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Abstract

Imaging spectroscopy, also known as hyper-spectral remote sensing, is an

imaging technique capable of identifying materials and objects in the air,

land and water on the basis of the unique reflectance patterns that result

from the interaction of solar energy with the molecular structure of the

material. Recent advances in aerospace sensor technology have led to the

development of instruments capable of collecting hundreds of images, with

each image corresponding to narrow contiguous wavelength intervals, for

the same area on the surface of the Earth. As a result, each pixel (vector) in

the scene has an associated spectral signature or “fingerprint” that uniquely

characterizes the underlying objects.

Hyper-spectral sensors mainly cover wavelengths from the visible range

(0.4µm- 0.7µm) to the middle infrared range (2.4µm). If we consider the

consistency of this data, we can easily understand the importance of finding

a method which can transform the data cube into one with reduced dimen-

sionality and maintain, at the same time, as much information content as

possible. These techniques are known under the general name of feature

reduction. Besides enabling an easier storage and management of the data,

features reduction procedures can be crucial for the implementation of op-
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timum inversion algorithms.

This research work strives to give a contribution along the direction

of extracting information from hyperspectral data. A major instrument is

considered for this purpose, which is the use of neural networks algorithms,

already recognized to represent a rather competitive family of algorithms

for the analysis of hyperspectral data. Besides introducing a novel neural

network approach for handling the dimensionality reduction of hyperspec-

tral data, other specific issues will be considered, with a special focus on

the unmixing problem, or sub-pixel classification.

While the first three chapters are dedicated to the presentation of the

problems, to the current state of art and to the, theoretically sound, pro-

posed solutions, the remaining sections are dedicated to the description

and the assessment of the results obtained in different applicative scenar-

ios. Some final considerations conclude the work.



Chapter 1

Hyper-spectral data

Both scientists and common people are becoming increasingly concerned

with environmental phenomena such as the photosynthetic conditions of

the vegetation, wide deforestation and fires, desertification, sea pollution,

together with the general health of the Earth. The monitoring of these

events and the understanding of the impact which they could have on the

fragile biophysical mechanisms is becoming more and more important than

in the past. For this reason, sensors like MERIS, MODIS, AVHRR and

AATSR have been designed and placed in orbit. These measurements are

performed using several spectral bands (up to 36 for MODIS) located into

the visible and the infrared range in order to collect a noteworthy dataset

for every kind of global investigation (land use, ocean color, snow cover,

sea ice observation...). A following step has been the allocation of many

contiguous and narrow bands (more than one hundred) available for the

measurement. This technological evolution led to the hyper-spectral im-

agery, which has demonstrated very high performance in several cases of
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Figure 1.1: Hyper-cube obtained from a AVIRIS dataset

material identification and urban mapping, including sub pixel classifica-

tion. The hyper-spectral sensors differ from each other in terms of number

of bands, bandwidth, spatial resolution and spectral range, spatial acquisi-

tion and spectral selection modes. Managing such dissimilar type of data

is not a simple task and requires the adoption of information extraction

techniques that are appropriate for each specific sensor data.

1.1 Data acquisition principles

In general, hyper-spectral sensors can be divided into three different scan-

ning systems for acquiring the image:

• Whiskbroom imagers (electromechanical scanners): on-axis optics or
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telescopes with scan mirrors sweep from one edge of the swath to the

other. The Field of View (FOV) of the scanner can be detected by

a single detector or a single-line-detector. This means that the dwell

time for each ground cell must be very short at a given Instantaneous

Field of View (IFOV), because each scan line consists of multiple

ground cells which will be detected.

• Pushbroom scanners: as electronic scanners they use a detector array

to scan over a two dimensional scene. The number of across track

pixels detector pixel is equal to the number of ground cells for a given

swath. The motion of the aircraft or spacecraft provides the scan in

along-track-direction. Pushbroom scanners are the standard for high

resolution imaging spectrometers.

• Staring imagers: these imagers are also electronic scanners. They

detect a two dimensional FOV at once. The IFOV along and cross

track corresponds to the two dimensions of detector area array. Two

sub-groups of staring imagers are Wedge Imaging Spectrometer (WIS)

and Time Delay Integration Imager (TDI).

Hyper-spectral spectrometers can also have very different spectral se-

lection modes:

Dispersion elements (grating, prism): This group collects spectral

images by using a grating or a prism. The incoming electromagnetic ra-

diation will be separated into different angles. The spectrum of a single

ground pixel will be dispersed and focused at different locations of one di-

mension of the detector array. This technique is used for both whiskbroom
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Figure 1.2: Scanning approaches

Figure 1.3: Spectral selection modes
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and pushbroom image acquisition modes. Most hyper-spectral imagers are

using grating as dispersive elements, whereas some use prisms.

Filter based systems: a narrow band of a spectrum can be selected by

applying optical bandpass filters (tunable filters, discrete filters and linear

wedge filters). A linear wedge transmits light at a centre wavelength that

depends on the spatial position of the illumination in the spectral dimen-

sion. The detector behind the device receives light at different wavelengths

of the scene.

Fourier-Transform Spectrometers (FTS): a Fourier-transform spec-

trometer is an adaption of the Michelson interferometer [1] where a colli-

mated beam from a light source is divided into two by a beamsplitter and

sent to two mirrors. These mirrors reflect the beams back along the same

paths to the beamsplitter, where they interfere. The signal recorded at the

output depends on the wavelength of the light and the optical path differ-

ence between the beamsplitter and each of the two mirrors. If the optical

path difference between the two beams is zero or a multiple of the wave-

length of the light then the output will be bright, otherwise if the optical

path difference is an odd multiple of half the wavelength of the light then

the output will be dark.

In the Fourier transform spectrometer, one of the mirrors is scanned in

the direction parallel to the light beam. This changes the path difference

between the two arms of the interferometer, hence the output alternates

between bright and dark fringes. If the light source is monochromatic, then

the signal recorded at the output will be modulated by a cosine wave; if it

is not monochromatic then the output signal will be the Fourier transform
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Figure 1.4: Schematic of a Fourier-Transform Spectrometer

of the spectrum of the input beam. The spectrum can then be recovered

by performing an inverse Fourier-transform of the output signal.

1.2 Data uniformity

Efficient and accurate imaging spectroscopy data processing asks for per-

fectly uniform data in both spectral and spatial dimensions. The precision

of a measurement is determined by the instrument response r(z), with z the

position coordinate. The transformation from the input physical quantity

to the measurement O(z) is described mathematically by a convolution:

O(z0) =

∫
W
i(z)r(z − z0)dz (1.1)



1.2 Data uniformity 9

Or in shorthand notation:

O(z) = i(z)⊗ r(z) (1.2)

Where:

i(z): input signal

r(z − z0): sensor response at the position z0

O(z0): output signal, assigned to the position z = z0

W : significant spatial range covered by the response of the system.

The image of a scene viewed by the sensor is not completely its faithful

reproduction. Small details are blurred relative to larger features; this

blurring is characterized by the total sensor Point Spread Function (PSF).

The response of a detector element depends principally from the PSF, which

can be viewed as the spectral/spatial responsivity of the sensor.

PSF consists of several components:

• Optical PSF (PSFopt), defined by the spatial energy distribution in

the image of a point source. Being an optical system not perfect, the

energy from a point source is spread over a small area in the focal

plane. The extent of spreading depends on many factors, including

optical diffraction, aberrations, and mechanical assembly quality.

• The image motion PSF (PSFIM ), caused by the motion of the car-

rier during the integration time, which lead normally to rectangular

spatial pixel response shapes.

• The detector PSF (PSFdet) produces a spatial blurring caused by the

non-zero spatial area of each detector in the sensor, and also normally
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is not a quadratic shape.

• The electronics PSF (PSFel), appearing by electronic filtering of the

acquired data during acquisition, e.g. for correction of dark current

or smear effects.

From these four influences, the total PFS can be expressed by a combination

of these effects:

PSF = PSFopt + PSFIM + PSFdet + PSFel (1.3)

For pushbroom imaging spectroscopy, one image frame registers the

spectral and spatial dimension simultaneously. Any non-uniformity in the

system generates degrading artifacts, more in particular:

• Spectral PSF non-uniformity : is the non-uniformity of the spectral

response within a sensor’s spectral band and can be imaged on a

detector row as shown in fig.1.5. This non-uniformity is typically

represented by the position and shape of the spectral response func-

tion. The related artifacts of spectral misregistration are denoted as

“smile” or “frown”.

• Spatial PSF non-uniformity : is the non-uniformity of the spatial re-

sponse within an acquired spectrum and is usually imaged on a de-

tector column as shown in fig.1.5. This non-uniformity is represented

by the position and shape of the spatial response function in both the

along-track and across-track dimensions of a spatial pixel. The related

artifacts in the across-track dimension are denoted as “keystone”.
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As for the spatial non-uniformity, the influence of the “keystone” effect

results in a black pixel in the image that can be easily replaced. On the

other hand the removal of the “smile” effect is not an easy task.

1.2.1 Influence of smile effect on pushbroom sensor

In many cases a pushbroom sensor can be affected by the “smile effect”

[2]. The consequence of this effect is that the central wavelength of a band

varies with spatial position across the width of the image in a smoothly

curving pattern fig.1.6. Very often the peak of the smooth curve tends to

be in the middle of the image and give it a shape of “smile” or “frown”.

That is why this spectral misalignment is termed as smile effect. The effect

of the smile is not obvious in the individual bands. Therefore an indicator

is needed to make evident whether or not a given image suffers from smile

effect. A way to check for the smile effect is to look at the band around

atmospheric absorption (760 nm)[reference smile]different images. In fact,

the region of red-near infrared transition has high information content of

vegetation spectra. This region is generally called “red-edge” (670-780 nm)

and identifies the red-edge position (REP) [3] [4]. REP is a good indica-

tor of chlorophyll concentration. Increase in amount of vegetation causes

shift in red-edge slope and REP towards longer wavelengths. In contrast,

low chlorophyll concentration causes shift in red-edge slope towards shorter

wavelengths. The smile effect is acute due to sharp absorption at 760 nm,

which is within the red-edge region, and for this reason atmospheric correc-

tion of smiled data will be incorrect. Although some research has been done

on many hyper-spectral datasets to solve the smile problem, the researchers
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Figure 1.5: PSF in ideal (top) and real (bottom) position: the smile and
keystone effects on a detector
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Figure 1.6: Smooth curves representing the spectral variations along the
spatial domain. Frown (top) and smile effect (bottom)
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have yet not come up with a complete solution. The methodologies devel-

oped so far can only reduce the intensity of smile effect but cannot remove it

entirely, because during its life a detector element can change its response,

therefore the knowledge and the correction of this phenomena became fun-

damental in the analysis of hyper-spectral images and more in general in

multispectral images.

In the following paragraph I will list the main hyper-spectral sensors,

and describe in details their main features, peculiarities and usage (employ-

ment, applications, etc).

1.3 Airborne Hyper-spectral sensors

The latest airborne payloads include sensors with measurements carried

out at thousands of wavelengths and at the finest spatial resolution.

1.3.1 CASI

The Compact Airborne Spectrographic Imager (CASI) [5], produced by

Itres Research of Canada, is a two-dimensional Charge-Coupled-Device

(CCD) array based pushbroom imaging spectrograph.

One dimension of the 578x288 element array is used to obtain a 512

spatial pixels frame of the surface that builds up a flightline of data as the

aircraft moves forward. The front side of the CASI camera head is equipped

with a custom fore-optic lens with 54.4◦FOV which has been designed to

provide optimum focusing across the CASI wavelength range (achromatic

focus).

After passing through a 15mm wide spectrographic slit, a reflection
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Parameter Description

IFOV 40◦

Spectral Range 650nm between 380 and 1050nm

Spatial Samples 512 pixels

Bands 288

Bandwidth < 3.5 nm

Dynamic Range 14 bits

Table 1.1: CASI spectral parameters

Figure 1.7: CASI 1500 Hyper-spectral Imager
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grating disperses the light from each pixel over the 405nm to 950nm spectral

range and is recorded by the 288 detectors on the orthogonal dimension of

the CCD. The row spacing on the CCD equates with a spectral sampling of

1.8nm. The effective bandwidth of a single row has an approximate value

of 2.2 nm FWHM (Full Width at only Half its Maximum value) at 650nm,

resulting from the optical system and convolution of the slit width and

detector size.

1.3.2 AHS

The Airborne Hyper-spectral Scanner (AHS) [6] is an 80-bands airborne

imaging radiometer, developed by ArgonST (USA) and operating by INTA.

