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nonna Gina, la zia Gnommera e zio Al

che non hanno mai mancato di darmi

il loro affetto e supporto.

Non posso fare a meno di ricordare

i miei amici del dottorato,

con cui ho condiviso gioie e dolori di questi anni:

Alberto, Andrei, Ery, Fede, Frank, Peppe & Peppe, Mimmo,

e gli altri compagni da me qui non menzionati.

Vorrei ringraziare inoltre Vincenzo Atella, Gustavo Anŕıquez
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Abstract

How is medical technology affecting costs growth? Evidence from a panel of US

hospitals

In this paper we assess quantitatively the impact of technology on US hospital costs. American

Hospital Association (AHA) surveys allow to identify the availability of technologies, while Medicare

Cost reports provide us financial information. We define a novel index of equipment, procedures

and processes availability that enables us to circumvent the assumption of innovations equally

spread over all hospitals. By means of a simple dummy variables approach we are able to identify

both innovations that are either cost pushing or cost-saving and the time pattern of these effects.

Overall our estimates confirm the common knowledge that technology is severely rising hospital

costs.

Ten years of DRG reform. An empirical analysis of the influence of specialization,

productive structure and ownership form on Italian hospitals technical efficiency.

We evaluate how the productive structure and level of specialization of a hospital affect technical

efficiency by analyzing a six-year panel database (2000/2005) drawn from hospital discharge records

and Ministry of Health data. We adopt a distance function approach, while measuring the technical

efficiency level with stochastic frontier techniques. After controlling for environmental variables and

hospital case-mix, inefficiency is negatively associated with specialization and positively associated

with capitalization. Capitalization is typical of private structures which, on average, use resources

less efficiently with respect to public and not-for-profit hospitals. Finally, by looking at scale

elasticities, we find some evidence of unexploited economies of scale, leaving room for centralization.

Within households effects of expanding rural nonfarm sector in a developing

country.

This article explores the effects within households of an expanding rural nonfarm (RNF) sector

in Ghana. We ask whether the growing RNF sector allows for economies of diversification within

farms and how it affects household input demands. We explore the intrahousehold linkages between

agricultural and RNF activities, first assuming perfectly competitive input and output markets

and then with market failures, in particular missing labor and credit markets. We then measure

these linkages using a household level input distance function, finding high levels of inefficiency in

Ghanaian farms. Also, there are cost-complementarities between the RNF sector and the agricul-

tural sector, particularly with food crops in which the poorest tend to specialize. The expansion of

the RNF sector increases demand for most inputs including agricultural land.
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Abstract

How is medical technology affecting costs growth? Evidence from a panel of US

hospitals.

In questo articolo misuriamo l’impatto dell’innovazione tecnologica sui costi degli ospedali statu-

nitensi. Le indagini campionarie dell’American Hospital Association (AHA) ci permettono di iden-

tificare la disponibilità di determinate tecnologie all’interno dei singoli ospedali, mentre dai rap-

porti di costo di Medicare reperiamo i dati di natura finanziaria. Definiamo un nuovo indice di

disponibilità di macchinari, procedure e processi che permette di evitare l’assunzione di innovazioni

tecnologiche egualmente distribuite fra tutti gli ospedali. Per mezzo di un semplice modello di

variabili binarie, siamo in grado di identificare sia quelle innovazioni che provocano una riduzione o

un incremento dei costi sia lo sviluppo temporale di tali effetti. Complessivamente le nostre stime

confermano un fatto generale di publico dominio, che la tecnologia sta comportando un notevole

aumento dei costi ospedalieri.

Ten years of DRG reform. An empirical analysis of the influence of specialization,

productive structure and ownership form on italian hospitals technical efficiency.

In questo articolo studiamo come struttura produttiva e specializzazione influiscano sull’efficienza

tecnica degli ospedali della regione Lazio, attraverso l’analisi di un campione longitudinale di durata

pari a sei anni (2000/2005) derivato dalle schede di dimissione ospedaliera e dalla banca dati del

Ministero della Salute. Adottiamo un approccio di funzioni distanza, implementato con tecniche di

frontiere stocastiche atte a misurare il livello di efficienza tecnica. Dopo aver controllato per fattori

“ambientali” e complessità ospedaliera, osserviamo che l’inefficienza è negativamente associata con

il grado di specializzazione e positivamente con quello di capitalizzazione. Il più elevato rapporto

capitale-lavoro risulta essere tipico delle strutture private, le quali in media fanno un uso meno

efficiente delle risorse a loro disposizione rispetto agli ospedali pubblici e a quelli a loro assimilati.

Infine, l’analisi delle elasticità di scala mette in evidenza la presenza di economie di scala non sfrut-

tate, che sembra suggerire un intervento di centralizzazione/ristrutturazione delle operazioni.

Within households effects of expanding rural nonfarm sector in a developing

country.

Questo articolo studia gli effetti all’interno delle famiglie dell’espansione del settore non agricolo

rurale (RNF) in Ghana. Ci domandiamo se la crescita del settore RNF permetta economie di diver-

sificazione/scopo all’interno delle aziende agricole e come questo influisca sulla domanda di input
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delle famiglie. Studiamo le connessioni all’interno delle famiglie tra attività agricole e non agricole

rurali, dapprima assumendo mercati degli input e degli output perfettamente concorrenziali, e in

secondo luogo ipotizzando fallimenti di mercato, in particolare del mercato del lavoro e del credito.

Misuriamo queste connessioni attraverso una funzione distanza orientata agli input a livello delle

famiglie. Esistono forti complementarietà di costo tra il settore agricolo e non agricolo rurale, so-

prattutto per le colture da sussistenza, nelle quali le famiglie più povere tendono a specializzarsi.

L’espansione del settore RNF aumenta la domanda per la maggior parte degli input, incluso il

fattore terra a scopi agricoli.

Keywords: Indice di tecnologia, Ospedali, Funzioni di costo. Frontiere stocastiche,

Schede di dimissione ospedaliera, Specializzazione ospedaliera, Funzioni distanza, Ef-

ficienza Tecnica. Settore non agricolo rurale, Complementarietà di costo, Ghana.
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How is medical technology affecting costs growth? Evidence from

a panel of US hospitals.1

Abstract

In this paper we assess quantitatively the impact of technology on US hospital costs. Amer-

ican Hospital Association (AHA) surveys allow to identify the availability of technologies, while

Medicare Cost reports provide us financial information. We define a novel index of equipment,

procedures and processes availability that enables us to circumvent the assumption of innova-

tions equally spread over all hospitals. By means of a simple dummy variables approach we

are able to identify both innovations that are either cost pushing or cost-saving and the time

pattern of these effects. Overall our estimates confirm the common knowledge that technology

is severely rising hospital costs.

Keywords: Technology index, Hospitals, Cost functions.

1 This chapter is based on “The butler is always the killer: Reassessing the impact of technology on hospital
costs growth.” by S.Daidone and L. Baker. We thank Jay Bhattacharaya, Daniel Kessler, Kate Bundorf and Federico
Belotti for their suggestions. Corresponding author: Silvio Daidone, University of Rome Tor Vergata, Viale Columbia,
2 00133 Roma, Italy. E-mail: silvio.daidone@uniroma2.it.



1.1 Introduction

Health care bill continues to grow very rapidly in the US. Since 1970, health expenses have grown

at an average annual rate of 9.6%, which is about 2.4 percentage points faster than the economy as

measured by the nominal GDP. Annual spending on health care increased from $75 billion in 1970

to $2.2 trillion in 2007. As a share of the economy, health care has more than doubled over the past

40 years, rising from 7.2% of GDP in 1970 to 16.2% in 2007. A central issue from policymakers’

viewpoint is why spending on health care steadily increases more quickly than spending on other

goods and services. Health care economists pointed to the development and expansion of medical

technology as primary factors in explaining the persistent growth of health care expenditures.2

In the literature a number of approaches have been employed to measure the effect of technology

on health care costs. The most widely-used residual approach computes the effects of variations

in factors such as consumption, prices, population growth and demographic changes. The residual

is ascribed to variations in technology, thus avoiding to quantify explicitly technological progress.

Nevertheless this approach suffers one major drawback: it is a coarse, indirect overestimation of the

impact of technology. Determinants of health spending that are not accounted for or that cannot

be quantified like environment, geography or lifestyle will also be considered as being technical

change.

With the proxy approach, a variable such as research and development spending, or time is

used to compute the impact of technology. The efficacy of these studies is related to the level of

measurability and substitutability of the proxy for technology. Most of this kind of works simply

add a time trend variable to the cost equation, thus assuming that technical change is Hicksian

neutral or disembodied. Further, including a time trend variable also implies a continuous smooth

process at a constant rate, which might not represent a realistic assumption.

Finally case studies evaluate the consequences of specific technologies on the costs of treating a

precise medical condition. Despite being more accurate in explaining the impact of certain medical

advances, it is tricky to generalize from them to an aggregate or national level.

Our aim with this paper is to assess quantitatively the impact of technology on hospital costs.

We focus on hospital care expenditures for two reasons. First of all, hospital expenses still make

up the major share of total health spending. After having reached a 40% peak in 1982, they have

constantly declined in the 80s and 90s and stabilized in the last decade into a 31% level. Secondly,

US hospital data, which are generally used for research purposes, provide good information on both

the availability of a host of technologies and the level of costs.

With respect to previous literature we provide a set of three contributions. First, while most

articles on hospitals efficiency and productivity concentrate on the effects of environmental pressures

or on economic issues such as economies of scale/scope, we move our attention to the impact of

2See for instance Newhouse (1992) and Okunade, A.A. and V.N.R. Murthy (2002).
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technology on costs. Technological developments are of great interest in the hospital industry,

since they might be either cost shrinking or cost shifting. Second, we define a novel index of

equipment, procedures and processes availability, which solve one big concern connected with the

index of technology developed by Baker and Spetz (2002). This index enables us to circumvent

the unpleasant assumption of innovations equally spread over all firms, i.e. hospitals in our study,

avoiding the common practice in production economics to use time trends or dummies. Finally, by

means of a simple alternative technology dummies approach we are able to identify not only which

innovations push up or reduce costs, but also the time pattern of these effects.

The paper is organized as follows. Section 1.2 reports a short review of the literature. In

section 1.3 we describe how we define and construct one hospital technology. Section 1.4 discusses

the economic model and section 3.5 shows the data used for our analysis. Then in section 1.6 we

present some results. We conclude by commenting on our findings.

1.2 The role of technology on hospital care spending: a short review of the

literature

There is a large body of literature both on the impact of technology on health care spending and on

the efficiency and productivity of hospitals. Much less interest is given to the effects of technological

developments and innovation on hospital expenses. To our knowledge Davis (1974) is the first study

on this issue. She applied a residual approach on a pooled cross-section of US non-profit private

hospitals submitting audited cost data in the time span from 1962 to 1968. Her objective was to

evaluate the relative importance of demand factors, case mix, wage increases, and technology in

determining hospital costs. As a measure for technology, Davis included a time trend variable to

capture the residual effect of increases in average costs over time. Her results indicated that the

38% of hospital costs that is not explained by demand and supply variables, is taken to be the

effect of technology. However she was aware that the time trend could have included also basic

shifts in patient, physician or hospital behavior, therefore it can be argued that this study puts an

upper limit on the effect of technology.

Feldstein’s econometric work (1977) looked at technology as a factor contributing to soaring

costs in hospitals. Nevertheless in his framework technology is merely a passive factor, since the

central role is given to rising health insurance coverage: insurance enables hospital management

to alter the mix of services provided and the new medical services introduced are more expensive

as they incorporate new technology. Feldstein ran his empirical work on aggregated data from US

hospitals and health insurers, without taking into account of the purpose, or nature, of the diverse

medical services.

More recently Blank and Vogelaar (2004) studied the effect of technical change in Dutch hospital

industry. They estimated a cost function on data in the period 1993-2000, using as a proxy for

technical change a technology index which is a weighted sum of time dummies. They ended that

11



technical change is embodied (input-biased), not scale augmenting (no differences between small

and large hospitals) and shock wise.

Farsi and Filippini (2006) analyzed a panel data of Swiss general hospitals over the four-year

period between 1998 and 2001. They used a sub-sample of 156 hospitals to estimate a total cost

function for an econometric analysis of efficiency. The year dummies were deemed to represent

technological change and the estimated coefficients indicated that total hospital costs have grown

about 4 percent by year. The authors recognize also that these dummies might capture not only

technological progress in medical care, but also other year-specific effects such as changes in quality

of reporting DRG cases.

Finally Blank and Van Hulst (2009) studied the relationship between technology and productiv-

ity in Dutch hospitals between 1995 and 2002. Their main contribution was to explicitly inventory

innovations, which were aggregated into a limited number of homogeneous innovation clusters,

measured by technology index numbers. Their estimates indicate that some technology clusters

increase total costs, while other ones reduce them.

1.3 Hospital technology

In theoretical and empirical works, hospital technology is characterized in a variety of ways, and

measured with a broad set of instruments. Some studies do not even define the concept clearly,

even though an unambiguous and precise quantification is needed to answering both theoretical

and policy issues. Spetz and Maiuro (2004) explore the meaning of the term hospital technology

and provide an excellent review of the measures of this concept. Broadly speaking, with the

term hospital technology we refer to procedures, devices, and processes by which hospital care is

delivered. Examples of technological progress would include new medical and surgical procedures

such as cardiac catheterization or open-heart surgery, drugs (e.g., statins), medical equipment like

magnetic resonance imaging (MRI), and new support systems (e.g., electronic medical records and

telemedicine).

We have seen that in a cost function or efficiency measurement setting, adding simply a time

trend variable or a set of time dummies to the equation to be estimated might not be entirely

satisfactory since this brings about only a shift of the frontier. Therefore, following the Blank and

Van Hulst (2009) research, we approximate innovations with an index of available technologies.

In order to be useful for our analysis, this index should be comparable across hospitals and over

time. Baker and Spetz (2000) introduced an aggregation function of technologies, which is known

as Saidin index

Nht =
P
∑

p

ωptnhpt (1.1)
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where nhpt can be either 1 or 0 depending on whether technology p is available or not at time t for

hospital h. The weight ωpt reflects the percentage of H hospitals that do not possess the technology

or service in a given year, i.e.

ωpt = 1−
1

H

H
∑

h=1

npht (1.2)

Innovations that were rather uncommon because they are new, expensive, or difficult to imple-

ment get higher weights in this measure. Technologies that are ordinary receive lower weights. This

weighting scheme corresponds with most peoples idea of what defines high technology: something

which is rare due to newness, expense, or difficulty of operation. When a technology becomes

common, it is no longer perceived as being of a high level.

Two problems arise when using the Saidin index: 1) the set of technologies under consideration

changes each year as new innovations are introduced to medicine and to surveys. Hence disconti-

nuities can be introduced into the time series of index values; 2) changing the weights each year

may not identify changes in technology over time.3

We cope with the first problem by keeping fixed and consistent over time the list of services

needed to produce the index (see Table 1.1). On the other hand a solution to the second concern

is less straightforward. As opposed to Blank and Van Hulst (2009) we rejected the hypothesis of

keeping fixed the weights, since this may produce a poor indicator of the current state of the world,

especially in the case of a long panel. US has a dynamic health industry so that innovations change

in importance over short periods of time. It is likely that the assumption of technologies having

fixed values over twelve years, the length of our panel, is flawed. Our idea was to apply to our

technology index a technique known as chain-linking, which is currently used in National Accounts

to provide chained volume measures for several series including GDP, household final consumption

expenditures, gross fixed capital formation and the like. With annual chain-linking we calculate

the value of the index, summing up technologies on the basis of current weights and previous years

weights:

Nt =







∑P
p ωptnpt if t = T

∑P
p ωptnpt ·

∑P
p ωpTnp,t+1

∑P
p ωptnp,t+1

otherwise
(1.3)

With this method we aggregate technologies on a more frequent basis. It can be thought of

as rebasing every year. Instead of referring back to weights from the most recent base year, the

technology index for each year is produced in weights of the previous year. These measures are

3Hospitals rarely shut down services, their relative rarity indicated by the weights could be expected to fall through
time as more hospitals adopt new technologies. The index values would thus tend to fall even for hospitals that did
not change their service set each year.
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then “chain-linked” together to produce a continuous time series.

In figure 1.1 we reported the pattern of the average index of technology using three different base

years and our new chain-linked measure. Our sample of hospitals between 1996 and 2007 confirms

the widespread impression in the literature concerning the steady increase of technological progress,

with the latest years characterized by a more rapid growth. Not surprisingly the index calculated

with 1997 taken as base year shows the highest value throughout the period. This is due to the fact

that bigger weights are obtained when fewer hospitals hold a given technology, something which

makes more sense when going back in the past. Further the chain-linked measure is reasonably very

similar to the 2007 based index at the end of the time span and slightly diverging at the beginning.4

1.4 Economic model

Assessing one hospital’s costs behavior requires the adoption of an explicit assumption concerning

the state of equilibrium among observations in the sample. In this paper we assume a neo-classical

cost function in which hospitals minimize costs, given that input prices and outputs are exogenous.

Exogeneity of input prices is derived from the hypothesis that factor markets are competitive

and free from monopsonistic pressures. While output levels are determined by the demand of

patients. The underlying assumption is that doctors are perfect agents with full information about

their patients’ utility function and that their own preferences are not affecting the evolution of

the treatment. Further, hospitals do not rapidly adjust all factors of production in response to

variations in output quantities or input prices. In such framework hospitals will employ optimal

levels of the easily adjustable inputs, given the existing non-optimal levels of the fixed inputs. The

variable cost function is specified as

V C = V C(Y,W,K, N) (1.4)

where V C equals variable costs, Y is a vector of outputs, W is a vector of input prices, K is a

vector of fixed inputs and N is technology.

The cost-minimization assumption can been questioned, given the not-for-profit status of most

structures. Still, Pauly (1987) shows that cost minimization is coherent with many non-profit

theories of behavior, especially when entry is free. Further, the DRG prospective payment system

and tight reimbursement policies from third party insurers force hospital management to adopt

cost-saving policies.

In this paper we suggest an explicit modelling of the influence of technical development. The

choice of adopting or not a new technology is the result of several factors, one of them being the

effect on productivity. However technology is not strictly endogenous, since once innovations have

been set up, they are exogenous in the subsequent years. Therefore, we abstract from this issue

4Note that by construction the 2007 based index and the chain-linked index must be equal in 2007.
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and assume the exogeneity of technology.

In order to estimate equation 1.4, we adopt the generalized translog multiproduct cost function

discussed by Caves et al. (1980). With this specification we apply the Box-Cox transformation to

those output variables having zero values. The ordinary translog function in fact is not suitable,

since the natural logarithm of zero is undefined.5 In addition to the variables indicated in equation

1.4 we also included a bunch of controls which are described in the data section. The hybrid

generalized translog function to be estimated is thus written as

lnV Ct = α0 +
I

∑

i=1

αi

(

Y λ
it − 1

λ

)

+
J
∑

j=1

βj lnwjt + γk lnKt + δn lnNt

+
1

2

I
∑

i=1

I
∑

i′=1

αii′

(

Y λ
it − 1

λ

)(

Y λ
i′t − 1

λ

)

+
1

2

J
∑

j=1

J
∑

j′=1

βjj′ lnwjt lnwj′t

+
1

2
γkk (lnKt)

2 +
1

2
δnn (lnNt)

2 +
1

2

I
∑

i=1

J
∑

j=1

ζij

(

Y λ
it − 1

λ

)

lnwjt

+
I

∑

i

ηi

(

Y λ
it − 1

λ

)

lnKt +
I

∑

i

ϑi

(

Y λ
it − 1

λ

)

lnNt

+
J
∑

j

µj lnwjt lnKt +
J
∑

j

νj lnwjt lnNt + ξ lnKt lnNt +
L
∑

l

πlzlt +
T
∑

t

ψtAt + ǫt(1.5)

where Yit is the i-th output at time t,6 wjt is the j-th input price, Kt is the fixed capital input

stock, Nt is the technology index, zlt is the l-th control variable and At represents time dummies.

