
 

 
University of Rome “Tor Vergata” 

 
 
 
 

COMPARATIVE GENOMIC APPROACH FOR 
PROTEIN-PROTEIN INTERACTION VALIDATION 

 
 
 
 
 
 
 
 

Luisa Montecchi-Palazzi 
 
 
 
 
 
 
 
 

PhD in Cellular and Molecular Biology-XVIIth cycle 
 
 



Comparative genomic approach for protein-protein interaction validation 

 
 

Luisa Montecchi-Palazzi 

2 

CONTENTS: 
 
GLOSSARY 
 
ABSTRACT 
 
PART 0: INTRODUCTION 
Overview on protein interaction data  

• Protein interaction detection methods  
• Current status of protein interaction exploration  

Approaches to protein interaction validation 
• Interaction validation by network intersection 
• Interaction validation by co-annotation 
• Interaction validation by co-expression  
• Interaction validation by genome comparison 

 
PART 1: THE EXPLOTATION OF THE PEPSPOT 
TECHNOLOGY TO INVESTIGATE PEPTIDE 
BINDING PREFERENCES  
PepSpot as a protein interaction detection method 

• PepSpot technology 
• Proteomic screening of SH3 mediated interactions with PepSpot 

method 
• PepSpot network comparison 
• SH3 mediated network comparison 

14-3-3 partner prediction based on PepSpot mutagenesis 
• 14-3-3 containing proteins  
• PepSpot mutagenesis of 14-3-3 binding peptides 
• Implementation of a prediction tool based on PepSpot 

mutagenesis  
• Benchmark of the prediction tool versus experimental results  
• Comparison of the prediction tool with SCANSITE and ELM 
 



Comparative genomic approach for protein-protein interaction validation 

 
 

Luisa Montecchi-Palazzi 

3 

PART 2: APPLICATION OF THE COMPARATIVE 
GENOMIC FILTER AND OTHER VALIDATION 
STEPS FOR AN IN SILICO 14-3-3 BINDING 
PEPTIDE SCREENING  
Comparative genomic filter 

• Scope  
• Building of orthologous protein alignments  
• Proof of concept using PROSITE patterns and ELM motifs  
• Scoring the conservation of putative 14-3-3 ligands  

Procedure for the in silico 14-3-3 binding peptide 
screening 

• Selection criteria at the peptide level 
• Selection criteria at the protein level 

Result of the in silico screening and comparison with 
experimental results 

• In vivo detection of 14-3-3 mediated interactions  
• Filters benchmark against experimental data  
• In silico prediction of 14-3-3 mediated interactions  

 
CONCLUSIONS 
 
APPENDIX 
 
MATERIALS AND METHODS 

• Gene Ontology 
• Curation of protein-protein interaction 
• Building a proteomic table to combine S. Cerevisae data. 
• Protein functional pattern 

 
REFERENCES 
 
ACKNOWLEDGMENTS 



Comparative genomic approach for protein-protein interaction validation 

 
 

Luisa Montecchi-Palazzi 

4 

GLOSSARY: 
 
 
Interactome : complete set of protein-protein interactions of a given 
organism. 
 
Proteome : complete set of protein-encoding Open Reading Frames (ORF) 
automatically translated from fully sequenced genomes of a given organism. 
 
Protein pattern or motifs : specific cluster of amino acids known to be 
associated to a specific protein function. 
 
Position Specific Scoring Matrix (PSSM) : probabilistic representation of a 
protein pattern, using a matrix storing each residue propensity to occur 
within a sub-sequence matching the pattern. 
 
Regular expression : deterministic representation of a protein pattern taking 
advantage of symbols to list the allowed residues within a sub-sequence 
matching the pattern. 
 
Databases acronyms : 
 
GO: Gene Ontology 
ELM : Eukaryotic Linear Motif database 
SGD : Saccharomyces Genome Database 
CYGD : Comprehensive Yeast Genome Database 
YPD : Yeast Protein Database  
MINT: Molecular INTeraction database 
BIND : Biomolecular Interaction Network Database 
DIP : Database of Interacting Proteins 
UniProt: Universal Protein resource 
 
Abbreviations: 
 
ORF : Open Reading Frame 
Co-Ip : CO-ImmunoPrecipitation 
PSSM : Position Specific Scoring Matrix 
BLU : Boheringer Light Units 
PepSpot : PEPtides arrays generated by SPOT synthesis 
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ABSTRACT 
 
 
Currently , a large community effort focuses on protein interaction data 

as a mean to explore uncharacterized proteins function, discover new 
pathways and identify potential drug targets. However, the redundant 
screenings carried out in the past four years in Saccharomyces cerevisae 
show a very weak overlap and underline the need of protein interaction data 
validation. Here we propose a new comparative genomic validation 
approach based on the conservation of binding sequences within orthologs 
alignments of fifteen closely related yeast species. 
 