It has 63 bands in the reflective part of the electromagnetic spectrum, 7

bands in the 3 to 5 microns range and 10 bands in the 8 to 13 microns

region. The first element of the system is a rotating mirror, which directs

the surface radiation to a cassegrain-type telescope. The telescope design

includes a so-called pfund-assembly, that defines a 2.5 mrad IFOV and acts

as a field stop. This field is therefore unique for all bands, and redirects the

radiation to a spectrometer placed above the telescope. In the spectrometer,

four dichroic filters are used to split the incoming radiation in five optical

ports: Port 1 (corresponding to VNIR wavelengths), Port 2a (for a single

band at 1.6 micrometers), Port 2 (SWIR), Port 3 (MIR) and Port 4 (TIR).

For each of the ports, a grating disperses the radiation and a secondary

optical assembly focuses it onto an array of detectors, which defines the

final set of (contiguous) spectral bands. Table 1.2 displays the resulting

spectral configuration.



1.3 Airborne Hyper-spectral sensors 17

Parameter Description

IFOV 2.5 mrad

Spectral Ranges

VIS/NIR (Port 1) 441-1018nm

NIR (Port 2A) 1.491-1.650 µm

NIR (Port 2) 2.019-2.448 µm

MIR (Port 3) 3.03-5.41 µm

LWIR (Port 4) 7.950-13.17 µm

Spatial Samples 750 pixels

Bands 80

Bandwidths

VIS/NIR (Port 1) 30 nm

NIR (Port 2A) 0.2 µm

NIR (Port 2) 0.013 µm

MIR (Port 3) 0.3 µm

LWIR (Port 4) 0.4-0.5 µm

Dynamic Range 12 bits

Table 1.2: AHS spectral parameters
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Figure 1.8: MIVIS (left) and AHS (right) Hyper-spectral Imagers

1.3.3 MIVIS

MIVIS [7] (Multispectral Infrared and Visible Imaging Spectrometer) is

a modular hyper-spectral scanner composed of 4 spectrometers, which si-

multaneously measure the electromagnetic radiation of the Earth’s surface

recorded by 102 spectral bands. The instrument can be considered as one

of the imaging spectrometers of second generation, that best meets the

research needs because it enables advanced applications in environmental

remote sensing, like Agronomy, Archaeology, Botanic, Geology, Hydrology,

Oceanography, Pedology, Urban Planning, Atmospheric Sciences, and so

on.

The simultaneous scanning in a great number of channels with a high

spectral and spatial resolution require the highly technological optics and

sensors, electronic pre-processing and registration of a large data quantity.

The combination of a high resolution in the Mid Infrared region with a

good sensitivity in the Thermal Infrared region has caused many problems

during the design phase. The resulting system is a mechanical scanning
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Parameter Description

IFOV 2.0 mrad

Spectral Ranges

VIS 0.43-0.83 µm

NIR 1.15-1.55 µm

MIR 2.0-2.5 µm

TIR 8.2-12.7 µm

Spatial Samples 755 pixels

Bands 102

Bandwidths

VIS 0.02 µm

NIR 0.05 µm

MIR 0.009 µm

TIR 0.34-0.54 µm

Dynamic Range 12 bits

Table 1.3: MIVIS spectral parameters

optical instrument provided with a sensor for each spectral region that

collects energy from a common Field Stop for all channels.

1.3.4 AVIRIS

AVIRIS (Airborne Visible InfraRed Imaging Spectrometer) is a premier in-

strument in the realm of Earth Remote Sensing developed by NASA [8].

AVIRIS contains 224 different detectors, each with a bandwidth of approxi-

mately 10 nanometers, allowing it to cover the entire range between 380 nm

and 2500 nm. AVIRIS uses a whiskbroom scanning mirror producing 677

pixels for the 224 detectors at each scan. The pixel size and swath width of

the AVIRIS data depend on the altitude from which the data is collected.
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Parameter Description

IFOV 1.0 mrad

Spectral Ranges 380-2500 nm

Spatial Samples 677 pixels

Bands 224

Bandwidths 10 nm

Dynamic Range 12 bits

Table 1.4: AVIRIS spectral parameters

The ground data is recorded on board the instrument along with navigation

and engineering data and the readings from the AVIRIS on-board calibra-

tor. When all of this data is processed and stored on the ground, it yields

approximately 140 Megabytes (MB) for every 512 scans (or lines) of data.

Each 512 line set of data is called a ”scene”, and corresponds to an area

about 10km long on the ground. Every time AVIRIS flies, the instrument

takes several runs of data (also known as flight lines). A full AVIRIS disk

can yield about 76 Gigabytes (GB) of data per day.

1.3.5 ROSIS

ROSIS (Reflective Optics System Imaging Spectrometer) [9], a compact

airborne imaging spectrometer, developed jointly by MBB Ottobrunn (now

EADS-ASTRIUM), GKSS Geesthacht (Institute of Hydrophysics) and DLR

Oberpfaffenhofen (former Institute of Optoelectronics) based on an origi-

nal design for a flight on ESA’s EURECA platform. The design driver for

ROSIS was its application for the detection of spectral fine structures espe-

cially in coastal waters. This task determined the selection of the spectral

range, bandwidth, number of channels, radiometric resolution and its tilt
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Figure 1.9: AVIRIS hyper-spectral Imager

Parameter Description

IFOV 0.56 mrad

Spectral Ranges 430-860 nm

Spatial Samples 512 pixels

Bands 115

Bandwidths 4.0 nm

Dynamic Range 14 bits

Table 1.5: ROSIS spectral parameters

capability for sun glint avoidance. However, ROSIS can be exploited for

monitoring spectral features above land or within the atmosphere.

1.4 Satellite Hyper-spectral sensors

The development of hyper-spectral technology for the space satellites re-

mains difficult and very expensive in terms of payload design, maintenance

and calibration. However, these difficulties have not deterred the space
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Figure 1.10: ROSIS instrument

agencies from finding interesting missions carrying on board hyper-spectral

payloads. This is the case of Hyperion developed by NASA, CHRIS Proba-

1 developed by a European consortium founded by ESA, and the upcoming

PRISMA developed by ASI (Agenzia Spaziale Italiana), and EnMAP de-

veloped by DLR.

1.4.1 HYPERION

Hyperion instrument [10], mounted onboard of the National Aeronautics

and Space administration (NASA) EO-1 satellite, provides a high resolu-

tion hyper-spectral imager capable of resolving 220 spectral bands (from

0.4 to 2.5 µm) with a 30 meter spatial resolution. The instrument covers

a 7.5 km by 100 km land area per image and provides detailed spectral

mapping across all 220 channels with high radiometric accuracy. The ma-

jor components of the instrument are the System fore-optics design based
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Parameter Description

Spectral Ranges 410-2500 nm

Bands 220

Bandwidths 10 nm

Spatial resolution 30 m

Swath width 7.5 km

Table 1.6: HYPERION spectral parameters

Figure 1.11: EO1 satellite carrying the HYPERION instrument

on the Korea Multi-Purpose Satellite (KOMPSAT) Electro Optical Cam-

era (EOC) mission and the telescope that is provided with two different

grating image spectrometers, with the purpose of improving signal-to-noise

ratio (SNR).

1.4.2 CHRIS

CHRIS (Compact High Resolution Imaging Spectrometer) is a high res-

olution hyper-spectral sensor installed onboard the PROBA (Project for

On-Board Autonomy) satellite, managed by the European Space Agency
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Parameter Description

Spectral Ranges 400-1050 nm

Bands From 19 to 62

Bandwidths From 5 nm to 11 nm

Spatial resolution From 34 m up to 1m

Swath width 13 km

Table 1.7: CHRIS spectral parameters

Figure 1.12: CHRIS instrument

(ESA) [11]. Distinctive feature of CHRIS is its ability to observe the same

area under five different angle of view (nadir, ±55 ◦, ±36 ◦), in the VIS/NIR

bands. CHRIS provides acquisitions up to 62 narrow and quasi-contiguous

spectral bands with the spatial resolution of 34-40 meters and a radiometric

resolution of 5-10 nm. This device can allow high-resolution observations

at 18 meters, using only a subset of 18 spectral bands [9]. CHRIS is also

designed to acquire up to 150 spectral bands with a spectral resolution of

1.25nm.
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Parameter Description

Spectral Ranges 400-2500 nm

Bands 210

Bandwidths 10 nm

Spatial resolution 20-30 m

Swath width 30-60 km

Table 1.8: PRISMA spectral parameters

1.4.3 PRISMA

PRISMA (PRecursore IperSpettrale della Missione Applicativa) [12] is a

new earth observation project led by Agenzia Spaziale Italiana (ASI), in-

tegrating a hyper-spectral sensor with a pan-chromatic camera. The ad-

vantage of using both sensors is to integrate the classical geometric feature

recognition, to the capability offered by the hyper-spectral sensor to identify

the chemical/physical feature present in the scene. The primary applica-

tions are the environmental monitoring, geological and agricultural map-

ping, atmosphere monitoring and homeland security. The satellite launch

is scheduled in 2011.

1.4.4 EnMAP

EnMAP (Environmental Mapping and Analysis Program) is a German

hyper-spectral satellite mission designed to provide high quality hyper-

spectral image data on a timely and frequent basis [13]. The main goal of

this project is to investigate a wide range of ecosystem parameters encom-

passing agriculture, forestry, soil and geological environments, coastal zones

and inland waters. The EnMAP HYPERSPECTRAL IMAGER (HSI) is a
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Figure 1.13: A schematic design of PRISMA

hyper-spectral imager of pushbroom type working with two separate spec-

tral channels: one for VNIR range from 420 to 1000 nm and one for the

SWIR range from 900 to 2450 nm. The channels share a common telescope

(TMA) equipped with a field splitter placed on its focal plane. The field

splitter features two entrance slits - one for each spectral channel. By plac-

ing a micro mirror directly behind the entrance slit of the SWIR channel

both channels can be separated and fed into distinct spectrometer branches.

Furthermore both spectrometers are designed as prism spectrometers thus

providing the highest optical transmission with low polarization sensitivity.

The sensor covers a swath width of 30 km, with a 30x30 m Ground Sam-

pling Distance (GSD). Thanks to the chosen sun-synchronous orbit and a

±30◦ off-nadir pointing feature, each point on earth can be investigated

and revisited within 4 days. In addiction to that, sun-synchronous orbit

enables the satellite to pass over any given point of the Earth’s surface at

the same local solar time, which results in a consistent illumination.
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Parameter Description

Spectral Ranges 420 to 1000 nm VNIR
900 to 2450 nm SWIR

Bands 228

Bandwidths 6.5 nm VNIR
10 nm SWIR

Spatial resolution 30 m

Swath width 30 km

Table 1.9: EnMAP spectral parameters

Figure 1.14: EnMAP sensor scheme
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Figure 1.15: A comparison of sensors bandwidth



Chapter 2

Information extraction from
hyper-spectral data

The great quality and quantity of spectral information provided by last-

generation sensors has given ground-breaking perspectives in many appli-

cations, such as environmental modeling and assessment, target detection

for military and defense/security deployment, urban planning and man-

agement studies, risk/hazard prevention and response including wild-land

fire tracking, biological threat detection, monitoring of oil spills and other

types of chemical contamination. Many of these applications require in-

formation extraction techniques, which are algorithms whose goal is con-

ceived to automatically extract structured information, from unstructured

machine-readable data.

For hyper-spectral data the design of such algorithms can be very chal-

lenging; in particular, the price paid for the accuracy of spatial and spec-

tral information offered by the sensors is the very expensive amounts of

data that they generate. For instance, the incorporation of hyper-spectral
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sensors on NASA airborne/satellite platforms (AVIRIS, Hyperion) is cur-

rently producing a nearly continual stream of high-dimensional data, and

it is estimated that NASA collects and sends to Earth more than 950GB

of hyper-spectral data every day. Therefore, to develop fast, unsupervised

techniques for near real-time information extraction has become a highly

desired goal yet to be fully accomplished.

2.1 Data vs information

Information is data within a given context. Without the context, the data

are usually meaningless. Once you put the information into meaningful

context, you can use it to make decisions. The transfer of information to

people who needs it, such as a data analyst or policy maker, can increase

the ability of that person to make better decisions. Probably the most

important characteristic of good information is its relevance to the problem.

Information is usually considered relevant if it helps to improve the decision-

making process. If the information is not specific to the problem set, it is

irrelevant. Timeliness and accuracy are also strong considerations for the

value of the information. Timeliness of data or information is directly

related to the gap between the occurrences of the event to the transfer

of information to the user. A system is considered real time when the gap

between data collection and product development (such as target detection)

is very short. Accuracy is the comparison of the data to actual events.

