, then we describe the pe-

ripheral scheduler component.

Our real-time bridge prototype is still wired to peripheral sched-

uler, which allows direct communication between these components.

In this last version, three wires are used to transmit information be-

tween each real-time bridge and the peripheral scheduler: data_ready,

data_block, and interrupt_block. The data_ready wire is an out-

put signal sent to the peripheral scheduler which is asserted whenever

the COTS peripheral has buffered data in the real-time bridge. The

peripheral scheduler sends two signals, data_block and interrupt_block,

to the real-time bridge. The data_block signal is asserted to block

the real-time bridge from transferring data in DMA mode over the

PCI-E bus from its local buffer to main memory or viceversa. The

interrupt_block signal is a new signal in the real-time bridge im-

plementation, added to support PREM, and instructs the real-time

bridge to not further raise interrupts.
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The peripheral scheduler is a unique component in the sys-

tem, connected directly to each real-time bridge. Unlike our previ-

ous reservation controller where the peripherals were scheduled asyn-

chronously with the CPU, PREM requires the CPU and peripherals

to coordinate their access to main memory. While the OS real-time

scheduler runs its scheduling model for CPU tasks, the peripheral

scheduler provides a hardware implementation of a child schedul-

ing model used to schedule peripherals, with each peripheral given

a sporadic server to schedule its traffic. The peripheral scheduler is

connected to the PCI-E bus, and exposes a set of registers acces-

sible from the main CPU. In the configuration register, constant

parameters such as the maximum cache write-back time are stored.

Writing a value to the yield register indicates that the CPU will not

access main memory for the given amount of time, and I/O periph-

erals should be allowed to read to and write from RAM. The value

written to the yield register contains a 14 bit unsigned integer indi-

cating the number of microseconds to permit peripheral traffic with

main memory, as described in section 5.4. The CPU can also use the

yield register to allow interrupts to be raised by peripherals. An-

other 14 bit unsigned integer indicates the number of microseconds to

allow peripheral interrupts, and a 3 bit interrupt mask selects which

peripherals should be allowed to raise the interrupts. In this way,

different CPU tasks can predictably service interrupts from different

I/O peripherals.
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5.6.2 Software evaluation

The software effort required to implement our PREM prototype in-

volves two aspects: (1) creating a new driver for the peripheral sched-

uler, and (2) calibrating the OS to eliminate undesired execution

interference. We now discuss these, in order.

The two custom hardware components, the real-time bridge and

the peripheral scheduler, each require a software driver to be con-

troller from the main CPU. Additionally, each peripheral requires a

driver running on the real-time bridge’s CPU to control the COTS

peripheral. The real-time bridge drivers have been already discussed

in sections 3.5 and 4.2. The driver for the peripheral scheduler is

straightforward, mapping the bus addresses corresponding to the ex-

posed registers to user space where a PREM-compiled process can

access them.

For our experiments, we use a Intel Q6700 CPU with a 975X

system controller; we set the CPU frequency to 1Ghz obtaining a

measured memory bandwidth of 1.8Ghz/s to configure the system

in line with typical values for embedded systems. We also disable

the speculative CPU HW prefetcher since it negatively impacts the

predictability of any real-time task. The Q6700 has four CPU cores

and each pair of cores shares a common level 2 (last level) cache.

Each cache is 16-associative with a total size of B = 4 Mbytes and a

line size of L = 64 bytes.

As we discussed in section 1.4, since we use a PC platform running

a COTS Linux operating system, there are many potential sources of

timing noise, such as interrupts, kernel threads, and other processes,
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which must be removed for our measurements to be meaningful. For

this reason, in order to emulate at our best a typical uni-processor em-

bedded real-time platform, we divided the 4 cores in two partitions.

The system partition, running on the first pair of cores, receives all

interrupts for non-critical devices (ex: the keyboard) and runs all the

system activities and non real-time processes (ex: the shell we use

to run the experiments). The real-time partition runs on the second

pair of cores. One core in the real-time partition runs our real-time

tasks together with the drivers for real-time bridges and the periph-

eral scheduler; the other core is not used. As you can notice, this

approach is similar to the one used in ASMP-Linux. In this case

we needed just to emulate a uni-processor system, but, in our future

work, extending the PREM model to multicore systems, we also plan

to integrate PREM and ASMP-Linux.