Taking the 14-3-3 domains as a study case we explore the binding 
specificities of their ligand peptides taking advantage of mutagenesis 
analysis carried out by PepSpot experiments. Using these experimental 
results we create a prediction tool based on regular expression combined 
with position specific scoring matrix able to screen the full in S. cerevisae 
proteome and identify putative 14-3-3 domain ligands. The comparative 
genomic method together with other well established protein interaction 
validation approaches are benchmarked as filters to increase the accuracy of 
this prediction. We show that the conservation across several yeast species 
of 14-3-3 interacting sequences successfully discriminates binding sites from 
spurious regions matching by chance ligand consensus and increase the 
prediction accuracy of a four fold.  
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INTRODUCTION 
 
 
In the current post-genomic era one of the main issues of molecular 

biology is the functional characterisation of gene products. Taking advantage 
of the massive sequence information available we can now list the genes and 
the proteins encoded by a steadily increasing number of genomes. However, 
sequence knowledge is just the first step of a “proteome” understanding and 
is far from enough if we aim at deciphering how cellular networks regulate 
complex processes such as development or external stimuli responses. 
Comprehensive protein-protein interaction maps promise to reveal many 
aspect of regulatory and molecular mechanism underlying cellular function.  
Moreover, interaction network together with RNA expression data and 
genomes sequences are the major component whose integration should lead 
system biologists to re-create comprehensive artificial cellular model in the 
forthcoming years. To pursuit this aim it is important to establish unified 
standard to facilitate navigation among different data types and indeed to 
ensure the reliability of the information provided. Significant efforts are 
currently done not only to standardize and map related gene RNA and 
protein sequences (Kersey P et al., 2005) but also to release expression 
interaction (Brazma et al., 2001) and other proteomic data (Orchard et al., 
2004) according to a unified format to the public domain. Our interest 
focuses on protein-protein interaction, and here we want to briefly 
summarize the different experimental methods used to determine protein 
interaction and the issues raised by the recent advance in interaction network 
exploration in particular the need of data validation procedures.  

 
Overview on protein interaction data  

 
 

Protein interaction detection methods  
 
 

Currently we have collected more than a hundred experimental methods 
described in the literature as tools to detect protein interaction1. (See 
materials and methods section Curation of protein-protein interaction).  In 
table 1 we report only some of the most popular methods and their general 
                                                 

1 http://cvs.sourceforge.net/viewcvs.py/psidev/psi/mi/controlledVocab 
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features. Each method detects protein interaction at a specific level of 
resolution. For instance X-ray crystallography provides an atomic resolution 
of the interaction interfaces, whereas co-immunoprecipitation (Co-Ip) only 
detects the proteins participating in an interaction but does not give any clue  
about the topology of the complex. On the other hand, Co-Ip provides an 
insight on complex formation within living cells and has been implemented 
in a high through put scale determining the in vivo partners of thousand of 
proteins. Besides, in order to determine ligand affinity in a straightforward 
manner others biophysical analysis are required and similarly specific 
experiments must be performed to assess interaction partners location in vivo 
or to determine the specific residues involved in an interaction.  

 
Class Method Analytical 

Perspective  
Resolution 

level 
Advantages 

Biochemical  
 Co-immunoprecipitation (Co-Ip) Perspective Complex in vivo 
 ELISA Analytical Protein  
 Filter Blot Analytical Protein  
 Pull down Analytical Protein/residues  
 Co migration in non denaturing gel Analytical Complex in vivo 
Biophysical  
 X-ray crystallography Analytical Atomic  
 NMR Analytical Atomic  
 Surface plasmon resonance (Biacore) Analytical Protein kinetics 
 Isothermal titration calorimetry Analytical Protein kinetics 
 Scintillation proximity assay  Analytical Protein kinetics 
Protein Complementation 
 Two hybrid Perspective Protein  
 FRET Analytical Protein in vivo location 
 Bacterial two-hybrid Perspective Protein  
Array technologies 
 Protein array Perspective Protein  
 Pep Spot  Perspective Residues  
 Phage display Perspective Residues  

Table 1 : Main features of some protein interaction detection method. We call 
perspective the methods that have currently been used to explore uncharacterized protein 
interaction whereas analytical apply to experimental procedures that investigate known 
interactions.  