Many times, a data authentication process is used to determine the validity

of the data collected.

In hyper-spectral remote sensing, the ability to derive information from
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spectral data is the key to a successful collection. The vast amount of spec-

tral data must be culled to define the spectral signature of interest for the

material under consideration. In spectral terms, the pure spectral signa-

ture of a feature is called an endmember. One method of collecting pure

endmembers is from a laboratory spectro-radiometer that is focused on a

single surface or material. These signatures are then used in the spectral

sensor, and detection algorithms are used to define and refine the spectral

scene collected so a material or materials with similar characteristics can be

defined. However, when the material of interest is not available for labora-

tory measurements, it must be defined within the spectral scene collected.

Several information extraction techniques, and some specific developments

for hyper-spectral imagery, will be presented and discussed in the following

subsections.

2.2 Clustering

Image Clustering can be defined as finding out similar image primitives such

as pixels, regions, line elements etc. and grouping them together [14]. Image

quantization, segmentation, and coarsening are different classes of image

clustering. Image clustering approaches can be broadly categorized to two

classes: supervised and unsupervised. Supervised clustering is known as

classifications. In unsupervised approach there is no need of specifying the

class value by the user. It clusters similar objects according to similarity

measures.

An hyper-spectral pixel is generally a mixture of different materials

present in the pixel with various abundance fractions. These materials ab-



32 Information extraction from hyper-spectral data

sorb or reflect within each spectral band. K-MEAN and ISODATA are the

most widely used clustering algorithms for hyper-spectral image analysis

[15][16][17]. Both algorithms use a spectral-based distance as a similarity

measure to cluster data elements into different classes. A drawback of the

K-MEAN is that the number of clusters is fixed, so once k is chosen it always

return k clusters. On the other hand ISODATA algorithm avoids this prob-

lem by removing redundant clusters. However, in high-dimensional spaces

as hyper-spectral data are, the data space becomes sparsely populated and

the distances between individual data points become very similar.

2.3 Classification

Classification and visualization software requires complex algorithms that

are usually not cost effective for the evaluation of ordinary tasks and data

sets. An image analyst determines the classification approach and decides

between using spectral classes or information classes. A cluster of pixels

with nearly identical spectral characteristics is considered part of a spec-

tral class. An analyst uses an information class, such as pine trees, orange

trees, or gravel, when trying to identify specific items or groups within

an image. The primary goal of an image analyst is to try to match the

spectral class to an information class. Once the analyst has decided to

use spectral or information classes, the classification process can be either

supervised or unsupervised. A supervised classification is based on detec-

tion algorithms using pixels from known reference samples, usually located

within a scene, as a basis for comparison to other pixels from objects in

the same scene. For example, if the analyst knows one specific area is a
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gravel road, then all other areas with the same detection algorithm will be

a gravel road. Therefore, in supervised classification, the analyst usually

starts with known information classes that are then used to define represen-

tative spectral classes that closely match the reference samples. In contrast

to the supervised classification, unsupervised classification do not require

the user to specify any information about the features contained in the im-

ages. An unsupervised classification algorithm select natural grouping of

pixels based on their spectral properties. However, an unsupervised classi-

fication algorithm still requires user interaction, in fact, decisions need to

be made concerning which types each category falls within. To make these

decisions, other materials and knowledge of the area are useful. Once per-

formed, a classification can be refined considering more specific “themes”

or “thematic maps”.

In the last years a number of classification algorithms for multispec-

tral image data have been developed [18][19][20][21]. However, with the

first appearance of hyper-spectral sensors, the use of the same algorithms

became troublesome for two main reasons. First, the training sample of

hyper-spectral images at disposal is limited. Secondly, the hyper-spectral

data contain a lot of information about the spectral properties of the land

cover in the scene. In fact, with the increasing of the dimensionality of

the measurements vector, the reliability of a classification algorithm de-

creases. This effect is better known as the Hughes Effect or curse of di-

mensionality [22]. Classification of hyper-spectral data has been discussed

in some recent papers dealing with advanced pixel classifiers and feature

extraction techniques based on decision boundaries [23][24], features simi-
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larity [25][26], morphological transformations [27] and statistical approaches

[28][29]. Among these approaches, advanced statistical classifiers such as

neural networks and support vector machines (SVM), seem to be rather

competitive for hyper-spectral data classification[30]. Moreover, Foody et

al. [31] stated that an artificial neural network is less susceptible to the

Hughes effect than other approaches. However, a great improvement in

the classification accuracy can be extected by reducing the number of in-

puts, regardless from the adopted classifier. Therefore the dimensionality

reduction can be an indispensable operation in the classification task.

2.4 Spectral mixture analysis

The underlying assumption governing the clustering and classification tech-

niques aforementioned is that each pixel vector measures the response of a

single underlying material. However, if the spatial resolution of the sensor

is not high enough to separate different materials, these can jointly occupy

a single pixel: the resulting spectral measurement will thus be a “mixed

pixel” i.e., a composite of the individual pure spectra [32]. In order to deal

with this problem, spectral mixture analysis techniques first identify a col-

lection of spectrally pure constituent spectra, called endmembers, and then

define the measured spectrum of each mixed pixel as a combination of end-

members weighted by fractions or abundances that indicate the proportion

of each endmember present in the pixel [33][34]. More precisely, in hyper-

spectral imagery, mixed pixels are a mixture of distinct substances, and

they exist for one of two reasons. First, if the spatial resolution of a sensor

is low enough that disparate material can jointly occupy a single pixel, the
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resulting spectral measurement will be some composite of individual spec-

tra. Second, mixed pixels can result when distinct materials are combined

into homogeneous mixture. This circumstance can occur independently of

the spatial resolution of the sensor. The basic premise of mixture modeling

is that, within a given scene, the surface is dominated by a small number

of distinct materials, all having relatively constant spectral properties, the

so-called endmembers. If we assume that most of the spectral variability

within a scene results from the varying proportions of the endmembers, it

consequently follows that some combinations of their spectral properties

can model the spectral variability observed. If the endmembers in a pixel

appear in spatially segregated patterns similar to a square checkerboard,

these systematics are basically linear. In this case the spectrum of a mixed

pixel is a linear combination of the endmember spectra weighted by the

fractional area coverage of each endmember in a pixel. This model can be

expressed by:

x =
M∑
i=1

aisi + w = Sa+ w (2.1)

where x is the received pixel spectrum vector, S is the matrix whose

columns are the M = 1, .., i endmembers, a is the fractional abundance

vector and w is the additive observation noise vector. Otherwise, if the

components of interest in a pixel are in an intimate association, like sand

grains of different composition in a beach deposit, light typically interacts

with more than one component as it is multiply scattered, and the mixing

systematics between these different components are nonlinear. Which pro-

cess (linear or nonlinear) dominates the spectral signature of mixed pixel is

still an unresolved issue. Several applications have demonstrated that the
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linear approach is a useful technique for interpreting the variability in re-

mote sensing data [26]. Despite the obvious advantages of using a nonlinear

approach for intimate mixtures, it has not been widely applied to remotely

acquired data, because the particle size, together with composition, and

alteration state of the endmembers are essential controlling parameters of

the solutions. For this reason, the Linear Mixing Model is considered to be

the most frequently used model for representing the synthesis of mixed pix-

els from distinct endmembers [32]. The complete linear unmixing problem

can be decomposed as a sequence of three consecutive procedures:

• Dimensionality reduction: Reduce the dimensionality of the input

data vector;

• Endmember determination: Estimate the set of distinct (reduced)

spectra in the scene;

• Inversion: Estimate the fractional abundances of each mixed pixel

from its spectrum and the endmember spectra.

As seen for the classification task, the dimensionality reduction seems

to be an essential operation also to solve the unmixing problem.

2.5 Geophysical parameter retrieval

In remote sensing data analysis, estimating biophysical parameters is a

special relevance task to better understand the environmental dynamics at

local and global scales. Geophysical parameter estimation from remotely

sensed data has been an outstanding field of research in recent years, and it
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is still a challenge for remote sensing scientists all over the world. In the next

years, services to users will include production of biophysical parameters at

global scales to support the implementation and monitoring of international

conventions. In this context, there is an urgent need for more robust and

accurate inversion models.

The use of analytical models can represent a first solution but it is char-

acterized by a higher level of complexity and induces an important com-

putational burden. In addition, with such an approach, ill-posed problems

are usually encountered and sensitivity to noise becomes an important issue

[35]. Consequently, the use of empirical models adjusted to learn the rela-

tionship between the acquired data and actual ground measurements has

become very attractive. The original attempts introduced general linear

models, but they produced poor results since biophysical parameters are

commonly characterized by more complex (nonlinear) relationships with

the measured reflectances [36]. More sophisticated models were also de-

veloped, including exponential or polynomial terms, but these models are

often too simple to capture the relationships between remote sensing re-

flectance and the investigated biophysical parameters. Parametric models

have some important drawbacks, which could lead to poor prediction re-

sults on unseen (out-of-sample) data. For instance, they assume explicit

relationships among variables, and an explicit noise model is adopted. As

a consequence, nonparametric and potentially nonlinear regression tech-

niques have been effectively introduced for the estimation of biophysical

parameters from remotely sensed images [2]. Nonparametric models do not

assume a rigid functional form; they rely on the available data, and no a
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priori assumptions on variable relations are made.

In hyper-spectral remote sensing most of the studies dealing with the

retrieval of parameters are dedicated to the characterization of vegetation

and water [37][38][39][40]. A very specific problem is often addressed and

a deep analysis of the retrieval performance provided by possible different

techniques is seldom provided. However, among the already attempted ap-

proaches, the neural network inversion seems to be among the most promis-

ing as shown by [41][42]. Indeed neural networks could result particularly

suitable in discovering the subtle pieces of information hidden in the com-

plex spectra measured by the hyper-spectral sensors. On the other hand, in

biophysical parameter estimation, few ground measurements are typically

available (in contrast to the wealth of unlabeled samples in the image), and

also very high levels of noise and uncertainty are present in the data. Hence

the use of optimum features extraction techniques is even more necessary

when a statistical technique as neural networks is considered to handle the

inversion problems with hyper-spectral data.



Chapter 3

Feature reduction of
hyper-spectral data

In hyper-spectral data, pixel vectors (or spectra) are commonly defined as

the vectors formed of pixel intensities from the same location, across the

bands [38]. If we assume that each pixel corresponds to a certain region

of the scene surveyed, it will represent the spectral information for that

region. Due to the narrow bandwidth and the abundance of observations,

the pixel vector for each pixel location resembles a continuous function

of wavelengths. This function describes the reflectance of the material for

wavelengths within the frequency interval covered by the sensor. However, a

dataset composed of hundreds of narrowband channels may cause problems

in the:

• acquisition phase (noise),

• storage and transmission phases (data size),
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• processing phase (complexity),

• inversion phase (Hughes phenomenon).

Therefore, dimensionality reduction may become a key parameter to ob-

tain a good performance. Many methods have been developed to tackle the

issue of high dimensionality and some of them already have been tried on

hyper-spectral data [36]. Summarizing, we may say that feature-reduction

methods can be divided into two classes: “feature-selection” algorithms

(which suitably select a sub-optimal subset of the original set of features

while discarding the remaining ones) and “feature extraction” by data

transformation (which projects the original feature space onto a lower di-

mensional subspace that preserves most of the information) [27][43][44].

First analysis suggests that feature selection is a more simple and direct

approach compared to feature extraction, and that the resulting reduced

set of features is easier to interpret. Nevertheless, extraction methods can

be expected to be more effective in representing the information content in

lower dimensionality domain.

Feature-selection techniques can be generally considered as a combi-

nation of both a search algorithm and a criterion function [45][46]. The

solution to feature-selection problem is offered by the search algorithm,

which generates a subset of features and compares them on the basis of

the criterion function. From a computational viewpoint, an exhaustive

search for the optimal solution becomes intractable even for moderate val-

ues of features [47]. In addition, computational saving is not enough to

make it feasible for problems with hundreds of features. Despite these ap-

parent difficulties, many feature selection approaches have been developed
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[48][49][50]. The sequential forward selection (SFS) and the sequential back-

ward selection (SBS) techniques [47][50], are the simplest suboptimal search

strategies: they can identify the best feature subset achievable by adding

(to an empty set in SFS) or removing (from the complete set from SBS) one

feature at a time, until the desired number of features is achieved. Both

methods does not allow backtracking, in fact, once a feature is selected in

a given iteration, it cannot be removed in any successive iteration. The

sequential forward floating selection (SFFS) and the sequential backward

floating selection (SBFS) methods improve the standard SFS and SBS tech-

niques by dynamically changing the number of features included (SFFS) or

removed (SBFS) at each step and by allowing the revision of the features

included or removed at the previous steps [50][51]. Several other methods

based on interesting concepts were also explored in the literature: feature

similarity measures [35], graph searching algorithms [52], neural networks

[53], support vector machines [54], genetic methods [55][56][57][58], simu-

lated annealing [59], finite mixture models [60][61], “tabu search” meta-

heuristics [62], spectral distance metrics [50], parametric feature weighting

[63], and spatial autocorrelation and band ratioing [64][43].