We imposed a symmetry constraint on the βjj′ and the ζij , i.e. βjj′ = βj′j . Further we need more

constraints on the parameter values in order to impose linear homogeneity in factor prices

∑

j

βj = 1

∑

j

ζij =
∑

j

βjj′ =
∑

j

µj =
∑

j

νj = 0

5The only alternative to the Box-Cox transformation involves substituting arbitrarily small positive numbers for
the zero values, i.e we transform x in ln(x+ ǫ). Usually results coming from this approach are sensitive to the value
chosen. In our study we did some sensitivity checks, by varying the value of ǫ. Results did not change significantly.

6Obviously
Y λ

it
−1

λ
is the Box-cox transformed output.
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Following Shepard’s lemma we derive a set of cost share equations from the cost function

Si =
∂V Ct

∂ lnwjt

= βj +
∑

j′

βjj′ lnwjt +
∑

i

ζij

(

Y λ
it − 1

λ

)

+ µj lnKt + νj lnNt (1.6)

Since cost-shares sum up to unity, we delete one equation from the system and estimate the re-

maining ones jointly with the cost function by Zellner’s iterative seemingly unrelated regressions.

In order to grab the effect of technology on costs, we evaluate the derivative of the logarithm of

variable costs with respect to the technology index

∂ lnV Ct

∂ lnNt
= δn + δnn

lnNt

Nt
+
∑

i

ϑi

(

Y λ
it − 1

λ

)

+
∑

j

νj lnwjt + ξ lnKt (1.7)

As a form of comparison, we estimate an alternative specification of equation 1.4 which takes into

account explicitly technology without relying on any synthetic measure of innovations. Specifically

we change the generalized translog equation 1.5 by both eliminating the parameters δn, δnn, ϑi, νj

and adding a set of dummies representing all technologies available at a given point in time. This

technology dummy variables (TDV) approach is expressed as follows

lnV Ct = α0 +
I

∑

i=1

αi

(

Y λ
it − 1

λ

)

+
J
∑

j=1

βj lnwjt + γk lnKt (1.8)

+
1

2

I
∑

i=1

I
∑

i′=1

αii′

(

Y λ
it − 1

λ

)(

Y λ
i′t − 1

λ

)

+
1

2

J
∑

j=1

J
∑

j′=1

βjj′ lnwjt lnwj′t

+
1

2
γkk (lnKt)

2 +
1

2

I
∑

i=1

J
∑

j=1

ζij

(

Y λ
it − 1

λ

)

lnwjt +
I

∑

i

ηi

(

Y λ
it − 1

λ

)

lnKt

+
J
∑

j

µj lnwjt lnKt + ξ lnKt lnNt +
L
∑

l

πlzlt +
T
∑

t

ψtAt +
P
∑

p=1

ρpnpt + ǫt (1.9)

where npt represent the availability of technology p at time t and ρp = ∂ lnV C
∂np

is the coefficient

giving the partial effect of technology p on the cost frontier. Following Kennedy (1981) the total

percentage effect of technology dummies on variable costs is given by the exponentiated sum of the

ρ coefficients corrected by their respective variances, i.e.
∑P

p=1

(

exp
[

ρ̂p −
ˆV ar(ρ̂p)
2

]

− 1
)

. However

for small values of each ρ̂p this formula is substantially equal to7

7As rule of thumb, a coefficient smaller than 0.1 can be deemed a “reasonable” threshold value.
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P
∑

p=1

∂ lnV C

∂np
=

P
∑

p=1

ρ̂p (1.10)

1.5 Data

Sources, eligibility and sample selection

American Hospital Association (AHA) survey and Medicare cost reports represent the main sources

of information for this study. From the former we got data on outputs, technology adoption

and some other hospital characteristics. While the latter provided us all financial data. Other

sources like the Current Population Survey (CPS), the Centers for Medicare and Medicaid Services

(CMS) and the National Center for Education Statistics were employed in order to control for

environmental factors such as insurance, market structure and demographic characteristics.

We limited our analysis to short-term hospitals, since long-term and rehabilitation structures

generally serve a very different production function. We deemed hospitals eligible when they had

consistent Health Care Financing Administration (HCFA) identifiers, which made possible the

matching between the AHA survey files and Medicare reports. Then we had to pull out observations

with inconsistent Federal Information Processing Standard (FIPS) county code, which we used to

merge hospitals with environmental variables. Observations with missing input prices and outputs

were also discarded. Then we deleted observations with inconsistent cost data and outliers.8 Our

last step was to select observations always available throughout the period 1996-2007. We ended

up with a perfectly balanced panel of 2230 hospitals, for a total 26760 observations. All detailed

steps of hospitals eligibility and selection criterion are summed up in table 3.4.

The choice of undertaking the analysis over the hospitals that we can keep track all over the

twelve years is based on the fact that during this time span many hospitals opened, other ones

closed their operations with/without reopening or faced a merge/acquisition process. It is not

possible with the data at our hand to know what is the event that caused a stop in the series.

The treatment of the merged hospitals would be highly problematic. We may theoretically merge

their financial and stock data for the years they were separated, but it is not clear whether the

behavior of the resulting hospital would respond to the same scheme of incentives previous to the

merge/acquisition event. Similarly handling hospital openings is equally important because new

hospitals tend to face severe start-up costs. Further, a closure is an event that is a likely consequence

of a bad financial situation, which have to be differently analyzed with respect to hospitals that are

going to acquire other structures. Both openings and closure are events that shift the cost frontier.

8We consider an observation outlier if at least one of its input prices is smaller than the first percentile or greater
than the ninety-ninth percentile of the respective input price or total discharges are smaller than the first percentile
of total discharges.
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Being impossible to distinguish among hospitals with simple problems of data misreporting and

hospitals experiencing one of the above mentioned events, we decided to restrict the analysis to

hospitals with a complete and “safe” information set.

Short-run cost function parameters

In any multiproduct hospital cost function, identifying the outputs always involves a tradeoff be-

tween the wish to grasp all aspects of a hospital activity and the need to limit its range in order to

make estimation feasible. In this study the latter side of the tradeoff does not represent a serious

concern, given the availability of a large sample. In our model we use three distinct types of out-

puts as the basis for estimation: hospital unit inpatient discharges, nursing home discharges and

outpatient visits. We further disaggregate the hospital unit inpatient discharges into Medicare and

non-Medicare, because of the policy relevance in the question of how Medicare outputs affect hos-

pital costs. We preferred inpatient discharges to inpatient days because in a prospective payment

system the latter variable may reflect more a productive choice of the hospital management rather

than patients’ demand.9

Input prices are measured in terms of expenses incurred by each hospital, deflated at 2007

prices. In this study average annual salary per full-time equivalent employee is used as price of

labor. Unfortunately from the Medicare reports we are not able to get a more refined measure of

labor prices which recognizes different skill requirements. From total costs we subtract the costs of

labor and costs of capital and get a residual measure of costs of material and supplies. We divide

this amount by total admissions and the result is our admittedly unattractive measure of price

of materials and supplies. Further, the number of beds is the measure for fixed capital stock, a

solution generally taken in the literature.

As it can be seen from table 1.3, the cost per admission steadily increased in the period con-

sidered from about 2200$ in 1996 up to 3200$ in 2007. Similarly hospital unit discharges and

outpatient visits rose and reached their peaks in 2007, while nursing home services had a severe

contraction from the top of 1998. Input prices also increased: our measure of materials and supplies

price has grown from 1220$ per admission in 1997 to almost 1900$ in 2007. While annual wage per

full time equivalent worker on average rose from 51530$ up to 55140$ in 2007. Further the fixed

capital stock is the variable showing more stability: the number of beds has been declining since

1996 until 2001 and then it had a constant light increase without never reaching the peaks of the

beginning of the period.

9In the DRG system there are strong incentives for the hospital management to adopt opportunistic behavior
as described by Ellis and McGuire [?]. Case-mix selection, cream skimming, skimping or upcoding are events more
likely to affect the length of stay rather than the level of discharges.
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Explanatory variables

Given the heterogeneity inherent in the categories of output volume, we included a set of variables

elaborating on the clinical composition of each output. Variations in output characteristics are

measured by the percentage of beds in intensive care units, the ratio of births to admissions, the

number of inpatient surgical operations per admission and the share of Medicaid and Medicare

discharges. As additional hospital controls we considered the type of ownership, in the form of a

dummy variable whether the hospital is private for profit and private not-for-profit (the base cate-

gory is given therefore by structures run by the government). We included other dummy variables

for teaching hospitals, hospitals operating subsidiaries, contract-managed and participating in a

network, and hospitals having a formal written contract with a Health Maintenance Organization

(HMO) or a Preferred Provider Organization (PPO). Further we measured competitive pressures in

the hospital’s market by a Hirschman-Herfindahl index, a standard economic measure of industry

concentration that is used to reflect the distribution of admissions in hospitals in the market area.

Moreover we have added several more explanatory variable concerning the insurance environment,

demographic factors and schooling levels in the area, which are described in table 1.4.

Finally in order to capture unmeasured technological change and variation in unobserved vari-

ables such as quality we have included a set of year dummies, where the base year is represented

by 1996.

1.6 Results

In table 1.5 we report results obtained by estimating equation 1.5, using different sets of explanatory

variables. In column 1 we have just added time dummies to technology parameters, while starting

from column 2 to column 5 we subsequently insert hospital characteristics, insurance environment

variables, demographic characteristics and state dummies. Our first measure of interest is given

by the elasticity of variable costs with respect to technology index, which is always positive and

statistically significant.10 The magnitude of this elasticity goes down as the number of controls

increase in the estimation. In column 5, which represents the model where most sources of variation

are controlled for, the value is 0.067. The interpretation of this elasticity is not straightforward,

but still possible. At means, a 10% increase in the value of the index corresponds to almost a

0.7% increase in variable costs. Since on average our chain-linked measure of technology for all

the years is 6.55, when we increase it by 0.655 (10% of 6.55) this equals the added contribution of

an innovation hold by roughly 35% of the sample of hospitals. Therefore adding a relatively new

technology has an increasing effect on costs of almost 18$ per admission (0.67% of 2680$, see table

1.3), or alternatively 800,000$ overall. Own-price elasticities of inputs are correctly negative and

10Standard errors for all elasticities were computed by applying the delta method to linearize the elasticity functions
around the estimated parameter values and then using standard formulas for the variances and covariances of linear
functions of random variables.
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largely significant and their magnitude increases as the number of controls increase too. While the

elasticity of cost with respect to capital measured by beds is positive as one may expect. What is

surprising in these estimates is the magnitude of the year dummies. Not only there is an increasing

positive trend but also the level is higher when we add more shifting factors to the frontier. This

might be interpreted as year dummies are capturing unmeasured technical change, even though we

have explicitly specified innovations into the model.

Marginal cost of output i is calculated by multiplying the elasticity of cost with respect to the

given output i times the ratio of average costs and average output

MCYi
=

∂V Ci

∂Yi
= ECYi

V Ci

Y i

=



αi +
I

∑

i′=1

αii′
Y λ
i′ − 1

λ
+
∑

j

ζij lnwj + ηi lnK + ϑi lnN



 Y λ
i

V Ci

Y i

(1.11)

As it can be seen from table 1.6, computed marginal costs are correctly positive for all outputs.

We did not find any recent studies to which relate these figures. Dor and Farley (1996) estimates

refer to a limited sample of 331 short-term facilities in the period 1985-1987. They got a marginal

cost of inpatient medicare discharge higher than that of other types of inpatient discharges. Other

works in the 80’s report approximately a marginal cost of 8000$ in 1994 value for inpatient dis-

charges.11 Vita (1990) estimates an outpatient visit marginal cost of 73$ for a cross-section of

hospitals in 1983. Taking these numbers with extreme caution as a form of comparison, it seems

that our figures can be deemed reasonable.

In order to validate our estimates presented in table 1.5, we show in table 1.7 the outcome of

our TDV equation. It can be seen that results are very similar to the technology index approach.

Time dummies have the same increasing pattern, while own-price elasticities and capital elasticity

are of the same size. Now the measure of technology effect differs, since it represents two extreme

cases: hospitals holding all technologies vs. hospitals without any innovations. When we control

for all available sources of heterogeneity, this sort of “switch-on” effect of hospitals holding all

technologies is reflected in a 23% increase in the level of variable costs. Obviously any intermediate

situation has to be analyzed by looking at technology specific coefficients. The TDV approach in

fact helps us discerning which are the innovations that positively or negatively contribute to the

cost frontier. Among the thirty-three given technologies, twenty-five bring about an upward shift

of the cost function, nineteen of them being statistically significant (results not shown). Also in

this case adding more controlling factors in the estimation substantially decreases the measured

technological effect and increases the unmeasured one represented by the time dummies. This

11See for instance Robinson and Luft (1985) and Granneman et al. (1986).
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result might be due to the limitation of using technology dummies both in the computation of the

technology index and also in a more direct way into the estimating system of equations. In fact

what we measure is simply the availability or not of certain technologies. If we think to a specific

innovation, say for instance a MRI, we know that MRI equipment is very different in terms of both

expensiveness and operational contents. Therefore we cannot distinguish among latest fashion MRI

and those making the most simple imaging. This obviously may come at a cost of underestimating

the impact of MRI on variable costs, which is absorbed into the time trend.

Furthermore it is of interest analyzing the pattern of the effects of technologies through time.

We might expect that some new technologies strongly increase costs once they are set up, but

after some years the sign of the effect is reversed. Other innovations might increase costs at an

increasing or decreasing rate. Therefore we put more structure in the model by adding interactions

of time dummies with technology dummies. This means we are adding 396 interactions into model

expressed by equation 1.9 (33 dummies of technology times 12 year dummies). Because of the

interactions, in order to avoid perfect collinearity we have either to drop technology dummies or

year dummies. We have opted for the former choice, since we are still interested in checking the

pattern of time dummies and because in this way it is possible to get a direct estimate of the

specific technology effect also in the first year of the survey. It is not possible for space reasons to

show all interactions terms. However in table 1.8 we summarize results of this “giant” regression.

Under the column with the plus sign we show technologies reporting a majority of positive signs,

i.e. those bringing about an upward shift of the frontier. While technologies under the minus

sign cause a decrease in the frontier. The “Increasing trend” row and “Decreasing trend” row

correspond trivially to technologies showing a coefficient value which is increasingly or decreasingly

greater in absolute terms through time. The “Constant” row refers to technologies without a clear

pattern, while “Mixed evidence” points out technologies whose effects completely change sign after

some years. Finally in parentheses we inserted the number of coefficients with prevailing sign,

followed by the number of those which are statistically significant. For instance for the variable

tplnthos, we estimated twelve positive coefficients, eleven of them being statistically significant.

Reasonably there is a lot of heterogeneity in our estimates and most innovations do not present

a clear trend. Transplant services and ultrasound devices are the technologies showing the less

ambiguous results, both in terms of significance and magnitude of the coefficients. Transplant

services strongly contribute to an upward shift of the frontier that is increasing through time.

While the reverse is given for ultrasound equipment. Consistently with literature, MRI equipment

adoption is increasingly contributing to the rise of hospital costs (see Baker, 2001), even though

only a third of the coefficients are significant. The estimate of the sum of impacts of all technologies

jointly considered is about 0.251, which is very similar to the case without interactions. In figure 1.2

we report the pattern of the measured technological effect. We called it as cumulative technological

effect since each point in the graph is the result of the sum, up to year ti, of the sum of derivatives
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of the interactions with respect to technology dummy variables evaluated at the mean of time

dummies, i.e.

Cumulti =

ti
∑

t=1

P
∑

p=1

∂ lnV C

∂npt
At

The slope of this line is slightly steeper in the first years of the survey, and always between 0.017 and

0.025, looking very similar to a linear trend. Further, the estimated coefficients of time dummies,

which we do not report, are now not significant and overall they do not show any specific pattern.

This was somehow expected since the time dummies have been interacted with all technologies.

1.7 Conclusions

In this paper we assess quantitatively the impact of technology on hospital costs, which makes up the

major share of total US health spending. With the term hospital technology we refer to procedures,

devices, and processes by which hospital care is delivered. We avert the common practice applied in

production economics to use time trends or dummies, by approximating innovations with a novel

index of available technologies, which guarantees comparability across hospitals and over time.

AHA surveys provide us information on the availability of a host of technologies, while for financial

data we use Medicare cost reports.

Our results are consistent with the view that technology is correlated with a rise in hospital care

spending. Elasticity estimates point out that adding a relatively new technology has an increasing

effect on costs of almost 18$ per admission, i.e. 800,000$ overall. Further there is a substantial

increasing positive trend, which is more robust as much as we add controlling factors to the model.

This unmeasured technological progress is confirmed by a simple technology dummies approach,

which has been implemented to validate the first set of estimates. The reason for the time trend

being still not irrelevant is due to the definition of technology availability, which in some cases is still

too general to capture differences between high vs. low tech innovations. Finally we point out that

while the net effect of technology is positive, innovations can be either cost-saving or cost-pushing

or not having even any significant influence on costs. The pattern of these effects through time

cannot be generalized and is very diverse among the innovations collected in this study.
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1.9 Tables

Table 1.1: List of technologies

Variable name Description

aidsshos HIV-AIDS services
airbhos Airborne infection isolation room
brnhos Burn care
bwhthos Bariatric/weight control services
caoshos Computer assisted orthopedic surgery
cardhos Cardiac surgery
cclabhos Cardiac catheterization
chthhos Chemoterapy
cichos Cardiac intensive care
ctscnhos Computed-tomography scanner (CT)
dradfhos Diagnostic radioisotope facility
ebcthos Electron Beam Computed Tomography (EBCT)
eswlhos Extracorporeal shock-wave lithotripter (ESWL)
ffdmhos Full-field digital mammography
hemohos Hemodialysis services
mammshos Breast cancer screening/mammograms
mrihos Magnetic resonance imaging (MRI)
msctghos Multislice spiral computed tomography 64 + slice
mscthos Multislice spiral computed tomography <64 slice
msichos Medical/surgical intensive care
nichos Neonatal intensive care
oncolhos Oncology services
ortohos Orthopedic services
pedichos Pediatric intensive care
petcthos Positron emission tomography/CT (PET/CT)
pethos Positron emission tomography (PET)
radthhos Radiology therapeutic
robohos Robotic surgery
specthos Single photon emission computed tomography (SPECT)
tplnthos Transplant services
traumhos Certified trauma center
ultsnhos Ultrasound
vrcshos Virtual colonoscopy
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Table 1.2: Eligibility and selection criterion

Step # obs # Dropouts

Starting observations 65,194 -
Inconsistent Medicare ID 4,101

61,093 -
Inconsistent FIPS county code 561

60,532 -
Missing input price 6,303

54,229 -
Missing outputs 3

54,226 -
Inconsistent cost data 23

54,203 -
Outliers 3,678
Total eligible 50,525

Selection 23,765
Total 26,760 38,634
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Table 1.3: Descriptive statistics

Year CPI Y1 Y2 Y3 Y4 wL wS Beds

1996 2211 2722 4225 91 97901 51534 1220 174
(1026) (2493) (4823) (212) (108242) (13282) (619) (143)

1997 2277 2807 4308 117 100614 51560 1262 171
(1012) (2571) (4981) (349) (115350) (10515) (609) (142)

1998 2370 2829 4389 120 106748 52515 1315 169
(1061) (2591) (5044) (458) (122877) (10511) (625) (143)

1999 2448 2880 4511 120 113940 53179 1366 166
(1116) (2651) (5276) (250) (132710) (10798) (660) (143)

2000 2562 3169 4502 105 121064 54085 1440 159
(1216) (3042) (5280) (231) (139294) (11257) (713) (141)

2001 2635 3274 4621 95 125123 54678 1489 159
(1223) (3120) (5376) (222) (144492) (10641) (719) (142)

2002 2719 3326 4713 95 129426 54989 1550 160
(1268) (3192) (5439) (214) (151963) (11004) (757) (144)

2003 2823 3365 4802 87 131673 54793 1628 160
(1371) (3224) (5584) (224) (154830) (10564) (825) (144)

2004 2890 3452 4829 73 135203 54829 1673 161
(1473) (3326) (5584) (199) (166429) (11658) (881) (146)

2005 2951 3525 4814 74 137212 54826 1714 162
(1441) (3375) (5571) (208) (168728) (11102) (868) (148)

2006 3073 3491 4849 72 140281 54647 1791 162
(1584) (3401) (5684) (199) (177718) (10888) (952) (149)

2007 3202 3538 4854 66 142935 55141 1866 164
(1699) (3510) (5793) (191) (184361) (11401) (1019) (153)