Comparative genomic approach for protein-protein interaction validation 

 
 

Luisa Montecchi-Palazzi 

8 

Overall there is currently no single interaction detection procedure that can 
provide alone comprehensive information about an interaction in vivo. The 
only way to collect all possible  data about an interaction is through the 
integration of different experimental results. This is the main scope of 
protein interaction database such as MINT (Zanzoni et al., 2002), Intact 
(Hermjakob et al., 2004b), DIP (Xenarios et al., 2002), HPRD (Peri, S. et 
al., 2004) and BIND (Alfarano et al., 2005) where all experimental 
evidences supporting a given interaction are reported and uniformly 
collected in a common repository. 
 
In the last five years two techniques have emerged to explore large numbers 
of proteins interaction without any prior knowledge of their biology apart 
from their sequences. Two hybrid (Fields & Song 1989)and Co-Ip are in fact 
well established experimental methods often used in small scale experiments 
that have also been adapted to high level of automation for systematic 
detection of large numbers of interacting proteins.  
 
The double hybrid or two hybrid system is a method that uses transcriptional 
activity as a measure of protein-protein interaction. It relies on the modular 
nature of the site-specific transcriptional activators GAL 4 (see Figure 1) , 
which consist of a DNA-binding domain (BD) and a transcriptional 
activation domain (AD). The DNA-binding domain serves to target the 
activator to a reporter gene that will be expressed, and the activation domain 
contacts other proteins of the transcriptional machinery to enable 
transcription to occur. The two-hybrid system is based on the observation 
that the two domains of the activator need to be non-covalently brought 
together by the interaction of any two proteins.  
 
The application of this system requires the expression of two hybrid plasmid 
encoding the two proteins under study as fusion protein of the activator and 
DNA binding domain. Several variations of the high throughput 
implementations of the two hybrid method are reported in the literature and 
each one has specific features that can deeply influence the reliability of the 
results. One of these is the two hybrid matrix approach (Uetz et al., 2000) 
where a collection of haploid yeast strain carrying hybrid plasmids is mated 
with an equivalent collection of opposite mating type on a microwell plate 
array.  
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Figure 1 : Two hybrid mechanisms for protein interaction detection. When a polypeptide 
fused to the binding domain interact with the one fused to the activation domain a reporter 
gene is expressed. 

 
 

This approach has the advantage of exploring systematically all possible 
protein pairs for interaction testing an interaction in both experimental 
directionalities (A-bait-B-prey and B-bait-A-prey) and thus the 
investigations are generally limited to hundreds of proteins. However, the 
interacting protein identity is associated to their position in the mating matrix 
and re-sequencing of the positives clones is not always performed. On the 
other hand, in the library pooling approach (Ito et al., 2001) a complex 
collection of hybrid plasmid are randomly cloned into yeast cells enabling 
the exploration of thousands of protein interactions but without guarantee of 
testing all possible combinations. In the library approach the sequence of the 
positive clones is always determined downstream certifying the proper 
insertion of the coding sequence in the plasmid. Moreover using the library 
approach several clones can detect the same interaction, and the number of 
double hybrids that independently report an interaction is used as an internal 
reliability measure. Finally when a library of coding sequence fragments are 
used (Rain et al., 2001), each interaction is redundantly detected and the 
minimal binding regions required for the interaction can be derived by 
comparing the clone sequences. In all cases although two hybrid interactions 
occur in vivo, the two protein moieties are artificially co-expressed and 
brought together in the nucleus to test their ability to interact. However, the 
two proteins under analysis might never be expressed at the same time or in 
the same cell compartment in a natural system.  
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Co-immunoprecipitation instead is a method that can be carried out without 
altering the natural expression of proteins within cells. In fact Co-Ip relies on 
an antibody, specific for the protein of interest (generally called bait) or any 
tag expressed within a fusion protein , used to separate the bait from a protein 
mixture or a cell lysate and to capture its ligand simultaneously (see Figure 
2). The protein partners that bind to the bait protein are retained by the resin 
are co-eluted, then they are separated by electrophoresis and identified either 
by immunoblot or by mass spectrometry when the experiment is carried out 
in a high throughput manner. The exploitation of tags fused to the proteins 
often implicates transfection of expression plasmids leading, as a 
consequence, to over-expressing the bait. On the other hand the tags can also 
be attached to the proteins by genomic integration of the tag coding 
sequence directly in the genomic copy of the gene under study leaving gene 
expression under the control of the endogenous promoter. Nevertheless the 
tags ensure specific retention of the bait in the affinity column and reduce 
the incidence of contaminant proteins (Ho et al., 2002). For instance 
engineered tags like the tandem affinity purification (TAP tag) allow a 
double purification as it  encodes a calmodulin-binding peptide and the S. 
aureus protein A separated by a cleavage site (Gavin et al., 2002, 
Bouwmeester T et al., 2004).  
 