A feature-extraction technique aims at reducing the data dimensionality

by mapping the feature space onto a new lower-dimensional space. Both

supervised and unsupervised methods have been developed. Unsupervised

feature-extraction methods do not require any prior knowledge or training

data, even though are not directly aimed at optimizing the accuracy in

a given classification task. The class comprises the “principal component

analysis” (PCA) [65][66], where a set of uncorrelated transformed features
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is generated, the “independent component analysis” [67], a computational

method for separating a multivariate signal into additive subcomponents

supposing the mutual statistical independence of the non-Gaussian source

signal, and the “maximum noise fraction” [68], where an operator calculates

a set of transformed features according to a signal-to-noise ratio optimiza-

tion criterion. Further unsupervised transforms are reviewed in [69]. On

the other hand a supervised feature extraction technique directly takes into

account the training information available for the solution of a given super-

vised classification problem. Three main approaches based on discriminant

analysis, decision boundary analysis, and correlated feature grouping, have

been proposed. The first one is based on the maximization of a functional

(i.e., the Rayleigh coefficient) expressed as the ratio of a between-class scat-

ter matrix to an average within-class scatter matrix [65] [69]. This tech-

nique has some drawbacks, such as the possibility of extracting at most

(C − 1) features, where C is the number of classes. The second approach

employs information about the decision hyper-surfaces associated with a

given parametric Bayesian classifier to define an intrinsic dimensionality

useful for the classification problem and the corresponding optimal linear

mapping. A third strategy consists of grouping the original features into

subsets of highly correlated features to transform the features separately

in each subset [30][70][71]. Further techniques, based on image processing

approaches, have been proposed in [33][44][71][72][73].

One of the main topics of this thesis work is the development of a novel

unsupervised feature extraction procedure based on neural networks (NN).

NN are already recognized to represent a rather competitive family of al-
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gorithms for the analysis of hyper-spectral data [30]. In fact, they have

already been successfully applied for the design of one of the first end-to-

end processing scheme dedicated to hyper-spectral imagery provided by the

Compact High-Resolution Imaging Spectrometer (CHRIS) on board of the

Project for On-Board Autonomy (PROBA) satellite [74]. Although their

promising potential, the application of NN to feature extraction in the pro-

cessing of hyper-spectral data has not been investigated yet. For this pur-

pose, in this work we consider the autoassociative neural networks AANN,

which can be seen as a method to generate nonlinear features from the data

under analysis, hence to contribute to minimize overfitting problems asso-

ciated to high dimensionality [75]. The AANN are of a conventional type,

featuring feedforward connections and sigmoidal nodal transfer functions,

trained by backpropagation or similar algorithms [44]. The particular net-

work architecture used employs three hidden layers, including an internal

“bottleneck” layer of smaller dimension than either input or output. The

network is trained to perform the identity mapping, where the input is

approximated at the output layer. Since there are fewer units in the bottle-

neck layer than the output, the bottleneck nodes must represent or encode

the information in the inputs for the subsequent layers to reconstruct the

input. Hence a feature extraction from the input vector is performed. In

the following, before introducing AANN, I’ll briefly describe two among the

most common unsupervised techniques: the “principal component analysis”

(PCA) and the “minimum noise fraction” (MNF). In fact, the performance

given by these techniques will be considered for an assessment of the results

obtained by the application of AANN to hyper-spectral data.
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3.1 Principal component analysis

PCA, also known as the Karhunen-Loeve (K-L) transformation, uses a

mathematical procedure that transforms a number of possibly correlated

variables into a smaller number of uncorrelated variables called principal

components [65][66]. The conventional PCA techniques rely on eigen-

vector expansion stemming from the variance-covariance matrix describ-

ing the variability of the observed quantity. Mathematically if XT =

[X1, X2, ..., XN ], where T denotes transpose of matrix, is a N -dimensional

random variable with mean vector M , the covariance matrix [B] associated

to the unknown vector [X] can be evaluated. The generic element of such

a matrix is:

Bij = 〈XiXj〉 (3.1)

Then a new set of variables, Y1, Y2,..., YN , known as principal compo-

nents, can be calculated by:

Yj = a1jX1 + a2jX2 + ...+ aNjXN (3.2)

where

aTj = [a1j + a2j + ...+ aNj ] (3.3)

are the normalized eigenvectors of the covariance matrix [B], solution

of the eigenvalue problem:

[B][u] = λ[u] (3.4)
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Fig.3.1 shows an example of a PCA reduction from e to 2 dimen-

sions. Given a set of points (a, b,...,z ) in a 3-dimension Euclidean space

(S1, S2, S3), the first principal component PCA1 (the eigenvector with the

largest eigenvalue) corresponds to a line that passes through the mean and

minimizes the sum of squared error with those points. The second principal

component PCA2 corresponds to the same concept after all the correlation

with the first principal component has been subtracted out from the points.

The principal component transformation has several interesting char-

acteistics:

• The total variance is preserved in the trasformation i.e.

N∑
i=1

σ2i =
N∑
i=1

λi (3.5)

where σ2i are variances of the original variables and λi the eigenvalues

of B with λ1, λ2, ..., λN ,.

• It minimizes the mean square approximation error.

• In a geometrical sense, the transformation may rotate highly cor-

related features in N -dimensions to a more favourable orientation in

the feature space, where components are till orthogonal to each other,

such that maximum amount of variance is accounted for in decreasing

magnitutde along the ordered components.

The applicability of PCA is limited by the assumptions made in its

derivation. These assumptions are:
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Figure 3.1: A PC projection from 3-dimensional space to 2-dimensional
space
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Assumption on Linearity : It is assumed that the observed data set is

linear combinations of certain basis.

Assumption on the statistical importance of mean and covariance: PCA

uses the eigenvectors of the covariance matrix and it only finds the indepen-

dent axes of the data under the Gaussian assumption. For non-Gaussian

or multi-modal Gaussian data, PCA simply de-correlates the axes. There

is no guarantee that the directions of maximum variance will contain good

features for discrimination.

Assumption that large variances have important dynamics: PCA sim-

ply performs a coordinate rotation and scaling that aligns the transformed

axes with the directions of maximum variance. It is only when we believe

that the observed data has a high signal-to-noise ratio that the principal

components with larger variance correspond to interesting dynamics and

lower ones correspond to noise.

3.2 Minimum noise fraction

Minimum Noise Fraction (MNF), also called Maximum Noise Fraction [68],

has been used to determine the inherent dimensionality of image data re-

moving noise from the image, and to reduce the computational require-

ments for subsequent processing. The signal-to-noise ratio is one of the

most common measures of image quality, thus, instead of choosing new

components to maximize variance, as the principal components transform

does, it is preferred to choose them in order to maximize the signal-to-noise

ratio. This technique can be viewed as a two cascaded principal compo-

nents transformation. The first transformation, based on the estimated
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noise covariance matrix, decorrelates and rescales the noise in the data

so that the noise has unit variance and no band-to-band correlations. At

this stage, the information about between-band noise is not considered.

The second step is a standard principal components transformation of the

noise-whitened data that takes into accounts the original correlations and

creates a set of components that contains weighted information about the

variance across all bands in the raw data set. The algorithm retains specific

channel information because all original bands contribute to the weighting

of each component. Often, most of the surface reflectance variation in a

data set can be explained in the first few components, with the rest of

the components containing variance as contributed primarily by noise [76].

Weighting values for each component can also be examined, pointing to

the raw bands that are contributing most to the information contained in

the dominant components. The transformation can be defined in the fol-

lowing way. Let us consider a multivariate dataset of p-bands with grey

levels Zi(x), i = 1, ...p, where x gives the coordinate of the sample. We can

assume that:

Z(x) = S(x) +N(x) (3.6)

where

ZT (x) = {Z1(x), Z2(x), ..., Zp(x)} (3.7)

And S(x) and N(x) are the uncorrelated signal and noise components

of Z(x). Thus the covariance of Z(x) is defined by:
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cov{Z(x)} = ΣZ = ΣS + ΣN (3.8)

Where ΣS and ΣN are the covariance matrices of S(x) and N(x) re-

spectively. The noise fraction NF of the i-th band can be defined as the

ratio between the noise variance var{Ni(x)} and the total variance for that

band var{Zi(x)}:

NFi = var{Ni(x)}/var{Zi(x)} (3.9)

The maximum noise fraction (MNF) transform chooses linear transfor-

mations:

Yi(x) = aTi Z(x) i = 1, ...p (3.10)

In such a way that the noise fraction for Yi(x) is maximum among all

linear transformations orthogonal to Yj(x), j = 1, ..., i. As for the derivation

of principal components, it can be shown that the vectors ai are the left-

hand eigenvectors of ΣNΣ−1 and that µi, the eigenvalue corresponding to

ai equals the noise fraction in Yi(x). Hence, from the definition of the MNF

transform, we see that

µ1 ≥ µ2 ≥ ... ≥ µp (3.11)

and so the MNF components will show steadily increasing image qual-

ity (unlike the usual ordering of principal components). The first step in

MNF transformation is to calculate the noise covariance matrix, which can

be estimated from either the dark reference measurements (Dark Current)
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or the near neighbor differences. The former is the signal observed while

the foreoptics shutter of the detector is closed. It represents the detector’s

background data and the instrument’s noise [77]. In the radiometric cali-

bration processing of hyper-spectral data, the total dark current could be

derived by subtracting the dark current values of each channel from the DN

values [78]. Most instruments do not produce the dark image, therefore a

valid alternative could be to use the near-neighbor differences, which can

be calculated from a procedure known as minimum/maximum autocorre-

lation factors (MAF). This procedure assumes that the signal at any point

in the image is strongly correlated with the signal at neighbor pixels while

the noise shows only weak spatial correlations [79]. It can be assumed that

the eigenvectors a are normed so that:

aTi =
∑

ai = 1 i = 1, ..., p (3.12)

It is also convenient at certain points to express the MNF transform in

the matrix form:

Y (x) = ATZ(x) (3.13)

where

Y T {Y1(x), Y2(x), ...Yp(x)} (3.14)

and

A = {a1, a2, ..., ap} (3.15)
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Two of the most relevant properties of the MNF transform (not shared

by principal components) are: the scale invariance, because it depends on

signal-to-noise ratios, and the ability to orthogonalizes S(x) and N(x) , as

well as Z(x). If we want to obtain the MNF transform, we need to know

both ΣZ and ΣN . In many practical situations, these covariance matrices

are unknown and need to be estimated. Usually, ΣZ is estimated through

the sample covariance matrix of Z(x).

Once data have been transformed with decreasing noise fraction (in-

creasing S/N ratio), it is logical to spatially filter the noisiest components

and subsequently to transform back to the original coordinate system. It

has been demonstrated that MNF successfully orders components with ref-

erence to image quality, unlike the PCA, which could not reliably separate

signal and noise components [68][35].

3.3 Nonlinear principal component analysis

Nonlinear principal component analysis (NLPCA) is commonly seen as a

nonlinear generalization of standard principal component analysis. Multi-

layer neural networks can themselves be used to perform nonlinear dimen-

sionality reduction of the input space, overcoming some of the limitations

of linear principal component analysis. Consider a multi-layer perceptron

of the form shown in fig.3.2 having d inputs, d output units and a bottleneck

layer of M hidden units, with M < d [60]. The targets used to train the

network are simply the input vectors themselves, so that the network is

attempting to map each input vector onto itself.

Due to the reduced number of units in the hidden layer, a perfect re-
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Figure 3.2: An autoassociative multi-layer neural network

construction of all input is not in general possible. However, if the network

training finds an acceptable solution, a good reduction of the input data

must exist in the bottleneck layer. The network can be trained by mini-

mizing the sum-of-squares error of the form:

E =
1

2

N∑
n=1

d∑
k=1

{yk(xn)− xnk}2 (3.16)

where yk (k = 1, 2, ..., d) is the output vector. Such a network is said to

form an autoassociative mapping. In this case, error minimization repre-

sents a form of unsupervised training, due to the fact that no independent

data is provided. The limitations of a linear dimensionality reduction, such

as PCA, can be overcome by using nonlinear (sigmoidal) activation func-

tions for the hidden units in the network. Let’s consider the topology in

fig.3.2, only with the bottleneck as hidden layer between inputs and outputs.