Note that the cores of the system partition can still produce a

small amount of unscheduled bus and main memory accesses, or raise

rare inter-processor interrupts (IPI) that can not be easily prevented.

However, in our experiments we found these sources of noise to be

negligible. Finally, to solve the paging issue detailed in section 5.4,

we used a large, 4MB page size, just for the real-time tasks, using

the HugeTLB feature of the Linux kernel for large page support.

5.6.3 Compiler evaluation

We built the PREM real-time compiler prototype using the LLVM

Compiler Infrastructure [34], targeting the compilation of C code.

LLVM was extended by writing self-contained analysis and transfor-
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mation passes, which were then loaded into the compiler.

In the current PREM real-time compiler prototype, we rely on

the programmer to partition the task into predictable and compati-

ble intervals . The partitioning is done by putting each predictable

interval into its own function. The beginning and end of the schedul-

ing interval correspond to the entry and exit of the function, and the

start of execution phase (the end of memory access phase) is manually

marked by the programmer. We assume that non-local data accessed

during a predictable interval exists in continuous memory spaces,

which can be prefetched by a set of PREFETCH_DATA(start_address,

size) macros that must be placed by the programmer during the

memory phase. The implementation of this macro does the actual

prefetching of the data into level 2 cache by prefetching every cache

line in the given range with the i386 prefetcht2 instruction. After

the memory phase, the programmer adds a STARTEXECUTION(wcet)

macro to indicate the beginning of the execution phase. This macro

measures the amount of time remaining in the predictable interval

using the CPU performance counter, and writes the time remaining

to the yield register in the peripheral scheduler.

All remaining operations needed to transform the interval are

performed by a new LLVM function pass. The pass iterates over all

the functions in a compilation unit. When a function representing

a predictable interval is found, the pass performs code transforma-

tion. First, our transform inlines called functions using preexisting

LLVM inlining functions. This ensures that there are only a single

stack frame and segment of code that need to be prefetched into the

cache. Second, our transform inserts code to read the CPU perfor-
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mance counter at the beginning of the interval and save the current

time. Third, it inserts code to prefetch the stack frame and function

arguments. Bringing the stack frame into the cache is done by in-

serting instructions into the program to fetch the stack pointer and

frame pointer. Code is then inserted to prefetch the memory between

the stack pointer and slightly beyond the frame pointer (to include

function arguments) using the prefetcht2 instruction. Fourth, the

transform prefetches the code of the function. This is done by trans-

forming the program so that the function is placed within a unique

ELF section. We then use a linker script to define variables pointing

to the beginning and end of this unique ELF section. The com-

piler then adds code that prefetches the memory inside the ELF

section. Finally, the pass identifies all return instructions inside the

predictable interval function and adds a special function epilog be-

fore them. The epilog performs interval length enforcement by loop-

ing until the performance counter reaches the worst-case cycle count

based on the time value saved at the beginning of the interval. It may

also enable peripheral interrupts by writing the worst-case interrupt

processing time to the peripheral scheduler’s yield register.

To verify the correctness of the PREM real-time compiler proto-

type and to test its applicability, we used LLVM to compile a DES

cypher benchmark. The DES benchmark was selected because it

represents a typical real-time data flow application. The benchmark

comprises one scheduling interval which encrypts a variable amount

of data. We compiled it as both a predictable and a compatible in-

terval (e.g. with and without prefetching), and measured number

of cache misses with a performance counter. Adapting the interval



5.6. Evaluation 143

Data size 4K 8K 32K 128K 512K 1M

Compatible 138 254 954 3780 15k 31k

Predictable 2 2 4 2 1 81

Table 5.1: DES benchmark.

required no modification to any cypher functions and a total of 11

PREFETCH_DATA macros.

Results are shown in Table 5.1 in terms of the number of cache

misses suffered in the execution phase of the predictable interval (af-

ter prefetching), and in the entire compatible interval. Data size is in

bytes. The compatible interval suffers an excessive number of cache

misses, which increases roughly proportionally with the amount of

processed data. Conversely, the execution phase of the predictable

interval has almost zero cache misses, only suffering a small increase

when large amounts of data are being processed. The reason the

number of cache misses is not zero is that the Q6700 CPU core used

in our experiments uses a random cache replacement policy, meaning

that with more than one contiguous memory region the probability

of self-eviction is non-zero. In all the following experiments, we ob-

served that the number of self-evictions is typically so small that it

can be considered negligible.

