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Abstract 
In this paper we propose a new lower bound for the resource 

constrained project scheduling problem with generalized 

precedence relationships. The lower bound is based on a 

relaxation of the resource constraints among independent 

activities and on a solution of the relaxed problem suitably 

represented by means of an AON acyclic network. Computational 

results are presented and confirmed a better practical 

performance of the proposed method with respect to the those 

present in the literature. 

 

Keywords: Generalized precedence relationships, Lower bound, Project 

scheduling 

 

1. Introduction 

The basic Resource-Constrained Project Scheduling Problem (RCPSP) deals 

with scheduling project activities subject to finish-to-start precedence 

constraints with zero time-lags and renewable resources under the minimum 

makespan objective. The RCPSP is NP-hard in strong sense (see, e.g., Blazewicz 

et al., 1983). When this kind of temporal constraints are taken into account,  

an activity can start only as soon as all its predecessors have finished, and, 

therefore, the resource constraints exist only between two or more independent 

activities. 
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However, in a project, it can be necessary to specify other kinds of temporal 

constraints besides the finish-to-start precedence relationships with zero-time-

lags. 

According to Elmagraby and Kamburoski (1982) we denote such constraints as 

Generalized Precedence Relations (GPRs). GPRs allow one to model minimum 

and maximum time-lags between a pair of activities (see, e.g. Dorndorf, 2002, 

and, Neumann et al., 2002). 

Four types of GPRs can be distinguished, i.e., Start-to-Start (SS), Start-to-

Finish (SF), Finish-to-Start (FS), Finish-to-Finish (FF). For each one minimum 

and maximum time-lags can be considered. 

A minimum time-lag between a pair of activities i and j 

 specifies that activity j can start (finish) 

only if its predecessor i has started (finished) at least 

))(),(),(),(( minminminmin δδδδ ijijijij FFFSSFSS

δ time units before. 

Similarly, a maximum time-lag between i and j 

 imposes that activity j should be started 

(finished) at most 

))(),(),(),(( maxmaxmaxmax δδδδ ijijijij FFFSFSS

δ  time units beyond the starting (finishing) time of activity i. 

When no resource constrains is concerned, GPRs can be represented in a so 

called “standardized” form by transforming them, for instance, in minimum 

start-to-start precedence relationships (see Bartusch et al., 1988). By applying 

such transformations to a given AON network with GPRs, we obtain a 

standardized activity network where with each arc it is associated a label  

representing the time-lag between activities i and j (De Reyck, 1988). This 

standardized network may contain cycles, and the minimum completion time 

can be calculated in polynomial time by computing a longest path from the 

source to the sink of such a network. 

ijl

In order to avoid cycles, Bianco and Caramia (2007, 2008) have proposed a 

transformation of the precedence relationships between each pair of activities 

in finish-to-start constraints with zero time-lags. In this case between each pair 

of nodes i and j of the original network, a dummy node is inserted whose 

duration represents the contribution of GPRs. 

In this paper, we study the RCPSP with GPRs. From the complexity viewpoint, 

the problem is strongly NP-hard and also the easier problem of detecting 
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whether a feasible solution exists is intractable (NP-complete, Bartusch et al., 

1988). 

To the best of our knowledge, the exact procedures presented in the literature 

are the branch-and-bound algorithms by Bartusch et al. (1988), 

Demeulemeester and Herroelen (1997b), and De Reyck and Herroelen (1998). 

The paper by Bartusch et al. (1988) reports a limited computational experience 

on a case study; the paper by Demeulemeester and Herroelen (1997b) is 

conceived to work on minimum time-lags only; the third approach, that works 

with both minimum and maximum time-lags, presents results on projects with 

30 activities and percentages of maximum time-lags of 10% and 20% with 

respect to the total number of generalized precedence relations. 

Also lower bounds are available for this problem. In particular, two classes of 

lower bounds are well known in the literature, i.e., constructive and destructive 

lower bounds. The first class is formed by those lower bounds associated with 

relaxations of the mathematical formulation of the problem (for instance, the 

critical-path lower bound and the basic resource-based lower bound; see, e.g., 

Demeulemeester and Herroelen, 2002). Destructive lower bounds, instead, are 

obtained by means of an iterated binary search based routine as reported, e.g., 

in Klein and Scholl (1999). 