Total 2680 3198 4618 93 123510 53898 1526 164
(1343) (3075) (5380) (258) (149821) (11231) (808) (145)

Notes: Standard deviations in parentheses. CPI=Cost per inpatient admission, Y1=inpatient

Medicare discharges, Y2=inpatient other discharges, Y3=nursing home discharges,

Y4=outpatient visits, wL=price of labor, wS=price of supplies
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Table 1.4: Control variables summary statistics
Variable Aggregation Mean SD

Output composition
Beds in intensive care units Hospital 7.54% 0.09
Ratio of births to total admissions Hospital 10.80% 0.08
Inp. surg operation per admission Hospital 0.26 0.18
Inp. Medicare discharges Hospital 42.73% 0.15
Inp. Medicaid discharges Hospital 14.85% 0.11

Hospital characteristics
Private not-for-profit Hospital 62.91% 0.48
Private for-profit Hospital 17.49% 0.38
Teaching Hospital 17.99% 0.38
Subsidiaries Hospital 21.23% 0.41
Contract-managed Hospital 10.62% 0.31
Network Hospital 33.68% 0.47
Herfindhal index Hospital 40.67% 0.41

Insurance environment
Managed Care penetration County 6.59% 0.11
Hospital has written contract with HMO County 58.57% 0.33
Hospital has written contract with PPO County 73.94% 0.24
Uninsured State 13.77% 3.93
Priv. insur. - employment based State 62.31% 5.84
Priv. insur. - directly purchased State 10.30% 3.19
Pub. insur. - Medicaid State 11.51% 3.61
Pub. insur. - Medicare State 13.81% 2.29

Demographic factors
Log household median income, 2007 US$ County 10.67% 0.23
Poverty rate County 13.73% 5.44
Poverty rate - age 0-17 County 19.07% 7.77
Population - age 0-14 County 20.47% 0.03
Population - age 15-64 County 65.51% 0.03
Population - age 65+ County 14.02% 0.04
Female population County 50.75% 0.02
Female population - age 15-64 County 20.62% 0.02
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Table 1.5: Estimation results with index of technology
(1) (2) (3) (4) (5)

Year 1997 .007 .008 .011 ∗ .007 .008
(.006) (.005) (.005) (.005) (.005)

Year 1998 .01 † .011 ∗ .012 ∗ .006 .014 ∗

(.006) (.005) (.005) (.005) (.005)
Year 1999 .01 † .013 ∗ .007 .002 .017 ∗∗

(.006) (.005) (.005) (.005) (.006)
Year 2000 .021 ∗∗ .032 ∗∗ .021 ∗∗ .014 ∗ .035 ∗∗

(.006) (.005) (.005) (.006) (.006)
Year 2001 .022 ∗∗ .034 ∗∗ .02 ∗∗ .017 ∗∗ .037 ∗∗

(.006) (.005) (.006) (.006) (.006)
Year 2002 .028 ∗∗ .039 ∗∗ .028 ∗∗ .025 ∗∗ .042 ∗∗

(.006) (.005) (.006) (.006) (.006)
Year 2003 .044 ∗∗ .055 ∗∗ .043 ∗∗ .035 ∗∗ .052 ∗∗

(.006) (.005) (.006) (.006) (.006)
Year 2004 .052 ∗∗ .065 ∗∗ .051 ∗∗ .046 ∗∗ .064 ∗∗

(.006) (.005) (.006) (.006) (.006)
Year 2005 .057 ∗∗ .074 ∗∗ .06 ∗∗ .056 ∗∗ .075 ∗∗

(.006) (.005) (.006) (.006) (.007)
Year 2006 .062 ∗∗ .076 ∗∗ .065 ∗∗ .063 ∗∗ .081 ∗∗

(.006) (.006) (.006) (.006) (.007)
Year 2007 .066 ∗∗ .086 ∗∗ .071 ∗∗ .07 ∗∗ .093 ∗∗

(.006) (.006) (.006) (.007) (.007)
∂ lnV C/∂ lnN .114 ∗∗ .091 ∗∗ .091 ∗∗ .085 ∗∗ .067 ∗∗

(.003) (.003) (.003) (.003) (.003)
∂ lnV C/∂ lnK .354 ∗∗ .352 ∗∗ .345 ∗∗ .335 ∗∗ .336 ∗∗

(.006) (.006) (.006) (.006) (.006)
Own-price: labor -.147 ∗∗ -.178 ∗∗ -.191 ∗∗ -.198 ∗∗ -.211 ∗∗

(.013) (.012) (.012) (.012) (.012)
Own-price: supplies -.114 ∗∗ -.139 ∗∗ -.149 ∗∗ -.154 ∗∗ -.165 ∗∗

(.01) (.01) (.01) (.009) (.009)
Hospital characteristics NO YES YES YES YES
Insurance environment NO NO YES YES YES
Demographic variables NO NO NO YES YES
State dummies NO NO NO NO YES
Obs. 26,760 26,760 26,760 26,760 26,760

Notes: Standard errors in parentheses. Elasticities evaluated at mean.

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 1.6: Marginal cost estimates
Output Estimate(US$)

Inpatient Medicare discharges 10,324
Inpatient other discharges 8,203
Nursing home discharges 28,083
Outpatient visits 88

Note: marginal costs evaluated at mean.
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Table 1.7: Estimation results with technology dummies
(1) (2) (3) (4) (5)

Year 1997 .007 .008 .011 ∗ .006 .008
(.005) (.005) (.005) (.005) (.005)

Year 1998 .014 ∗ .014 ∗ .013 ∗ .006 .014 ∗

(.005) (.005) (.005) (.005) (.005)
Year 1999 .011 † .014 ∗ .007 0 .015 ∗

(.006) (.005) (.005) (.005) (.006)
Year 2000 .023 ∗∗ .033 ∗∗ .02 ∗∗ .01 † .031 ∗∗

(.006) (.005) (.005) (.006) (.006)
Year 2001 .025 ∗∗ .035 ∗∗ .02 ∗∗ .013 ∗ .033 ∗∗

(.006) (.005) (.006) (.006) (.006)
Year 2002 .031 ∗∗ .04 ∗∗ .028 ∗∗ .021 ∗∗ .037 ∗∗

(.006) (.005) (.006) (.006) (.006)
Year 2003 .049 ∗∗ .058 ∗∗ .044 ∗∗ .032 ∗∗ .047 ∗∗

(.006) (.005) (.006) (.006) (.006)
Year 2004 .058 ∗∗ .067 ∗∗ .053 ∗∗ .043 ∗∗ .059 ∗∗

(.006) (.005) (.006) (.006) (.006)
Year 2005 .068 ∗∗ .081 ∗∗ .066 ∗∗ .057 ∗∗ .074 ∗∗

(.006) (.006) (.006) (.006) (.007)
Year 2006 .075 ∗∗ .085 ∗∗ .073 ∗∗ .064 ∗∗ .079 ∗∗

(.006) (.006) (.006) (.006) (.007)
Year 2007 .081 ∗∗ .097 ∗∗ .08 ∗∗ .073 ∗∗ .091 ∗∗

(.006) (.006) (.006) (.007) (.007)
∑I

i=1
∂ lnV C
∂ni

.393 ∗∗ .303 ∗∗ .3 ∗∗ .284 ∗∗ .237 ∗∗

(.014) (.014) (.014) (.014) (.013)
∂ lnV C/∂ lnK .336 ∗∗ .341 ∗∗ .333 ∗∗ .323 ∗∗ .321 ∗∗

(.006) (.006) (.006) (.006) (.006)
Own-price: labor -.162 ∗∗ -.191 ∗∗ -.202 ∗∗ -.212 ∗∗ -.234 ∗∗

(.012) (.012) (.012) (.012) (.012)
Own-price: capital -.126 ∗∗ -.148 ∗∗ -.157 ∗∗ -.165 ∗∗ -.182 ∗∗

(.01) (.009) (.009) (.009) (.009)
Hospital characteristics NO YES YES YES YES
Insurance environment NO NO YES YES YES
Demographic variables NO NO NO YES YES
State dummies NO NO NO NO YES
Obs. 26,760 26,760 26,760 26,760 26,760

Notes: Standard errors in parentheses. Elasticities evaluated at mean.

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 1.8: Technologies pattern

(+) (-)

Increasing trend

chthhos (10/7) ebcthos (12/2)
eswlhos (10/0)
mrihos (11/4)
tplnthos (12/11)
traumhos (12/2)

Decreasing trend

cardhos (12/11) ultsnhos (12/9)
cclabhos (10/8)
hemohos (12/2)
msctghos (12/7)
nichos (12/4)
oncolhos (12/6)
pethos (11/1)

Constant

aidshos (10/1) airbhos (7/1)
brnhos (12/8) bwththos (12/1)
dradfhos (10/2) cichos (11/3)
ffdmhos (10/0) ctscnhos (10/7)
msichos (9/3) vrcshos (7/0)
ortohos (11/8)
pedichos (12/11)
radthhos (11/4)
robohos (12/0)
specthos (9/0)

Mixed evidence
caoshos (8/0) mammshos (7/3)
petcthos (6/0) mscthos (7/3)

Notes: Technologies under the plus (minus) sign report a majority of

positive (negative) interactions. Increasing (Decreasing) trend corresponds

to technologies with coefficients increasing (decreasing) in absolute terms

through time. Constant refers to technologies without a clear pattern.

Mixed evidence points out technologies whose effects reverse after some

years. In parentheses the number of coefficients with prevailing sign

is followed by the number of statistically significant ones.
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1.10 Figures

Figure 1.1: Technology index (1996-2007)
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Figure 1.2: Cumulative technological effect (1996-2007)
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Ten years of DRG reform. An empirical analysis of the influence

of specialization, productive structure and ownership form on

Italian hospitals technical efficiency.12

Abstract

We evaluate how the productive structure and level of specialization of a hospital affect

technical efficiency by analyzing a six-year panel database (2000/2005) drawn from hospital

discharge records and Ministry of Health data. We adopt a distance function approach, while

measuring the technical efficiency level with stochastic frontier techniques. After controlling

for environmental variables and hospital case-mix, inefficiency is negatively associated with

specialization and positively associated with capitalization. Capitalization is typical of private

structures which, on average, use resources less efficiently with respect to public and not-for-

profit hospitals. Finally, by looking at scale elasticities, we find some evidence of unexploited

economies of scale, leaving room for centralization.

12 This paper is based on “Technical Efficiency, Specialization and Ownership Form: Evidences from a Pooling of
Italian Hospitals.” with Francesco D’Amico, published in Journal of Productivity Analysis, 32:203-216 (2009). We
would like to thank: Vincenzo Atella and Federico Belotti for continuous and stimulating discussion; two anonymous
referees; Giorgia Marini; the participants of the Sixteenth EuropeanWorkshop on Econometrics and Health Economics
and the Masterclass in applied Health Economics held in Bergen; the participants of the Econometrics PhD Students’
seminars, held at University of Rome Tor Vergata; the participants of the Technical Efficiency Parallel Session at the
Third Italian Congress of Econometrics and Empirical Economics, held at University of Ancona; and Hung-Jen Wang
for the assistance with his new STATA package and for his suggestions concerning convergence of the models. We
also thank Cristina Tamburini from the Ministry of Health for the data used throughout the paper. Corresponding
author: Silvio Daidone, Faculty of Economics, University of Rome Tor Vergata, Via Columbia 2, 00133 Rome, Italy,
e-mail: silvio.daidone@uniroma2.it, phone: +39 06 7259 5624



2.1 Introduction

The main objective of this paper is to evaluate how the productive structure and level of spe-

cialization of a hospital affect its technical efficiency. Here, we define productive structure as the

degree of capitalization of the hospital, while the degree of specialization refers to the number

of different types of cases treated within the organization. To this end, we report an economic

analysis measuring the evolution of technical efficiency in hospitals located in the Italian region of

Lazio in the 20002005 period. Subsequently, we assess the robustness of the hospitals optimizing

behavior about 10 years after the introduction of the Diagnosis Related Group (DRG) system, and

explore differences in efficiency as related to the hospitals ownership structure. Finally, we offer

some insights as to how hospital scale of activity and productive conditions are determined by the

institutional framework.

In Italy, the introduction of the DRG system in 1992 served both as a means of prospective

payment and as an instrument for efficient allocation of resources. This should have made it possible

to properly classify, measure, and assess hospitals performance by using industrial organization and

management methods. Moreover the system applied to all organizations, independent of whether

they were privately or publicly owned. As a consequence of the reform, hospitals were made

responsible for their own outcomes, partially assuming the burden of financial risk. Further, budget

constraints were made more binding for financing institutions, and this affected incentives to curb

health consumption and production. As a result, two patterns emerged: on one hand, producers

were encouraged to optimize their productive processes given the available inputs, and on the other

hand, resource availability was reduced.

The theoretical industrial organization literature refers to several factors which might affect the

level of technical efficiency reached by different ownership structures. Alas, there is no consensus

regarding the net direction and size of these effects. Neoclassical theory advocates that nonprofits

(both public and private) have a propensity to opt for administrators more interested in providing

high-quality service than in producing profits. This type of hospitals might use more input to

produce the same output as forprofit hospitals. Further, the presence of residual claimants should

represent a powerful incentive to efficient production among for-profit hospitals (Alchian and Dem-

setz 1972). In addition to these neoclassical arguments, developments on a strand of economic

literature that concentrates on information asymmetries have been used to provide a rationale for

the existing differences in productive efficiency. While the lack of a residual claimant á la Alchian-

Demsetz, might reduce managerial efforts and consequently having a negative impact on efficiency,

the non-distribution constraint could represent an influential tool for controlling information asym-

metries among diverse stakeholders (Hansmann 1996), increasing their efficiency by augmenting

demand. Nonetheless, the impact of these characteristics on efficiency is still unclear.

The empirical literature on hospital efficiency in Italy consists of a substantial number of studies

with a variety of methodologies, scopes, and results. Unexploited economies of scale are a recurrent

35



theme (see Grassetti et al. 2005). Public hospital trusts (Aziende Ospedaliere, hereforeward referred

to as AO) appear more efficient than other hospital types, such as acute-care and rehabilitation

hospitals directly managed by local health authorities (Presidi Ospedalieri, ASLH),13 but such a

crystal clear difference is not observed in a comparison of public and private hospitals. Finally,

technical efficiency seems to have decreased in the second half of the nineties, after the introduction

of prospective payments under the DRG (see Barbetta et al. 2007).

Any analysis of hospital efficiency must take into account the so-called “Newhouse criticism”

(Newhouse 1994). Model specifications are, in fact, generally restrictive: they omit some relevant

inputs and outputs without taking into account the quality characteristics of the services provided.

Further, hospital outputs are extremely heterogeneous. The number of discharged patients gives

a rough measure of overall hospital production, if we do not take into account other aspects of

treatment, such as the type and the severity of illness, the presence of other illnesses, the overall

characteristics of the patient, and the like. We address these critiques by: (1) using hospital

discharge records that allow to construct precise measures measures of output and controls of

hospital case-mix; (2) representing technology with distance functions, which are more adequate

than simple production functions in a multiinput multi-output setting. However, we acknowledge

that this approach is still limited, since distance functions may be still mis-specificied. In absence

of good measures of hospital quality, we decided not include the available indicators in our analysis

and assessed that this does not invalidate our results. The paper is organized as follows: in the

next section, we describe the econometric technique used for the estimation of efficiency scores.

Subsequently, we present our data and provide some summary statistics, and in Sect. ?? we report

the results. We conclude by commenting on our findings.

2.2 Stochastic distance functions

The notion of technical efficiency refers to producers’ choices to allocate the resources at their

disposal to obtain the maximum possible output from given inputs, or to use the minimum possible

inputs in the production of a given level of outputs. Therefore, the analysis of technical efficiency

may be defined as either output-oriented or inputoriented. When multiple inputs are used to

produce multiple outputs, Shephard’s distance functions (Shephard 1970) provide a characterization

of the structure of production technology. Concept and properties of distance functions are well

described in Kumbhakar and Lovell (2000), to whom we refer the reader. In what follows we have

considered the number of discharges corrected for its case-mix complexity as final goods of the

productive process. More than technical efficiency we are measuring what has been defined by

Zweifel and Breyer (1997) “internal medical efficiency”. However we are totally ignoring “external

medical efficiency”, or hospitals’ effectiveness, defined as the ability of a hospital to improve the

13For a good and quick review of the different nature of these structures, see European Observatory of Health Care
2001
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health status of a patient, for a given number of discharges or a given length of stay. A definition of

output including external medical efficiency would be conceptually more accurate than the definition

we use, but this would be empirically far more difficult to analyze, due to the lack of data reporting

indicators of patients’ health status following post-discharge recovery.

A general cross-sectional multiple-output stochastic frontier model can be written as

DO(xi,yi, zi;β) = exp(vi − ui) (2.1)

where DO(xi,yi, zi;β) is the output distance function used to represent the distance from the fron-

tier, which allows technological interactions across and among inputs and outputs. yi represents

the output vector of the i-th hospital, xi is a vector of inputs and zi is a vector of hospital specific

characteristics other than inputs. β is the parameter vector which describes the structure of the

technology. The error component is divided in two parts: vi is an idiosyncratic normal term with

zero mean, whereas ui is a one-sided asymmetric negatively skewed distribution which captures in-

efficiency among observations. An analogous substitution relationship between factors and outputs

showing deviations from the frontier is given by the input distance function

DI(xi,yi, zi;β) = exp(vi − ui) (2.2)

2.1 and 2.2 can be rewritten as stochastic distance function models

1 = DO(xi,yi, zi;β) · exp(ui − vi) (2.3)

1 = DI(xi,yi, zi;β) · exp(ui − vi) (2.4)

The dependent variable in 2.3 and 2.4 is a constant, which has zero variance. Therefore in order

to empirically estimate both equations we have to convert them into estimable models. This task

can be accomplished by exploiting the fact that DO is linear homogenous in outputs, while DI in

inputs, i.e.

DO(xi, ωyi, zi;β) = ωDO(xi,yi, zi;β) ∀ ω > 0 (2.5)

DI(ωxi,yi, zi;β) = ωDI(xi,yi, zi;β) ∀ ω > 0 (2.6)

As it has been pointed out by Lovell et al. (1994), one way of imposing such restriction is to

normalize DO and DI respectively by one of the outputs and one of the inputs (so called “ratio”

model), i.e.
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DO(xi,yi, zi;β)/y1i = DO(xi,y
∗
i , zi;β) where y∗

i =
yi

y1i
(2.7)

DI(xi,yi, zi;β)/x1i = DI(x∗
i ,yi, zi;β) where x∗

i =
xi

x1i
(2.8)

which lead to

DO(xi,yi, zi;β) = y1iD
O

(

xi,
yi

y1i
, zi;β

)

(2.9)

DI(xi,yi, zi;β) = x1iD
I

(

xi

x1i
,yi, zi;β

)

(2.10)

Substituting equalities 2.9 and 2.10 into equations 2.3 and 2.4 and dividing both sides respectively

by y1i and x1i generates the following estimable composed error models

(y1i)
−1 = DO

(

xi,
yi

y1i
, zi;β

)

exp(ui − vi) (2.11)

(x1i)
−1 = DI

(

xi

x1i
,yi, zi;β

)

exp(ui − vi) (2.12)

In the multi-output version of the model, the dependent variable is the reciprocal of the normalizing

output, and the regressors are the inputs and the normalized outputs. Finally ui provides the basis

for a reciprocal measure of output-oriented technical efficiency. Similar considerations applies for

the multi-input case.

Some authors like Kumbhakar and Lovell (2000) have proposed the Euclidean norm of the

outputs (or inputs) in order to respect the linear homogeneity restriction (so called “norm” model).

In both the “norm” and “ratio” model there is an issue of endogeneity bias, since normalized outputs

and inputs appearing as regressors may not be exogenous. Some authors like Coelli and Perelman

(1967) or Morrison et al. (2000) argue the normalization yi/ymi creates an output mix vector that

is more likely to be exogenous than either yi or yi/|yi|. It is not the objective of the paper to enter

into this debate. For practical purposes we preferred the “ratio” model, since normalizing by the

norm of the outputs increases considerably the degree of multicollinearity, due to the introduction

of exact linear dependencies.

Note that while modelling multiple-input, multipleoutput technologies we have to restrictively

assume that the disturbance terms affect the output vector y multiplicatively, i.e., all outputs are

assumed to be proportionally affected by the same disturbance.

