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1 Introduction

The response of the economy to inflation shocks has received considerable attention in

the literature. Recent empirical contributions by Fair (2002, 2005) and Giordani (2005)

show that positive inflation shocks have contractionary effects on output even when the

nominal interest rate is not increased.1 These results cast doubts on the validity of

the predictions of ‘New Keynesian’ models, where the stability of the economy requires

a monetary policy that responds to increases in inflation with a more than one-to-one

increase in the nominal interest rate.

The present paper attempts to reconcile this recent empirical evidence with the New

Keynesian literature. The standard ‘New Synthesis’ approach is based on the repre-

sentative agent framework with infinite-horizon consumers (e.g., McCallum and Nelson,

1999; Taylor, 1999; Clarida, Gaĺı and Gertler, 1999; Gaĺı, 2003; Woodford, 2003), thereby

ignoring redistributions of wealth across generations. In this paper we relax the assump-

tion of the immortal representative agent by introducing overlapping generations (olg)

à la Yaari (1965) and Blanchard (1985) into a stochastic framework with monopolistic

competition and staggered price adjustment. The setup employed maintains the main

features of the so called ‘New Synthesis’ and encompasses the standard representative

agent paradigm as a special case. Most importantly, in the olg model presented in this

paper interest rate rules that underreact to inflation pressures do not cause sunspots and

equilibrium multiplicities, being compatible with the existence of a determinate rational-

expectations equilibrium. This property of our framework enables us to study the effects

of inflation shocks under both ‘active’ and ‘passive’ interest rate rules.

From the dynamic analysis it emerges that positive inflation shocks produce a redistri-

bution of real wealth from current to future generations. Under these circumstances, the

nominal interest rate must not be necessarily forced to increase more than proportionally

with inflation to produce contractionary effects on current aggregate demand and guar-

antee stability. We show that an inflation shock has contractionary effects on output even

under a passive monetary policy rule. Our results thus provide a sound micro-founded

1Fair obtains his results in structural econometric models, while Giordani uses a VAR analysis.
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rationale for the empirical findings by Fair (2002, 2005) and Giordani (2003).

The scheme of the paper is as follows. Section 2 presents the dynamic New Keynesian

model with olg. The analysis of equilibrium dynamics under interest rate feedback rules

à la Taylor is developed in Section 3. Section 4 concludes.

2 The Model

This Section presents a baseline New Keynesian model extended to incorporate olg. The

economy consists of six types of agents: consumers, perfectly competitive life insurance

companies, a continuum of firms producing differentiated intermediate goods, perfectly

competitive final good firms, the government, and the monetary authority.

The demand-side is described by an extended stochastic discrete-time version of the

Yaari (1965)-Blanchard (1985) perpetual youth model, where labor supply decisions are

explicitly included. To keep the analysis as simple as possible, we assume a ‘cashless’

economy, according to the standard literature (e.g. Woodford, 2003).2 Private agents

face uncertainty on their life length and on the future time paths of economic variables.

The supply-side is characterized by a monopolistically competitive intermediate goods

market with staggered nominal price setting à la Calvo (1983). Following Clarida, Gaĺı

and Gertler (2002), the labor market displays imperfect competition. This feature of the

model, it is well-known, provides an analytically tractable way to introduce a ‘cost-push’

shock on inflation.

2.1 Consumers

Private agents have identical preferences and face the same constant probability of death,

ϑ ∈ (0, 1), in each period of time. Population is assumed to be constant over time and the

total size is normalized to one. It follows that at each date a new generation of size ϑ is

born and a fraction of equal size of the population passes away. Since there is no bequest

motive and lifetime is uncertain, a life insurance market is assumed to be operative, as

2The role of monetary aggregates in a dynamic stochastic New Keynesian model with olg is discussed
in Piergallini (2006).
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in Yaari (1965) and Blanchard (1985). In particular, competitive insurance companies

collect financial wealth from the deceased members of the population and pay fair premia

to survivors. Given the structure of the population, the zero profit condition in the

insurance sector implies that the gross return on the insurance contract, incorporated in

the individual flow budget constraint, is given by 1/(1 − ϑ).