Figure 2 : Main steps of a co-immunoprecipitation experiment. 
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Although Co-Ip is generally considered as a method detecting naturally 
occurring interaction it does not prove that two or more proteins directly 
bind each other. Co-Ip detects clusters of aggregated proteins without 
providing any indication of the binary pairs of interacting proteins within a 
complex. Such cluster are generally deployed according to two alternative 
schema, the so call “spoke model” where all possible bait-prey pairs are 
inferred to interact or the “matrix model” where all bait-prey and prey-prey 
pairs are predicted to be ligand. In fact only complementary experimental 
results derived from pull down, ELISA, or other in vitro methods can 
determine if two purified proteins directly interact without the intermediation 
of a scaffold or bridging protein. Even two hybrid results although they 
consist on binary pairs of interacting proteins do not prove an interaction is 
direct as whenever a third protein bridge the bait and the prey its presence is 
not detectable by the system.  
 
Current status of protein interaction exploration  

 
 
In the past four years many high throughput two hybrid and Co-Ip 

experiments have been carried out to explore interaction networks of the 
main model organisms (see Table 2).  

 
Organisms Complex 

purified 
Binary 
interaction 

Method Reference  

H. pylori  1.465 Two hybrid pooling of 
fragment library  

Rain et al., 2001 

S. cerevisae  4.549  Two hybrid pooling 
approach 

Ito et al., 2001 

S. cerevisae  1.511 Two hybrid array 
approach 

Uetz et al., 2000 

S. cerevisae 589 3.757(*) Tap tag 
coimmunoprecipitation  

Gavin et al., 2002 

S. cerevisae 741 2.583(*) Flag tag 
coimmunoprecipitation  

Ho et al., 2002 

C. elegans  4.624 Two hybrid pooling 
approach  

Li et al., 2004 

D. megalonaster  20.676 Two hybrid pooling 
approach  

Giot et al., 2003 

H. sapiens 32 1.814(*) Tap tag 
coimmunoprecipitation 

Bouwmeester T  et 
al., 2004 

Table 2 : High throughput interaction detection experiments. 
(*) Binary interactions are derived from the co-purified complex only as a set of bait-

prey pairs, according to the “spoke model”. 
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In the case of C. elegans and D. megalonaster most of the known 
interactions are derived from the high throughput experiments, whereas for 
human and yeast other small scale experimental results are available in the 
public interaction databases. Regarding Homo sapiens 11.500 unique 
interactions are spread in the various interaction databases, only 15% have 
been detected on a single large scale experiment and 26 % of them have 
been observed in two independent experiments (Cesareni et al., 2005). For S. 
cerevisae around 13.000 unique interactions can be retrieved, more than 
90% of those come from high throughput experiments and only 15 % have 
two or more supporting experiments (see Graph 1). 
 

Graph 1 : Distribution according to their number of supporting experimental evidences 
of the yeast 13.000 interactions network. 

 
 

The lack of overlap between the yeast high throughput experiments is 
striking and has three possible explanations: the various method may not 
have reached saturation of an estimated 30.000 interactions network (Ito et 
al., 2002, von Mering et al., 2002), the methods may produce a significant 
fraction of false positives, some methods may have bias towards certain 
types of interactions, resulting in the complementarities between the 
methods.  
 