Three major drawbacks affect cross-sectional stochastic frontier models:

1. Estimations strongly rely on distributional assumptions on each error component.

2. Technical (cost) inefficiency might be correlated with the regressors.
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3. Technical and cost efficiency cannot be consistently estimated, because the variance of the

conditional mean or mode does not go to zero as the sample size increase.

2.3 Data and summary statistics

We analyze data provided by the public health agency (PHA) of the Lazio region consisting of

hospital discharge records (HDRs). Hospitals’ administrators have to fill out HDR according to law

as informative tool over which to base patients admission financing. In each HDR, data concerning

the patient are recorded. Beyond vital statistics, we observe health-related information collected

during the patients internment including date of admission and discharge, date of surgery, surgery

type, transfers to other hospitals, and the like. Further, we observe the DRG related to each

patient and its weight, i.e., the level of complexity. Generally, the number of discharges is strongly

correlated with the sum of DRG weights, and this is supported by our dataset. However when we

focus on groups of more complex cases, this correlation may be lower. This, for example, is what

typically is observed in hospitals with emergency rooms. Generally studies of hospital efficiency

do not have such disaggregated data at disposal and are forced to use all discharges or admissions

adjusted by a measure of complexity. Therefore, the observation of the DRG weight is extremely

important since it not only makes it possible to capture the precise number of treated cases, but

also provides a measure of case-mix control for each output.

The aggregation of the DRGs followed a classification system which is commonly used at an

international level, and which has already been applied to Italian data (see Fabbri 2003). Within

this classification, hospital activity may be summarized in 28 production categories. These are made

up of DRG groups consistent with a standard of productive homogeneity.14 In order to make the

model empirically more manageable, we have further aggregated these 28 lines into the following

groups: complex surgery, emergency room treatments, cancers and HIV, general medicine, and

general surgery.

As far as the measurement of output is concerned, frontier techniques seem to work best when

the product is homogeneous and one-dimensional such as, for instance, kilowatt-hours in the elec-

tricity industry. This is not the case for hospital care, which exhibits wide variation in the quality

of the product and its dimensionality, both on the input and the output sides. Therefore, it would

be possible that productive units being assessed might not use the same technologies. In order to

control at least partially for these types of differences, we have restricted our focus to acute pa-

tients. Acute care refers to the necessary treatment of a disease for a short period of time in which

a patient is treated for a brief but severe episode of illness. The goal of the hospital is to discharge

the patient as soon as he or she is deemed sufficiently healthy and stable following the critical

14A hospital is basically viewed as a human service enterprise whose primary function is the provision of diagnostic
and therapeutic medical services. Production lines are specific sets of services provided to individual patients and
largely coincide with an appropriate definition of treatments within each ward typology.
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period. Acute care differs from longterm care and rehabilitation care, which are characterized by a

combination of treatments provided once the acute phase of the disease has been overcome. These

treatments aim to stabilize the disease towards two possible outcomes: recovery or management of

a chronic condition.

Hospitals devoting their activity exclusively to longterm and/or rehabilitation care, therefore,

have very different production functions from acute-care hospitals, which would make the two

groups impossible to compare. For this reason, we did not include such hospitals in the sample.

For those hospitals dedicated only partially to postacute care, we did not include the DRG weights

from postacute care activities in any of the output aggregates. Relatedly, when hospital activity

is limited to the treatment of acute patients, this simplifies the debate as to whether the variable

measuring output should be the number of discharges or the number of inpatient days. The latter

variable may more heavily reflect the assistance component of hospital production, which is unique

to structures dedicated to long-term care and rehabilitation, and hence it may reflect a productive

choice of the hospital rather than the hospitals efficiency level.15

We obtained data concerning inputs from the Italian Ministry of Health. These included:

number of beds as a rough measure of capital and number of physicians, nurses and other personnel

(teaching plus ancillary staff) as a measure of labor. By classifying labor into different categorieswe

recognized differing skill requirements. We are aware that number of hours workedmay be a better

indicator of the labor factor, since it reveals more about the use of the workforce, but unfortunately

such information is not available.16

As mentioned above in discussing the measure of outputs, some hospitals undertake both acute

and post-acute care activity. Therefore, for consistency, we must eliminate this element from

the inputs. For the bed variable, this exclusion was straightforward, since we received data on

beds for rehabilitation and long-term care. However, hospital staff numbers were reported with

no information on the type of care they provided. Therefore we constructed a simple measure of

utilization, dividing the number of inpatient days for acute patients by the total number of inpatient

days. This ratio was multiplied by each category of workers and to provide the measure of inputs

used in the estimation.

Both public and private hospitals providing health care services are present in the sample.

Public hospitals are financed by public funds, while both for-profit and not-forprofit hospitals rely

on a mix of public and private funds. In order to compare productive units and make them as

homogeneous as possible, we must control for differences in the source of funding. For this reason,

in private hospitals, we consider only those services covered by public funds. In this way we are

15See for instance Rosko and Broyles (1988).
16We attempted to use an index of hospital machineries as a more refined measure of capital, attaching their average

costs as a weight. However the set of known costs is incomplete, and even if this missing data concerns only a couple
of machines, we believe this might bias the index value. This may affect parameter estimates, as happened in most
of the adopted model specifications.

40



excluding those hospitals which did not sign any type of agreement with the National Health

System (NHS) and are exclusively devoted to a “pure” forprofit activity. We feel that including

activities which are not funded by the NHS would induce an important discrepancy with the other

two hospital categories. Furthermore, not funded admissions belong to a peculiar category: those

normally include more amenities (e.g. hotel-type facilities) and/or might require a more intense

use of non medical personnel. All of these differences might be hard to be taken under control. For

the sake of consistency, for private hospitals we included in our sample only the number of beds

accredited with the NHS and a proportional fraction of their personnel (i.e. the number of workers

in each category multiplied by the share of beds in agreement with the NHS divided by the total

number of beds).

This gives us a final sample of a weakly balanced panel of 108 hospitals of the Lazio region

observed during the years 2000/2005, which sums 625 observations. In Table 2.1 we show the

distribution of the hospitals and acute patients per year, and with respect to ownership structure.

From the combined reading of input and output statistics (Table 2.2), it appears private hospitals

are smaller with respect to all size-related measures: fewer beds and personnel, and a lower sum of

DRG weights. Further, they are specialized and concentrated on less complex cases, as can be seen,

for instance, by the low number of emergency room treatments. This appearance is confirmed by

the hospital specialization index we have computed. Formally, for the h-th hospital, the Gini ratio

is equal to

ginih =

∑N−1
i=1 (pi − qi)
∑N−1

i=1 pi
, i = 1, 2, . . . , N (2.13)

where N is equal to 20, the total number of existing Major Diagnostic Categories (MDC), qi is

the fraction of the total discharges treated by the first i MDCs, while pi is the ratio of the number

of the i-th MDC over the total number of MDCs. The index varies between 0 and 1: it is equal

to zero in case of perfect equidistribution (polispecialistic medical center), since all the differences

pi − qi are null. Meanwhile it is equal to one in case of maximum specialization, since equation

(2.13) boils down to quantity
∑

pi/
∑

pi = 1.

The Gini ratio may be computed by using DRGs instead of MDCs and in this case N of equation

(2.13) would equal 489, the total numebr of existing DRGs. Counting the number of DRGs for

this measure of specialization would be more appropriate, since it better captures the range of all

hospital production. However due to the fact that hospitals tend to focus on more remunerative

and less costly practices, the array of DRGs chosen by hospitals tends to be very narrow. Therefore

the index of specialization is very high for all hospitals and on average it is similar for all ownership

categories. In order to get a variable with a greater and more significative range of variation, we

use as MDCs, where diagnoses correspond to a single organ system or etiology and are associated

with a particular medical specialty.17 We notice how public and not-for-profit hospitals’ activity

17Farley and Hogan (1990) made an in-depth analysis of hospital specialization measures. They proposed an
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has increased through our observational period (the last two years show a reduced amount due

to some dropouts in the number of the hospitals included). Private hospitals activity results on

average more stable. Such a global phenomenon was probably induced by the converse reduction

of the lenght of stay, which started after the introduction of the DRG system in Italy. The effects

of the new system have progressively optimized through time the length of hospital inpatient care.

2.4 Empirical implementation

The models

The functional form of f(·) may take different aspects. With a Cobb-Douglas specification we

can interpret coefficients as output elasticities, since the covariates are all expressed in logs. In

this application however we cannot estimate this log-linear function, since in a distance function

context, Cobb-Douglas has the wrong curvature in the yi

y1i
and xi

x1i
spaces. Therefore we have

estimated a translog function, where the presence of squared and interaction terms gives a high

degree of flexibility.

For the multi-output multi-input stochastic frontier consider the two following models
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αm ln ymi +
1

2

K
∑

k=1

J
∑

j=1

βkj lnx
∗
ki lnx

∗
ji +

+
1

2

M
∑

m=1

N
∑

n=1

αmn ln ymi ln yni +
M
∑

m=1

K
∑

k=1

βkαm lnx∗ki ln ymi +
H
∑

h=1

zh + vi − ui (2.15)

where in both models i denotes hospital, k, j denote inputs, m,n denote outputs, and h denotes

shifting factors. ymi is the m-th output variable for hospital i and a symmetry constraint has been

imposed on the interaction terms, i.e. αmn = αnm. Further xik is the k-th input variable for

hospital i and a symmetry constraint has been imposed on the interaction terms, i.e. βkj = βjk.
18

Information Theory Index, where specialization is given by caseload deviation from that of the typical hospital. The
main pitfall of this Information Theory Index is therefore its inability to distinguish between hospitals that treat
either a very narrow or a very broad range of cases, since both will tend to have relatively high index values. Hence,
we decided to make use only of the Gini ratio.

18Note that each input and output variable has been standardized with its median.
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In model 2.14 y1i is the output used for normalization, which is given by the sum of the DRG

weights of the discharges in complex surgery. On the other hand in model 2.15 the number of beds,

x1i, is the input used for normalization. Since we treat the zh factors as fixed effects, this translog

function is not fully flexible. In addition to input variables we included

• Time dummies for each year of the sample, using 2000 as the base year. Using a set of time

dummy variables is the same as running time fixed effects without considering panel effects.

• Two variables concerning ownership: one dummy if the hospital is private and another one

if the hospitals is NFP, i.e. if it has been assimilated to a public structure. “Fully” public

hospitals represent the base category.19

• Geographical dummies for each ASL. For the county of Rome we distinguished between hos-

pitals directly managed by Local Health Authorities (Rome-asl) and self-managed hospitals

(Rome-self).

Before getting into the details of the model and commenting the results we would like to

remark that our estimations were based exclusively on a pooling of data. That is, we treated

the observations as part of a single cross-section. The reasons are explained through a simple

decomposition of the total sum of squares (SST). For a generic variable zit observed for hospital i

at time t, SST is equal to the sum of the between hospitals sum of squares, SSB(i), and the within

hospitals sum of squares, SSW(i), i.e.

SST = SSB(i) + SSW (i)

SST =
∑

i

∑

t

(zit − z..)
2

SSB(i) =
∑

i

(zi. − z..)
2

SSW (i) =
∑

i

∑

t

(zit − zi.)
2

where z.. is the global mean and zi. denotes the average of zit over t. To standardize the results we

divide SSB(i) and SSW (i) by SST in order to calculate the percentage of both components. Since

most of the variation in the input and output variables is between rather than within the hospitals

it seems there is very little panel data variation in the sample, which is similar to a cross-section.

19Public hospitals include hospitals directly managed by ASL and AOs. Hospitals assimilated to public structures
are the following: 1) ”Istituto qualificato presidio della USL”; 2) ”Istituto di Ricovero e Cura a Carattere Scientifico
(IRCCS)”; 3) ”Ospedali classificati o assimilati ai sensi dell’art.1 u.c. L.132/68”; 4) ”Policlinici Universitari”.
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Estimates’ results

As a first step of our analysis, we ran a pooled OLS regression in order to provide a simple test

for the presence of technical inefficiency in the data. If there were no technical inefficiency, the

error term would be symmetric (being ui = 0, then ǫi = vi) and the data would not support a

technical inefficiency story. A skewness/kurtosis test for normality (results not shown) rejected the

null hypothesis of normal residuals. Hence, it seems there is evidence of the presence of inefficiency

in the data.

The second stage consisted of a general-to-specific estimation and test approach. In order to

estimate technology parameters and technical efficiency we added the following set of assumptions:

vi ∼ N (0, σ2vi) (2.16)

ui ∼ N+(µit, σ
2
ui
) (2.17)

µi = qiφ (2.18)

σ2vi = exp(wiδi) (2.19)

σ2ui
= exp(tiγi) (2.20)

Equation 2.16 and 2.17 tell us the variance of the idiosyncratic error term and the variability

of the inefficiency term are not constant. These have been modelled in equations 2.19 and 2.20

respectively. Further by using the truncated normal distribution for the inefficiency term ui we can

parameterize its mean µ. We must note that seeking to address the problem of heteroscedasticity

by parameterizing the variance of the inefficiency error term and parameterizing the mean of the

truncated normal distribution (thus changing its shape) can be seen as another approach to study

the exogenous effects on inefficiency, as has been pointed out by Kumbhakar and Lovell (2000). De-

gree of competitive pressures, managerial characteristics or even ownership form may influence the

structure of the technology by which conventional inputs are converted to outputs or may influence

the efficiency with which inputs are converted to outputs. Moreover this particular combination of

distributional assumptions allows us to accomodate non-monotonic efficiency effects. This implies

that variables having such relationship can be positively related in part of the parameter space

while negatively related in the rest (see Wang 2002 for more details). Last but not least, Wang and

Schmidt (2002) have demonstrated that this model specification allows one-step estimation of the

parameters, avoiding two-step procedures which give biased results if the model estimated at the

first step is misspecified. Further they note that the vector of variables affecting the frontier may

overlap the vector of variables affecting technical efficiency.

In this paper we are intended to study the impact of specialization and capitalization on hospital

efficiency. Therefore we have included for both models in equation (2.18) the Gini ratio (Gini) as
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proxy for specialization and the nurses per bed ratio (Nurses/Bed) as proxy for capitalization. This

latter variable has been already used as determinant of cost efficiency in previous studies. Farsi

and Filippini (2006) showed that a higher nurses per bed ratio decreases efficiency, indicating that

quality of care is costly. For both models, we have subsequently added another common inefficiency

determinant representing hospital dimensions: the logarithm of beds (Beds) in the output-oriented

model and the logarithm of the sum of weights for acute patients (Weighted Patients) in the

input-oriented model. Further, in the input distance function model, we achieved a better fit by

adding the mean age of the patients (Age) to explain mean inefficiency. We assumed the sources of

idiosyncratic noise vary in both models with the hospital size, with Beds and Weighted Patients

again serving as a proxy for this variable. Finally, in the output model, we assumed hospital

dimensions affected the variability of the inefficiency term.

We implemented some general likelihood ratio (LR) tests, while posing restrictions on the

unrestricted translog model, in order to get to a ”preferred” model. The LR test is given by

λ = 2(lnL1 − lnL0), where lnL0 and lnL1 denote the maximum log-likelihood value under the

null hypothesis H0 and the alternative H1, respectively. The LR tests conducted are presented

in Table 2.3. For both models, the first two null hypothesis assessed the appropriateness of using

the half-normal distribution (µi = 0), with and without modelling heteroscedasticity. We then

tested the importance of modelling the variance of the error terms (wi = 0, ti = 0). Finally we

tested whether exogenous inefficiency variables, as a group, have a significant impact on technical

inefficiency. All these hypothesis were strongly rejected. More generally we can say that we cannot

do without unmodeled heteroscedasticity in the error components and nor without modelling the

mean of the inefficiency error term.

In table 2.4 we show scale and input/output elasticities, which are more meaningful than the

simple technology parameters in a translog function context. Elasticities have been estimated at

the means of the variables in the data. Standard errors were computed by applying the delta

method to linearize the elasticity functions around the estimated parameter values and then using

standard formulas for the variances and covariances of linear functions of random variables. The

results given in table 2.4 suggest significant increasing returns to scale for both models, since scale

elasticities ǫy,x > 1 and ǫx,y < 1 and the null hypothesis of constant returns to scale is rejected.

From an administrative point of view, this is the typical situation where there is an incentive to

centralize operations.

The individual input and output elasticities underlying the scale elasticities are also provided.

In the output distance model, elasticity for nurses and beds is high while the marginal product of

other staff labor is slightly negative, even if not statistically significant. Therefore it seems there is

some excess in the size of the group of workers with administrative and technical duties. Moreover

from the input-oriented model we can see that all marginal costs, except from ER treatments, are

positive and that not surprisingly general medicine (Y5) and general surgery (Y4) are the outputs
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primarily contributing to input use.

Focusing on existing differences among ownership structures, which we do not report here,

scale elasticity varies a great deal between hospitals, and is greater for private hospitals and lower

for NFP structures in both models. However this is not surprising, and may simply reflect the

existence of ceilings on fee-for-service financing, which have been introduced in Lazio region. The

main difference between public and NFP hospitals and private structures is that the latter cannot

surpass fixed volume limits, while the former are at least reimbursed at a reduced rate once having

reached the ceiling, or may even be fully reimbursed because of the political necessity of avoiding

hospital failures. Therefore, a possible effect of this different treatment is input-minimizing behavior

in private structures, which are forced to work at a reduced scale. Further, private units are slightly

over-capitalized with respect to nursing staff, while public and more heavily NFP hospitals have a

slight excess of administrative and technical staff , suggesting the opportunity for a re-allocation

of resources within these structures.

In table 2.5 we show maximum likelihood estimates of the remaining parameters of the hybrid

translog production functions, other than technology parameters. We also show the equations of

the two heteroscedasticity terms and the mean of the inefficiency term. With respect to ownership,

the coefficient for NFP hospitals is always significant (at least at a 10% level) with a positive

sign.20 The role played by private hospitals is, in contrast, less straightforward. They positively

and significantly contribute to an upward shift of the frontier in the input-oriented model but the

sign is reversed in the output model, even though it is not statistically significant. Time dummies

show a positive trend, with ever-increasing coefficient values, and are not significant only for the first

two years of the output distance model. It might be interpreted that we are capturing a linear time

trend or disembodied technical change. As far as geographical dummies are concerned, the base

category is represented by the hospitals in the county of Rome, but not within this municipality.

It appears that hospitals in all the other counties, except those self-managed hospitals located in

Rome, contribute to an upward shift of the frontier.

Regarding the determinants of the mean of the inefficiency error term, for the input model, mean

age is positively correlated with inefficiency, while for both models size measures, capitalization

and specialization are instead negatively correlated. Particularly, nurses per bed and gini are 1%

significant in the input model, but only at 5% and 10% in the output distance model respectively.

The result obtained for specialization is strengthened if we look at the sign of cross-output terms

(see table 2.6), that allow us to evaluate input and output complementarities. From the input

specification we observe that only three cross-output terms over ten are negative, two of them

being significant.21 The absence of output jointness is not a proof of pro-efficiency specialization,

20Remember that for a correct interpretation, the sign in the distance functions must be reversed. This implies
that in the output distance model, the upward shift of the frontier is given by a negative sign. While for an input
distance function by a positive sign.

21We remind that signs and magnitudes of the cross-effects represent input/output jointness. In the input specifi-
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but a fact that is consistent with this hypothesis.

Before commenting on efficiency results we would like to remark that in our models we have

attempted to control for quality. This can be broadly divided into outcome and structural indica-

tors. With respect to the outcome indicators, we have computed readmission and mortality rates as

quality adjustments or scaling factors for output measures. As noted by Milne and Clarke (1990),

both indicators have big drawbacks. Further we did not feel confident with using readmission rates,

since we could not distinguish between patients with planned vs. unplanned readmission. Hence

the computed rate depends subjectively only on the number of days used as threshold. Mortality

rates, in contrast, were easily measured, but their impact on the estimation is negligible, likely due

to the fact that they are very rare across inpatient specialties.

For structural measures of quality, we tried including the teaching status of the hospitals in

the frontier of both models, using the number of teaching staff as a proxy, and an attraction

index, proxied by the rate of discharges of people coming from a different ASLH. Signs were not

significant, and efficiency estimates with and without these variables were highly correlated. Hence,

we decided not to include them in the models. It is therefore possible that without being able to

properly account for quality our estimates may suffer from omitted variable bias. However as Rosko

and Mutter (2008) pointed out, these omissions may not be as serious as commonly thought.