2.1.1 The Individual Optimizing Problem

All agents face stochastic sequences of prices, interest rates, wages, taxes and profit shares,

and decide on consumption, labor supply, and wealth accumulation. Financial wealth is

held in the form of government bonds.

The representative agent j of the generation born at time s ≤ 0 maximizes the

following expected lifetime utility function:

E0

∞
∑

t=0

[β (1 − ϑ)]tU (Cs,t (j) , Ns,t (j)) , (1)

where β ∈ (0, 1) is the subjective discount factor, Cs,t (j) is the consumption of the

final good, and Ns,t (j) denotes agent’s labor, that is assumed to be supplied under

monopolistic competition. In particular, each agent j faces a demand function for her

labor services given by

Ns,t (j) =

(

Ws,t (j)

Wt

)

−ηt

Nt, (2)

where Nt denotes total employment, ηt > 1 is the elasticity of substitution between

differentiated labor inputs, allowed to change over time, Ws,t (j) is the individual nominal

wage rate, and Wt is the aggregate wage index given by

Wt =

(

t
∑

s=−∞

∫ ϑ(1−ϑ)t−s

0

Ws,t (j)1−ηt dj

)
1

1−ηt

. (3)

The term ϑ (1 − ϑ)t−s in (3) represents the time t dimension of the generation born at

time s ≤ t.
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The flow budget constraint of the representative agent born at time s is

Bs,t+1 (j)

Rt

≤
1

1 − ϑ
(Bs,t (j) + Ws,t (j) Ns,t (j) + Zs,t (j) − Ts,t (j) − PtCs,t (j)) , (4)

where Pt is the price of the final good, Bs,t (j) denote nominal riskless government bonds

carried over from period t − 1 and paying one unit of numéraire in period t, Rt denotes

the gross nominal interest rate on bonds purchased in period t, Zs,t (j) is the share in the

profits of intermediate goods firms, Ts,t (j) denote nominal lump-sum net taxes.3

The representative consumer of the generation born at time s ≤ 0 chooses the set

{Cs,0 (j) , Ns,0 (j) , Bs,1 (j)} and the sequences of contingency plans {Cs,t (j) , Ns,t (j) ,

Bs,t+1 (j)}∞t=1 in order to maximize (1) subject to (4), given the initial wealth Bs,0 (j) and

the stochastic sequences {Ws,t (j) , Zs,t (j) , Ts,t (j) , Rt, Pt}
∞

t=0, whose exogenously given

probability distributions are known by consumers.

To obtain a tractable solution to the model, we focus on the following period utility

function:4

U (Cs,t (j) , Ns,t (j)) ≡ log [Cs,t (j) − V (Ns,t (j))] , (5)

where the function V (•) is such that V ′ (•) , V ′′ (•) > 0.

The solution to the consumer’s intertemporal maximizing problem yields the following

first order necessary conditions:

1 = βRtEt

{

Cs,t (j) − V (Ns,t (j))

Cs,t+1 (j) − V (Ns,t+1 (j))

Pt

Pt+1

}

, (6)

Ws,t (j)

Pt

= (1 + uw
t ) V ′(Ns,t (j)), (7)

where (6) is the stochastic Euler equation and (7) is the efficiency condition on labor

supply, featuring the exogenous optimal wage markup uw
t = 1/ (ηt − 1). Since wages are

perfectly flexible, in the symmetric equilibrium all workers of all generations will set the

3It should be noted that the flow budget constraint incorporates the return on the insurance contract.
4Ascari and Rankin (2006) provide strong reasons for preferring this family of utility functions in olg

models with endogenous labor supply. They show that the present preferences’ specification removes
a negative labor supply problem which may arise for older generations in models à la Yaari-Blanchard
with leisure in the utility function when leisure is a normal good.
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same wage and supply the same hours of labor:

Ws,t (j) = Wt, (8)

Ns,t (j) = Nt, (9)

for all j ∈ [0, 1].