Also De Reyck and Herroelen (1998) proposed a lower bound for the RCPSP-

GPR denoted with lb3-gpr that is the extension of the lower bound lb′3 proposed 

by Demeulemeester and Herroelen (1997b) for the RCPSP.  

In the following, we propose a new lower bound for the RCPSP-GPR based on a 

relaxation of the resource constraints among independent activities and on a 

solution of the relaxed problem suitably represented by means of an AON 

acyclic network. In particular, for the project scheduling problem with GPRs 

and scarce resources we exploit the network model proposed in Bianco and 

Caramia (2007, 2008) and try to get rid of the resource constraints. We restrict 

our analysis only on those pairs of activities for which a GPR exists to 

determine a lower bound on the minimum makespan. For each of these pairs 

we verify whether the amount of resources requested exceeds the resource 

availability, for at least one resource type. In case of a positive answer, we 

prove some results which allow the reduction of the problem to a new resource 

unconstrained project scheduling problem with different lags and additional 
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disjunctive constraints. This last problem can be formulated as an integer 

linear program whose linear relaxation can be solved by means of a network 

flow approach (see also Bianco and Caramia, 2007). 

Computational results are presented and confirmed a better practical 

performance of the proposed lower bound with respect to the aforementioned 

ones. 

The remainder of the paper is the following. In Section 2, the relaxed RCPSP-

GPR is considered; Section 3, is devoted to its mathematical formulation and to 

a primal-dual theoretical analysis on this formulation; finally, in Section 4, 

computational results to assess the performance of the proposed approach are 

presented and discussed. 

 

 

2. A relaxation of RCPSP with GPRs 

In this section, we describe some results related to a relaxation of a RCPSP 

with GPRs obtained by neglecting the resource constraints existing among the 

independent activities, that is activities not related by temporal constraints. It 

follows that, in the consequent relaxed problem, there are resource constraints 

only between pairs of activities constrained by GPRs. 

If we could represent this problem on an AON acyclic network with only finish-

to-start constraints and zero time-lags, it would be possible to find the optimal 

solution in O(m) time complexity (where m is the number of arcs, see Bianco 

and Caramia, 2007). The value of this optimal solution is obviously a lower 

bound of the optimal solution of the original problem. In the following, we will 

concentrate our analysis on how to built this acyclic network taking into 

account those pairs of activities for which both a GPR and a resource 

incompatibility exists. 

 

2.1. A network representation 

In order to represent the relaxed problem mentioned before on an acyclic 

network, it is necessary to transform all constraints in terms of finish-to-start 

relations with zero time-lags. To this end let us consider a generic pair of 

activities (i,j). The related resource incompatibility imposes that 
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iij dss +≥      (a) 

or, alternatively, 

      jji dss +≥      (b) 

 

Let us examine now how the resource constraint combines with the different 

GPRs.  

1. Constraint  can be transformed in  where 

. Two cases must be considered: 

)(min δijSS ,ˆ
jiji sf ≤+ l

δ+−= iij dl̂

(i) 0≥+− δid , i.e., ) dominates constraint (a); δ(min
ijSS

(ii) 0<+− δid , i.e., constraint (a) dominates . )(min δijSS

Constraint (b) does not play any role since it is not compatible with 

. Therefore, a resource incompatibility constraint between i and j 

joined with a  relationship can be expressed as a  

relation where, . 

)(min δijSS

)(min δijSS )(min δ ′ijFS

)ˆ,0max( ijl=′δ

2. Constraint  can be transformed in  where 

. Again, two cases must be considered:  

)(min δijSF ,ˆ
jiji sf ≤+ l

δ+−−= jiij ddl̂

(i) 0≥+−− δji dd , i.e.,  dominates constraint (a); )(min δijSF

(ii) 0<+−− δji dd , i.e., constraint (a) dominates . )(min δijSF

Also in this case constraint (b) is not compatible with , and the 

situation can be expressed as , where . 

)(min δijSF

)(min δ ′ijFS )ˆ,0max( ijl=′δ

3. Constraint  implies that )(min δijFS ji sf ≤+ δ , that is,  dominates 

resource incompatibility constraint (a), while constraint (b) is not 

compatible with this type of GPR. In this case, obviously, 

)(min δijFS

δδ =′ . 