Technical efficiency: trends and transitions

In figure 2.1 we show estimated sample mean efficiencies for each hospital ownership category.

In the output distance model, public and NFP hospitals are on average more efficient than the

accredited private ones. We observe a decline in technical efficiency over time for NFP hospitals,

and a smaller reduction for private ones, while public hospitals seem to remain at a roughly constant

efficiency level throughout the period. In order to explain such differences, as we mentioned in the

discussion of scale elasticities, private hospitals have a legal limit to the maximum output they

can produce for the NHS. This fact, coupled with the different and penalizing reimbursement rate

among hospital types, not only induced distortions in the production scale, but also in the efficiency

level. This meaning that private hospitals would have actually room for more activity, but that this

is hindered by the legal limit for funded admissions. Since this limit is yearly varying, for private

hospitals might be problematic to make their inputs size fitting with it, conducting to a general

over proportioning. In case privates hospitals had a better quality performance, this could at least

partially explain the efficiency gap. However, we do not have any clue for assessing that private

and non private hospitals work at a different quality level, ceteris paribus the DRG. In case, we

could expect a better performance from public or not-for-profit structures which, working at larger

scales, benefit of greater learning processes.

cation negative cross-output terms represent output jointness, while in the output specification positive cross-input
effects imply input complementarities.
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Looking again at figure 2.1, we may note that, in the input distance model, the three ownership

categories are much closer to each other and all show an increase in efficiency patterns over time.

Public hospitals at the end of the period show a slight reduction, converging to NFP averages, while

private structures are now at the same level of the other categories. These results do not contradict

the output distance model, since we are estimating two different frontiers under two different sets

of theoretical assumptions. With the input distance function we are assuming a cost-minimizing

behavior of the hospital, which chooses an input vector, evaluated at exogenously determined input

prices, that minimizes the cost of producing a given output vector. This assumption clearly is valid

if the hospital acquires inputs in competitive markets. The behavioral assumption we are making

through the output distance function is that the firm chooses an output vector that maximizes

revenue at given output prices for a given input vector. The plausibility of this assumption is

linked to the sale of outputs in competitive markets.

In this study, neither assumption is strictly respected. In fact, none of these models is perfectly

congruent with the present incentive framework within the NHS. With a simplifying assumption,

we may believe private and NFP hospitals try to minimize costs and hence aim at reducing the use

of inputs. In such a context, where we have to take into account mechanisms of control over output

volumes, an input-oriented model is preferable. Contrastingly, public hospitals seem to have more

discretion with respect to their level of production. Therefore an output-oriented model cannot be

discarded a priori, since it shifts the focus from costs to revenues.

In figure 2.2 the horizontal and the vertical axis represent efficiency levels for all the hospitals

respectively in 2000 and 2005. For the output distance model there is more mobility in technical

efficiency over time. This does not happen in the input distance case, but this may be due to

greater stability in input endowments. In each of the two models, at the maximum values of the

distribution, distances from the 45◦ line are not very large, implying stability over time for the

estimated efficiencies. In the input distance case, apart from a few observations, this happens for

the full range of the efficiency distribution. Furthermore, if we look carefully at both graphs, we

can see that the majority of public hospitals passes the 45◦ line, indicating an increase in technical

efficiency. This confirms what emerged from the graphs of the efficiency trends.

In tables 7(a) and 7(b) we show transition matrices from 2000 and 2005 for our model specifica-

tions. These tables confirm that a significant percentage of the hospitals belonging to the extreme

quintiles of the technical efficiency distribution in 2000 still belongs to the same quintile in 2005.

The diagonal elements of the transition matrix show more mobility. As expected, those diagonal

elements are “fatter” when considering shifts year-by-year (data not shown). The fact that in-

dividual hospital units tend to remain in the same or close to the same quintile of the efficiency

distribution is not a surprise. In fact, we do not expect hospitals to change dramatically their

operational behavior in a so short a time period, or year by year.
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Capital-labor distribution

In our estimates, we have found a wide distribution of technical efficiencies. We attempted to

ascertain whether productive structures are related to efficiency values, in order to make our analysis

more precise in distinguishing among heterogeneous units. In fact, since our dataset contains the

entire population of Lazio’s hospitals, we have very different units in terms of size and kind of

activity. Although we have partially purged heterogeneity by using control variables for ownership

type, time and location, using only observations related to acute patients, in a flexible model

context that allows also for heteroscedasticity, these measures seem not to have eliminated all the

possible sources of diversity from the dataset. Our idea was to draw a curve corresponding to the

efficiency frontier. We made a scatter-plot of dots corresponding to the position of each hospital.

In particular, the estimated efficiency determined the distance between the unit and the frontier

in the graph. The radial-position is fixed depending on the capital-labor ratio value. The polar

coordinates are given by the couple:

[

cos

(

arctan

(

Ki

Li

))

× TEi , sin

(

arctan

(

Ki

Li

))

× TEi

]

where the technical efficiency level of the i-th hospital TEi ≤ 1 if it lies below or on the frontier

curve. This kind of figure has the advantage of pointing out how estimated efficiencies vary among

different capital-labor ratios and gives the possibility to distinguish particular typologies of units.

Specifically we differentiated hospitals among ownership structures for both models (figure 2.3).

At first glance, we may notice that private and public structures seem to sort into two different

“cones” of capital-labor ratio, while NFP hospitals appear to be more evenly spread. Cones exclude

outliers for both categories, i.e. they do not include hospitals below the tenth percentile or above the

ninetieth percentile of the capital-labor ratio. Further there appears to be an inverse relationship

between the capital-labor ratio and technical efficiency. This evidence has been already captured

in the frontier estimation, where the nurse-per-bed ratio is negatively correlated with inefficiency.

The more capitalized the hospital, as is the case for private hospitals, the less efficient it appears

to be.

It seems reasonable that units operating with different productivity structures cannot be directly

compared. The capital-labor ratio is indeed quite variable among the different structures. We

tried to define the labor factor in different ways, in order to verify whether the definition made a

difference. In particular, we used three typologies of labor aggregation: the first one was the simple

sum of all workers operating in the structure; the second was the simple sum of physicians and

nurses operating in the hospital; and the last corresponded to a sum of five categories of workers,

weighted by their estimated wage. For estimating wages we gleaned data from AOs’ balance sheets,

taking the total amount of salaries divided by the number of workers for each of three categories

(physicians, nurses and other staff). The only labor definition which widens the spread of hospitals
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in the graph is the sum of physicians and nurses. However, in each of the three cases, the relative

proportions are nearly the same.

Another question arises: what are the causes of relatively lower labor usage in private hospitals

and higher usage in public ones? We believe that public hospitals operate in a more rigid insti-

tutional framework, inclined to keep a high number of workers, while private ones do not. Given

that the latter face greater economic risk, it is reasonable to assume that they decide to turn this

risk toward workers, instead of toward capital (meaning medical equipment with related costs).

Another explanation from the public finance literature is that one role of public institutions is to

provide employment. This phenomenon causes a high value for the capital-labor ratio in private

structures, but according to our evidence, seems to penalize technical efficiency.

2.5 Conclusions

In this paper, we studied the productive process of the hospitals of the Lazio region by means of an

economic analysis. We used data from the hospital discharge records provided by the Public Health

Agency of Lazio in order to derive measures of output, such as the number of discharged patients.

Further, from the Ministry of Health we obtained data concerning labor and capital used as inputs.

Our study has been limited to the pooled cross-section case, since a simple sum of squares analysis

showed very little panel variation in the sample.

OLS residuals analysis showed the presence of inefficiency in the data. Subsequently, we im-

plemented a stochastic frontier analysis to assess the level of technical efficiency achieved by the

hospitals. When deriving technology parameters, we took into account case-mix complexity. With

this correction of the left hand-side of the frontier equation, we were able to address one of the

main points of Newhouse’s critique, i.e. the impossibility of assessing hospital production by means

of efficiency analysis tools, because of excessive simplification of the productive process, especially

with respect to the quality of services.

Inefficiency is negatively associated with specialization and positively with capitalization. Cap-

italization is typical of private hospital structures which, on average, make a less efficient use of

resources when compared to public and not-for-profit hospitals. As far as the productive structure

of the hospital is concerned, there seem to be increasing returns to scale, suggesting centralization

of operations. Private units work in slightly over-staffed conditions for medical staff, while public

and more heavily NFP hospitals do the same for technical and administrative staff, suggesting the

opportunity for a re-allocation of resources within these structures.

Our efficiency estimates are strictly related to the choice of a specific model, which depends

on the theoretical and empirical assumptions one is willing to make. The input distance function

model is based on a cost-minimization hypothesis, and empirically is more appropriate in studying

private and NFP hospital behavior. Meanwhile, the output distance function is based on a revenue-

maximization hypothesis and is more appropriate to the study of public hospital patterns. Being

50



aware of the limitations of the model, we tried to paint a picture from the combined reading of

both.

The results suggest that public and NFP hospitals make a more efficient use of resources. In

fact the level of the estimated mean technical efficiency appears to be significantly higher than

that of private structures in the output-oriented model, and slightly higher in the input-oriented

model. This large gap in the former model can be attributed to the different reimbursement rates

among ownership categories. This turned out to be the cause of under-sizing even in private

structures. Whether the funded activity limitations for the latter were softened, this could result

in an improvement of the private hospitals’ efficiency. Naturally, such a policy change is always

subject to the availability of public financial resources.

Finally, the minor differences in efficiency levels reported in the input-oriented model, on the

other hand, are more easily explainable as a result of the cost-minimizing assumption upon which

the model is based.
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2.7 Tables

Table 2.1: Number of hospitals and acute patients by year and ownership type

(a) Hospitals

Year Public NFP Private Total

2000 49 16 40 105
2001 49 16 38 103
2002 50 17 38 105
2003 52 17 39 108
2004 49 17 39 105
2005 45 18 36 99
Total 294 101 230 625

(b) Acute Patients

Year Public NFP Private Total

2000 502,960 356,543 134,291 993,794
2001 507,771 378,632 138,035 1,024,438
2002 524,445 411,879 140,125 1,076,449
2003 540,208 427,752 152,219 1,120,179
2004 536,407 452,790 163,419 1,152,616
2005 520,596 487,316 175,097 1,183,009
Total 3,132,387 2,514,912 903,186 6,550,485
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Table 2.2: Average input and output levels by year and ownership type (Standard deviation in
parentheses)

(a) Public

Year X1 X2 X3 X4 Y1 Y2 Y3 Y4 Y5

2000 110.18 260.47 283.96 251.18 831.99 320.34 859.57 3,061.86 5,705.47
(363.51) (525.64) (790.62) (723.68) (4,619.60) (307.44) (6,066.48) (6,894.97) (12,730.93)

2001 123.94 292.41 215.90 248.82 931.45 301.22 882.19 3,277.69 5,658.58
(364.49) (550.88) (812.05) (589.02) (4,679.89) (284.89) (6,297.75) (7,378.87) (13,706.07)

2002 129.38 290.06 209.38 234.92 1,044.07 276.05 910.75 3,416.62 5,696.95
(345.76) (609.48) (791.27) (559.86) (4,795.72) (296.18) (5,368.57) (7,154.56) (14,199.20)

2003 134.48 293.48 248.42 215.75 1,045.99 249.30 946.01 3,383.72 5,706.03
(317.14) (556.32) (701.58) (502.01) (4,679.07) (275.42) (5,142.27) (6,964.78) (14,781.81)

2004 128.53 281.65 228.47 219.86 1,179.58 235.20 960.47 3,607.16 5,882.19
(309.94) (593.69) (745.73) (509.28) (5,001.92) (280.82) (5,022.41) (7,205.18) (15,466.18)

2005 141.76 316.93 305.60 233.38 1,377.72 261.45 1,076.66 3,726.86 6,294.96
(306.74) (465.72) (976.94) (490.17) (4,759.24) (309.55) (4,960.56) (7,552.57) (16,476.76)

(b) NFP

Year X1 X2 X3 X4 Y1 Y2 Y3 Y4 Y5

2000 239.56 446.00 528.19 524.31 2,309.48 251.37 3,835.24 6,199.18 11,237.66
(363.51) (525.64) (790.62) (723.68) (4,619.60) (307.44) (6,066.48) (6,894.97) (12,730.93)

2001 246.06 465.56 543.06 478.06 2,435.05 238.47 4,133.73 6,601.94 11,917.19
(364.49) (550.88) (812.05) (589.02) (4,679.89) (284.89) (6,297.75) (7,378.87) (13,706.07)

2002 244.76 477.71 525.65 452.53 2,560.05 264.87 4,032.31 6,970.77 12,161.03
(345.76) (609.48) (791.27) (559.86) (4,795.72) (296.18) (5,368.57) (7,154.56) (14,199.20)

2003 238.41 462.18 493.18 432.41 2,693.21 255.55 4,108.43 7,222.96 12,483.86
(317.14) (556.32) (701.58) (502.01) (4,679.07) (275.42) (5,142.27) (6,964.78) (14,781.81)

2004 247.71 473.35 512.12 430.94 3,077.25 262.53 4,177.61 7,645.00 12,941.68
(309.94) (593.69) (745.73) (509.28) (5,001.92) (280.82) (5,022.41) (7,205.18) (15,466.18)

2005 231.94 359.44 562.28 408.33 2,917.56 256.40 4,014.03 7,895.34 13,130.73
(306.74) (465.72) (976.94) (490.17) (4,759.24) (309.55) (4,960.56) (7,552.57) (16,476.76)

(c) Private

Year X1 X2 X3 X4 Y1 Y2 Y3 Y4 Y5

2000 28.98 35.97 47.63 90.32 71.18 47.75 146.94 1,608.93 1,449.47
(24.66) (35.72) (39.78) (57.03) (146.70) (111.11) (161.95) (2,322.44) (1,167.74)

2001 31.37 37.87 48.87 88.82 84.81 42.57 164.57 1,818.65 1,532.32
(28.26) (37.74) (41.13) (60.32) (190.20) (94.26) (178.16) (2,565.21) (1,162.38)

2002 30.50 38.00 52.82 89.39 98.44 44.00 177.96 1,759.58 1,615.98
(25.66) (37.23) (41.78) (58.75) (191.00) (94.20) (177.53) (1,694.00) (1,226.36)

2003 28.13 34.00 50.38 86.08 104.45 41.06 190.00 1,949.14 1,651.48
(25.42) (34.85) (40.69) (59.26) (220.28) (84.06) (188.48) (1,873.98) (1,170.07)

2004 31.10 37.49 49.92 86.36 141.22 51.12 205.32 2,200.36 1,650.19
(29.71) (37.53) (42.69) (61.70) (317.65) (85.64) (226.94) (2,122.48) (1,191.93)

2005 40.22 47.81 57.33 84.28 312.51 82.91 220.61 2,682.13 1,856.20
(30.37) (54.06) (43.48) (60.94) (915.72) (134.86) (240.61) (2,959.23) (1,185.41)

Notes: X1: Physicians, X2: Nurses, X3: Other staff, X4: Beds
Y1: Complex Surgery, Y2: ER treatments, Y3: HIV and tumors, Y4: General surgery Y5: General medicine
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Table 2.3: LR tests on functional form restrictions (H1 : translog model with “full” heteroscedas-
ticity and mean inefficiency)

(a) Output distance function - lnL(H1)= -119.6972

Null hypothesis Log-likelihood λ Decision

H0 : µi = 0 -197.3668 155.34 Reject
H0 : µi = wi = ti = 0 -267.7312 296.07 Reject
H0 : wi = ti = 0 -153.1636 66.93 Reject
H0 : qi = 0 -195.3250 151.26 Reject

(b) Input distance function - lnL(H1)= 133.1165

Null hypothesis Log-likelihood λ Decision

H0 : µi = 0 80.0164 106.20 Reject
H0 : µi = wi = ti = 0 -85.0366 436.61 Reject
H0 : wi = 0 78.6063 109.02 Reject
H0 : qi = 0 84.9903 96.25 Reject
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Table 2.4: Scale and output/input elasticities evaluated at the average values for the entire sample

Output distance Input distance
Est. St.Err. Est. St.Err.

ǫY,X 1.257 ∗∗ 0.257 ǫX,Y 0.703 ∗∗∗ 0.029
ǫY,X1 0.173 ∗ 0.101 ǫX,X∗

1
0.071 0.047

ǫY,X2 0.646 ∗∗∗ 0.181 ǫX,X∗

2
-0.157 ∗∗ 0.062

ǫY,X3 -0.074 0.089 ǫX,X∗

3
0.112 ∗∗∗ 0.035

ǫY,X4 0.512 ∗∗∗ 0.153 ǫX,X∗

4
0.974 ∗∗∗ 0.057

ǫY,Y ∗

1
0.007 0.027 ǫX,Y1 0.013 0.012

ǫY,Y ∗

2
0.089 ∗∗∗ 0.034 ǫX,Y2 -0.007 0.020

ǫY,Y ∗

3
0.177 ∗∗∗ 0.055 ǫX,Y3 0.017 0.017

ǫY,Y ∗

4
0.190 ∗∗∗ 0.056 ǫX,Y4 0.248 ∗∗∗ 0.029

ǫY,Y ∗

5
0.537 ∗∗∗ 0.059 ǫX,Y5 0.432 ∗∗∗ 0.028

Notes: X1: Physicians, X2: Nurses, X3: Other staff, X4: Beds

Y1: Complex Surgery, Y2: ER treatments, Y3: HIV and tumors,

Y4: General surgery Y5: General medicine

Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
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Table 2.5: Shifting factors parameters of the stochastic frontier models and ancillary equations
- Pooled Cross Section. The dependent variable in the Output Distance model is the inverse of
complex surgery weights. In the Input Distance model the dependent is the inverse of the number
of beds.

Output Distance Input Distance
Production frontier

Private 0.008 0.178 ∗∗

Not-for-profit -0.204 ∗∗∗ 0.108 ∗

Year 2001 -0.018 0.056 ∗∗∗

Year 2002 -0.061 0.101 ∗∗∗

Year 2003 -0.101 ∗∗ 0.162 ∗∗∗

Year 2004 -0.117 ∗∗ 0.167 ∗∗∗

Year 2005 -0.144 ∗∗∗ 0.206 ∗∗∗

Viterbo -0.223 ∗∗ 0.196 ∗∗∗

Latina -0.082 ∗∗∗ 0.020
Rieti -0.211 0.188 ∗∗∗

Frosinone -0.158 ∗∗ 0.135 ∗∗

Rome-asl -0.057 0.011
Rome-self 0.021 -0.082
Intercept -0.154 ∗ 0.407 ∗∗∗

Mean of u

Weighted patients - -0.032
Beds -2.356 ∗∗∗ -
Gini -9.022 ∗ -2.229 ∗∗∗

Nurses/Bed -12.923 ∗∗ -0.404 ∗∗∗

Age - 0.006 ∗∗∗

Intercept 9.442 ∗∗ 1.704 ∗∗∗

Variance of u

Beds -0.069 -
Intercept 0.386 -5.321 ∗∗∗

Variance of v

Weighted patients - -0.871 ∗∗∗

Beds -1.087 ∗∗∗ -
Intercept -3.491 ∗∗∗ -3.135 ∗∗∗

N. obs. 625 625
Likelihood 119.70 133.12
Notes: Significance level based on clustered standard
errors. Technology parameters omitted. Complete table
available upon request
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
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Table 2.6: Second-order effects of the input distance model

Complex ER HIV and General General

Surgery treatments tumors Surgery Medicine

Complex Surgery -0.012
ER treatments 0.010 -0.001
HIV and tumors -0.006 0.010 -0.082 ∗∗∗

General Surgery -0.018 ∗∗ -0.032 ∗∗∗ 0.034 ∗∗∗ -0.032 ∗∗

General Medicine 0.010 0.025 0.061 ∗∗∗ 0.010 -0.123 ∗∗∗
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Table 2.7: Transition matrix: quintile of technical efficiency (TE) from 2000 to 2005.

(a) Output distance model

Quintile
of TE Quintile of TE at 2005
at 2000 1 2 3 4 5 .