Define the stochastic discount factor of the representative agent j of generation s as

Qt,t+1(s, j) ≡ β
Ωs,t (j)

Ωs,t+1 (j)

Pt

Pt+1

, (10)

where Ωs,t (j) ≡ [Cs,t (j) − V (Ns,t (j))] is the sub-utility function, that can be interpreted

as consumption net of its subsistence level (Ascari and Rankin, 2006). Combining (10)

with (6) we obtain

Et {Qt,t+1 (s, j)} =
1

Rt

, (11)

for each s ∈ (−∞, t]. At the optimum the flow budget constraint (4) holds with equality

in each time period and the transversality condition precluding Ponzi’s game must hold:

lim
T→∞

Et

{

Qt,T (s, j) (1 − ϑ)T−t Bs,T (j)
}

= 0, (12)

where Qt,T (s, j) ≡
∏T

k=t+1 Qk−1,k (s, j) and Qt,t (s, j) ≡ 1. Solving (4) forward, using (10)

and imposing the no-Ponzi-game condition (12), the individual ‘adjusted’ consumption

function can be written as5

PtΩs,t (j) = Ψ

[

Bs,t (j) + Hs,t (j) − Et

∞
∑

T=t

Qt,T (s, j) (1 − ϑ)T−t PT V (Ns,T (j))

]

, (13)

where Hs,t (j) ≡ Et

∑

∞

T=t Qt,T (s, j) (1 − ϑ)T−t (Ws,T (j) Ns,T (j) + Zs,T (j) − Ts,T (j)) is

human wealth, defined as the expected present discounted value of future labor income

and of profit shares net of taxes, and Ψ ≡ [1 − β (1 − ϑ)] . For analytical convenience,

profit shares and lump-sum net taxes are age-independent, while newly born agents do

5See Appendix A.

5



not hold any financial assets.

2.1.2 Aggregation

At time t the size of the generation born at time s is ϑ (1 − ϑ)t−s. It follows that the

aggregate value Xt of a generic economic variable Xs,t is defined as

Xt ≡

t
∑

s=−∞

(

∫ ϑ(1−ϑ)t−s

0

Xs,t (j) dj

)

. (14)

Aggregation of all generations alive at time t yields the following expressions for the

aggregate financial wealth equation, the transversality condition, the aggregate adjusted

consumption, and the aggregate efficiency condition on labor supply, respectively:

Bt+1

Rt

= Bt + WtNt + Zt − Tt − PtCt, (15)

lim
T→∞

Et {Qt,T BT} = 0, (16)

PtΩt = Ψ

[

Bt + Ht − Et

∞
∑

T=t

Qt,T (1 − ϑ)T−t PT V (NT )

]

, (17)

Wt

Pt

= (1 + uw
t ) V ′(Nt), (18)

where Ωt ≡ [Ct − V (Nt)]. Given equations (15) and (17) and using the definition of

human wealth, one can derive the dynamic equation of adjusted consumption as6

PtΩt =
1

β
Et {Qt,t+1Pt+1Ωt+1} +

ϑΨ

β (1 − ϑ)
Et {Qt,t+1Bt+1} . (19)

According to equation (19), the time path of adjusted consumption is affected by the

aggregate level of financial wealth.

6See Appendix B.
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2.2 Firms

The supply-side of the economy is described by a continuum of monopolistic firms, in-

dexed by i, each producing a variety i of the differentiated intermediate goods. All

intermediate goods are employed as inputs by perfectly competitive firms producing the

single final good.

2.2.1 Final Good’s Firm

The final good representative firm faces a ces technology, Yt =
(

∫ 1

0
Xt (i)

ε−1

ε di
)

ε

ε−1

,

where Yt denotes aggregate output and Xt (i) is the quantity of intermediate good pro-

duced by firm i. Standard profit maximization yields the demand for each interme-

diate good i as a function of the relative price of i and of total production, Xt (i) =

(Pt (i) /Pt)
−ε Yt. In addition, the zero profit condition implies Pt =

(

∫ 1

0
Pt (i)1−ε di

)
1

1−ε

.