This observation highlights the necessity of using interaction data with 
caution and it underlines the need of further experimental investigation to 
complete our knowledge at least in model organisms of fully covered 
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interaction networks. Moreover it emphasizes the utility of interaction 
databases as integrative repository of the multiple evidences needed to fully 
investigate and assess the reliability of protein interactions. Finally the 
distrust about interaction information obtained by high throughput 
experiments has stimulated the development of validation procedures to 
identify interactions that are more likely to be true.  
 
Current approaches to protein interaction validation 
 
 
Interaction validation by network intersection  
 
 

The idea of systematically double checking interactions has been first 
proposed by Tong and co-workers (Tong et al., 2002) that investigate SH3 
mediated interactions in yeast both by phage display and by two hybrid. 
Only 25 % of the interactions are detected by both methods but they show 
that the intersection is highly significant as the overlap of randomized 
networks is by far much smaller. Moreover the intersection network they 
obtain is enriched in interaction derived from the literature over threefold 
compared to the single method networks. Thus the authors conclude that 
considering intersection network is a simple  but powerful mean to exclude 
the false positive results of each experimental screening.  
 
Similar conclusions come out of the systematic comparison of all large scale 
yeast data sets benchmarked against a trusted reference set of manually 
curated interactions derived from the literature (von Mering et al., 2002). 
This study confirms that the highest accuracy in recovering known 
interactions is achieved by deriving intersection networks where every 
interaction is supported by any pair of evidence and that the overlap of high 
throughput data is twenty times larger than expected by change. Furthermore 
the overlap networks mainly consist of interaction in which both partners 
have the same functional annotation and cellular localisation.  
 
Accordingly in the MINT database a general confidence value is assigned to 
every interaction based on the following criteria : 
Confidence level 1: interaction detected by a single experiment 
Confidence level 2: interaction detected by two or more experiments 
reported in the same publication. 
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Confidence level 3: interaction detected by two or more experiments from 
independent publications. 
Confidence level 4: interaction detected by two or more independent 
experiments and at least one of those is an in vivo Co-Ip. 
Confidence level 5: interaction detected by two or more independent 
evidences and at least one of those is an in vivo Co-Ip experiment carried out 
using antibodies against endogenous proteins. 
 
This simple tool provides a straightforward estimation of the reliability of 
each the interaction stored in the database. 
 
Interaction validation by co-annotation 
 
 

This validation method has been currently used only in S. cerevisae not 
only because its interaction network is the most covered but also because 
yeast as a model organisms has a very well characterized proteome.  More 
than 4.500 of its predicted 6.200 ORFs have been verified and functionally 
investigated. The three main repositories dedicated to S. cerevisae are 
Comprehensive Yeast Genome Database (CYGD) (Guldener et al., 2005), 
Saccharomyces Genome Database (SGD) (Balakrishnan et al., 2005) and 
Yeast Protein Database (YPD) (BIOBASE Wolfenbuttel, Germany) and they 
all provide functional annotation about gene products either using Gene 
Ontology cross-reference (See Materia l and methods section about Gene 
Ontology) or adopting internal classification systems. Generally a 
characterized gene product have annotation concerning its subcellular 
location, its molecular function (such as enzymatic activity, or DNA binding 
ability) and its cellular-role that refers to its participation in broad cellular 
process (for instance metabolisms or stress response). Trivially proteins that 
interact should share the same subcellular compartment and are likely to 
participate in the same cellula r process whose mechanism may rely on their 
binding. However binding partners can have very different molecular 
function as for instance a regulatory interaction can easily involve a protein 
kinase and a transcription factor. Thus co-location and the sharing of a 
common cellular-role can be used as supporting evidence of a true positive 
interaction whereas having the same molecular function cannot be employed 
as a validation criterion.  
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The observation that in trusted interactions the protein partners share both 
their functional annotation in terms of cellular processes and cellular 
compartment (von Mering et al. 2002) can be used to quantitatively estimate 
the accuracy of experimental data sets (Sprinzak et al., 2003). In this 
analysis the rate of true positives is measured for high throughput and for 
small scale data clustered according to the method used for their detection. 
The results provide a possible ranking of the various experimental methods 
and confirm once again that intersection networks are the one with the 
highest rate of true positives interactions. According to this study affinity 
chromatography and Co-Ip are the more reliable methods whereas 
approximately 50% of the two hybrid large screenings are believed to be 
false positives.  
 