1 11 7 0 0 0 3
52.38 33.33 0.00 0.00 0.00 14.29

2 6 6 3 4 1 1
28.57 28.57 14.29 19.05 4.76 4.76

3 1 1 8 4 2 5
4.76 4.76 38.10 19.05 9.52 23.81

4 0 1 4 8 7 1
0.00 4.76 19.05 38.10 33.33 4.76

5 0 3 4 4 8 2
0.00 14.29 19.05 19.05 38.10 9.52

(b) Input distance model

Quintile
of TE Quintile of TE at 2005
at 2000 1 2 3 4 5 .

1 9 9 1 1 0 1
42.86 42.86 4.76 4.76 0.00 4.76

2 10 3 3 3 1 1
47.62 14.29 14.29 14.29 4.76 4.76

3 1 5 7 5 0 3
4.76 23.81 33.33 23.81 0.00 14.29

4 0 2 6 6 3 4
0.00 9.52 28.57 28.57 14.29 19.05

5 0 0 2 4 12 3
0.00 0.00 9.52 19.05 57.14 14.29

Notes: The last column represents those observations that
were part of the sample in 2000 but missing in 2005.
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2.8 Figures

Figure 2.1: Trends in technical efficiency (2000-2005)
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Figure 2.2: Transitions in technical efficiency (2000-2005)
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Figure 2.3: Capital-labor ratio, production frontier, and Technical Efficiency
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Within households effects of expanding rural nonfarm sector in a

developing country. 22

Abstract

This article explores the effects within households of an expanding rural nonfarm (RNF)

sector in Ghana. We ask whether the growing RNF sector allows for economies of diversification

within farms and how it affects household input demands. We explore the intrahousehold

linkages between agricultural and RNF activities, first assuming perfectly competitive input and

output markets and then with market failures, in particular missing labor and credit markets.

We then measure these linkages using a household level input distance function, finding high

levels of inefficiency in Ghanaian farms. Also, there are cost-complementarities between the

RNF sector and the agricultural sector, particularly with food crops in which the poorest tend

to specialize. The expansion of the RNF sector increases demand for most inputs including

agricultural land.

22 This paper is based on “Linkages between the farm and nonfarm sectors at the household level in rural Ghana: a
consistent stochastic distance function approach” with Gustavo Anŕıquez, published in Agricultural Economics, 41:51-
66 (2010). The authors thank participants at the FAO conference on Household-Level Linkages between Farm and
Nonfarm Rural Activities and an anonymous referee for comments that have helped improve this work. Remaining
errors and omissions are our exclusive responsibility.



3.1 Introduction

In the modern literature, Kuznets (1957) first formally documented the contraction of the agricul-

ture sector relative to the rest of the economy that occurs as countries become wealthier. This is

now an accepted feature of national economic development. A similar and related process can be

observed in rural economic development. As countries grow, agriculture becomes less important

in their rural economies, and the rural nonfarm (RNF) sector of manufactures and services grows

more rapidly than farm output. This transformation of the rural world should also be considered

a feature of economic development, and has been formally documented by Reardon et al. (1998)

and Davis et al. (2007), among others. The first macroeconomic transformation has important im-

plications for the role of agriculture as an engine of growth and development, and has been amply

studied in the literature for many years. The transformation in the rural economy also has sectoral

implications, which have been less extensively studied, mainly using Social Accounting Matrices

(SAM) and Computed General Equilibrium Models (see for example Haggblade et al. (1989); Vo-

gel (1994); and references contained therein). However, the growth of the RNF economy also has

important microeconomic consequences for the economic behavior of rural households, but these

have been largely ignored in the literature.

This study examines the linkages between the agriculture and nonfarm sectors at the microeco-

nomic level, within the household. Using a case study from Ghana, we seek to determine whether

there are productive linkages within the household, or a household-level multiplier, which would

make diversification beneficial for farms. The existence of such linkages would warrant a policy of

promoting the RNF sector wherever barriers to entry (such as education, or access to credit) or

other market failures hinder its development.

The sectoral relationship between agriculture and the rest of the economy has been a main

concern since the early days of development economics. The first development economists painted

a grim picture of the agriculture sector. Lewis (1954), for example, observing that agricultural labor

generated only a negligible or negative marginal product, saw the sector as merely a source of labor

for urban and industrial development, without noting any general equilibrium effect among sectors

in the demand for unskilled labor. Hirschman (1958) explored the input-output linkages between

agriculture and the rest of the economy. He argued that agriculture’s backward linkages, that is,

the sector’s capacity to “pull” the rest of the economy by increasing intermediate input demand

as it expands, were very low, so the sector was therefore not worth promoting. This became the

common perception, and agricultural economists seeking to promote the sector started to focus on
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consumption linkages. Authors such as Haggblade et al. (1989) began to show that the agriculture

sector has a very high household demand multiplier. This means that the increased demand caused

by higher household income from agriculture has a very high multiplier effect across the rest of

the economy, particularly in closed economies; many developing rural economies are effectively

closed owing to high transaction costs. Agricultural economists also focused on forward linkages,

or agriculture as an input for downstream activities such as food processing or hospitality services

(see for example Valdés and Foster (2003).

The conclusion drawn from this macrolevel sectoral view is that productive linkages are im-

portant. For example, Blunch and Verner (2006) use time-series sectoral growth figures from agri-

culture, industry and services in three African nations to show that there are two- way spillovers

between agricultural and industrial growth in Zimbabwe, Côte d’Ivoire and Ghana. A multiplier

analysis using input-output matrices will show that both forward and backward linkages are more

important at early stages of development. When household accounts are added to this multiplier

analysis, as with a SAM, demand multipliers are found to be high at early stages of development

(see Vogel (1994)). There are many nuances in these sectoral linkages: some agricultural activities

have high forward linkages, for example through marketing of processed food, while others have

inherently less linkage potential (see for example the case studies in Davis et al. (2002)).

3.1.1 The Ghanaian rural nonfarm sector

During the 1990s the Ghanaian economy experienced positive per capita growth and a reduction of

the national poverty rate by roughly a quarter, from 51.7% in 1991/1992 to 39.5% in 1998/1999 (see

Table 3.1). In the rural economy, national account figures indicate very little growth in agricultural

value added per capita but large gains in household expenditure (and consequently in poverty

reduction), along with considerable growth of per capita agricultural production reported by Food

and Agriculture Organization (FAO). This combination of what appears to be slow agricultural

growth and fast rural poverty reduction is partly explained by a rapid expansion of the RNF

sector. For example, Table 3.1 shows that nonfarm self-employed income in rural Ghana grew from

11.9% of total household income in 1991/1992 to 23.6% in 1998/1999. These big changes within

rural households are likely to have an important impact on farm production.

In this study we ask whether an expansion of nonfarm output hinders farm output growth by

competing for scarce household inputs, or promotes it through complementarities and economies

of diversification. Further we explore the ways in which input demand might change, for example
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if RNF output helps households pay for farm input purchases.

The following two sections present the theoretical framework: a microeconomic analysis of

household-level linkages among sectors, and the input distance function used in the empirical study.

The fourth section discusses the econometric and empirical issues associated with estimating a

stochastic distance function. Results of the empirical analysis are presented and discussed in the

fifth section, which is followed by concluding remarks.

3.2 Linkages between farm and nonfarm activity in a household model

With perfectly competitive markets for all inputs and all outputs, price-taking households would

make separate decisions regarding production and consumption, first choosing inputs and outputs

to maximize profits given their production possibilities, and then choosing consumption to maxi-

mize welfare given their income level. However, market failures lead production and consumption

decisions to be taken jointly, including choices between farm and nonfarm products. This section

seeks to clarify these relationships in a household model.

Households are assumed to maximize a quasi-concave utility function: U(c, T −Ls. Well-being

depends on the consumption vector c and on leisure time, which is total available time T minus

labor supply Ls. Maximization of U is constrained by income

∑

j

pjcj + w(T − Ls) ≤ wT + p0QF +QN − wLD −
∑

i

wixi + E (3.1)

In this budget constraint, total consumption is valued at market prices pj and time is valued at

its opportunity cost or market wage. The price of nonfarm output is used as the numeraire. Total

consumption cannot be higher than full income, which is the value of available time plus exogenous

income E, plus the rents of producing farm output QF and nonfarm output QN . Outputs are

measured as consumption quantities in the c vector. Rents are net of the costs of inputs, purchased

variable inputs xi with unit cost wi, and labor used LD. The labor supplied Ls and labor employed

LD need not be equal; if the former is larger, household labor is hired out to work elsewhere, if it is

smaller, the household hires in external labor. Household welfare is also constrained by technology,

represented by an implicit production function as G
(

QF , QN ;LD,x;K
)

= 0, where K represents

medium term fixed assets and household characteristics such as land, capital and human capital.

Further constraints are imposed by nonnegativity of all quantities. To focus on production choices,

we can express the model as minimizing production costs, in which case the budget and technical
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constraints can be merged into one

∑

j

pjcj + w(T − L) ≤ wT + p0QF +QN − C (QF , QN ;w;K) + E (3.2)

where the function C() is the cost function defined as

C (QF , QN ;w;K) ≡ min
L,x

{

wLD +
∑

i

wixi|G (QF , QN ;L, c;K) = 0

}

(3.3)

Production choices would be separable from consumption if households were price takers in

perfectly competitive input and output markets (see Singh et al. (1986) for details). In those

conditions, the highest utility would be obtained when production responds to market prices,

whether or not some part of production is actually consumed on the farm

max
QF ,QN

wT + p0QF +QN − C (QF , QN ;w;K) + E (3.4)

The first-order conditions for this income maximization problem are p0 = CQF
(), and 1 =

CQN
(). Differentiating the first condition with respect to the output vector (and not to prices, as

the household is a price taker), and rearranging, results in

∂QF

∂QN
= −

CQN ,QF

CQF ,QF

(3.5)

This means that farm output can actually increase after an exogenous increase in nonfarm

output if there are cost complementarities, i.e., CQN ,QF
< 0.23

3.2.1 Cost complementarities and economies of scope

The concepts of cost complementarities and economies of scope are related, but are not the same.

Economies of scope occur when it is cheaper to produce goods jointly than to produce them sepa-

rately

23It is implicitly assumed that CQF ,QF
is positive. In a strictly technological sense, this derivative could be

negative, but the economic area of this function - where rents are positive - is defined by increasing marginal costs,
i.e., CQF ,QF

≥ 0.
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ES =
C (QN = 0, QF ;w,q;K) + C (QN , QF = 0;w,q;K)− C (QN , QF ;wq;K)

C (QF , QN ;w,q;K)

There are two sources of economies of scope: savings in fixed costs, when the fixed costs of

joint production are lower than the separate fixed costs; and cost complementarities, caused by

the shared use of variable production inputs and other cost saving mechanisms implicit in joint

production. Note that even when these sources act in opposite directions, economies of scope are

observed, cf. Gorman (1985). If a household can produce positive amounts of both outputs at

market prices, and economies of scope are present, that household would clearly be better off if it

produces both outputs.

This study hypothesizes that economies of scope are likely to be important for even poor rural

households, as explained in the following:

• Distribution of fixed costs: This type of scope economy is not restricted to high-value fixed

costs, such as expensive machinery and equipment. The important issue is not the nominal

value of the fixed costs, but their value relative to variable costs. For poor households,

housing infrastructure is usually the largest fixed asset, and is necessary for farm and nonfarm

operations.

• Distribution of variable inputs used in both operations: This type of complementarity exists

in even the poorest household, as food is an input for labor productivity in both sectors, and

labor effort can be shared across outputs. For example, one set of marketing efforts can be

made to market both types of goods.

• Cost complementarities caused by externalities: For example, a nonfarm activity can create

capacities and skills that help improve the household’s management of agricultural operations

(e.g., bookkeeping or budget management).

• Inputs for the other operation are produced at below market prices: This type of cost com-

plementarity can arise when a farm input or by-product is used in the nonfarm operation,

and is produced at a shadow price below the market price.

3.2.2 The household model with missing labor markets

In Ghana’s rural economy, it seems very unlikely that households actually face a given wage rate

at which labor can be both bought and sold. In a study of 15 developing countries, Davis et al.
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(2007) found that wage income (agricultural plus nonfarm wages) as a share of total household

income was only from 9% to 11% in rural Ghana, suggesting that the extent of paid labor markets

is very limited. In the absence of a labor market, the implicit household shadow wage rate has to

be calculated from the equilibrium between the disutility of working and the productivity of effort

in generating income, and the households labor effort, income and consumption all depend on both

their utility function and their production technology.

When labor markets are missing, assuming that nonnegativity constraints are not binding,

household equilibrium can be defined with two equations

e(p, w;U) = wT + pQF +QN − C(QF , QN ;w,q;K) + E (3.6)

T − ew = Cw (3.7)

Here the expenditure function e() is used to value consumption, defined as

e(p, w;U) = min
c,T−Ls







∑

j

pjcj + w(T − Ls)|U(c, T − Ls ≥ U







Equation (3.7) defines intrahousehold labor market equilibrium, which hinges on the shadow

wage rate, w∗, at which the supply of labor (i.e., the residual of the demand for leisure) is equal to

the labor demand schedule from the productive side of the household. As there is no external labor

to be hired, and no external demand for labor, the implicit shadow wage rate is determined within

the household. The amount of labor employed in the household can be obtained by evaluating either

side of Eq. (3.7) at the shadow wage rate that solves (3.6) and (3.7) jointly. Totally differentiating

(3.7) and rearranging terms we get the effect of increasing farm output on the shadow wage rate

∂w∗

∂QF
=

−Cw,QF

(ew,w + Cw,w)
=

− ∂LD

∂QF
(

∂(T−Ls)
∂w∗ + ∂LD

∂w∗

) > 0 (3.8)

The denominator of (3.8) is unambiguously negative because both the expenditure and the cost

functions are concave in prices - as a result of only the quasi-concavity of the welfare function and

the convexity of technology - while the numerator is negative when labor is a normal input (a safe

assumption). This means that an exogenous increase in farm (or nonfarm) output increases the

marginal product of labor, which is the shadow price w∗. The production first-order conditions can
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now be totally differentiated, with w now variable

∂QN

∂QF
= −

CQN ,QF

CQN ,QN

−
CQN ,w

CQN ,QN

·
dw∗

dQF
−
CQN ,QF

CQN ,QN

−
∂LD/∂QN

CQN ,QN

·
dw∗

dQF
(3.9)

Therefore, in the absence of a working labor market, the production linkage between outputs

is lower. The cost complementarity effect is reduced because an exogenous increase in farm output

generates an increase in the marginal productivity of labor through an increase in the shadow wage

rate, which reduces the demand for labor in nonfarm production. In addition, the pure labor effect

of expanding the output in one sector is negative for the output of the other.

3.2.3 The household model with cash constraints

The nonfarm economy is often seen as an alternative source of cash or working capital for agricul-

ture, when farm credit markets are not working efficiently (see for example Reardon et al. (2007)).

To isolate such a cash constraint effect in an otherwise separable household model, the household

maximizes income as described in Eq. (3.4) but is subject to

QN > QN (3.10)

where QN is the minimum level of farm output to guarantee cash for food and inputs. The first

order conditions are simply p0 = CQF
() and

1 + µ = CQN
(3.11)

where µ is the lagrangian multiplier associated with the minimum nonfarm output constraint.

In this case dQN/dQF cannot be calculated, because the household is at a corner solution, but

several conclusions can be derived from (3.11).

First, the household is producing more QN than would otherwise be optimal. Relative to the

unconstrained optimum, the nonfarm sector is producing at a loss with its marginal costs (1 + µ)

exceeding marginal revenues. When there are cost complementarities, an exogenous increase in

farm output would reduce these efficiency losses. From (3.11) it can be shown that
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∂µ

∂QF
= CQN ,QF

< 0

Thus, when there are cost complementarities and an exogenous expansion of farm output, the

income effect will be larger than dQF , even in cash-constrained households.

One potentially testable implication from this model of nonfarm activity and credit constraints

is that variable inputs, including labor, would produce a lower value of marginal product in the

nonfarm than in the farm sector. Another testable implication is that the household does not

operate at the optimal point of its production possibility frontier

p0 =
CQF

CQN

>
p0

(1 + µ)
(3.12)

3.3 Empirical estimation using an input Shepherd’s distance function

For an empirical assessment of the technological linkages between farm and nonfarm production,

we estimate a distance function defined as

D(x,Q) ≡ sup
λ

{

λ−1x|(x,Q) ∈ T )
}

= inf
λ

{

λ−1x|x ∈ L(Q)
}

(3.13)

where T represents the technology (the technologically feasible set), L(Q) represents the input

requirement set (all the input combinations that can produce the output bundle Q), and x repre-

sents an inputs vector. The function describes the largest radial contraction of inputs that leaves

the production of an output bundle Q technologically feasible. This radial contraction is special

in that it contracts all inputs by the same proportion. Fig. 3.1 provides an example with two

inputs: the input set A produces the output bundle Q, but could be proportionally contracted to

point B and still produce the same output bundle. In this case the value of the distance function is

OA/OB. The figure also shows how the input distance function has to be greater than or equal to

one, and have strict equality when TE is achieved at the isoquant. As the input distance function

fully represents the technology there is a direct correspondence (x,Q) ∈ T ⇐⇒ D(x,Q) ≥ 1.

A distance function is estimated because there is a direct relationship among the cost minimiza-

tion hypothesis, the cost function and the input distance function, so all the cost function properties

discussed in the previous section are easily obtained from the distance function. The input distance

function is preferred over the cost function because its estimation does not require reliable price
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information. In rural Ghana, two of the most important inputs of agricultural production, land

and labor, have extremely underdeveloped markets. This means that each household has its own

shadow labor price, which is unknown, and land is rarely traded, which makes it very difficult even

for farmers to obtain accurate land values and prices. Even food crops are not always traded, so

the market price is not always relevant to the shadow price in household production.

The inputs and output bundles that are technically feasible are represented by D(Q,x) ≥ 1, so

the cost function can be expressed as

C(w,Q) = min
x

{

w′x|D(x,Q) ≥ 1
}

(3.14)

Applying the envelope theorem to the maximization problem associated with (3.14) leads to

∂C(w,Q)

∂Qi
= −η ·

∂D(x,Q)

∂Qi

and

∂2C(w,Q)

∂Qi∂Qi
= −η ·

∂2D(x,Q)

∂Qi∂Qi
(3.15)

where η = w′x = C(w,Q).24 Therefore, the marginal cost is equal to the partial derivative of

the input distance function for the same output, but with the opposite sign and multiplied by the

value, which is the total cost.

Another important derivative property of the distance function is the returns to scale measure,

which in an input distance function is given by ǫ = [−
∑

j ∂ lnD(x,Q)/∂ lnQj ]
−1. The technology

exhibits decreasing (increasing) returns to scale when ǫ < 1 (ǫ > 1).

3.4 Empirical implementation using a consistent stochastic distance function

Most empirical estimations of distance function exploit the linear homogeneity of the function to

estimate a Translog approximation. First, using the linear homogeneity property, the distance

function is reexpressed as: x0 · D(x/x0,Q) = λ, after dividing and multiplying by any particular

input. Applying logarithms, rearranging and adding an unbiased random noise term (ev) results in

24See Färe and Primont (1995): chapters 2 and 3 for details.
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− lnx0 = lnD(x/x0,Q)− lnλ+ v (3.16)

where lnλ is u, the one-sided error term identified in the stochastic frontier literature, and

lnD() is approximated by the translog functional form. Expression (3.16) can be estimated with

stochastic frontier methods (see Kumbhakar and Lovell, 2000) that maximize the joint likelihood

of the one-sided error (assumed to be distributed half-normal, truncated normal, exponential or

gamma) and a normally distributed random noise v.

This study cannot apply this approach because the different outputs contain zero as a value,

particularly the nonfarm sector output for many rural households. Alternatives include replacing

zeroes with arbitrarily small units, or replacing the logs with arbitrarily large negative numbers,

but these arbitrary solutions would affect the properties of the estimated technology. A functional

form that does not apply a log transformation has therefore to be used. In this case

1

x0
= D(x/x0,Q)− u+ v (3.17)

could be estimated. However, the “true” model as defined by 3.13 is λ/x0 = D(x/x0,Q), which

means that the error term in this case is

u = (λ− 1)/x0 (3.18)

Equation (3.18) shows that, as expected, the one-sided error term is positive as the value of

the distance function λ ≥ 1. However, (3.17) violates a key assumption of the stochastic frontier

model and the classical linear regression model in general: the one-sided error u is not independent

of the regressors. In particular, with respect to the input regressors, E[(xi/x0) · (u)] = E[(xi/x0) ·

(λ− 1)/x0] 6= 0, which means that the estimated coefficients are inconsistent in proportion to the

inefficiency (λ− 1) in the decision-making units.