2.2.2 Intermediate Good’s Firm

Each intermediate good producer faces the following production function:

Yt (i) = Nt (i) , (20)

where Nt (i) represents labor services used by firm i.7 The nominal marginal cost, MCn
t ,

is given by

MCn
t = Wt, (21)

and thus is identical across firms.

Following Calvo (1983), nominal price rigidity is modeled by allowing random intervals

between price changes. Each period a firm adjusts its price with a constant probability

(1 − θ) and keeps its price fixed with probability θ.

The optimal pricing decision of the firm i able to revise its price in period t is to

7For simplicity, we have normalized the level of labor productivity to one.
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choose the price Pt (i) that maximizes

Et

∞
∑

T=t

θT−tQt,T YT (i) (PT (i) − MCn
T ) , (22)

subject to the sequence of demand constraints
{

YT (i) = (Pt (i) /PT )−ε YT

}∞

T=t
. The first

order condition for the optimal price is

Et

∞
∑

T=t

θT−tQt,T YT P ε
T

(

Pt (i) −
ε

ε − 1
MCn

T

)

= 0. (23)

Condition (23) implies that firms set their price equal to a markup over a weighted

average of expected future nominal marginal cost. Only in the limiting case of flexible

prices (θ = 0) all producers set the price as a constant markup over marginal cost,

Pt (i) = ε/ (ε − 1) MCn
t .

At the symmetric equilibrium the price index follows a law of motion given by

Pt =
[

θ (Pt−1)
1−ε + (1 − θ) Pt (i)1−ε]1/1−ε

. (24)

2.3 The Fiscal Authority

The government issues nominal debt in the form of interest-bearing bonds Bt. For the

sake of simplicity and without loss of generality, we set the level of public expenditure to

zero. Thus, the flow budget constraint of the government in nominal terms is given by

Bt+1

Rt

= Bt − Tt. (25)

The solvency condition requires that lim
T→∞

Et {Qt,T BT} = 0. We focus on a fiscal policy

regime which allows for non-zero secondary surpluses or deficits of the kind prescribed

by the budget rules of the Stability and Growth Pact in the European Monetary Union.

In particular, we follow Schmitt-Grohé and Uribe (2000) and consider a budget rule

where the sequence of secondary surpluses, {St}
∞

t=0, is exogenous and bounded. Hence,
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lump-sum net taxes are given by

Tt = (Rt−1 − 1)
Bt

Rt−1

+ St. (26)

Substituting (26) into the government’s flow budget constraint (25) yields the following

expression for the evolution of outstanding public debt:

Bt+1

Rt

=
Bt

Rt−1

− St = Dn
t , (27)

where Dn
t ≡ B0/R−1 −

∑t
T=0 ST .

2.4 The Monetary Authority

We assume that the monetary authority’s policy decisions are described in terms of an

interest rate feedback rule of Taylor’s type, where the interest rate is set as an increasing

function of the inflation rate. Specifically, the monetary policy reaction function takes

the form:

Rt = R

(

Pt

Pt−1

)φπ

, (28)

where R denotes the steady state gross real interest rate and φπ is a non-negative param-

eter.

2.5 Equilibrium

Equilibrium in the goods market requires Yt (i) = Xt (i), for all i ∈ [0, 1], and

Yt = Ct. (29)

Equilibrium in the labor market implies Nt =
∫ 1

0
Nt (i) di = Yt

∫ 1

0
Yt(i)
Yt

di. Thus the

aggregate production function is

Yt =
Nt

δt

, (30)

where δt ≡
∫ 1

0
(Pt (i) /Pt)

−ε di represents a dispersion index of relative prices across firms.
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Using the goods market clearing condition (29) and the aggregate production function

(30), the equilibrium aggregate level of adjusted consumption is given by

Ωt = [Yt − V (δtYt)] . (31)

After combining the aggregate labor supply (7), the cost minimization condition (21)

and the aggregate production function (30), one obtains the following expression for real

marginal cost, MCt:

MCt = (1 + uw
t ) V ′(δtYt). (32)

2.6 Linearized Equilibrium Conditions

We now perform a first-order log-linear approximation of the global system around a

non-stochastic steady state with zero inflation and positive public debt.8 Let xt be the

log-deviation of a generic variable Xt from its steady state value X, xt ≡ log Xt − log X.