If the nodes of this layer were linear, the projection into the M -dimensional
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Figure 3.3: A three hidden layer autoassociative neural network

subspace would correspond exactly to linear PCA [80]. Also if the activa-

tion functions in the bottleneck nodes were sigmoidal, the projection into

the sub-space would still be severely constrained; only linear combinations

of the inputs compressed by the sigmoid into the range [-1,1] could be rep-

resented. Therefore the performance of an autoassociative neural network

with only one internal layer of sigmoidal nodes is often no better than lin-

ear PCA [81]. Starting from these premises, Kramer demonstrated that to

perform an effective NLPCA, exactly one layer of sigmoidal nodes and two

layers of weighted connections are required [75], as depicted in fig.3.3.

Such a network effectively performs a nonlinear principal component

analysis, having the advantage of not being limited to linear transforma-

tion, although it contains standard principal component analysis as a spe-

cial case. Moreover, the dimensionality of the sub-space could be specified
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Figure 3.4: The mapping and demapping layers of an autoassociative neural
network

in advance of training the network. As the NLPCA method finds and elim-

inates nonlinear correlations in the data, analogous to principal component

analysis, this method can be used to reduce the dimensionality of a given

data by removing its redundant information. Our intent is to apply this

methodology to perform the dimensionality reduction of the large measure-

ments vector typical of the hyper-spectral data. As illustrated in fig.3.4,

the network can be viewed as two successive functional mapping networks.

The first mapping network projects the original d dimensional data onto

a lower dimensional sub-space defined by the activations of the units in the

bottleneck layer. Because of the presence of nonlinear units, this mapping

is essentially arbitrary, and in particular not restricted to being linear.

Similarly the second demapping network defines an arbitrary mapping from
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the lower dimensional space back into the original d-dimensional space.

Once the sum-of-squares error has reached its minimum, the projection in

the low dimensional feature space was obtained from the outputs of the

mapping layer. As the number of nodes in the input and output layers,

as well as in the bottleneck layer, can be considered as a fixed parameter,

the only varying value in the design of a autoassociative neural network are

the number of nodes in the mapping layers. However, there is no definitive

method for deciding a priori the dimensions of these layers. The number of

mapping nodes is related to the complexity of the nonlinear functions that

can be generated by the network. If too few mapping nodes are provided,

accuracy might be low because the representational capacity of the network

is limited. However, if there are too many mapping nodes, the network will

be prone to “over-fitting”. In the following chapters, the use of the NLPCA,

intended as a dimensionality reduction technique of very different types of

hyper-spectral data, will be described for different cases.
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Chapter 4

Land cover maps from AHS
dataset

4.1 Introduction

In this section we present the assessment of a methodology based on AANN

with respect to more standard features extraction approaches such as Prin-

cipal Component Analysis (PCA) and MNF (Minimum Noise Fraction).

The study has been carried out for a set of hyper-spectral data collected by

the Airborne Hyper-spectral line-Scanner radiometer (AHS) over a test site

in Northeast Germany. This is a test area for which an extensive ground-

truth was also available. The results have been quantitatively evaluated

and critically analyzed either in terms of their capability of representing

the hyper-spectral data with a reduced number of components or in terms

of the accuracy obtained on the final derived product. This latter consists

of a land cover classification map performed using another NN scheme,

this time with the standard topology of a Multi-Layer Perceptron (MLP),
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having as input the reduced vector provided by the AANN. It has to be

observed that, dealing with a NN classification scheme, features extraction

assumes an even more crucial role. Minimizing the number of inputs of a

NN, avoiding significant loss of information, generally affects positively its

mapping ability and computational efficiency. A network with fewer inputs

has fewer adaptive parameters to be determined, which need a smaller train-

ing set to be properly constrained. This leads to a network with improved

generalization properties providing smoother mappings. In addition, a net-

work with fewer weights may be faster to train. All these benefits make

the reduction in the dimension of the input data a normal procedure when

designing NN, even for a relatively low dimensional input space.

4.2 Data and methodology

The potential of AANN has been investigated for a set of data acquired

by the INTA-AHS instrument, in the framework of the ESA AGRISAR

measurement campaign [91]. The test site is the area of DEMMIN (Durable

Environmental Multidisciplinary Monitoring Information Network). This

is a consolidated test site located in Mecklenburg-Western Pomerania, in

Northeast Germany, which is based on a group of farms within a farming

association covering approximately 25,000 ha. The field sizes are very large

in this area, in average 200-250 ha. The main crops grown are wheat, barley,

rape, maize and sugar beet. The altitudinal range within the test site is

around 50 m. The AHS has 80 spectral channels available in the visible,

shortwave infrared and thermal infrared. The data processing level is the

L1b (at-sensor radiance): the VIS/NIR/SWIR bands were converted to at
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sensor radiance applying the absolute calibration coefficients obtained in the

laboratory. The MIR/TIR bands were converted to at-sensor radiance using

the information from the onboard blackbodies and the spectral responsivity

curves obtained by the AHS spectral calibration. The resulting files were

converted to BSQ format + ENVI header and scaled to fit an unsigned

integer data type. In this paper the acquisition taken on the 06/06/2006

has been considered. At that time 5 bands in the SWIR region became

blind due to loose bonds in the detector array so they were not used in this

study [82].

A double-stage processing has been applied to the data. In the first

stage a features reduction has been performed by means of AANN, in the

second stage the reduced measurement vector has been used as input to

a new NN scheme for a pixel-based classification procedure. It has to be

noted that the vector reduction should positively affects the training of the

classification neural network algorithm under two points of view: it reduces

both over-fitting and learning time. As far as the feature extraction is

concerned, the comparison with PCA and MNF techniques has been carried

out using processing libraries available within the ENVI package. Another

important aspect regards the design of the network topologies, in particular

how many units should be considered in the hidden layers. This is a crucial

issue because using a too little number of units may weaken the capability

of the network to perform the desired mapping. On the other hand, over-

dimensioned hidden layers may lead to poor generalization properties. In

this study, different strategies have been adopted. However, most of the

efforts have been dedicated to the design of the AANN, being this aspect
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the focus of the work. The number of neurons in the bottleneck layer was

guided by the necessity of comparing the features extraction performance

of different approaches. A preliminary analysis based on PCA was carried

out to determine the number of PCA components containing most of the

statistical information (more than 99%). For the sake of consistency, the

same number was also considered for the NLPCA, hence for the units in

the bottleneck layer, and for the MNF. The decision on the size of the

intermediate hidden layers was based on a more extended analysis where

the size was systematically varied and the corresponding autoassociative

network mapping MSE error evaluated.

The size minimizing such an error was selected for determining the

networks topology. Finally, for the network dedicated to the classification

scheme, a more soft strategy among those already existent in literature has

been chosen. In particular we considered the rule used by Palmason et

al. [83] suggesting that the number of neurons in the hidden layer should

be set as geometrical mean of the number of inputs and outputs, i.e., the

square root of the product of the number of input features and the number

of information classes.

4.3 Results

4.3.1 Feature extraction

According to Kramer [75], the AANN has been trained considering all pix-

els in the image (2061000). After about 2000 epochs no significant decrease

in the error could be noted so the training phase was stopped at that stage.

From the PCA analysis it resulted that the first 5 PCA components con-
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Figure 4.1: Complete feature reduction and classification scheme
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tained almost the 99.9% of the whole statistical information and for this

reason 5 components has been considered as a benchmark for the compar-

ison. The dimension of the outer hidden layers of the AANN, as explained

previously, was established after a numerical analysis aiming at minimizing

the mean square error (MSE), where, if E is given by expression (3.16)

introduced in section 3, MSE is :

MSE =

√
E

N
(4.1)

With N number of training patterns. The plot of fig.4.2 shows the

result of this investigation and motivates the choice of 25 units for the two

intermediate layers. This mean that the best topology for the AANN is

composed by 75 nodes for both input and output layers, 25 nodes for the

mapping and de-mapping hidden layers and 5 nodes for the bottleneck layer.

The Stuttgart neural network simulator (SNNS) [84], made available by

the University of Stuttgart, Germany, has been used to design the network

topology and perform the learning phase.

In fig.4.3, fig.4.4 and fig.4.5, we show the five components for each fea-

ture extraction method. It can be seen that the MNF components are

clearly disturbed, especially the first one, by the “smile” or “frown” ef-

fect introduced in Section 1. In fact, due to the intrinsic light dispersion

properties of grating spectrometers and to minor misalignments of optical

components, the wavelengths for pixels near the center of an array and

those near the edge of the same array can be slightly different [2]. Con-

versely, NLPCA technique appears to be rather robust to this type of noise

while a slightly disturbing pattern due to the smile effect might be the cause
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Figure 4.2: Plot of the number of units depending on the MSE

of a brighter area in the right side if the first PCA component. Another

comment regards a different behavior between PCA and NLPCA. NLPCA,

with respect of PCA, seems to be more consistent in representing similar-

ities in spectral signatures among pixels, hence in extracting objects. An

example is reported in fig. 4.6. Here we considered the big bright object in

the center: a) as it looks like considering an RGB image obtained using the

original band 11, band 9 and band 8, b) as it appears in the 5th PCA com-

ponent and c), as it appears in the 5th NLPCA component. We see that, at

the 5th component level, the considered object can be still clearly detected

by the NLPCA while, according to PCA, its response is more similar to

adjacent fields. We put the following explanation for this result: at the

level of the 5th component the statistical content as derived from PCA is
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0.11% and such an analysis starts being conditioned by low order processes

that may be not characteristic of a specific crop. NLPCA, thanks to its

capabilities of investigating about nonlinear dependencies among the data,

may be better capable in all its components of coding physical behavior

that are peculiar of a specific agricultural field.

In fig. 4.7 and fig 4.8 we report on different type of analysis consisting

in investigating on the capabilities of reconstructing the original spectra

starting from the extracted features. Two signature samples reconstructed

considering only 5 components are shown. The figures have been obtained

by averaging over pixels of the same area of interest. The two considered

land cover types are water and trees. Also in this case the MNF perfor-

mance is lower than NLPCA and PCA. In the case of water (about 650

pixels) it can be noted that the NLPCA is significantly more effective than

PCA in encoding the spectral information. In particular the behavior in the

visible and near infrared with strong curvatures is better resembled. Differ-

ently, the forest case (again about 650 pixels) is an example where the two

techniques are rather comparable, even though the PCA shows slight dis-

crepancies with the true spectra in the long infrared bands. Similar trends

have been observed for the other land cover types.

4.3.2 Classification

The 5 components extracted from each pixel spectral signature have been

used for the implementation of a pixel-based classification algorithm. Also

the classification task is based on a NN procedure. In this case the network

topology is a MLP of 5-25-25-10. About 450.000 pixels were considered for
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Figure 4.3: 5 nonlinear principal components derived from NLPCA
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Figure 4.4: The first 5 principal components derived from PCA
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Figure 4.5: The first 5 components derived from MNF transformation
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Figure 4.6: a) RGB (bands 11, 9, 7) detail of the original AHS image; b)
5th NLPCA component; c) 5th PCA component

Figure 4.7: Original and reconstructed spectral signatures of a water surface
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Figure 4.8: Original and reconstructed spectral signatures of a deciduous
trees forest
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the training phase which consisted of less than 150 epochs for the NLPCA

and more than 1000 epochs for both PCA and MNF. It has to be noted that,

once the training phase of all involved networks is completed, the overall

“end-to-end” scheme providing the processing chain from the hyper-spectral

measurement to the classification response is rather compact, consisting of

one single neural architecture where the first stage perform the feature

extraction and the second one the classification (fig.4.9). In particular, for

our case, the whole architecture consists of the following layers: one input

layer of 75 units, 4 hidden layer of 25, 5, 25, 25 neurons, respectively, and

an output vector of 10 components. The NN-MLP classification has been

applied, using the same training dataset, using the reduced components

given by each features extraction technique. In fig 4.13, we report the

confusion matrix computed for NLPCA on a set of about 50.000 pixels

(not used in the training phase). The overall classification accuracy is

of about 97% with a value for k-coefficient of 0.96. The only confusion

element regards the class “Non deciduous trees”. In fact, in some of the

area assigned to this class the trees are rather sparse and mixed with wheat

fields, causing some adjacency noise in the signal. In fig. 4.10 and 4.11

the original image (bands 11, 9 and 8) and the classification result based

on the NLPCA are reported, respectively. The classification performances

obtained with the other two methods are significantly lower, even if the data

considered for the training and the test phase are the same. In both cases

some classes are not recognized at all and the computed final accuracies

values are 43,75% and 80,68% for PCA and MNF, respectively, as shown in

the table reported in fig. 4.13 and 4.14. This latter result confirms a better
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Figure 4.9: “end-to-end” scheme providing the processing chain from the
hyper-spectral dimensionality reduction to the classification phase

behavior of MNF technique, with respect to PCA, when the high-dimension

data are used for pixel-based classification.