4. Let us consider now the last minimum time lag constraint . It 

implies that  where . We have the following two 

cases as in the previous three points: 

)(min δijFF

,ˆ
jiji sf ≤+ l )(ˆ

jij d−= δl

(i) 0)( ≥− jdδ , i.e., dominates constraint (a), )(min δijFF

(ii) 0)( <− jdδ , i.e., constraint (a) dominates . )(min δijFF
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Constraint (b) is not compatible with . Therefore, the situation 

can be expressed by , where 

)(min δijFF

)'(min δijFS ( )ijl̂,0max'=δ . 

The four cases with minimum time-lags can thus be represented on an AON 

transformed network as depicted in Figure 1. 

 

di' ≥ δ

 
Figure1: Representation of a resource incompatibility constraint and a 

minimum time-lag in the transformed acyclic network. 

 

In the latter figure, i' is a dummy node and the relations between (i ,i') and (i',j) 

are of the finish-to-start type with zero time-lags. The duration di' is known 

only in terms of lower bound.  

Let us now examine the maximum time-lag different scenarios. 

5. Constraint  implies that  where ). We 

have two cases: 

)(max δijSS ,ˆ
ijij fs l+≤ δ+−= iij d(l̂

(i) 0≥+− δid . In this case  is compatible with both the relations 

(a) and (b) related to the resource incompatibility constraints. In fact one 

of the following two conditions can be verified, i.e., either 

)(max δijSS

ijij fs l̂+≤  

     (I)    

iij dss +≥     

or,  

 

ijij fs l̂+≤  

     (II)    

jji dss +≥     

 

 i 

' di dj

 j 
 

i' 
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Obviously, since id≥δ , in alternative (II) resource incompatibility 

constraint (b) dominates . )(max δijSS

(ii) 0<+− δid . In this case only alternative (II) is valid since resource 

incompatibility constraint (a) is not compatible with . Therefore, 

resource incompatibility constraint (b) dominates . 

)(max δijSS

)(max δijSS

6. Let us consider . It corresponds to)(max δijSF ,ijij fs l+≤ )(ˆ δ+−−= jiij ddl . 

Two cases must be considered: 

(i) 0)( ≥+−− δji dd . Both the resource incompatibility constraints are 

compatible with . Therefore, both alternatives (I) and (II) 

previously determined and the related considerations are valid. 

)(max δijSF

(ii) 0)( <+−− δji dd . Also in this case the dominance rule is the same as 

in case (ii) previously analyzed. 

7. Constraint , that is, )(max δijFS δ+≤ ij fs  is compatible with both the 

resource incompatibility constraints and, therefore, both alternatives (I) 

and (II) must be taken into account. 

8. If between i and j there is a constraint , that is,  

where  two cases must be distinguished, i.e., 

)(max δijFF ,ˆ
ijij fs l+≤

)(ˆ
jij d−= δl

(i) 0)( ≥− idδ . Also in this case both the two alternatives (I) and (II) are 

possible and the conclusions are the same as those drawn for the 

aforementioned cases (i). 

(ii) 0)( <− jdδ . The dominance rule is the same as for all cases (ii) 

previously examined. 

All the four GPRs with maximum time-lags correspond to the two finish-to-

start scenarios depicted in Figure 2. 
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(i) ˆ  ≥ijl 0

 
 

 

(ii) ˆ  0<ijl

 

 

  

 

Figure 2: Standardized representation of a resource incompatibility constraint 

combined with a maximum time-lag in terms of finish-to-start relations 

 

This representation on an AON network can be transformed in a network 

representation with zero time-lags, as depicted in Figure 3. 

 

(i)  0ˆ ≥ijl

 

 

 

 

 

 

(ii)  0ˆ <ijl

 
Figure 3: Representation of a resource incompatibility constraint combined 

with a maximum time-lag in the transformed acyclic network 

 

i i' 

di dj
 
 j 

 

i j 

djdi

(II) 

)(max
jiij ddFS −−  

)ˆ(max
ijijFS l  

i j 

djdi )(max
jiij ddFS −−  

i j 

djdi
)ˆ(max

ijijFS l  

)0(min
ijFS  

(I) 

or, alternatively, 

 i  j 

di' ≤ ijl̂
 

di d
i' 

di'' ≥ 0 

i'' 

 i  j 

di'  ≤ ijl̂
 

di dj
 

i' 
or, alternatively, 

di'' ≤ - (di + dj) 

i'' 

di' ≤ - (di + dj)
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In the latter picture, the dashed nodes are dummy nodes and the relations 

between any pair of adjacent nodes is of the type finish-to-start with zero time-

lag. The durations associated with the dummy nodes are known only in terms 

of upper bounds and lower bounds. 