On the demand-side, the equilibrium adjusted consumption (31) approximates to

ωt = σyt, (33)

where σ ≡ [1 − V ′ (Y )] Y/Ω = Y/εΩ. The law of motion for ωt can be obtained substi-

tuting (27) into (19) and log-linearizing around the steady state:

ωt = −
1

1 + λ
(rt − Et {πt+1}) +

1

1 + λ
Et {ωt+1} +

λ

1 + λ
dt, (34)

where λ ≡ ϑΨRDn/ (1 − ϑ) PΩ, πt ≡ pt − pt−1 is the inflation rate, and dt ≡ (dn
t − pt) is

the end-of-period real public debt deriving from the presence of intergenerational wealth

effects, which by definition evolves as follows:

dt = dt−1 − πt + ∆dn
t . (35)

8See Appendix C.
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The term ∆dn
t can be interpreted as a secondary deficit disturbance, assumed to be

exogenous and bounded.

On the supply-side, log-linear approximations of the optimal price setting equation

(23) and the definition of price index (24) imply

πt =
1

R
Et {πt+1} + κ̃mct, (36)

where κ̃ ≡ (1 − θ) (R − θ) /Rθ. From (32), the log-linear version of real marginal cost is

given by

mct = ηyt + uw
t , (37)

where η ≡ V ′′ (Y ) Y/V ′ (Y ) = εV ′′ (Y ) Y/(ε − 1).

Substituting (33) into (34) and (37) into (36) yields the is equation and the Phillips

curve, respectively:

yt = −
1

σ (1 + λ)
(rt − Et {πt+1}) +

1

1 + λ
Et {yt+1} +

λ

σ (1 + λ)
dt, (38)

πt =
1

R
Et {πt+1} + κyt + ut, (39)

where κ ≡ κ̃η and ut ≡ κ̃uw
t is the source of inflation shocks and is assumed to obey a first-

order autoregressive process, ut = ρuut−1+εu
t , being {εu

t } a white noise and ρu ∈ [0, 1). In

the present optimizing framework with olg the current level of financial liabilities of the

government is net wealth for the living generations. Changes in the level of public debt in

real terms tend to change the current level of aggregate output into the same direction.

It should be noted that in the limiting case of the infinitely-lived representative agent

setup, where λ = 0, intergenerational wealth effects are not operative and equation (38)

collapses into the standard New Keynesian is equation.

The structural equations (38) and (39) determine yt and πt conditional on the time

paths of both the real public debt and the nominal interest rate rt. The latter is implied

11



by the log-linear version of the monetary policy rule (28):

rt = φππt. (40)

Monetary policy is ‘active’ (‘passive’) if and only if φπ > (<) 1. In other words, under an

active (passive) policy regime, the central bank reacts to an increase in the inflation rate

with a more (less) than one-to-one increase in the nominal interest rate.

To study the dynamic properties of the model, it is convenient to use the following

definitions.

Definition 1. A rational-expectations equilibrium is a set of sequences {yt, πt, dt, rt}
∞

t=0

satisfying (35), (38), (39) and (40) for a given set of exogenous bounded processes {∆dn
t , ut}

∞

t=0

and an initial value of financial wealth d−1.

Definition 2. The model exhibits a determinate rational-expectations equilibrium

if the system composed of (35), (38), (39) and (40) has a unique bounded solution for

{yt, πt, dt, rt}
∞

t=0 , given the initial condition d−1 and the bounded disturbance processes

{∆dn
t , ut}

∞

t=0.