 
Interaction validation by co-expression 
 
 

The basic hypothesis underlying such approach is that genes that are co-
regulated and co-expressed are likely to be involved in related biological 
process and thus to be interaction partner. Yeast remain the ideal model 
organism to carry out this analysis because together with the interaction data  
large scale RNA expression data are available  (Giaever et al., 2002, 
Kemmeren et al., 2002). The first evidences supporting this well accepted 
idea are provided identifying clusters of genes having the same expression 
pattern under different conditions and subsequently counting the protein 
interactions occurring within or across expression clusters (Ge et al., 2001). 
In this work it is shown that the number of interactions within any given 
expression cluster are higher than expect when the same calculation is done 
on random networks. This confirms that co-expressed proteins more 
frequently interact among each other than with protein having different 
expression profiles. 
 
Further studies from the same group focuses on highly connected protein the 
so called “hub” of the interaction network (Han et al., 2004). By measuring 
the correlation in RNA level between each hub and its partners two distinct 
populations are identified: the so called “party hub” that have high 
expression correlation with their partners (corresponding to the previous 
intra-cluster interaction) and the “date hub” that show lower expression 
correlation. Such distinction leads to a model for interaction network where 
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“party hubs” define the core of subnetwork modules whereas “date hub” 
ensure interconnection between the various modules. In fact the “party hub” 
partners have very homogenous annotation in terms of process and 
subcellular location and often correspond to functional complexes or known 
pathways. “Date hubs” do not show such homogeneity but interestingly their 
central role as network organizer is confirmed by the lethality of their gene 
deletion observed in genetic perturbation screenings.  
 
Other independent works support the statement that among the various types 
of protein interaction mainly protein functional complexes, such as RNA 
polymerase or the ribosome, show a strong correlation of RNA expression 
levels (Jansen et al., 2002). Thus certainly co-expression have an average 
relation with protein interaction data and a strong expression correlation is a 
valuable in vivo supporting evidence that two or more proteins are likely to 
interact. However the problem is this approach do not help in identifying 
false positives interactions while lower correlation among partners could 
also be biologically meaningful (see above “date hubs”). Nevertheless a 
validation approach based on co-expression is currently available at DIP 
database. Expression data are not used to validate single interactions but to 
measure the overall reliability of a given interaction screening (Deane et al., 
2002). This method calculate expression level Euclidean distance for all 
protein pairs in dataset under analysis and compare the distribution of such 
distances with the corresponding values derived from a trusted reference set 
of interaction and from a completely random network. The distance 
distribution calculated for two-hybrid screenings in yeast being equidistant 
from reference and random network distribution plots leads to the authors 
conclusion that overall 50% of the interactions are false positives.  
 
Interaction validation by genome comparison 
 
 

Genomes comparison can also lead to protein interaction validation. 
Many methods look for the evolutionary relics of protein interaction across 
fully sequenced genomes to infer functional or physical interaction. For 
instance one method, so called the Phylogenetic Profile method (see Figure 
3), implies that proteins that are consistently present or absent in different 
proteomes sets are likely to have a functional relationship (Pellegrini et al., 
1999). A second one the Rosetta Stone method searches proteomes looking 
for proteins that are covalently joined in a single peptide chain and interpret 
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this fusion event as evidence that these two proteins interact either physically 
or functionally in other organisms (Marcotte et al., 1999, Enright et al., 
1999). A third one the Gene Order method, look at relative position of genes 
on various prokaryotes genomes and infer that genes submitted to an 
evolution pressure to remain close are likely to share the same function 
(Dandekar et al., 1999). 

Figure 3 : Phylogenetic Profile method to detect protein functional interaction (Pellegrini 
2001). 
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The protein-protein associations detected with these three methods are 
collected in the STRING database (von Mering et al., 2005) together with 
the experimental protein interactions and data derived from functional 
pathways. Data cross-comparison show that the protein relationship detected 
by genomic methods often correspond either to physical interactions, or to 
the participation in a same metabolic pathway or cellular process. Thus 
genomic methods can provide supporting evidence for protein interaction 
validation and are powerful tools for functional characterisation of newly 
discovered sequences. The three methods predict protein function with have 
an average 80% confidence in prokaryotes model organisms (Huynen et al., 
2003).  
 