5.6.4 WCET experiments with synthetic tasks

In this section, we evaluate the effects of PREM on the execution time

of a task. To quickly explore different execution parameters, we devel-

oped two synthetic applications. In our linear_access application,
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each scheduling interval operates on a 256-kilobyte global data struc-

ture. Data is accessed sequentially, and we vary the amount of com-

putation performed between memory references. The random_access

application is similar, except that references inside the data structure

are nonsequential. For each application, we measured the execution

time after compiling the program in two ways: into predictable inter-

vals which prefetch the accessed memory, and into standard, compat-

ible intervals. For each type of compilation, we ran the experiment

in two ways, with and without I/O traffic transmitted by an 8-lane

PCI-E peripheral with a measured throughput of 1.2Gbytes/s. In

the case of compatible intervals, we transmitted traffic during the

entire interval to mirror the worst case according to the traditional

execution model.

Figures 5.5 and 5.6 show the observed worst case execution time

for any scheduling interval as a function of the cache stall time of the

application, averaged over 10 runs. The cache stall time represents

the percentage of time required to fetch cache lines out of an entire

compatible interval, assuming a fixed (best-case) fetch time based

on the maximum measured main-memory throughput. Only a single

line is shown for predictable intervals because experiments confirmed

that injecting traffic during the execution phase does not increase

execution time. In all cases, the computation time decreases with

an increase in stall time. This is because stall time is controlled

by varying the amount of computation between memory references.

Furthermore, execution times should not be compared between the

two figures because the two applications execute different code.

In the random_access case, predictable intervals outperform com-
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Figure 5.5: random_access

patible intervals (without peripheral traffic) by up to 28%, depending

on the cache stall time. We believe this effect is primarily due to the

behavior of DRAM main memory. Specifically, accesses to adjacent

addresses can be served quicker in burst mode than accesses to ran-

dom addresses. Thus, we can decrease the execution time by loading

all the accessed memory into cache, in order, at the beginning of each

predictable interval. Furthermore, note that transmitting peripheral

traffic during a compatible interval can increase execution time by

more than 60% in the worst case. In figure 5.6, predictable intervals

perform worse than compatible intervals (without peripheral traffic).

We believe this is mainly due to out-of-order execution in the Q6700

core. In compatible intervals, while the core performs a cache fetch,
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Figure 5.6: linear_access

instructions in the pipeline that do not depend on the fetched data

can continue to execute. When performing linear accesses, fetches

require less time and this effect is magnified. Furthermore, the gain

in execution time for the case with peripheral traffic is decreased:

this occurs because bursting data on the memory bus reduces the

amount of blocking time suffered by a task due to peripheral inter-

ference (this effect has been previously analyzed in detail [46]). In

practice, we expect the effect of PREM on an application’s execution

time to be between the two figures, based on the specific memory

access pattern.
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5.6.5 System-wide coscheduling traces

We now present execution traces of the implemented system which

demonstrate the advantage of the PREM coscheduling approach.

The traces are obtained by using the peripheral scheduler as a logic

analyzer for the various signals which are being sent to or from the

real-time bridges, data_block, data_ready, and interrupt_block.

Additionally, the peripheral scheduler has a trace register which

allows timestamped trace information to be recorded with a one mi-

crosecond resolution when instructed by the main CPU, such as at

the start and end of an execution interval. An execution trace is

shown for a task running the traditional COTS execution model in

figure 5.7, and the same task running within the PREM model is

shown in figure 5.84.

Figure 5.7: An unscheduled bus-access trace (without PREM)

In the first trace (figure 5.7), although the execution is divided
4The (compatible) intervals at the end of T1 and at the start of T2 were

measured as 0.107ms and 0.009ms, respectively, and have been exaggerated in

the figures to be visible.
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into unpreemptable intervals, there is no memory phase prefetch or

constant execution time guarantees. When the scheduling intervals

of task T1 finish executing, an I/O peripheral begins to access main

memory, which may happen if T1 had written output data into RAM.

Task T2 then executes, suffering cache misses that compete for main

memory bandwidth with the I/O peripheral. Due to the cold cache

and peripheral interference, the execution time of T2 grows from 0.5

ms (the execution time with warm cache and no peripheral I/O), to

2.9ms as shown in the figure, an increase of about 600%.