We can now state the following proposition.

Proposition 1. The interest rate rule (40) implies a determinate rational-expectations

equilibrium for each value of the monetary policy response coefficient φπ ≥ 0. Proof:

See Appendix D.

From Proposition 1 it follows that the so-called ‘Taylor principle’, φπ > 1, is

not necessary to ensure equilibrium uniqueness. In our New Keynesian framework with

finitely-lived private agents, interest rate rules that underreact to inflation may well

induce determinacy of equilibrium. The economic intuition can be explained as follows.

An upward perturbation in inflation over its steady state value implies a lower level of real

financial assets which tends to reduce consumption through the net wealth effect. Such

a contractionary effect follows from the fact that inflation generates a redistribution of

real wealth from current to future generations, because the reduction in the real value of

government liabilities dampens the burden of future fiscal restrictions. Intergenerational
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wealth effects thus work as automatic stabilizers and make active interest rate rules non-

necessary for equilibrium determinacy.

3 Inflation Shocks and Equilibrium Dynamics

The aim of this Section is to investigate equilibrium dynamics under inflation shocks. We

first parameterize the model and then perform impulse response functions for alternative

values of the monetary policy coefficient on inflation.

We parameterize the model assuming that each period corresponds to a quarter of

year. To make the argument as transparent as possible, the model is calibrated along

the lines of the existing literature. We set the steady state public debt to gdp ratio at

0.6 at annual level as in Benigno and Woodford (2003). The steady state real interest

rate is 1.25%, as in McCallum (2001). The persistence of the inflation shock is set equal

to ρu = 0.3. We calibrate the probability of death between two consecutive periods at

ϑ = 0.015. We assume a steady state wage mark-up of up = 1/5 and set the steady

state fraction of time in employment at N = 1/2, consistently with Gaĺı, López-Salido

and Vallés (2003, 2004). Finally, the probability of keeping the price fixed between two

consecutive quarters is set at θ = 0.66, as in Rotemberg and Woodford (1997). Table 1

summarizes the parameterization of the model and reports the implied parameter values

under the assumption that V (N) ≡ N1+ϕ/(1 + ϕ), where ϕ = V ′′ (N) N/V ′ (N) is the

inverse of the Frisch elasticity.

Figure 1 plots the responses of the economy to a positive inflation shock for different

values of the monetary policy coefficient on inflation: φπ = 0.85, as in the pre-Volcker

era (Taylor 1999), φπ = 1.5 (Taylor, 1993) and φπ = 0 (i.e. the case of a pure interest

rate peg). A close inspection of impulse response functions reveals that even a monetary

policy rule that responds to increases in inflation with a less than one-to-one increase

in the nominal interest is stabilizing, contrary to the predictions of the standard New

Keynesian models in which the equilibrium would be indeterminate.

When the nominal interest rate is pegged at a constant level, φπ = 0, following an
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inflation shock, both output and the real interest rate decline significantly. For φπ = 0.85,

as in the pre-Volker era, we observe similar dynamic responses to a positive inflation

shock, though the contraction of output is larger while the real interest rate decline is

less sharp. On the other hand, for an inflation coefficient of φπ = 1.5 the real interest

rate and output move in opposite directions, consistently with the standard theory.

The intuition for the economic mechanism underlying these results is the following.

After an inflation shock, real wealth of currently alive generations declines and output

moves downwards. Inflation redistributes resources from current to future generations,

since the decline in the real value of government liabilities reduces the tax load for yet

unborn individuals. The presence of wealth effects in the is equation does enhance the

stability of the system, making the respect of the Taylor principle unnecessary. Follow-

ing a positive inflation shock, the negative effects on both output and the real interest

rate come about because wealth effects tend to reduce aggregate demand redistributing

resources from currently alive to future generations.