4.4 Spectral unmixing

In the previous paragraph we assumed that each pixel vector measures

the spectral response of a single material. In an hyper-spectral image the

wide existence of mixed pixels is a nearly unavoidable problem. Within

the reflective regime, the remotely sensed spectral signal of a mixed pixel

is the combination of the spectral signatures of the constituent materials,

usually known as endmembers, present in the pixel. To increase the accu-

racy of characterizing land surface, a measured mixed spectrum must be

decomposed into a set of endmembers and their corresponding fractional

abundances within the pixel. Theoretically, to achieve a good unmixing,
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Figure 4.10: AHS false color composition (bands 11, 9 and 7)
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Figure 4.11: Classification map derived from NLPCA method
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Figure 4.12: Confusion matrix for the NLPCA method with overall Accu-
racy: 97.74% and K coefficient: 0.9574

Figure 4.13: Confusion matrix for the PCA method with overall Accuracy:
42.75% and K coefficient: 0.4121
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Figure 4.14: Confusion matrix for the MNF method with overall Accuracy:
80.68% and K coefficient: 0.5002

the endmembers should be uncorrelated each other as much as possible.

Usually the endmembers are extracted from the image and correspond to

macroscopic object such as water, bare soil or vegetation. In our case the

endmembers correspond to the classes previously used in the classification.

In this work, to explore on the potential of neural networks in managing

the unmixing problem, the abundances estimation was carried out through

the analysis of the output of the classification provided by the neural net-

work algorithm. In other words, the value of each output has been used as

an estimator of the fractional abundances of each endmember.

More analytically the abundance ai corresponding to i-esm class is given

by the following expression:

ai =
oi∑M

k=1 ok
(4.2)

where ok indicates the neural network output associated to the k-esm

endmember and M is the total number of endmembers, in this case M = 10.
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Figure 4.15: High resolution image and abundances matrix of a pixel cov-
ering entirely a winter barley area (MA: Maize; WW: winter wheath; WB:
winter barley; RA: rape; SB: sugar beet; PS: pasture; WA: water; BU:
built-up area; CT: conuferous trees; DT: deciduous trees)

To test the feasibility of such an approach, a comparison exercise with

the most affordable method known as Linear Spectral Unmixing (LSU) was

made. More in particular, some pixels from the original image were selected

to evaluate the efficiency of the two methodologies. The comparison of the

results shows that the LSU came to a wrong result, providing abundances

values always above 0, also in those pixels where some elements are sup-

posed not to be present. The proposed method, on the other hand, does

not show this kind of problems, providing a good accuracy as shown in

fig.4.15-4.20.
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Figure 4.16: High resolution image and abundances matrix of a pixel cov-
ering a winter wheath area mixed with a tree (MA: Maize; WW: winter
wheath; WB: winter barley; RA: rape; SB: sugar beet; PS: pasture; WA:
water; BU: built-up area; CT: conuferous trees; DT: deciduous trees)

4.5 Conclusions

In this work a novel approach based on AANN for the extraction of non-

linear principal components from AHS hyper-spectral data has been devel-

oped. Such an approach should be more suitable to eliminate nonlinear

correlations in the data hence to optimize the design of successive inver-

sion schemes. A NN algorithm with MLP topology has been also exploited

to handle a successive classification task leading to a final single archi-

tecture performing the two processing stages: the feature extraction and

the classification. The results show that the feature extraction based on

AANN outperforms that obtained considering more traditional approaches

such as PCA and MNF, suggesting the potential of the technique to reduce

dimensionality of hyper-spectral data even only for the storage or trans-
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Figure 4.17: High resolution image and abundances matrices of pixels cov-
ering a mixed urban area (MA: Maize; WW: winter wheath; WB: winter
barley; RA: rape; SB: sugar beet; PS: pasture; WA: water; BU: built-up
area; CT: conuferous trees; DT: deciduous trees)
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Figure 4.18: High resolution image and abundances matrix of a pixel relative
to a garden (MA: Maize; WW: winter wheath; WB: winter barley; RA: rape;
SB: sugar beet; PS: pasture; WA: water; BU: built-up area; CT: conuferous
trees; DT: deciduous trees)
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Figure 4.19: High resolution image and abundances matrix of a pixel cov-
ering entirely a winter wheath area (MA: Maize; WW: winter wheath; WB:
winter barley; RA: rape; SB: sugar beet; PS: pasture; WA: water; BU:
built-up area; CT: conuferous trees; DT: deciduous trees)

mission purposes. Moreover, the reduced vector, allows to yields land cover

maps with rather satisfactory accuracy. In fact, from the comparison with

the ground truth, an overall successful classification rate of about 97% is

observed. This means that the NLPCA are able to retain most of the in-

formation content of the raw data while the other two techniques seem less

effective under this point of view. Finally NLPCA, compared with MNF

and PCA, allowed performing the training of the neural algorithm for the

classification map in a limited number of epochs, which, besides involving

a faster training time, may be important to avoiding overfitting.

Another important point is that NLPCA, by comparison with other

feature reduction techniques applied on hyper-spectral data, seems to be

more robust to the smile effect. Hence specific pre-processing routine may
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Figure 4.20: High resolution image and abundances matrices of pixels re-
lated to water surfaces mixed with wetlands (MA: Maize; WW: winter
wheath; WB: winter barley; RA: rape; SB: sugar beet; PS: pasture; WA:
water; BU: built-up area; CT: conuferous trees; DT: deciduous trees)
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be avoided using NLPCA.

Finally, we analysed the potential of a new neural network technique

for the spectral unmixing of hyper-spectral imagery. In fact, this approach

provided the mixed distribution of the considered endmembers. The results

stemming from a comparison exercise with the well-known LSU method was

made show that the proposed approach can be effective.



Chapter 5

Production of land cover
maps from multi-temporal
and multi-angular
hyper-spectral data

5.1 Introduction

In the previous chapter, Auto Associative Neural Network feature reduc-

tion technique, applied on an airborne hyper-spectral dataset (AHS), has

been investigated. In this chapter we applied the NLPCA methodology

to CHRIS-PROBA datasets, to evaluate the ability of the AANN to detect

correlation among hyper-spectral data when combined with multi-temporal

and multi-angular information. The chosen test site is the area surround-

ing Tor Vergata University and Frascati. This is a mainly flat area located

in the southeast of Rome (41◦51’26”N, 12◦40’26”E), which represent an

interesting heterogeneous landscape. Permanent crops, such as vineyards
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and olive trees and other fruit trees are mixed with agricultural areas char-

acterized by a growth cycle, mainly corn fields, and uncultivated areas

or pasture. Artificial land cover consists of residential urban areas, in-

dustrial and commercial units, and different kinds of road networks. The

NLPCA methodology for dimensionality reduction was applied on two dif-

ferent datasets:

• A multi-temporal dataset composed by three CHRIS-PROBA mode-3

acquisitions, each consisting of 18 measurements acquired on different

dates, for a total number of 54 inputs.

• A combination of hyper-spectral multi-angular and multi-temporal

dataset, consisting of 72 measurements obtained adding a 36◦ acqui-

sition to the previous dataset.

Also in this study a reduced vector has been given as input to a MLP

to produce a land cover classification map. For each dataset, a confusion

matrix was produced and evaluated.

5.2 Multi-temporal dataset

The multi-temporal dataset was composed by three acquisitions, taken on

February 28, 2006, August 19, 2006 and October 9, 2006. Such dates are,

in principle, particularly suitable to sample the crops’ growth cycle, hence

to catch the differences among the multi temporal signatures associated

to each land cover type. In fact, the acquisition at the end of winter is

particularly useful to observe the plough phase of some agricultural fields
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such as corn fields. During summer most of the crops present in this area

are in the maximum of the photosynthetic phase, while uncultivated ar-

eas, covered by dry grass or sparse vegetation, are characterized by a lower

reflectance in the infrared range. Finally the early-autumn acquisition per-

mits to monitor the harvesting of cereals, crops and vineyards, as well as

the plough of agricultural fields that in this period have to be ready for the

winter sowing. Fig.5.1 shows the multitemporal iamges in fasle colors. It

should be added that the images underwent atmospheric calibration and

other pre-processing stages such as destriping according to the procedures

indicated in [85].

5.2.1 Feature extraction

To reduce the number of input measurements avoiding loss of information,

a NLPCA, obtained through an AANN, was performed. Also in this case

the number of nodes in the bottleneck was chosen through a comparison

with the PCA. The selected topology consists of 54-25-4-25-54 nodes, and

the 4 nonlinear components have been computed feeding the AANN with

all pixels in the image. In fact, it resulted that the first 4 PCA components

contained almost the 99% of the whole statistical information.

The dimension of the outer hidden layers of the AANN was again es-

tablished after a numerical analysis aiming at minimizing the mean-square-

error MSE. As in the previous chapter, the choice of 25 units for the two

intermediate layers resulted from a comparison of various network topolo-

gies.

The NPCA components are illustrated in Fig.5.2. It can be noted that
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Figure 5.1: False color CHRIS-Proba images (bands 11, 9 and 7) of three
different 2006 acquisitions. a) 28 February, b) 19 August, c) 09 October
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the NLPCA components are polarized on different types of information

contained on the image. For example, component 4 is more focused on

buildings while components 3 and 1 are more sensitive to natural areas;

component 2 shows the presence of a cloud in one of the acquisitions while

this is not the case for the other components. Moreover, analyzing the

composite image, obtained from components 4, 3 and 2, as showed in fig.5.3

and fig.5.4, it can be noted that the NLPCA tend to emphasize the small

watercourses present in the area, that are not so evident in the original

images.

5.2.2 Classification

In a successive step the 4 nonlinear components have been used to produce

the land cover map of the test area. A neural network algorithm has been

considered for the classification. This time the MLP topology is 4-16-16-

11. The neural algorithm has been trained using a training set and a test

set of 3300 and 1975 patterns, respectively. A third set of 2766 ground

truth pixels has been considered for the computation of the classification

accuracy. The number of training epochs necessary to get the network

trained is about 130, which is significantly lower respect to the case where

the 54 measurements are given straightforward to the net. Also in this case

fig.4.9 depicts the entire processing scheme where the specific topology of

54-25-4-16-16-11is considered. The final land cover map is shown in Fig.5.5,

and the corresponding confusion matrix in Fig.5.6. The overall accuracy is

92.32%. For the sake of comparison it has to be noted that a direct, that is

without dimensionality reduction, neural network classification of the same
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Figure 5.2: Four nonlinear principal components obtained from a multi-
temporal CHRIS-Proba dataset
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Figure 5.3: Composition of three nonlinear principal components (4, 3, 2)
obtained from the CHRIS-Proba dataset

Figure 5.4: Watercourses highlighted in the composition of three nonlinear
principal components (4, 3, 2)
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Figure 5.5: Classification map of the multi-temporal dataset

data set has been performed by [85]. As in this latter case the final overall

accuracy value was of 85,7%, we may conclude that about 7% in accuracy

is gained by using the NLPCA.

To assess the accuracy of the classification, the obtained result has been

evaluated through a comparison with that obtained by
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Figure 5.6: Confusion matrix of the multi-temporal dataset, with an overall
accuracy of 92.32%

5.3 Multi-angular/temporal dataset

The PROBA mission acquisition plan allows taking images over the same

test area in different dates and with different angles. This characteristic

allows the concurrently exploitation of hyper-spectral, multi-angular and

multi-temporal information. In this experiment the classification accuracy

of a hyper-spectral dataset composed by measurements taken in different

dates and angles was evaluated. The new dataset was derived from the

multi-temporal one with the addition of one new acquisition at FZA 36◦

of the August date. The choice of this date stems from the fact that the

multi-angular information should carry the best contribution when the agri-

cultural fields are at the stage of full development. A higher number of an-

gular acquisitions were not taken into account, due to different concurrent
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reasons such as the sensible shifts affecting the images acquired at different

angles, sensitivity to clouds and the co-registration errors.

5.3.1 Feature extraction

As for the multi-temporal experiment, an AANN algorithm to perform

NLPCA was applied to perform the dimensionality reduction of the data.