Figure 5.8: A scheduled trace using PREM

In the second trace (figure 5.8), the system executes according to

the PREM execution model, where peripherals only access the bus

when permitted by the peripheral scheduler. The predictable interval

is divided into a memory phase and an execution phase. Instead of

competing for main memory access, task T2 gets contentionless access

to main memory during the memory phase. After all to-be-accessed
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data is loaded into the cache, the execution phase begins which incurs

no cache misses, and the peripheral is allowed to access the data

in main memory. The constant execution time for the predictable

interval in the PREM execution model is 1.6ms, which is significantly

lower than the worst-case observed for the unscheduled trace (and is

about the same as the execution time of the scheduling interval of T2
in the unscheduled trace with a cold cache and no peripheral traffic).
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Conclusions

In this thesis we focused on satisfying hard real-time constraints on

COTS components. In particular we addressed the sources of unpre-

dictability introduced by the operating system and I/O subsystem.

In order to mitigate operating system overhead and latency, ASMP-

Linux, a variant of the Linux operating system, has been developed.

The test results show how ASMP-Linux is capable of minimizing

both operating system overhead and latency, thus providing deter-

ministic results for the tested applications.

We have also presented a framework for providing real-time con-

trol of the I/O peripherals in a COTS-based embedded system. This

framework involves interposing real-time bridges between COTS pe-

ripherals and the COTS interconnect, all of which communicate with

a central reservation controller. In this way, we are able to schedule

bus transactions such that all I/O deadlines are met, as well as pre-

vent data loss by buffering traffic of high-bandwidth peripherals when

bus access is prohibited. We have shown through experiments that an

unmodified COTS I/O system can cause excessive I/O delay leading

to deadline misses, while our prototype real-time COTS-based I/O

framework provides deterministic delays and meets all I/O deadlines.

We demonstrated the way in which classical uni-processor scheduling

theory can be applied within our framework, and created hardware

logic to implement the Rate Monotonic and Sporadic Server schedul-

ing policies on COTS peripheral bus traffic. We provided analysis to

determine maximum buffer size and delay based on the arrival and
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service curves of I/O traffic.

Multi-flow real-time bridges have been also developed. They ex-

tend real-time bridges capabilities, being also able to schedule trans-

actions within the peripheral. In this way, a peripheral can be shared

among tasks with different criticalities, improving the device utiliza-

tion, and the system costs and scalability. We also developed a pro-

totype and performed tests to show how, without our architecture, a

critical task using a shared device can miss its deadline, while, using

multi-flow real-time bridge the tasks always meet their deadlines.

We also discussed the concept and implementation of a novel task

execution model, PRedictable Execution Model (PREM), that aims

to cope with two last sources of jitter: interference between periph-

erals and CPU, and interference between a critical task and drivers.

Our evaluation shows that by enforcing a high-level coschedule among

CPU tasks and peripherals, PREM can greatly reduce or outright

eliminate low-level contention for shared resource access. We plan

to further develop our solution in two main directions. First, we

will study extensions to our compiler infrastructure to lift some of

the more restrictive code assumptions and compile and test a larger

set of benchmarks. Second, it is important to recall that contention

for shared resources becomes more severe as the number of active

components increases. In particular, worst-case execution time can

greatly degrade in multicore systems [47]. Since PREM can make the

system contentionless, we predict that the benefits of our approach

will become even more significant when applied to multiple-processor

systems.

Finally, we will integrate ASMP-Linux with multiprocessor PREM,
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achieving a fully-predictable and high-speed COTS-based system.
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Appendix A

Full experiments data for

ASMP-Linux

The following tables show the results of the experiments performed

with all workloads (idle, CPU, AIO, SIO, and MIX) on the three

hardware configurations S1, S2, and S3.

The results of all tests are coherent on all platforms. However, a

short note is due to explain why results of the SIO workload in all

platforms show that the Rw test case is worse than the N test case.