Aside from these methods which explore genome organisation other focuses 
on conservation at the amino acid sequence level. One instance is the 
“correlated mutation” method that exploits parallel sequence variations in 
multiple alignments of orthologous sequences to infer interaction (Pazos & 
Valencia  2002). The underlying rationale is that pair of residues that are part 
of two interacting surfaces tend to co-evolve with changes in one protein 
being remedied by compensatory mutations in the partner protein. When 
there is a good species coverage for any protein pair under study application 
if this method by mapping residues involve in an interaction interface can 
also provide topological information about the interaction complex.  
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PART 1: THE EXPLOTATION OF THE PEPSPOT 
TECHNOLOGY TO INVESTIGATE PEPTIDE 
BINDING PREFERENCES  
 

PepSpot, or peptides arrays synthesized on membrane by SPOT 
synthesis (Frank 1992, Reineke et al., 2001), is a powerful method to 
investigate molecular recognition events and has been heavily used in our 
laboratory to determine interaction between short peptides (8-25 residues) 
and their binding domains. The PepSpot method is not only suitable for 
protein interaction detection, but it gives direct access to the sequences 
responsible for the interactions enabling further binding specificities analysis 
and development of prediction tools. 

 
 

PepSpot as a protein interaction detection method 
 

PepSpot technology 
 
 

The PepSpot method provides a fast procedure to generate a large 
number of peptides and screen for their biological properties. The method 
applications (see Figure 1) include: the identification of peptides that 
promote immunological activity (epitope mapping), the characterization of  
enzyme targets (enzyme-substrate screening) and the detection of protein 
binding peptides (protein binding screening).  
 
Focusing on the PepSpot in vitro protein binding screening, the experimental 
procedure (Kramer & Schneider-Mergener, 1998) can be summarized in four 
main steps: 

1. Preparation of the membrane before the peptide synthesis. The 
Cellulose-Amino-hydoxyPropyl Eter (CAPE) membrane is activated 
by treatments with a number of reagents ensuring the covalent 
binding of the C-terminus of each peptide. 

2. Peptides are automatically synthesized on the cellulose membrane 
using a SPOT synthesizer under positional control of LISA software 
(Jerini AG, Berlin Germany) guaranteeing that a specific  sequence 
including residue modifications is synthesized at any given position.  
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Figure 1: Different application of the SPOT-synthesis peptide arrays (Reineke et al., 
2001). 

 
 
3. Incubation of the membrane with a probe protein previously 

expressed and purified. 
4. Detection of the spot retaining the probe after membrane washes, 

using anti-probe antibodies. The detection of a peptide-bound 
protein can be carried out using a chemoluminescence substrate 
providing a  quantitative intensity signal in BLU (Boheringer Light 
Units), associated to any spot. 
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The PepSpot method has the great advantage of reproducing synthetically 
any naturally occurring sequence and any kind of post translation 
modification on it. On the other hand, the extent of the interaction space that 
can be explored with this method is clearly limited by the peptide length and 
by the number of peptides (around 10.000) that can be reasonably 
synthesized given the current technology. However, a fairly large part of 
protein interaction relies on small domains (SH2, SH3, PTB, WW, EH, PDZ, 
GYF, VHS, WD40, 14-3-3, FHA etc.) accommodating in their binding 
pocket short peptides of the partner protein in extended conformation 
(Pawson & Nash, 2003). Thus , in a good number of cases it is reasonable to 
model protein-protein interaction to peptide-domain interaction and 
consequently use the PepSpot method to identify natural peptides with the 
potential for binding a given domain. Clearly , the inference of in vivo 
interactions from PepSpot results could turn out to be incorrect for several 
reasons. First, the domain recognition determinants on a protein surface may 
be dispersed discontinuously on the sequence and may not be represented by 
any linear peptide. Alternatively , a potentially binding peptide could be 
buried inside the folded protein  and therefore inaccessible  to interaction 
partner. Finally, the two inferred partners might never coexist in vivo 
because they are located in different cellular compartments or expressed in 
different tissues or at different times during an organism development. 
 