 

2.2. A mathematical programming formulation 

Following what we presented in the previous section, given a project with GPRs 

and resource incompatibility constraints only between pairs of activities with 

GPRs, we can use the AON network representation, shown in Figure 4, where 

only temporal constraints of the finish-to-start type with zero time-lags are 

present. 

1 2 n 

i 

1' 

d1' d1 d2 

di 

dn 

i' 

di' 

i+1 
di +1 

 
Figure 4: A generic transformed AON acyclic network of the relaxed RCPSP-

GPR. 

 

The minimum sn is the optimal solution of the relaxed RCPSP-GPR, and then a 

lower bound of the original problem. Let us now denote: 

• V the set of the nodes of the original network; 

• MmGg VVVVV ∪∪∪=  the set of dummy nodes of the transformed 

network; 

• gV the subset of dummy nodes derived from the GPRs with minimum 

time-lags among pairs of activities for which no resource incompatibility 

exist; 
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• GV  the subset of dummy nodes derived from the GPRs with maximum 

time-lags among pairs of activities for which no resource incompatibility 

exist; 

• mV the subset of dummy nodes derived from the GPRs with minimum 

time-lags among pairs of activities for which resource incompatibility 

exist; 

• MMM VVV ′′∪′=  the subset of dummy nodes derived from the GPRs with 

maximum time-lags among pairs of activities for which resource 

incompatibility exist; 

• MV ′  the subset of  MV  such that  ; 0ˆ ≥ijl

• MV ′′  the subset of MV  such that . 0ˆ <ijl

Moreover, 
21 MMM VVV ′∪′=′  where 

1MV ′  is the subset of dummy nodes 

representing only the maximum time-lag constraints and 
2MV ′  is the subset of 

dummy nodes representing only the resource incompatibility constraints 

compatible with the GPRs with maximum time lags (see Figure 3). Of course 

21 MM VV ′=′ . 

Defining a binary variable  to model the disjunctive scenarios defined in the 

previous section, the problem of finding the minimum s

iw ′

n is that of computing 

the minimum time to reach node n on that network and can be formulated in 

terms of mixed integer programming as follows. 

min sn 

VPiVidss iiii ⊆∈∈′∀+= ′′ ,,    (1) 

VPiVidss iiii ⊆∈′∈∀+= ′′ ,,     (2) 

gijimiii ViVid ∈′∀=∈′∀′=≥ ′′′′ llll ˆ,,, δ  (3) 

GMijiii VVid ∪′∈′∀=≤ ′′′ 1
,ˆ, lll    (4) 

'
2,0, Miiii ViLwd ∈′∀=+−≥ ′′′′ ll    (5) 

2
),(,)1( Mjiiiii ViddwLd ′∈′∀+−=+−≤ ′′′′ ll  (6) 

"'),(, ''' Mjiiii Viddd ∈∀+−=≤ ll    (7) 

{ }
2

,1,0 Mi Viw ′∈′∀∈′     (8) 
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ViRsi ∈′∀∈ +
′ ,      (9) 

{ }1\, ViRsi ∈∀∈ +      (10) 

01 =s       (11) 

Constraints (1) and (2) model the finish-to-start relations in the acyclic 

network. Constraints (3), (4), (5), (6) and (7) model the bound on the values of 

 found from the analysis in the previous section. In particular, note that 

constraints (5) and (6) refer to the disjunctive situations depicted in Figures 2 

and 3. In these constraints L is a very large positive number such that if 

id ′

1=′iw  

constraints (5) are trivially satisfied and constraints (6) are effective; if 0=′iw  

we have the opposite situation, i.e., constraints (5) are effective and constraints 

(6) are always satisfied. Constraints (8), (9), (10) and (11) define the range of 

variability of the decision variables. 