The reason is that in the SIO workload the system is saturated

by the interrupts from the disk. In the Rw test case these interrupts

are always handled by the same CPU that executes the test program;

conversely, in the N test case, the test program can run on any CPU,

thus it is often not affected by the interrupts storm.
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Proc Avg StDev Min Max

IDL

N 2.072 0.034 2.031 2.376

Rw 4.176 0.062 4.117 4.757

Rb 1.784 0.077 1.747 2.493

Aon 1.764 0.073 1.723 2.429

Aoff 0.286 0.008 0.267 0.319

CPU

N 7199.851 606.625 6010.521 7610.221

Rw 12.769 1.203 9.790 18.527

Rb 9.872 1.403 6.782 14.023

Aon 10.472 1.014 7.022 13.905

Aoff 8.849 0.957 5.670 11.992

AIO

N 6264.578 776.284 4793.751 9047.211

Rw 40.347 4.088 25.538 47.532

Rb 1.889 0.135 1.768 2.703

Aon 1.685 0.096 1.602 2.485

Aoff 0.286 0.004 0.276 0.315

SIO

N 3.664 1.393 2.108 7.161

Rw 8.244 0.666 6.755 13.752

Rb 1.872 0.147 1.603 2.332

Aon 1.647 0.074 1.535 2.019

Aoff 0.318 0.010 0.295 0.363

MIX

N 20275.784 6072.575 12.796 34696.051

Rw 28.459 12.945 10.721 48.837

Rb 27.461 9.661 3.907 42.213

Aon 30.262 8.306 8.063 41.099

Aoff 27.847 7.985 6.427 38.207

Table A.1: Operating system overhead on configuration S1 (in millisec-

onds).
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Proc Avg StDev Min Max

IDL

N 1.481 0.190 1.447 7.277

Rw 3.707 0.188 3.643 9.581

Rb 1.360 0.025 1.326 1.516

Aon 1.420 0.021 1.392 1.558

Aoff 0.000 0.000 0.000 0.000

CPU

N 7486.825 746.094 6399.201 7998.691

Rw 3.638 0.191 3.566 9.546

Rb 1.402 0.019 1.380 1.492

Aon 1.372 0.180 1.342 7.032

Aoff 0.000 0.000 0.000 0.000

AIO

N 5967.168 1549.961 3001.521 16609.651

Rw 4.325 0.192 4.272 10.266

Rb 1.415 0.024 1.386 1.525

Aon 1.518 0.184 1.476 7.282

Aoff 0.000 0.000 0.000 0.000

SIO

N 1.702 0.557 1.462 8.596

Rw 6.688 0.561 5.784 12.252

Rb 1.405 0.023 1.369 1.529

Aon 1.382 0.181 1.353 7.085

Aoff 0.000 0.000 0.000 0.000

MIX

N 18513.615 5996.971 1.479 33993.351

Rw 4.215 0.226 3.913 10.146

Rb 1.420 0.029 1.393 1.554

Aon 1.490 0.044 1.362 1.624

Aoff 0.000 0.000 0.000 0.000

Table A.2: Operating system overhead on configuration S2 (in millisec-

onds).



158 A. Full experiments data for ASMP-Linux

Proc Avg StDev Min Max

IDL

N 3.552 0.048 3.519 4.325

Rw 3.534 0.042 3.514 4.066

Rb 0.561 0.071 0.547 1.663

Aon 0.577 0.068 0.548 1.541

Aoff 0.001 0.000 0.001 0.001

CPU

N 8773.632 796.256 8001.631 9601.331

Rw 3.465 0.018 3.438 3.772

Rb 0.552 0.029 0.544 0.796

Aon 0.554 0.029 0.545 0.803

Aoff 0.000 0.000 0.000 0.000

AIO

N 6953.769 1638.890 4430.931 17497.731

Rw 3.628 0.447 3.444 5.099

Rb 0.553 0.032 0.543 0.806

Aon 0.554 0.032 0.541 0.815

Aoff 0.000 0.000 0.000 0.000

SIO

N 249.870 83.592 81.021 315.688

Rw 894.175 3.718 883.581 904.691

Rb 0.517 0.041 0.474 0.778

Aon 0.508 0.039 0.472 0.842

Aoff 0.000 0.000 0.000 0.000

MIX

N 20065.194 6095.807 0.606 32472.931

Rw 3.477 0.024 3.431 3.603

Rb 0.554 0.031 0.525 0.807

Aon 0.556 0.032 0.505 0.811

Aoff 0.000 0.000 0.000 0.000

Table A.3: Operating system overhead on configuration S3 (in millisec-

onds).
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Proc Avg StDev Min Max