In this case, the chosen topology consists of 72-25-5-25-72 nodes, and the

5 nonlinear components have been computed feeding the AANN with all

pixels in the image. In the same way as the previous experiments, the

number of the bottleneck nodes was set by a comparison with the PCA

components, from which it resulted that the first 5 components contained

almost the 99% of the whole statistical information. The dimension of the

outer hidden layers of the AANN was then established after a numerical

analysis aiming at minimizing the MSE error. Also in this experiment it

can be noted a polarization of the NLPCA components on different types of

information contained on the image. More in particular, in fig.5.7 it can be

noted that component 2 is more focused on buildings while component 3 is

more sensitive to natural areas; component 5, besides retrieving the infor-

mation on the presence of a cloud in one of the acquisitions, also highlights

the road network.

5.3.2 Classification

The successive step was to produce a land cover classification map of the

test area using the 5 nonlinear components obtained by the NLPCA as

input to a new neural network algorithm. This time the topology is that
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Figure 5.7: Five nonlinear principal components obtained from a fusion of
multi-temporal and multi-angular CHRIS-Proba dataset
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Figure 5.8: Classification map of the multi-temporal and multi-temporal
dataset

of a standard MLP with a 5-36-36-11 topology. The neural algorithm has

been trained using a training set and a test set of 4404 and 1216 patterns,

respectively. A third set of 2776 ground truth pixels has been considered

for the computation of the classification accuracy. Also in this case the

number of training epochs necessary to get trained the network was very low

(150). The final land cover map is shown in Fig.5.8, and the corresponding

confusion matrix in Fig.5.9. The final overall accuracy obtained a value

over 94%, improving the accuracy obtained only using the multi-temporal

dataset.
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Figure 5.9: Confusion matrix of the multi-temporal and multi-angular
dataset, with an overall accuracy of 95.67%

5.4 Spectral unmixing

From an accurate analysis of the confusion matrices, it became evident the

not all the classes obtained a good classification accuracy. More in particu-

lar, the permanent crop class derived from areas covered by fruit and olive

trees, and the class related to asphalts, were subject to misclassification.

As far as the permanent crops are concerned, these kinds of cultivations

are characterized by a peculiar pattern. In fact, as shown in fig.5.10, the

trees are spatially distributed and do not completely cover the cultivation

surface. Depending on the distance between each tree, the prevailing spec-

tral signature in a pixel could not even be that related to the permanent

crop species. Other signatures present in the area covered by the pixel,

such as pasture or bare soil, may prevail. In some cases, mixtures of all the

considered signatures, lead the algorithm to a wrong classification.
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Figure 5.10: Different olive trees cultivations

Figure 5.11: Different road types in the same area
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Figure 5.12: The abundances obtained by neural network unmixing tech-
nique and LSU, on a bright asphalt pixel. In this picture, it can be noted
that the pixel surface contain not only a road but also a part of a building
and some vegetation (VY: vineyards; PS: pasture; PC: permanent crops;
IN: industrial; DA: dark asphalt; MA: maize; BU: built-up area; BA: bright
asphalt; AA: agricultural area)
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Figure 5.13: A permanent crop pixel. The total pixel signature is a mix-
ture of olive trees, vineyards, grass and a very small road (VY: vineyards;
PS: pasture; PC: permanent crops; IN: industrial; DA: dark asphalt; MA:
maize; BU: built-up area; BA: bright asphalt; AA: agricultural area)
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Figure 5.14: In this pixel the total signature is a mixture of trees, vineyards,
roads and buildings (VY: vineyards; PS: pasture; PC: permanent crops; IN:
industrial; DA: dark asphalt; MA: maize; BU: built-up area; BA: bright
asphalt; AA: agricultural area)
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Figure 5.15: A pixel covering an area equally distributed among trees and
vineyards (VY: vineyards; PS: pasture; PC: permanent crops; IN: indus-
trial; DA: dark asphalt; MA: maize; BU: built-up area; BA: bright asphalt;
AA: agricultural area)
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Figure 5.16: In this image the pixel cover an uncoltivated area crossed by
a road (VY: vineyards; PS: pasture; PC: permanent crops; IN: industrial;
DA: dark asphalt; MA: maize; BU: built-up area; BA: bright asphalt; AA:
agricultural area)
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Figure 5.17: The top the pixel cover a building with an asphalted court-
yard, the bottom the pixel relies entirely on a parking lot (VY: vineyards;
PS: pasture; PC: permanent crops; IN: industrial; DA: dark asphalt; MA:
maize; BU: built-up area; BA: bright asphalt; AA: agricultural area)
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Figure 5.18: In this image the pixel relies on a olive trees cultivation (VY:
vineyards; PS: pasture; PC: permanent crops; IN: industrial; DA: dark
asphalt; MA: maize; BU: built-up area; BA: bright asphalt; AA: agricultural
area)
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Figure 5.19: A pixel covering an area between a vineyard and some trees
(VY: vineyards; PS: pasture; PC: permanent crops; IN: industrial; DA:
dark asphalt; MA: maize; BU: built-up area; BA: bright asphalt; AA: agri-
cultural area)
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Figure 5.20: A pixel at the border of an uncoltivated area (VY: vineyards;
PS: pasture; PC: permanent crops; IN: industrial; DA: dark asphalt; MA:
maize; BU: built-up area; BA: bright asphalt; AA: agricultural area)
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Figure 5.21: An uncoltivate area pixel (VY: vineyards; PS: pasture; PC:
permanent crops; IN: industrial; DA: dark asphalt; MA: maize; BU: built-
up area; BA: bright asphalt; AA: agricultural area)
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As the same way, in urban context, pixels related to the road network

do not show pure asphalt signatures as can be noted in fig.5.11, but in many

cases it can be possible to have a mixture with the buildings signatures.

Also in rural context, where there are no buildings surrounding the road, it

is possible to have a mixed pixel, especially in those pixels where the road

width does not cover the entire pixel dimension.

To overcome these problems, it can be important to “unmix” the sig-

natures, and then evaluate the abundance of each class present in a pixel.

The abundances estimation was obtained through the analysis of the out-

put of the classification neural network algorithm adopting the procedure

considered for AHS imagery and explained in the previous chapter. The

value of each output was used as an estimator of the fractional abundances

of each class. Again the technique was compared with the Linear Spectral

Unmixing (LSU) method [86] but in this case a more quantitative assess-

ment was carried out. In particular a ground-truth in terms of percentages

of abundances of the considered classes was determined by visual inspection

on Google Earth for a certain number of pixels. As the main purpose was

a preliminary quantitative comparison between the LSU and the NN tech-

nique, it has been assumed that a very detailed percentages measurement

was not necessary. Table 5.1 reports the mean and the standard deviation

values of each endmember considering the whole set of measured pixels.

In figs.5.12-5.21 we report some examples of results obtained on selected

pixels extracted from the data set, the LSU was unable to correctly esti-

mate the abundances of the elements, providing values always above 0 also

in those pixels where the corresponding elements are not present. This be-
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MEAN ST. DEV.

VY 0.17 0.26

PS 0.16 0.30

PC 0.17 0.26

IN 0.06 0.21

DA 0.10 0.26

MA 0.0 0.0

BU 0.12 0.24

BA 0.16 0.29

AA 0.07 0.15

Table 5.1: Mean and standard deviation of each endmember (VY: vineyards;
PS: pasture; PC: permanent crops; IN: industrial; DA: dark asphalt; MA:
maize; BU: built-up area; BA: bright asphalt; AA: agricultural area)

RMSE

NN 0.0801

LSU 0.3492

Table 5.2: RMSE computed over the entire dataset and considering all
classes
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havior came from the assumption that standard unmixing methodologies

such as LSU, to produce good result, require the endmembers to be the

most uncorrelated as possible. Usually the endmembers extracted from the

image, correspond to macroscopic objects in the scene such as water, soil

or vegetation. In our case, the endmembers correspond to classes that may

be very correlated each other, leading a standard unmixing technique to a

wrong result. On the other hand, as the abundancies matrices of test pixels

demonstrate, the unmixing technique using neural network provides a good

accuracy even if the chosen endmembers are closely correlated. Finally, in

table 5.2 we report the quantitative assessment in terms of RMSE com-

puted over the entire data set considering all classes. From the reported

values we see that NN seems to be definetely more effective than LSU.

5.5 Conclusions

In this work we applied the NLPCA technique to reduce the dimension-

ality of multi-temporal and multi-angular hyper-spectral datasets. A NN

algorithm with MLP topology has been exploited to handle the succes-

sive classification of the reduced datasets. The results show a satisfactory

overall accuracy, increasing that obtained not reducing the dataset. This

means that NLPCA is able to retain most of the information content of the

original data, reducing the worsening influence of the dimensionality curse.

Some other issues emerged from the analysis of the results. Not good clas-

sification accuracies were obtained for permanent crops and bright asphalt

classes. These problems are due to the not very high spatial resolution of

the image, allowing some pixels to have a mixed spectral signature. To
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solve those problems, a novel spectral unmixing technique based on neural

network was proposed. The quantitative results in terms of comparison

with LSU show a good ability in the estimation of the percentage of each

component in a pixel.



Chapter 6

Urban area classification
using high resolution
hyperspectral data

6.1 Introduction

This chapter is dedicated to the outcome of the 2008 GRS-S Data Fusion

Contest. The Data Fusion Contest has been organized by the Data Fusion

Technical Committee (DFTC) of the IEEE Geoscience and Remote Sensing

Society and has been annually proposed since 2006. It is a contest open

not only to DFTC members but also to everyone. The aim of the Data

Fusion Contest is to evaluate existing methodologies at the research or op-

erational level to solve remote sensing problems using data from different

sensors. The main aim of this contest is to provide a benchmark to the

researchers interested in a class of data fusion problems, starting with a

contest and then allowing the data and results to be used as reference for
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the widest community, inside and outside the DFTC. In 2008, the contest

was dedicated to the classification of very high-resolution hyper-spectral

data. A hyper-spectral data set was distributed to every participant, and

the task was to obtain a classified map as accurate as possible with respect

to the ground truth data, depicting land-cover and land-use classes. The

ground truth was kept secret, but training pixels could be selected by the

participants by photo-interpretation in order to apply supervised methods.

The data set consisted of airborne data from the Reflective Optics Sys-

tem Imaging Spectrometer (ROSIS-03) optical sensor. The flight over the

city of Pavia, Italy, was operated by the Deutschen Zentrum fur Luft-und

Raumfahrt (the German Aerospace Agency) in the framework of the Hy-

Sens project, managed and sponsored by the European Union. The number

of bands of the ROSIS-03 sensor is 115 with a spectral coverage ranging

from 0.43 to 0.86 µm. Thirteen noisy bands have been removed. The di-

mension of the distributed data set is hence 102. The spatial resolution is

1.3 m per pixel. For the contest, five classes of interest were considered,

namely, buildings, roads, shadows, vegetation, and water. Everyone could

enter the contest and download the data set. After classification, the par-

ticipant could upload the resulting map for an automatic evaluation of the

classification performances (confusion matrix and average accuracy). The

participating teams were allowed to upload as many different results as they

wished.

The contest was open for three months. At the end of the contest,

the participant teams had uploaded over 2100 classification maps. The

five best individual classification maps have been fused together. The fi-
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nal corresponding teams have been awarded with an IEEE Certificate of

Recognition during the Chapters and Technical Committees’ Dinner at the

IEEE International Geoscience and Remote sensing Symposium in Boston

in July 2008. The five best algorithms were:

1. An algorithm where different standard classifiers [three neural net-

works (NNs) and two maximum likelihood (ML) classifiers] were used,

and then a majority voting (MV) between different outputs was de-

veloped by Giorgio Licciardi and Fabio Pacifici.

2. Devis Tuia and Frederic Ratle use both spectral and spatial features.

The spectral features are a six-principal-component (PC) analysis

(PCA) extraction of the initial pixel’s vector value. The spatial in-

formation is extracted using morphological operators. These features

are classified by combining several support vector machines (SVM)

using MV.

3. Saurabh Prasad and Terrance West use wavelet-based preprocessing

of the initial spectra followed by a linear discriminant analysis (LDA)

and an ML classifier.

4. Ferdinando Giacco and Christian Thiel use a PCA to reduce the di-

mension of the data. Spatial information is taken into account with

some textural features. The classification is achieved using SVM one-

versus-one classifiers, and a spatial regularization is performed on the

classification map to eliminate isolated pixels.

5. Jordi Inglada and Emmanuel Christophe perform a Bayesian fusion

of different classifiers (such as SVM classifiers). The weight assigned
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to each classifier is determined by the quantitative results it obtained.

All these algorithms are available with the ORFEO Toolbox, which

is an open source library of image processing algorithms for remote

sensing applications (http://www.orfeo-toolbox.org).