Let us consider the linear relaxation of the above formulation, i.e., replacing 

constraint (8) with  

2
,1 Mi Viw ′∈′∀≤′      (8a) 

2
,0 Mi Viw ′∈′∀≥′      (8b) 

and let us define the corresponding dual problem. To this end let us define the 

following dual variables ,     'iiy iiy ' 'iz a
iz '

b
iz ' 'iw  corresponding to constraints (1), 

(2), ((3),(4) and (7)), (5), (6), ((8a) and (8b)), respectively. The dual formulation of 

the previous relaxed problem is the following: 

(14)                                                ,1

(13)                   },1{\,0

(12)                            ',0

)(max

'
'

'
'

'
'

_

''

''''

''

'
2

''
2

'
'

'''
1

'' '
'

≤

∈∀≤−

∈∀≤−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++−+++

∑

∑∑

∑∑

∑∑∑∑ ∑ ∑

∈

∈∈

∈∈

∈
′

∈∪∪∈∈ ∈ ∪∈

n

ii

ii

MMGMMi gm

Pi
ni

Si
ii

Pi
ii

Si
ii

Pi
ii

Vi
i

Vi

b
ijii

VVVi
i

Vi Si VVi
iiiii

y

nViyy

Viyy

wzddLzzyd ll
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)24(                                          ',0

)23(                                          ',0

)22(                                          ',0

)21(                            ',0

)20(                                     ',0

)19(                                 ,' free,  

)18(                                  ', free,  

(17)                       ',0

(16)                          ',0

(15)     ',0

'
'

'
'

'
'

'''
'

'

''

'

'
'''

'
'''

'''
''

2

2

2

1

2

2

1

M
b
i

M
a
i

Mi

GMMi

gmi

iii

iii

Mi
a
i

b
i

M
b
i

a
iii

GgMMmiii

Viz

Viz

Viw

VVViz

VViz

SiViy

SiViy

ViwLzLz

Vizzy

VVVVVizy

∈∀≥

∈∀≥

∈∀≤

∪∪∈∀≤

∪∈∀≥

∈∈∀

∈∈∀

∈∀≤++−

∈∀=−+−

∪∪∪∪∈∀=+−

 

 

2.3. Analysis on the primal-dual formulation: main result 

In this section, we provide the main result on the possibility to find the optimal 

solution to the problem in polynomial time O(m). 

Exploiting the equality constraints (15) and (16) by substituting (15) in the 

objective function and (16) in constraint (17), we have the following equivalent 

mathematical formulation: 

)13(         },1{\,0

)12(                  ',0

)(max

'
'

'
'

_

''

''

''

'
2

''
2

'
'

' '''
1

'
'

nViyy

Viyy

wzddLyyd

ii

ii

MMi i GgMMm

Si
ii

Pi
ii

Si
ii

Pi
ii

Vi
i

Vi

b
iji

Vi Si Si VVVVVi
iiiiii

∈∀≤−

∈∀≤−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++−++

∑∑

∑∑

∑∑∑∑ ∑ ∑

∈∈

∈∈

∈
′

∈∈ ∈ ∈ ∪∪∪∪∈′

l
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)17(             ,',0

)14(                                      ,1

'
''

'
'

2
aSiViwLy

y

iMiii

Pi
ni

n

′

∈

∈∈∀≤+

≤∑
 

)24(                                ',0

)22(                               ',0

)19(                    ,' free,  

)19(         ,',0

)19(                  ,',0

)18(                        ', free,  

'
'

'
'

'
'

'

'
'''

'

''

'

2

2

2

1

M
b
i

Mi

iMii

iGMMii

igmii

iii

Viz

Viw

cSiViy

bSiVVViy

aSiVViy

SiViy

∈∀≥

∈∀≤

∈∈∀

∈∪∪∈∀≤

∈∪∈∀≥

∈∈∀

 

Since L is positive and arbitrarily large and , the objective function is 

maximized imposing that , where  is the optimal value of . 

Moreover, for the complementary slackness conditions referred to constraint 

(17a) we have that: 

0' ≥
b
iz

0* =bz *bz bz'i 'i i '

)(                     ',0)( '***
' 2''

iViwLyw Mi iii
∈∀=−−  

 

For node i’ we can have either  or . Let us examine these two 

situations separately. 