IDL

N 6.399 1.014 5.632 75.477

Rw 6.019 43.468 5.213 4352.040

Rb 5.811 0.450 5.341 12.826

Aon 6.277 0.415 5.723 12.869

Aoff 6.424 0.236 5.962 15.802

CPU

N 3845.041 221531.315 6.712 12.792 · 106

Rw 7.113 1.041 6.576 21.674

Rb 6.866 0.918 6.301 32.162

Aon 6.851 0.391 6.379 13.003

Aoff 6.956 0.209 6.509 9.429

AIO

N 2474.152 34619.008 6.869 1.504 · 106

Rw 13.172 9.050 7.120 841.115

Rb 10.649 10.469 7.029 1015.144

Aon 12.542 2.490 7.256 26.999

Aoff 10.529 1.652 7.400 23.151

SIO

N 68.286 650.755 5.811 10882.761

Rw 8.998 40.020 5.433 1208.948

Rb 6.292 4.598 5.347 216.600

Aon 6.629 1.805 5.758 30.018

Aoff 6.661 2.103 5.944 37.285

MIX

N 13923.606 220157.013 6.946 5.001 · 106

Rw 10.970 8.458 6.405 603.272

Rb 10.027 5.292 6.506 306.497

Aon 8.074 1.601 6.683 20.877

Aoff 8.870 1.750 6.839 23.230

Table A.4: Operating system latency on configuration S1 (in microsec-

onds).
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Proc Avg StDev Min Max

IDL

N 5.346 0.592 4.879 15.655

Rw 5.206 0.666 4.898 15.151

Rb 5.284 0.297 5.015 9.948

Aon 5.290 0.267 5.056 9.785

Aoff 5.289 0.056 5.172 6.459

CPU

N 680.058 95398.550 4.920 13.491 · 106

Rw 5.331 0.577 5.061 15.428

Rb 5.313 0.321 4.869 9.312

Aon 5.020 0.233 4.845 8.841

Aoff 5.102 0.094 4.966 5.863

AIO

N 13012.278 252843.297 4.768 9.993 · 106

Rw 5.919 3.812 4.920 371.279

Rb 5.487 2.049 4.573 200.549

Aon 4.956 0.219 4.767 8.797

Aoff 5.298 0.105 5.143 6.304

SIO

N 34.399 276.160 4.909 6161.732

Rw 6.865 20.038 5.033 758.550

Rb 6.065 14.296 5.040 732.543

Aon 5.479 0.279 5.145 10.354

Aoff 5.361 0.113 5.141 7.134

MIX

N 24402.723 331861.500 4.904 4.997 · 106

Rw 5.996 1.249 4.960 39.982

Rb 5.511 1.231 4.603 109.964

Aon 5.120 0.275 4.917 9.370

Aoff 5.441 0.199 5.207 6.716

Table A.5: Operating system latency on configuration S2 (in microsec-

onds).
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Proc Avg StDev Min Max

IDL

N 1.753 0.344 1.626 44.707

Rw 1.728 0.172 1.656 7.044

Rb 1.642 0.022 1.548 2.088

Aon 1.630 0.018 1.590 2.076

Aoff 1.593 0.015 1.566 1.890

CPU

N 296.696 41677.046 1.614 5.894 · 106

Rw 1.765 0.571 1.656 50.377

Rb 1.719 0.055 1.602 2.124

Aon 1.664 0.019 1.626 2.238

Aoff 1.581 0.016 1.542 1.818

AIO

N 1.874 2.664 1.590 355.958

Rw 1.898 1.928 1.608 68.029

Rb 1.764 0.700 1.578 63.973

Aon 1.703 0.023 1.638 2.226

Aoff 1.557 0.019 1.530 2.004

SIO

N 91.204 392.681 1.680 3974.279

Rw 28.172 23.220 1.788 83.521

Rb 1.837 0.231 1.578 9.966

Aon 1.779 0.088 1.626 3.648

Aoff 1.613 0.059 1.554 2.628

MIX

N 182577.713 936480.576 1.554 9.095 · 106

Rw 1.999 1.619 1.722 66.883

Rb 1.756 0.650 1.548 63.985

Aon 1.721 0.034 1.674 3.228

Aoff 1.639 0.025 1.602 2.466

Table A.6: Operating system latency on configuration S3 (in microsec-

onds).
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