Among these five algorithms, our technique was ranked as first.

6.2 Majority voting between NN and ML classi-
fiers

The aim of the contest implicates the reduction of data set dimensionality

to both decrease the complexity of the classifier and the computational time

required, preserving most of the relevant information of the original data

[87][88]. The proposed technique was based on a dimensionality reduction

of the input measurements vector, and then a majority voting between the

results obtained from neural networks and maximum likelihood classifiers

applied on the reduced dataset.

6.2.1 Dimensionality reduction

The pre-processing procedure exploited, divided the hyper-spectral signa-

tures into adjacent regions of the spectrum and approximates their values by

piecewise constant functions PCF as in fig.6.1. This simple representation

has shown to outperform most of the linear feature reduction methods pro-

posed in literature, such as principal components analysis, minimum noise

fraction, sequential forward selection or decision boundary feature extrac-

tion [89]. Assume Sij to be the value of the ith pixel in the jth band, with

a total of N pixels. The spectral signatures of each class extracted from
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Figure 6.1: Spectral signatures divided into adjacent regions

ground truth pixels have been partitioned into a fixed number of contiguous

intervals with constant intensities minimizing the mean square error:

H =
K∑
k=1

N∑
i=1

∑
j∈Ik

(sij − µik)2 (6.1)

Where a set of K breakpoints define continuous intervals Ik, while µik

represents the mean value of each pixels interval between breakpoints. A

number of K = 7 breakpoints was found to be a reasonable compromise

between model complexity and computational time as show in table 6.1.

Once the data has been reduced we proceeded with the classification phase.
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Sensor bands Wavelength (µm)

from-to from-to

B1 1-15 430-486

B2 16-35 490-566

B3 36-65 570-686

B4 66-75 690-726

B5 78-82 730-766

B6 86-90 770-786

B7 91-95 790-834

Table 6.1: Resulting subbands

6.2.2 Classification

The classifier scheme exploited here is based on a combination of single

decision maps. In [90], it has been demonstrated that combining the deci-

sions of independent classifiers can lead to better classification accuracies.

The combination can be implemented using a variety of strategies, among

which majority voting (MV) is the simplest, and it has been found to be as

effective as more complicated schemes[90][91]. Majority voting was used on

five independent maps resulting from two different methods, i.e. three neu-

ral networks and two maximum likelihood classifiers, derived using three

different training sets as shown in table 6.2. The five classifiers with the

best individual classification accuracy drove this choice.

For each method, the seven features obtained by the reduction of input

dimensionality composed the input to the classifier, while the outputs were

the five class of interest. The algorithm of majority voting was implemented

following two simple rules:
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Set Buildings Roads Shadows Vegetation Water

Set 1 132.369 18.914 20.356 53.065 43.104

Set 2 33.168 6.525 3.260 14.323 26.816

Set 3 45.268 5.210 1.524 17.485 20.367

Table 6.2: training samples used for the supervised classifiers

• A class is the winner if it recognized from the majority of the classifiers

• In case of a balance voting, the winner class is the one with the highest

K-coefficient.

The final accuracy obtained using this method was 98.84% and the final

land cover map is shown in fig.6.5.

6.3 NLPCA approach

Starting from the results obtained from the Contest, it became interesting

to test the ability of the NLPCA with the same dataset.

6.3.1 Dimensionality reduction

Starting from the same 102 bands, a reduction of the input vector was

performed through the NLPCA. The number of nonlinear components ob-

tained training an AANN was set to 3, leading to a 102-36-3-36-102 topol-

ogy. This choice was driven by the fact that the statistical information

contained in the first three components of the PCA was over 99%. For this

reason the number of nodes of the bottleneck layer of the AANN was set to

3. A first analysis of the nonlinear components, shown in fig.6.2, highlights
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Figure 6.2: 3 nonlinear principal components obtained from the original
image

an optimal separation of the types existent in the scene. More in particular,

component 1 exalts the water component. As the same way, in the com-

ponent 2 and 3 the red-clay roofs of the buildings and the vegetation are

evidenced, respectively. Another important note regards the component 1,

which is not influenced by the buildings shadows. More in particular the

roads covered by shadows and the roads without shadows in the original

image, present in the component 1 the same values, as show in fig.6.2.
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Figure 6.3: Smile effect on one component of PCA (left) and MNF (right)

From an accurate analysis of the original image emerged that it is in-

fluenced by the presence of the “smile” effect [2]. This effect cannot be

detected by a simple band inspection, but became evident if we apply the

MNF or PCA transformations, as shown in fig.6.3. PCA and MNF, as

dimensionality reduction techniques, seem to be strongly influenced by the

presence of “smile” effect artifacts. In such cases a further preprocessing

stage to mitigate this problem is necessary. On the other hand, the use of

NLPCA does not require any preprocessing as can be seen in fig.6.2.
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6.4 Classification

The 3 nonlinear components were used as input to a new neural network

to obtain a pixel based classification of the original image. In this case

the network topology is a MLP of 3-9-9-5. About 1.500.000 pixels were

considered for the training phase, which consisted of less than 500 epochs.

In particular, for this case, the whole architecture consists of the following

layers: one input layer of 102 units, 4 hidden layer of 36, 3, 9, 9 neurons,

respectively and an output vector of 5 components. In fig.6.4, we report the

confusion matrices computed for NLPCA and the PCF approaches on a set

of about 330.000 pixels (not used in the training phase) and in fig.6.5 the

relative classification maps. The overall classification accuracy is of about

99% for the NLPCA approach and over 95% for the PCF approach.

6.5 Conclusions

The output of the contest provided some interesting conclusions and per-

spectives. First of all, it became evident that the best five results were ob-

tained by the use of a supervised method. Other results, obtained by unsu-

pervised methods, were outperformed by the supervised methods. Among

the best five techniques, those implementing neural provide the best classi-

fication performances. Another point regards the reduction of the input

dimensionality, in fact, most of the proposed methods, to mitigate the

Hughes effect [22], used a dimension reduction as a preprocessing proce-

dure. Most of them used the PCA or MNF, retaining various numbers of

components. But, from an accurate analysis of the image, it became evident
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Figure 6.4: Confusion matrices for NLPCA (top) and PCF (bottom) ap-
proaches with overall accuracies of 99.68% and 95,35% respectively
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Figure 6.5: Classification map for PCF (left) and NLPCA (right) ap-
proaches
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that both techniques could not be used until the smile effect persists. Com-

pared to the other techniques, NLPCA does not emphasize the smile effect

and does not require any preprocessing routine. Also the reduced dataset

obtained through the use of PCF does not show any presence of smile ar-

tifacts but NLPCA, compared with PCF, allowed performing the training

of the neural algorithm for the classification map in a limited number of

epochs, which besides involving a faster training time, may be important

to avoiding overfitting.
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Conclusions

In this research work the potential of neural networks algorithms and archi-

tectures for extracting information from hyperspectral data has been inves-

tigated. Different aspects has been considered. Besides the one concerning

with the actual inversion problem, in our case a pixel-based classification,

a novel dimensionality reduction approach based on extraction of nonlinear

principal components from hyper-spectral data has been developed. With

the hyper-spectral imagery, the need of a technique to reduce the dimen-

sion of the huge input vector preserving as much information content as

possible is an essential step for the analysis. Until now, the suitability of

neural networks to handle nonlinear correlations in the data has not been

investigated yet and one of the main puroses of our study was to give a con-

tribution under this point of view. Moreover, neural networks have been

also introduced as a tool for addressing the unmixing problem, which is also

of particular importance in the context of hyperspectral imagery analysis.

The novel neural networks techniques have been applied to three hyper-

spectral datasets characterized by very different bandwidth, spatial resolu-

tion, acquisition mode and context:
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• Acquisition by INTA-AHS instrument on a rural area. Image char-

acterized by 75 bands with a spectral resolution from 30 to 500 nm

and a spatial resolution of 5,5 meters.

• Acquisitions by CHRIS-Proba instrument on an area with the pres-

ence of urban settlements and large cultivations. The dataset was

characterized by multi-angle and multi-date acquisitions with a spec-

tral resolution varying from 5 to 11 nm and a spatial resolution of 18

meters.

• Acquisition by ROSIS instrument on dense urban area, character-

ized by 102 bands at 1 meter spatial resolution and 4 nm spectral

resolution.

For each experiment a NN a final compact architecture performing both

the feature extraction and classification phases has been designed. The

experiments put in evidence different issues in favour of the presented NN

methodology.

First of all the yielded land cover maps are characterized by accuracies

which are better than those obtained using alternative techniques, for ex-

ample considering PCA or MNF for features reduction. This means that

the NLPCA are more effective in retaining the information content of the

raw data. Indeed, NLPCA allowed performing the training of the neural

algorithm for the classification map in a limited number of epochs, which,

besides involving a faster training time, may be important to avoiding over-

fitting.

Another point is that the developed approach does not require any
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pre-processing routine, resulting more robust to instruments distorsion ar-

tifacts. This is particularly evident in the two airborne experiments (AHS

and ROSIS), where the strong influence of the smile effect prevents other

dimensionality reduction techniques from being applied without a prelimi-

nary correction of the original data.

NLPCA technique seems also to have an interesting ”object-oriented”

property. It often happened that single NLPCA components were polarized

on single objects, for example clouds or watercourses, which could be of

great usefulness when there is a need of routines dedicated to the production

of specific thematic maps.

Finally a new neural network technique for the spectral unmixing of

hyper-spectral imagery was developed. Until now, the unmixing procedure

relies on the assumption that the endmembers should be the most uncorre-

lated possible to achieve an acceptable result. In this work the ability of the

neural networks to correctly estimate the abundances of strongly correlated

endmembers in each pixel has been demonstrated.
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Acronyms

AANN: AutoAssociative Neural Network

AATSR: Advanced Along-Track Scanning Radiometer

AHS: Advanced Hyper-spectral Scanner

ASI: Agenzia Spaziale Italiana (Italian Space Agency)

AVHRR: Advanced Very High Resolution Radiometer

AVIRIS: Airborne Visible Infra Red Imaging Spectrometer

BSQ: Band Sequentia

CASI: Compact Airborne Spectrographic Imager

CCD: Charge Coupled Device

CHRIS: Compact High Resolution Imaging Spectrometer

DEMMIN: Durable Environmental Multidisciplinary Monitoring Informa-

tion Network

DFTC: Data Fusion Technical Committee

DLR: Deutschen zentrums fur Luft- und Raumfahrt (German Space Agency)

DN: Digital Number

EnMAP: Environmenta Mapping and Analysis Program

EO: Earth Observation

EOC: Electro Optical Camera
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ESA: European Space Agency

FOV: Field Of View

FTS: Fourier Transform Spectrometer

FWHM: Full Width at only Half Maximum value

FZA: Fly-by Zenith Angle

GRS-S: Geoscience and Remote Sensing Society

GSD: Ground Sampling Distance

IEEE: Institute of Electrical and Electronics Engineers

IFOV: Istantaneous Field Of View

K-L: Karhunen-Loeve

KOMPSAT: Korea Multi-Purpose SATellite

LDA: Linear Discriminant Analysis

LSU: Linear Spectral Unmixing

MAF: Minimum/Maximum Autocorrelation Factor

MERIS: MEdium Resolution Imaging Spectrometer

MIR: Medium Infra Red

ML: Maximum Likelihood

MLP: Multi-Layer Perceptron

MNF: Minimum/Maximum Noise Fraction

MODIS: MODerate Resolution Spectroradiometer

MSE: Mean Square Error

MV: Majority Voting

NASA: National Aeronautics and Space Administration

NIR: Near Infra Red

NLPCA: NonLinear Principal Component Analysis
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NN: Neural Network

PC: Principal Component

PCA: Principal Component Analysis

PCF: Piecewise Constant Function

PRISMA: PRecursore IperSpettrale della Missione Applicativa

PROBA: Project for On Board Autonomy

PSF: Point Spread Factor

REP: Red Edge Position

RMSE: Root Mean Square Error

ROSIS: Reflective Optics System Imaging Spectrometer

SBFS: Sequential Backward Floating Selection

SBS: Sequential Backward Selection

SFFS:Sequential Forward Floating Selection

SFS: Sequential Forward Selection

SNNS: Stuttgart Neural Network Simulator

SNR: Signal-to-Noise Ratio

SVM: Support Vector Machine

SWIR: Short Wave Infra Red

TDI: Time Delay Integration Imager

TIR: Termal Infra Red

TMA: Three Mirror Anastigmatic

VIS: VISible

VNIR: Visible Near Infra Red

WIS: Wedge Imaging Spectrometer
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