4 Conclusions

This paper has demonstrated how the explicit consideration of wealth effects in a baseline

New Keynesian model can explain the decrease in output in response to an inflation shock

in a way consistent with recent empirical evidence. Specifically, it has been shown that

an inflation shock generates a negative effect on aggregate demand even under a passive

monetary policy. An increase in inflation does not need to be counterbalanced by a more

than proportional increase in the nominal interest rate to ensure economic stability.

In conclusion, our results suggest a possible simple solution to the seeming conflict

between empirical evidence and the predictions of the existing New Keynesian literature

regarding the effects of inflation shocks.
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Schmitt-Grohé, S. and M. Uribe (2000), Price Level Determinacy and Monetary Policy

under a Balanced-Budget Requirement. Journal of Monetary Economics 45, 211-246.

Taylor, J.B. (1993), Discretion Versus Policy Rules in Practice. Carnegie-Rochester

Conference Series on Public Policy 39, 195-214.

Taylor, J. B. (1999), Monetary Policy Rules. Chicago: The University of Chicago

Press.

Woodford, M. (2003), Interest and Prices. Princeton and Oxford: Princeton Univer-

sity Press.

Yaari, M.E. (1965), Uncertain Lifetime, Life Insurance, and the Theory of the Con-

sumer. The Review of Economic Studies 32, 137-150.

Appendices

A. Derivation of Equation (13)

Using expression (11), we can write

Bs,t+1 (j)

Rt

= Et {Qt,t+1(s, j)Bs,t+1 (j)} . (1A)

Thus, the individual flow budget constraint (4) (which at optimum holds with equality)

takes the following form:

(1 − ϑ)Et {Qt,t+1 (s, j) Bs,t+1 (j)} = Bs,t (j) + Y s,t (j) − PtΩs,t (j) − PtV (Ns,t (j)) , (2A)
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where Y s,t (j) = Ws,t (j) Ns,t (j)+Zs,t (j)−Ts,t (j). Form (2A), imposing the transversality

condition (12), we obtain the intertemporal budget constraint:

Et

∞
∑

T=t

Qt,T (s, j) (1 − ϑ)T−tPT Ωs,T (j)

= Bs,t + Et

∞
∑

T=t

Qt,T (s, j) (1 − ϑ)T−tY s,t (j) +

−Et

∞
∑

T=t

Qt,T (s, j) (1 − ϑ)T−tPT V (Ns,T (j)) . (3A)

From (10) we have

Qt,T (s, j) PT Ωs,T (j) ≡ βT−tPtΩs,t (j) , (4A)

Et {Qt,T (s, j) PT Ωs,T (j)} ≡ βT−tPtΩs,t (j) . (5A)

Substituting (5A) into (3A) yields

PtΩs,t (j) = Ψ

[

Bs,t (j) + Hs,t (j) − Et

∞
∑

T=t

Qt,T (s, j) (1 − ϑ)T−t PT V (Ns,T (j))

]

, (6A)

where Ψ ≡ [1 − β (1 − ϑ)]. This shows equation (13).

B. Derivation of Equation (19)

The aggregate budget constraint (15) can be re-written as follows:

Et {Qt,t+1Bt+1} = Bt + Y t − PtΩt − PtV (Nt) . (1B)

Solving (1B) for Bt, substituting into (17) and using the definition of aggregate human

wealth, one obtains

Ψ−1PtΩt = Et {Qt,t+1Bt+1} + PtΩt + Et

∞
∑

T=t+1

Qt,T (1 − ϑ)T−t Y T + (2B)

−Et

∞
∑

T=t+1

Qt,T (1 − ϑ)T−t PT V (NT ) .
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Leading (2B) forward one period yields

Ψ−1Pt+1Ωt+1 = Bt+1 + Et+1

∞
∑

T=t+1

Qt+1,T (1 − ϑ)T−(t+1) Y T + (3B)

−Et+1

∞
∑

T=t+1

Qt+1,T (1 − ϑ)T−(t+1) PT V (NT ) .