The distance function can therefore be estimated from

λ̂

x0
= D

(

x

x0
,Q

)

+ v (3.19)
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which follows directly from (3.13) after normalizing by an input and applying the linear ho-

mogeneity property, with v as the mean zero random noise. λ̂ is estimated by calculating the

Farrell input-oriented TE (Farrell, 1957), using data envelopment analysis (DEA) techniques.25

The original Charnes et al. (1978) model is used, which is equivalent to estimating input-oriented

TE assuming constant returns to scale (CRS).

The method for estimating an input distance function described in (3.19) is not ideal in that

it does not allow the direct econometric identification of and is computationally intensive. On

the other hand, the benefits of this method are that it does not rely on an assumption about the

distribution of technical inefficiency and it is consistent. Stochastic frontier methods are not ideal

either, because λ is econometrically identified indirectly and only after making a distributional

assumption that may or may not hold. As shown below, when the inefficiency λ is large, the

estimated technology parameters become unreliable if the wrong distribution has been assumed.

3.4.1 Endogeneity of regressors

Under cost minimization, outputs can be taken as exogenous as seen in (3.14), but inputs are

endogenously chosen by producers. Early attempts to estimate a stochastic distance function used

instrumental variable (IV) methods to overcome endogeneity, but Coelli (2000) showed that with

cost minimization the distance function estimated as (3.16) provides a consistent estimation of

the underlying technology even under allocative inefficiency. This important result follows from

the estimated distance function being a function of input ratios, not inputs, and on these being

uncorrelated with the TE residual. Consistency of the estimates is generalized further in Coelli

et al. (2007), where different types of multiplicative errors in observed x’sfs are present, such as

technical inefficiency or measurement error. In both cases, consistency relies on the definition of

the distance function; if the technically efficient level xt1 ≡ x1

λ is defined as in (3.13), the ratios of

observed inputs x1

x2
=

xt
1

xt
2
are also technically efficient, by definition.

There is a cost, however, to the input normalization of the distance function. Although in theory

it does not matter which input is used to normalize the function, in practice it matters and results

vary. It has been shown, for example, in the context of cost function estimation that the chosen

normalizing input (when linear homogeneity in prices of the cost function is imposed) significantly

affects the estimated technology. One alternative is to normalize by the Euclidian norm of the input

vector ||x|| (Kumbhakar and Lovell (2000)). This eliminates the arbitrariness of the normalizing

25Färe et al. (1994) is a good manual for DEA methods
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input choice, but it is not clear that it allows consistent estimation of the underlying technology

parameters. To eliminate this arbitrariness, and exploit the full variability of the data set, the

distance function can be estimated in a system of equations

λ̂
x0

= D
(

x
x0
,Q

)

+ v0
...

λ̂
xn

= D
(

x
xn
,Q

)

+ vn

(3.20)

in which all parameters of the linear approximation of the distance function must be equal across

equations, and the crossequation error correlation is exploited in a maximum likelihood system of

unrelated regressions (ML SUR).

This study approximates the distance function (with four outputs and four inputs as described

in the following) with the following flexible functional form, which is a Generalized Leontief function

D(x,Q) ≡
∑

ij

aij(xixj)
1/2 + (Q1Q2)

1/2
∑

i

bixi + (Q1Q3)
1/2

∑

i

cixi

+ (Q1Q4)
1/2

∑

i

dixi + (Q2Q3)
1/2

∑

i

eixi + (Q2Q4)
1/2

∑

i

fixi

+ (Q3Q4)
1/2

∑

i

gixi +Q1

∑

ij

mij(xixj)
1/2 +Q2

∑

ij

nij(xixj)
1/2

+ Q3

∑

ij

pij(xixj)
1/2 +Q4

∑

ij

qij(xixj)
1/2 +Q

1/2
1

∑

i

ri(xi)

+ Q
1/2
2

∑

i

si(xi) +Q
1/2
3

∑

i

ti(xi) +Q
1/2
4

∑

i

zi(xi) (3.21)

The specification described in (3.21) imposes linear homogeneity in inputs only, which is a

property imposed by theory, that is, by the definition of a distance function. All other properties of

the technology are flexible, in that even second derivatives are not constant and depend on the data.

Coefficients b, c, d, e, f, g are highlighted as they are used to estimate output jointness. These

coefficients allow cross-output effects to be scale-dependent, as cross-derivatives and elasticities

will depend on both the output and the input levels. Scale dependence is desirable, because cost

complementarities can be expected to be more important at lower scales of production.
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3.5 Data and results

The data we use are from the Ghana Living Standard Survey Round 4 (GLSS4), a nationally

representative multipurpose household survey conducted in 199899. GLSS4 covered 300 randomly

selected enumeration areas (EA), defined from the 1984 national census, and surveyed 20 households

in each. Of the 6,000 households surveyed, 3,799 were in rural areas. This study focuses on farm

households which owned or operated some farm land, of which there were a total of 3,110 in

the survey. Among these, 654 households were dropped from our subsample because they did

not report quantities of important inputs and/or outputs, or did so inconsistently. For example,

some households declared some livestock output (sales or ownconsumption) without reporting any

livestock on the farm during the reference period. Another 167 outliers observations in which

misreporting was likely had also to be dropped. Our final sample therefore consisted of 2,289 rural

households.

The farms in the dataset undertake both farm and nonfarm income activities. Three farm

output measures were computed cash crops, food crops, and livestock and other cropsand measured

as indices: total value of household output divided by the cross-section median.26 Livestock output

was computed as the sum of in-cash and in-kind incomes from livestock produce (eggs, milk, dairy

products, etc.), plus sales and rents of livestock and the value of own consumption of livestock

produce. Off-farm output was measured as the sum of all nonfarm revenues. These include revenue

from household nonfarm enterprises, incomes from selling water and leasing out/sharecropping

land, and wages from employment (including in agriculture).

Table 3.2 provides an overview of farmers production and input use in Ghana. Food crops prevail

in most regions, except in those close to urban agglomerates, where off-farm incomes account for

approximately 40% of the total value of production. Livestock accounts for an average of only 6.5%

of production value. The components of nonfarm income are detailed in Table 3.3. The nonfarm

enterprises category includes any business or trade not related to agriculture that is operated by

household members; it accounts for most nonfarm income in most regions. Wages from employment

also make a large contribution, particularly in southern regions, where they reach 20% of nonfarm

income. Revenues from the sale of water and the letting and sharecropping of land appear to be

very marginal, but sharecropping seems to have a tangible impact on off-farm incomes in some

26Pure quantity indices were also constructed. However, GLSS4 reports many Ghanaian traditional and nonstan-
dard units (which vary by region, such as “box”), most without conversion factors to standard units. Construction of
these indices therefore required many assumptions and estimations, so value was used as a proxy for quantity. The
sensitivity analysis described later explores the effects of this choice.
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regions. Both water sales and land leasing income show very high variability coefficients, indicating

that they are an important income source for some households. Remittances are the main source

of nonfarm income in the northern and poorest regions of Ghana.

Four input indices were constructed by dividing the measures of land, labor, livestock and

operating expenses by their respective sample medians. Land was measured as the number of

hectares operated by household members, including plots that are owned, rented or sharecropped

as an agricultural input, and plots that are let or sharecropped out as an input of nonfarm income.

In the absence of data on effective labor employedthe hours spent on farm and nonfarm activi-

tieswhich were recorded for households nonfarm enterprises only, family labor supply was used as a

proxy, measured as the number of family members aged 12 years or more. Livestock units (as input

stock) were evaluated at sale prices. Operating expenses were calculated by adding all purchased

inputs, including energy, fertilizers, seeds, etc. Table 3.2 shows little variation in the labor input,

whose mean is concentrated around 2. It can also be observed that average plots are very small in

almost every region, and the variability is also quite low. The study sample consisted of relatively

homogeneous small farms of about 3.5 hectares. There is far more variability in the two other input

measures, although some of this is price-driven. As expected, a positive correlation can be observed

between regions with high livestock input usage and those with high livestock output.

In addition to inputs and outputs, the distance function was also estimated with several control

variables. We used regional dummies to control for unobserved regional-level differences, and

dummy variables related to land to check whether the productive process is affected by owning

and/or leasing out plots. Household characteristics were also inserted, such as an indicator variable

for female-headed households, the age of the household head in linear and squared terms, a housing

index to control for housing quality, the average education level of household members,27 distance

from the nearest school, and a dummy variable for households with formal loans.

3.5.1 Sample selection bias

Our estimates are done after dropping about one out of four observations in the original survey,

mostly because of inconsistent reporting. To determine whether there is a consistent pattern that

could cause significant sample selection bias, Table 3.4 shows probit estimations of the mirror of

27Jolliffe (2002) shows that in Ghana average education is a better predictor of household income than education
of the head or maximum educational attainment of the household. We alternatively used dummies for shares of
household members with different educational attainment levels, and found that the group with between four and
eight years of education drives the average effect of education, while the group with less than four years has no effect
on the distance.
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misreporting, that is, the probability of being in the sample. For Sample 1 in Table 3.4, only incon-

sistent observations (654) are removed from the original sample of 3,110 farms. Only expenditure

level, household labor (working-age members) and remittance receipts are significant. Expenditure

level should be interpreted with care, because inconsistent observations are likely to imply incon-

sistent expenditures figures. Surprisingly, variables that were expected to determine misreporting,

such as education variables or farm size, appear as insignificant. This, together with the low pre-

dictive power of the regression (sensitivity of 56%) makes it likely that unobservable characteristics

of the household and/or the survey implementation (i.e., interviewers characteristics) play a larger

role in explaining attrition. Sample 2 in Table 3.4 is more narrowly defined, excluding only the

167 outliers. Here input variables are significant but this is partly by construction, as outliers were

identified by their implausibly extreme use of inputs.

If observations are randomly and uniformly dropped from the final sample, knowing the two-

stage stratified sample design would allow the weights to be reconstructed and labelled as “neutral-

adjusted weights”. However, if the probability of being in the sample depends on observable

characteristics, as Sample 2 in Table 3.4 suggests, this probability can be used to calculate a new

weight.the “probability-adjusted weight”: w∗
j = (psj · p̂

a
j )

−1 = wj(p̂
a
j )

−1. This new weight w∗
j is

equal to the original household weight (wj) times the inverse of the probability of being included

in the working sample (p̂aj ), which is predicted using Sample 2 in Table 3.4.

In the following regressions, probability-adjusted weights are used in both the summary statis-

tics and the estimation of the distance function.Weighted regressions are usually avoided because,

although they provide unbiased and consistent estimators, they reduce efficiency. This study uses

probability-adjusted weights because they are correlated with dependent variables as the probits

(especially the second) suggest. We conclude that our estimates do not appear to be affected by

large selection bias, because there are no large differences in the observed outcomes between us-

ing neutral- or probability-adjusted weights and using an unweighted regression but including the

inverse Mills ratio (which is not significant).

3.5.2 The results

Table 3.5 presents the technology coefficients estimated by maximum likelihood SUR of the system

represented by (3.20) and (3.21), and the controls from the first equationthe distance function

normalized by the land input. The system has a very good fit in that most of its technology

parameters are highly significant. Most controls have the expected signs. For example, landowners
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tend to be more efficient, and female-headed households less so. Households with more mature heads

are more efficient, but at a decreasing rate, while more remote farms are less efficient. However,

the average education of the household is the only control that is statistically significant and, as

expected, households with higher average education are found to be more efficient, although there

could be reverse causality here, with households achieving higher education because they are more

efficient.

Table 3.6 presents the main input and output elasticities of the estimated distance function.

Given the highly nonlinear form of some elasticities, bootstrap methods were used for standard

errors and hypothesis testing’.28 The output elasticities presented in the first column of Table

3.6 indicate that, as expected, all marginal costs are positive. The figures also suggest increasing

returns to scale, but constant returns cannot be rejected. The DEA analysis also suggests increasing

returns, as the ratio of DEA TE under CRS to TE under nonincreasing returns to scale is equal to

1 for 98% of observations.29 These results may seem surprising, because technological sources of

increasing returns are unlikely to be present. Instead, the result could be driven by the difficulty

of adjusting to declining land area available per worker. The elasticities by farm size calculated in

Table 3.8 show that increasing returns to scale occur in small/medium-sized farms of between 1

and 10 acres (significantly for those between 2.5 and 5 acres), while the smallest and largest farms

display decreasing returns to scale. High technical inefficiency makes it difficult to interpret input

elasticities. If households were technically efficient, the input elasticity would be exactly equal

to the input cost share. In this study, however, it is the cost share under shadow prices that is

recovered from the input elasticities, as shown by price ratio, ws
2/w

s
1 in Fig. 3.1. The difference

between the technically efficient set point B in the figure and point C, the cost minimizing set, is

the “allocative inefficiency”. It is hard to estimate allocative inefficiency when input markets are

clearly not working fully, so this study did not try to do so. Under shadow cost prices, operating

expenses and labor account for similar shares of total output costs, about 34%, while land accounts

for 30%, and livestock for less than 0.5%. However, livestock is an important input for smaller

farms, particularly those of less than 1 acre, where livestock can amount to 13% of costs at shadow

prices, as shown in Table 3.8.

The cross-output elasticities presented in Table 3.7 indicate that cost complementarities are

28In a bootstrap of 7,500 replications, the survey design was maintained by performing a two-stage bootstrap, in
which clusters were resampled in the first stage, and households in the second. For consistency, the sample size in
each stage was adjusted according to the McCarthy and Snowden (1985) procedure; see Shao and Tu, 1995: chapter
6 for details.

29See Färe et al. (1994) for details.
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present among all outputs. This in turn indicates that there is opportunity for important economies

from diversification by rural households. Not surprisingly, the most important cost complemen-

tarities are among food crops and livestock, which are the main activities for diversified rural

households, that is, specialization tends to be in cash crops.Also important are the cost comple-

mentarities between food and cash crops. Cost complementarities with nonfarm activity are all

significant, being that with livestock production the largest.

Input technical efficiency, estimated in a first stage by the DEA method, yielded the surprisingly

low average of 0.18, as shown in Table 3.6; high inefficiency had been expected because of the

generally low levels of education and the missing and imperfect markets. These results should be

compared with the estimated TE of farms in other Western Africa countries, such as 0.95 in the

Gambia (Chavas et al., 2005), 0.36 to 0.45 for coffee farms in Cameroon (Nyemeck Binam et al.,

2003), and 0.77 for rice farms in Nigeria (Idiong, 2007). The estimates for Ghana signify that input

sets could be proportionally contracted, on average, to 18% of their original levels and still produce

the same amount of output. The high variance of TE shows that households were distributed across

the feasible range (0, 1] as shown in Fig. 3.2. In addition, efficiency is not positively correlated

to farm size, as could be conjectured; in fact smaller farms are more efficient than larger farms as

explained later.

Another important consequence of participation in nonfarm activities is its effect on input

demand. It is frequently argued (see for example Katz and Stark, 1986; Haggblade et al., 2007) that

income from nonfarm activities, including remittances from migration, alleviates credit constraints.

If this were the case, larger nonfarm output would be associated with greater farm input use. Table

3.7 shows the implicit input partial demand elasticities obtained from the distance function.30

Purchased inputs and workers, which are both shared inputs, expand with nonfarm production;

more important, so does land, which is an exclusively agricultural input. These observations are

consistent with the cash constraints hypothesis described above. A similar result is found using

marginal cost ratios among farm sizes. The ratios of the marginal costs of food crops to nonfarm

activities31 and of cash crops to nonfarm output are higher for the overall sample than for farms of

less than 5 acres, implying that smaller farms’ involvement in nonfarm activities is relatively less

productive. As Eq. (3.12) suggests, this result is consistent with the hypothesis that small farm

30The partial input demand elasticities can be obtained by totally differentiating first-order conditions of (3.14),
and shown as ∂ lnxi/∂ lnQ4 = Q4/xi · (∂D/∂Q4 · ∂D/∂xi − ∂2D/∂xi∂Q4)/∂

2D/∂x2
i . This expression is nonlinear

in the regression coefficients estimated, which prompted the use of bootstrapping techniques for hypothesis testing
throughout this study.

31Exactly equal to the ratio of distance to output elasticities.
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households use nonfarm activities to overcome cash constraints.

3.5.3 Sensitivity analysis

It was important to explore whether the land elasticity is miscalculated as a result of differences

in land productivity. To control for this unobserved characteristic, the system was estimated

with enumeration area dummies, to capture cluster level differences such as variations in land

productivity. In unreported regressions using cluster dummies, it was surprising to find that land

elasticity does not change significantly; livestock output is the only elasticity to be significantly

reduced.

Another issue that required further examination is the use of production values instead of

value-free physical measures of output. If prices were constant throughout Ghana, this would be

an innocuous choice, but prices are likely to vary a lot, particularly by distance to markets. The per

unit value of agricultural output is expected to be much lower for isolated farms than for those close

to markets. The consequences of this price difference were explored assuming that for farm i the

gate price of output, pgi , is equal to the market price pm times a deflating function that depends

on distance to market: g(d), i.e. pgi = pmg(di), with g(di) < 1 and g′(di) < 0. For simplicity,

g(di) ≡ 1/(1 + αdi) was assumed, and the sensitivity of the estimated results to different levels

of α explored. Distance to markets was proxied by distance to schools; crop and livestock values

(input stocks and output) were deflated, and the cost of purchased inputs inflated. In unreported

regressions, it was found that most of the elasticities reported in Table 3.6 are surprisingly robust,

except for the output elasticity of food crops (Q2), which is very likely underestimated. This

result makes sense, as more isolated farms will specialize in food rather than cash crops because

of distance to markets. If the gate value of food crops for these distant farms is lower, this study

is underestimating the farms output level and, consequently, overestimating their marginal costs.

This overestimation of the marginal cost of food crop production, together with the robustness of

the other elasticities means that scale economies are likely to be underestimated; as the α increased,

the scale economies became larger, and statistically larger than 1.

The effect of the procedure for removing outliers was also explored by relaxing the cut-off

point and allowing more observations into the sample. As the sample grows, the marginal costs of

both food and livestock output start to grow, to a point where estimates collapse into economic

infeasibility, that is, there are negative marginal costs.
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3.5.4 Benchmarking results with stochastic frontier estimation

The second column of Table 3.6 shows the elasticities of distance function (3.21) estimated with

a half-normal stochastic frontier model, as described in (3.17). The results indicate that the half-

normal stochastic frontier model clearly fails to estimate the underlying technology. The implicit

negative marginal costs and negative returns to scale estimated are violations of basic economic

behavior. We believe that the linear stochastic model fails for three reasons. First, as shown,

estimation of the linear stochastic distance function is inconsistent in proportion to the level of

inefficiency, which in this case is high. Second, a posteriori, it can be seen that the half-normal

distribution of the input distance is an inadequate assumption. Given the treatment of outliers, the

DEA technical inefficiency measure could be questioned regarding the levels, but the underlying

distribution of efficiency calculated and shown in Fig. 3.2 is harder to question. This distribution

cannot fit a half-normal or exponential distribution, as shown by a simulated half-normal distri-

bution in the same figure. The third reason for failure of the stochastic frontier model is that the

input distance is too high. Stochastic frontier methods are an elegant way of identifying the level

of technical inefficiency from the residual. When the level of technical inefficiency is very high, this

method may be asking too much of the residual. The econometric lessons learned in this study

call for care when using stochastic frontier methods in the context of microeconomic development

analysis.

3.6 Conclusions

The aim of this study was to identify the microeconomic effects of an expanding nonfarm sector in

rural Ghana, focusing on possible complementarities between nonfarm activity and farm production

costs and the demand for farm inputs. We test for these effects in a context where many households

are far below the estimated efficiency frontier, using techniques that emphasize the need for careful

attention to the distribution of TE and other sources of error in estimation.