0*
' =iw 1*

' =iw

Case a: . 1*
' =iw

By (i) we have that 

)(', '**
2''

iiViLyw Miii
∈∀−=  

By constraint (22) we have that: 

)(',0 '*
2'

iiiViy Mii
∈∀≥  

Substituting (ii) and (iii) in the mathematical formulation we have: 
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)19(            ,',0

)19(            ,',0

)18(                        ', free,  

)14(                                          ,1

)13(        },1{\,0

)12(                  ',0

', where

max

'
'''

'

'
'

'

'

'
'

'
'

'
'

_

''

'
'

'
''

1

2

''

2

'
'

'

bSiVVViy

dSiVVViy

SiViy

y

nViyy

Viyy

ViL

yyd

iGMMii

igMmii

iii

Pi
ni

Si
ii

Pi
ii

Si
ii

Pi
ii

Mi

Vi Si Vi Si
iiiiii

n

ii

ii

i i

∈∪∪∈∀≤

∈∪∪∈∀≥

∈∈∀

≤

∈∀≤−

∈∀≤−

∈∀−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

∑

∑∑

∑∑

∑ ∑ ∑∑

∈

∈∈

∈∈

∈ ∈ ∈ ∈

l

l

 

 

Case b: . 0*
' =iw

By the complementary slackness property on constraint (8a) we have that 
'*

'
*

2'
',0)1( Mi Viww

i
∈∀=−  

by which we obtain that 
'*

' 2
',0 Mi Viw ∈∀=  

This implies that, by constraint (17), 
'

'' 2
'*,* M

b
i

a
i Vizz ∈∀≤  

Since the objective function is maximized imposing , we have that also 

(see constraint (23)) 

0*' =b
iz

'
' 2

',0* M
a
i Viz ∈∀=  

The dual problem then transforms into:  
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)21(                          ',0

)20(                                   ',0

)19(                              ,' free,  

)18(                               ', free,  

)16(                                     ',0

)15(     ',0

)14(                                                ,1

)13(                  },1{\,0

)12(                           ',0

max

'''
'

'

''

'

'
'

'''
''

'
'

'
'

'
'

_

''

 
''''

1

2

1

''

'''
1

'' '
'

GMMi

gmi

iii

iii

Mii

GgMMmiii

Pi
ni

Si
ii

Pi
ii

Si
ii

Pi
ii

VVVi
ii

Vi Si VVi
iiiii

VVViz

VViz

SiViy

SiViy

aViy

VVVVVizy

y

nViyy

Viyy

zzyd

n

ii

ii

GMMi gm

∪∪∈∀≤

∪∈∀≥

∈∈∀

∈∈∀

∈∀=−

∪∪∪∪∈∀=+−

≤

∈∀≤−

∈∀≤−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

∑

∑∑

∑∑

∑∑∑ ∑

∈

∈∈

∈∈

∪∪∪∈∈ ∈ ∪∈
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Substituting now constraints (15) in the objective function we have the 

following formulation 

)13(        },1{\,0

)12(                  ',0

(16a)by  ' 0being  ', assign can we where

max

'
'

'
'

_

''

'
'

'
'

'
''

''

22

'
'

'

nViyy

Viyy

ViyViL

yyd

ii

ii

i i

Si
ii

Pi
ii

Si
ii

Pi
ii

MiiMi

Vi Si Vi Si
iiiiii

∈∀≤−

∈∀≤−

∈∀=∈∀−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

∑∑

∑∑

∑ ∑ ∑∑

∈∈

∈∈

∈ ∈ ∈ ∈

l

l

 

 15



)19(     , ',0

)19(              , ',0

)18(                     ', free,  

)16(                           ' ,  0

)14(                                      ,1

'
'''

'

''

'

'
'

'
'

1

2

bSiVVViy

dSiVViy

SiViy

aViy

y

iGMMii

igmii

iii

Mii

Pi
ni

n

∈∪∪∈∀≤

∈∪∈∀≥

∈∈∀

∈∀=

≤∑
∈

 

We note that in both the two cases analyzed we achieved the same 

mathematical formulation, meaning that either w  or w  we can use 

the same solution strategy. Moreover, we note that this mathematical model 

obtained is polynomially solvable in O(m) by means of a dynamic programming 

approach since the formulation has at most two variable per constraint (see 

Hochbaum and Naor, 1994). Furthermore, this formulation is the same as that 

found in absence of resource constraints by Bianco and Caramia, 2007. 