Multiplying both sides by Qt,t+1 (1 − ϑ) and taking expectations gives

(1 − ϑ) Ψ−1Et {Qt,t+1Pt+1Ωt+1} = (1 − ϑ) Et {Qt,t+1Bt+1} + (4B)

+Et

∞
∑

T=t+1

Qt,T (1 − ϑ)T−t Y T +

−Et

∞
∑

T=t+1

Qt,T (1 − ϑ)T−t PT V (NT ) .

Solving (4B) for Et

∑

∞

T=t+1 Qt,T (1 − ϑ)T−t Y T−Et

∑

∞

T=t+1 Qt,T (1 − ϑ)T−t PT V (NT ), sub-

stituting into (2B) and rearranging, one obtains

PtΩt =
1

β
Et {Qt,t+1Pt+1Ωt+1} +

ϑΨ

β (1 − ϑ)
Et {Qt,t+1Bt+1} . (5B)

This shows equation (19).

C. Steady State Analysis

The steady state, around the equilibrium conditions are log-linearized, is such that Yt =

Y > 0, Ω > 0, Pt = P > 0, MCt = MC > 0, Rt = R > 1, B > 0, and Dt = D > 0 for all

t ≥ 0. This steady state is also the flexible price equilibrium, where

MC = (1 + uw) V ′(Y ) =
ε − 1

ε
, (1C)

δ = 1. (2C)
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From equations (19) and (27) it must be that

R =
1

β
+

ϑΨ

β (1 − ϑ)

B

PΩ
, (3C)

B

R
= Dn. (4C)

From (3C) it should be noted that as long as private agents have finite horizons (ϑ > 0)

the steady state real interest rate is affected by the steady state non-human wealth. Only

in the limiting case of infinite horizons (ϑ = 0) in steady state the real interest rate is

pinned down by the subjective rate of time preference, R = 1/β.

D. Proof of Proposition 1

The system (35), (38), (39) and (40) can be written in matrix form as

Et {xt+1} = Mxt + Qet, (1D)

where the vector of endogenous variables is xt =

[

πt yt dt−1

]

′

, the vector of exogenous

variables is et =

[

∆dn
t ut

]

′

, and the matrices of coefficients are

M =













R −Rκ 0

1
σ

(φπ + λ − R) 1 + λ + Rκ
σ

−λ
σ

−1 0 1













, Q =













0 −R

0 0

1 0













.

The system (1D) is composed of two non-predetermined variables, πt and yt, and a

predetermined one, dt−1. Following Blanchard and Khan (1980), there exists a unique

stable rational expectations solution if and only if matrix M has two eigenvalues outside

the unit circle and two eigenvalues inside the unit circle.

The characteristic equation of matrix M is of the form

P (µ) = µ3 + M2µ
2 + M1µ + M0 = 0. (2D)
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where M0 = − detM = −
[

R (1 + λ) + Rκφπ

σ

]

. The characteristic equation (2D) satisfies

the following conditions:

|M2| = trM = 2 + R + λ +
Rκ

σ
> 3; (3D)

P (−1) = −1 + M2 − M1 + M0 (4D)

= −

[

2 (2 + λ) (1 + R) +
Rκ (2 + λ + 2φ)

σ

]

< 0;

P (1) = 1 + M2 + M1 + M0 (5D)

=
Rκλ

σ
> 0.

Conditions (3D)-(5D) are sufficient for equation (2D) to have one root inside the unit

circle and two roots outside.9

9See Woodford (2003).
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Table 1: Calibration

Baseline Calibration

Gross real interest rate R 1.0125
Public debt to gdp ratio Dn

PY
2.4

Probability of death ϑ 0.015
Time in employment N 1/2
Wage mark-up up 1/5
Degree of price stickiness θ 0.66
Persistence of Inflation Shock ρu 0.3

Implied Parameters

Discount factor β 0.99
IS parameter σ 0.46
Inverse of the Frisch elasticity ϕ 0.29
Wealth effect parameter λ 0.002
Phillips curve parameter κ̃ 0.025
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Figure 1: Dynamic Responses to a Unit Inflation Shock
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