Our first main result is that RNF activity offered significant economies from diversification by

rural households, with important cost complementarities between the nonfarm and farm sectors,

especially for livestock and food crops. This is a very robust finding that held throughout various

sensitivity analyses. The second main result is that RNF production influenced household demand

for farm inputs. The evidence found is consistent with the hypothesis that the nonfarm sector eases

household cash constraints, as expansion of the nonfarm sector increases the demand for inputs,

including those that are farm-specific, such as land.
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Finally, we note that the microeconomic linkages we study in this article may differ from macroe-

conomic linkages estimated with sector-level data, such as the results obtained in Blunch and Verner

(2006). From a policy perspective, it is important to know more about both kinds of linkages, which

have clear implications for growth and poverty.
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3.7 Tables

Table 3.1: Key economic and social indicators from Ghana

1987/88 1991/92 1998/99

Per capita GDP1 202.56 216.91 244.17
Mean yearly growth rate 1.73 1.71
Agriculture, value added (% GDP) 50.5 45.5 36
Per capita agricultural value added1 84.49 82.58 87.59
Mean yearly growth rate -.57 .85
Per capita agricultural production2 70.05 84.2 93.7
Mean yearly growth rate 4.71 1.54
Population, total 14,439,140 16,145,312 19,221,380
Rural population (%) 65.5 62.5 57.5
Households income shares (%)3

Farm 66.46 5 60.88 42.08
Nonfarm self-employment 16.16 5 15.49 28.67
Wage employment (including agric.) 17.56 5 23.62 29.25
Rural households income shares3 (%)
Farm 77.00 58.31
Nonfarm self-employment 11.93 23.64
Wage employment (including agric.) 11.07 18.05
Per capita expenditure4 - National 798,594 993,897
Mean yearly growth rate 3.17
Per capita expenditure4 - Rural 658,882 773,093
Mean yearly growth rate 2.31
Poverty incidence - National (%) 51.7 39.5
Poverty incidence - Rural (%) 63.6 49.5

Notes: 1) Constant 2000 US$. 2) Production index. 3) Calculated as shares of aggregate household
income, excluding transfers and miscellaneous sources of income. 4) In 1999 local currency (cedi).
5) Income shares from Newman et al. (2000), not exactly comparable to 1991/92 and 1998/99
income shares.
Sources: World Development Indicators from the World Bank.91/92 and 98/99 income shares,
poverty indexes, per capita expenditures from GLSS3 & GLSS4 and Ghana Statistical Service (2000).
Agricultural production indexes from FAOSTAT.
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Table 3.2: Output and input compositions (coefficients of variation in parentheses)

(a) Output composition

Region Total2 Q1 Q2 Q3 Q4

Western 6,246,071 26.6 39.8 2.5 31.1
(240)1 (3.3) (1.0) (0.7) (3.8) (1.1)
Central 3,484,720 11.7 42.2 6.0 40.1
(292) (1.5) (1.5) (0.8) (2.4) (0.9)
Greater Accra 3,386,875 0.7 43.2 0.5 55.5
(27) (1.4) (3.4) (0.9) (3.3) (0.7)
Eastern 3,474,006 5.4 37.5 8.8 48.3
(259) (1.8) (2.4) (0.9) (2.4) (0.8)
Volta 3,414,416 9.6 53.4 5.2 31.9
(357) (1.2) (1.7) (0.6) (2.3) (1.1)
Ashanti 3,883,818 8.5 56.7 2.7 32.1
(405) (1.7) (2.0) (0.6) (3.1) (1.1)
Brong Ahafo 2,852,970 5.8 68.8 1.5 23.9
(269) (1.5) (2.5) (0.4) (3.0) (1.2)
Northern 1,734,735 18.9 51.3 11.0 18.7
(188) (1.7) (1.0) (0.5) (1.3) (1.5)
Upper East 1,494,256 23.4 55.7 9.7 11.2
(53) (3.8) (0.8) (0.4) (1.2) (2.3)
Upper West 1,955,682 14.6 53.5 11.3 20.7
(199) (1.4) (0.9) (0.5) (1.1) (1.5)

Total 3,422,314 12.8 50.6 5.8 30.8
(2289) (2.6) (1.5) (0.6) (2.3) (1.1)

Notes: Averages calculated using probability adjusted weights.
1) Observations #. 2) Total value in local currency.
3) Q1, Q2, Q3, Q4 shares in percentages.
Q1 = cash crop; Q2 = food crop; Q3 = livestock;
Q4 = off-farm income.

(b) Input composition

Region1 x1 x2 x3 x4

Western 3.8 398,352 3.06 532,107
(240) (0.92) (2.73) (0.57) (1.62)
Central 3.06 177,339 2.55 452,628
(292) (0.87) (2.28) (0.56) (1.66)
Greater Accra 1.17 126,134 2.55 1,243,060
(27) (0.49) (1.29) (0.49) (1.2)
Eastern 1.42 439,952 3.48 1,278,233
(259) (1.16) (5.25) (0.59) (3.28)
Volta 1.8 236,497 3.19 388,986
(357) (1.5) (2.16) (0.52) (1.2)
Ashanti 2.8 261,234 3.24 554,466
(405) (0.98) (3.1) (0.58) (4.44)
Brong Ahafo 3.61 166,559 2.55 589,351
(269) (1.09) (1.6) (0.59) (1.61)
Northern 2.69 172,377 3.25 1,635,155
(188) (0.66) (1.3) (0.49) (1.13)
Upper East 2.71 70,383 4.89 1,665,500
(53) (0.41) (3.57) (0.41) (0.78)
Upper West 2.1 97,738 3.07 1,044,195
(199) (0.58) (2.36) (0.45) (1.28)
Total 2.67 245,962 3.12 864,146
(2289) (1.05) (3.97) (0.56) (2.30)

Notes: x1 = land size (hectares); x2 = operating expenses
(LCU); x3 = # workers; x4 = livestock value (LCU).

88



Table 3.3: Nonfarm activities composition: mean shares (coefficients of variation in parentheses)

Region Nonfarm1 Nonfarm Wages Water Land Remittances Other
(observations) income enterprises sold rents

Western 2,153,357 45.7 18.6 0.00 3.13 29.2 3.36
(240) (3.12) (1.05) (1.98) (.) (5.34) (1.52) (4.95)
Central 2,219,509 50.1 9.34 0.55 3.11 30.9 6.04
(292) (2.30) (0.94) (2.84) (13.5) (5.1) (1.37) (3.32)
Greater Accra 2,489,469 41.4 11.6 0.00 10.9 32.1 4.05
(27) (1.91) (1.09) (2.69) (.) (2.45) (1.31) (3.14)
Eastern 2,288,388 58.8 10.2 0.00 0.40 22.7 7.83
(259) (2.21) (0.78) (2.68) (.) (9.24) (1.74) (3.23)
Volta 1,459,130 38.1 13.9 0.19 8.93 33.9 4.99
(357) (2.22) (1.20) (2.34) (13.5) (2.93) (1.3) (3.98)
Ashanti 2,112,235 28.9 8.00 0.03 5.89 38.1 19.1
(405) (2.84) (1.49) (3.12) (13.6) (3.48) (1.16) (1.91)
Brong Ahafo 870,408 27.4 19.00 0.00 3.80 48.9 0.88
(269) (3.20) (1.56) (2.01) (.) (4.14) (0.96) (8.95)
Northern 483,584 36.7 6.68 0.00 0.00 45.7 10.9
(188) (2.28) (1.28) (3.49) (.) (.) (1.07) (2.62)
Upper East 867,574 8.7 2.42 0.00 0.00 41.2 47.8
(53) (6.48) (3.37) (6.59) (.) (.) (1.15) (1.01)
Upper West 742,933 26.0 6.52 0.00 0.00 48.3 19.2
(199) (2.96) (1.62) (3.61) (.) (.) (0.95) (1.82)

Total 1,569,058 39.4 11.8 0.10 3.76 35.9 8.97
(2289) (2.94) (1.18) (2.56) (26.9) (4.53) (1.25) (2.92)

Notes: Averages calculated using probability adjusted weights. 1) yearly average per household (LCU).
Other columns represent nonfarm income shares.
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Table 3.4: Sample selection probits (marginal effects reported, standard errors in parentheses)

Variable Sample 1 Sample 2

Tot PC cons. 4.25e-07 ∗∗∗ (1.45e-07) 4.49e-07 ∗∗∗ (1.57e-07)
Food cons. share 0.069 (0.062) 0.170 ∗∗ (0.068)
HH labor 0.014 ∗∗ (0.006) 0.013 ∗∗ (0.007)
Operated landsize 0.004 (0.003) 0.010 ∗∗∗ (0.003)
Land-owner 0.018 (0.016) 0.035 ∗ (0.018)
Land rented-out -0.030 (0.064) -0.077 (0.071)
Female head 0.012 (0.018) -0.038 ∗ (0.020)
Age of head 0.001 (0.003) 0.004 (0.003)
(Age of head)2 -0.00002 (0.00003) -0.00005 (0.00003)
Average education of the hh -0.005 (0.003) -0.005 (0.003)
Head reads English 0.012 (0.011) 0.005 (0.012)
Head reads Ghanaian -0.008 (0.010) -0.003 (0.011)
Member is an apprentice 0.005 (0.011) -0.004 (0.011)
Training 0.040 (0.041) 0.001 (0.042)
Nr. of hospitalized hh members 0.008 (0.013) 0.005 (0.014)
Receives remittances 0.042 ∗∗∗ (0.015) 0.051 ∗∗∗ (0.017)
Min. distance school .0.00002 (0.00006) 2.36e-06 (0.0001)
Regions
Western -0.163 ∗∗∗ (0.050) -0.182 ∗∗∗ (0.050)
Central -0.088 ∗∗ (0.044) -0.017 ∗∗∗ (0.046)
Greater Accra -0.103 (0.096) -0.142 (0.097)
Eastern -0.175 ∗∗∗ (0.048) -0.175 ∗∗∗ (0.047)
Volta -0.114 ∗∗∗ (0.044) -0.111 ∗∗∗ (0.045)
Ashanti -0.119 ∗∗∗ (0.044) -0.129 ∗∗∗ (0.045)
Brong Ahafo -0.136 ∗∗∗ (0.048) -0.102 ∗∗ (0.048)
Northern -0.100 ∗∗ (0.048) -0.072 (0.049)
Upper East -0.375 ∗∗∗ (0.066) -0.324 ∗∗∗ (0.064)
No. of obs. 3110 3110
Log-likelihood -1543.04 -1740.47
LR− χ2 91.81 109.17
Pseudo R2 0.029 0.030
Sensitivity (%) 57.83 56.44

Notes: Sample 1 = 0 only for inconsistent observations (654 obs.).
Sample2 = 0 for inconsistent observations and outliers (821 obs.).
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Table 3.5: Maximum Likelihood SUR technology parameters estimates1 (2289 observa-
tions, standard errors in parentheses)

Western 4.358 ∗∗ a22 -5.102 ∗∗∗ f1 0.662 ∗∗∗ n22 0.651 ∗∗∗ q24 0.369 ∗∗∗

(1.814) (0.482) (0.095) (0.066) (0.088)
Central 4.093 ∗∗ a23 10.948 ∗∗∗ f2 -0.063 n23 -1.485 ∗∗∗ q33 3.175 ∗∗∗

(1.826) (0.747) (0.107) (0.175) (0.191)
Greater Accra 9.975 ∗∗ a24 -2.782 ∗∗∗ f3 2.064 ∗∗∗ n24 0.017 q34 -1.439 ∗∗∗

(4.922) (0.451) (0.270) (0.124) (0.151)
Eastern 8.853 ∗∗∗ a33 12.919 ∗∗∗ f4 -0.679 ∗∗∗ n33 2.863 ∗∗∗ q44 0.040

(1.814) (0.637) (0.153) (0.263) (0.079)
Volta 2.582 a34 9.643 ∗∗∗ g1 0.379 ∗∗ n34 -0.978 ∗∗∗ r1 -2.134 ∗∗∗

(1.775) (0.701) (0.166) (0.161) (0.189)
Ashanti 4.723 ∗∗∗ a44 -5.262 ∗∗∗ g2 -0.395 ∗∗∗ n44 -0.240 ∗∗ r2 0.604 ∗∗∗

(1.813) (0.464) (0.056) (0.120) (0.146)
Brong Ahafo 6.558 ∗∗∗ b1 0.442 ∗∗∗ g3 3.926 ∗∗∗ p11 -0.082 r3 -8.313 ∗∗∗

(1.803) (0.075) (0.186) (0.159) (0.687)
Northern 0.456 b2 -0.272 ∗∗∗ g4 -0.111 p12 -0.180 ∗∗ r4 0.698 ∗

(1.702) (0.082) (0.111) (0.088) (0.270)
Upper East -0.004 b3 2.306 ∗∗∗ m11 0.195 ∗∗ p13 0.462 s1 -3.027 ∗∗∗

(2.442) (0.320) (0.079) (0.331) (0.222)
Land Owner -0.452 b4 -0.022 m12 -0.241 ∗∗∗ p14 0.125 s2 -0.607 ∗

(0.837) (0.132) (0.132) (0.087) (0.312)
Land Rent-out 0.560 c1 0.460 ∗∗∗ m13 0.043 p22 -0.084 ∗∗∗ s3 -11.763 ∗∗∗

(3.163) (0.142) (0.259) (0.016) (0.642)
Female Head 0.028 c2 -0.160 ∗∗∗ m14 -0.040 p23 -1.301 ∗∗∗ s4 3.240 ∗∗∗

(0.898) (0.045) (0.137) (0.199) (0.346)
Age of Head -0.083 c3 1.711 ∗∗∗ m22 0.131 ∗∗∗ p24 0.474 ∗∗∗ t1 -2.775 ∗∗∗

(0.070) (0.091) (0.028) (0.049) (0.397)
(Age of Head)2 0.001 c4 -0.138 m23 -0.255 p33 2.287 ∗∗∗ t2 1.250 ∗∗∗

(0.001) (0.090) (0.235) (0.377) (0.177)
Highest educ -0.368 ∗∗∗ d1 0.205 m24 0.101 p34 -0.988 ∗∗∗ t3 -13.223 ∗∗∗

(0.128) (0.132) (0.096) (0.184) (0.605)
Loan -0.776 d2 -0.239 ∗∗∗ m33 0.472 p44 0.032 t4 1.560 ∗∗∗

(0.834) (0.051) (0.408) (0032) (0.181)
Min. distance 0.002 d3 0.948 ∗∗∗ m34 -0.067 q11 0.788 ∗∗∗ z1 -3.465 ∗∗∗

to school (0.003) (0.320) (0.386) (0.145) (0.302)
Housing index -0.273 d4 0.238 ∗ m44 -0.162 q12 -0.307 ∗∗∗ z2 0.932 ∗∗∗

(0.362) (0.131) (0.108) (0.109) (0.231)
a11 1.751 ∗∗∗ e1 1.039 ∗∗∗ n11 0.734 ∗∗∗ q13 -1.112 ∗∗∗ z3 -12.494 ∗∗∗

(0.348) (0.159) (0.089) (0.197) (0.549)
a12 10.523 ∗∗∗ e2 0.215 ∗∗∗ n12 -0.926 ∗∗∗ q14 -0.113 z4 1.365 ∗∗∗

(0.583) (0.072) (0.111) (0.165) (0.388)
a13 8.719 ∗∗∗ e3 3.018 ∗∗∗ n13 -0.814 ∗∗∗ q22 0.128 ∗∗∗

(0.702) (0.263) (0.163) (0.028)
a14 -2.154 ∗∗∗ e4 -0.752 ∗∗∗ n14 0.160 q23 -0.994 ∗∗∗

(0.551) (0.083) (0.113) (0.152)

Notes: ∗∗∗99%, ∗∗95%, ∗90% confidence level.
1) Estimates of the control parameters from the first equation, the distance function normalized by the land input.
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Table 3.6: Input-output elasticities (full sample, 2,289 observations)

ML SUR estimates Half Normal stochastic
Elasticities Frontier estimates

Value Std.Error Value Std.Error

εD,Q1
-0.078 0.201 0.243 ∗∗∗ 0.051

εD,Q2
-0.459 ∗∗∗ 0.228 0.015 0.040

εD,Q3
-0.112 0.265 -0.204 ∗∗∗ 0.068

εD,Q4
-0.259 ∗∗∗ 0.131 0.078 ∗∗ 0.034∑

i
εD,Qi

= −1 0.092 0.633 1.133 ∗∗∗ 0.102

εD,x1
0.331 ∗∗∗ 0.072 0.657 ∗∗∗ 0.129

εD,x2
0.356 ∗∗∗ 0.122 0.027 0.035

εD,x3
0.307 ∗∗ 0.109 0.341 ∗∗∗ 0.053

εD,x4
0.006 0.062 -0.025 0.029

Technical efficiency1 0.182 0.194 0.999 0.002

Notes: Q1=cash crops, Q2=food crops, Q3=livestock, Q4=off-farm
x1=land, x2=operating expenses, x3=workers, x4=livestock
Standard errors and hypothesis testing on the first column is based on the
bootstrapped empirical distribution of each statistic (B = 7500).
∗∗∗99%, ∗∗95%, ∗90% confidence level.
(1) In the SUR columns DEA estimates are reported; in the frontier column,
technical efficiency is calculated with the estimated one-sided error of the
stochastic frontier model.
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Table 3.7: Cross-term elasticities
(a) Cost complementarities

Cash crops Food crops Livestock

Food crops 0.047 ∗∗∗

(0.024)
Livestock 0.044 ∗∗∗ 0.089 ∗∗∗

(0.026) (0.041)
Non-farm 0.017 ∗∗∗ 0.032 ∗∗∗ 0.055 ∗∗∗

(0.016) (0.025) (0.057)

(b) Input responses to nonfarm output expansion

Land size Purchased inputs Workers Livestock

∂ lnxi/∂ lnQ4 13.391 ∗∗∗ 19.748 ∗∗∗ 16.549 ∗∗ -3.034
(3.914) (6.663) (106.684) (1323.196)

Notes: Standard errors and hypothesis testing based on a bootstrapped empirical
distribution of each statistic (B = 7500). ∗∗∗99%, ∗∗95%, ∗90% confidence level.
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Table 3.8: Elasticities by farm size

Less than 1 acre Between 1 and 2.5 acres Between 2.5 and 5 acres
Elasticities 185 obs. 358 obs. 529 obs.

Value Std.Error Value Std.Error Value Std.Error

εD,Q1
-0.078 0.294 -0.031 0.033 -0.042 ∗ 0.033

εD,Q2
-1.076 ∗∗∗ 4.855 -0.240 ∗∗∗ 0.082 -0.263 ∗∗∗ 0.065

εD,Q3
-0.103 0.916 -0.318 ∗∗ 0.239 -0.098 ∗∗ 0.074

εD,Q4
-0.457 ∗∗∗ 1.993 -0.246 ∗∗∗ 0.115 -0.185 ∗∗∗ 0.062∑

i
εD,Qi

= −1 -0.715 ∗∗ 7.320 0.165 0.375 0.412 ∗∗ 0.152

εD,x1
0.394 ∗∗∗ 0.992 0.389 ∗∗∗ 0.082 0.313 ∗∗∗ 0.038

εD,x2
0.314 0.472 0.310 ∗∗∗ 0.065 0.346 ∗∗∗ 0.047

εD,x3
0.160 0.747 0.247 ∗∗ 0.078 0.304 ∗∗∗ 0.047

εD,x4
0.132 0.285 0.054 0.052 0.030 ∗ 0.084

TE
1 0.375 0.314 0.204 0.214 0.159 0.163

Between 5 and 10 acres Greater than 10 acres
550 obs. 475 obs.

εD,Q1
-0.084 2.175 -0.211 70.437

εD,Q2
-0.501 ∗∗∗ 2.402 -1.173 ∗∗ 70.242

εD,Q3
-0.158 3.342 0.018 24.629

εD,Q4
-0.248 ∗∗ 1.316 -0.292 21.318∑

i
εD,Qi

= −1 0.009 8.79 -0.659 183.732
εD,x1

0.371 ∗∗ 0.756 0.293 7.873
εD,x2

0.303 ∗∗ 0.968 0.384 10.096
εD,x3

0.316 1.188 0.396 10.488
εD,x4

0.009 0.619 -0.073 5.754
TE

1 0.165 0.165 0.157 0.164
Notes: Hypothesis testing based on the bootstrapped empirical distribution of each statistic (B = 7500).
∗∗∗99%, ∗∗95%, ∗90% confidence level. 1) DEA estimates of technical efficiciency
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3.8 Figures

Figure 3.1: Production and Efficiency
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Figure 3.2: Calculated and Simulated Technical Efficiency
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