Therefore, there holds the property demonstrated in that paper, i.e., the 

optimal solution to our relaxed RCPSP-GPR, and therefore the  lower bound of 

the original problem, is an augmenting path of maximum length on the 

described AON network where unit capacities have been installed on arcs. 

0* = 1* ='i 'i

 

3. Computational results 

In this section, we show the results of our experimentation. Our algorithm and 

the other lower-bound algorithms used for comparison have been implemented 

in the C language. The machine used for the experiments is a Pentium IV PC 

with a 3GHz processor and 2Gb RAM. All the computing time are negligible 

(i.e., less than 1 seconds) and therefore are omitted in the presentation of the 

results.  

In order to assess the quality of our lower bound with respect to state-of-the-

art lower-bound algorithms, we have experimented the proposed approach on 

networks with 100 and 500 activities. These networks have been generated at 

random with the following parameters: 
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- Maximum number of initial (without predecessors) activities 10; 

- Maximum number of terminal (without successors) activities 10; 

- Maximum indegree of activities 5;  

- Maximum time lag constraints ranging from 0% to 20% of the total 

number of arcs; 

We generated 90 problems for each network size, as done also in the RCPSP-

max library, and reported our results in Figure 5 and Figure 6.  

The chart in Figure 5 shows the performance of our lower bound, denoted in 

the following with Our_LB, compared to the network based lower bound, 

denoted with LB1, the resource-based lower bound, denoted with LB2, and the 

lb3-gpr lower bound, denoted with LB3, on 100 activity networks. Figure 6 

reports the same comparison on 500 activity networks. Values in the y-axis are 

reported as base 10 logarithms. 

Analyzing in detail the behaviour of LB1, LB2, and LB3, we notice that, as one 

can expect, LB2 is quite sensitive to the resource strength factor. Indeed, 

looking for instance at the chart in Figure 6 (where this appears clearer), we 

observe that for instances ranging from 1 to 10, from 31 to 40, and from 61 to 

70, where the resource strength parameter is zero, LB2 outperforms LB1 and 

LB3. For the other instance classes, whose resource strength parameter ranges 

from 0.25 to 0.5, we have that the values of LB1 and LB3 tend to overlap (with 

LB3 having a slightly better behaviour) and dominate LB2.  

Indeed,  from a general viewpoint, while it appears that LB1 and LB3 tend to 

outperform LB2 on projects with 100 activities, it happens that there is not a 

striking dominance among LB1, LB2, and LB3 when 500 activities are 

considered. 

Analysing the behaviour of Our_LB, one can note that it is robust to the 

different  input instances, unlike the three competing lower bounds. In fact, 

Our_LB is able to outperform LB1, LB2, and LB3 on all the tested instances. In 

particular, by analysing the computational results, we note that, on 100 

activity networks, Our_LB improves the best value among LB1, LB2, and LB3 

by 5.2%, while on projects with 500 activities the improvement is 4.4%.  

Moreover, considering the gaps (Our_LB-LBi/Our_LB), with i = 1,2,3, we have 

that Our_LB outperforms: 
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- LB1 by 9.2% for projects with 100 activities and by 22.6 for projects with 

500 activities,  

- LB2 by 38.4% and by 65.2% in the scenarios with 100 and 500 activities, 

respectively, 

- LB3 by 8.9% on instances with 100 activities and by 21.4% on 500 

activities. 
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Figure 5: Comparison among our lower bound, the resource-based lower 

bound, the network-based one, and lb3-gpr (100 activity networks). 
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Figure 6: Comparison among our lower bound, the resource-based lower 

bound, the network-based one, and lb3-gpr (500 activity networks). 

 
Conclusions 

In this paper we studied a new lower bound on the resource-constrained 

project scheduling problem with generalized precedence relationships. This 

lower bound is based on a mathematical formulation of a relaxation of the 

original problem, where only precedence relationships between pairs of 

activities associated with GPRs are considered. We showed that the proposed 

lower bound behaves satisfactorily on project networks with different sizes 

when compared to known lower bounds from the state of the art. 
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