 
Proteomic screening of SH3 mediated interactions with PepSpot method 
 
 

To assess the feasibility of a proteomic screening approach by the 
PepSpot method, eight S. Cerevisae proteins contain ing SH3 domains 
(RSV167, YFR024C, YSC84, ABP1, MYO5, SHO1, BOI1 and BOI2) were 
chosen and tested against two set of peptides (Landgraft et al., 2003). The 
peptide sets are generated searching all the peptides of the S. Cerevisae 
proteome that match the two well established binding consensi, the class 1 
([RK]xxPxxP) and the class 2 (PxxPxR) motifs. Each SH3 domain derived 
from the above mentioned proteins is probed against approximately 1,500 
peptides synthesized at high density on cellulose membranes (see Figure 2). 
211 peptides resulted to bind one or more of the probe SH3 domains with an 
intensity higher than a threshold of 20,000 Boheringer Light Units (BLUs), 
corresponding to a dissociation constant of approximately 10-6 M. The 
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derived network counts 180 inferred interactions (see Figure 3) among 111 
proteins (some proteins contain more than one high affinity peptide).  

 
 

Figure 2 : Strategy to explore all SH3 mediated interaction in S. cerevisae. 
 
 

As shown in figure 3, the SH3 domains of RSV167, YFR024C and YSC84 
have overlapping specificity and thus promiscuous binding partners, whereas 
ABP1, SHO1, BOI1 and MYO5 have almost exclusive interactors. In the 
case of BOI2, the fact that it binds only 3 interactors with high affinity, 
confirms that its binding specificity is divergent from the standard motifs. 
This underlines the danger of extending a binding motif to all members of a 
protein family without experimental validation. 
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Figure 3: Protein interaction network inferred from PepSpot results. Nodes in cyan 
represent the SH3 containing proteins used as probe in the screening. The edge thicknesses 
are proportional to the BLU intensity of the corresponding interaction. 

 
 

 
PepSpot network comparison 
 
 

The PepSpot approach when compared with two hybrid and complex 
purification (see Table 1), offers the advantage of providing direct 
information about the sequences responsible for interaction and an estimate 
of the dissociation constant, thus complementing the information obtained 
by more direct in vivo experiments. Moreover, the lack of a substantial 
overlap between the results of the high throughput projects meant to cover 
the entire interactome of Saccharomyces cerevisae, emphasizes the 
importance of confirming any interaction by different methods (von Mering 
et al., 2002). 
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Table 1: Comparison of the properties of three protein interaction methods. 
 
 

In order to compare networks resulting from the different methods and 
therefore evaluate the PepSpot method performance, we computed the 
intersection of all major yeast interaction dataset stored in the MINT 
database (see Table 2, where the PepSpot SH3 dataset is reported as 
Landgraft et al.). 
 
For each dataset we consider only non redundant interactions (if an 
interaction is detected twice as A-B and also as B-A we only count it once); 
by measuring the extent of the intersection network, we also pay attention to 

Method Cost of the 
screening 

Interaction 
detected 

Binding 
sequence 

identification 

Affinity 
measure 

Other bias 

PepSpot Large screen 
(5.000 peptides 

on a single 
membrane) fast 
and relatively 

low cost. 

In vitro 
binary 

interaction. 

The domain 
recognition 

target peptides 
are clearly 
identified 

Signal 
intensity 
inversely 

correlated with 
the 

dissociation 
constant 

Restricted to 
small 

peptide-
domain 

interaction 
 

Two 
hybrid 

Variable cost 
depending on 

the automation 
level and on the 

extent of the 
screen. 

Binary 
interactions 
detected in 

vivo in a non 
physiological 

context. 

Target 
identification 

requires the use 
of a fragment 
library and the 
comparison of 

several 
overlapping 

clones. 

In low 
throughput 
experiments 

beta-
galactosidase 

assays provide 
estimate of the 

interaction 
strength. 

Sticky preys 
Self 

activating 
baits 

Complex 
CoIp 

High cost for 
specialized 

instrumentation. 

In vivo 
complexes 

are detected. 

None by 
standard 
approach. 

None by 
standard 
approach. 

Proteins are 
often 

overexpresse
d. Low 
affinity 

interactions 
are missed. 



Comparative genomic approach for protein-protein interaction validation 

 
 

Luisa Montecchi-Palazzi 

25 

count interactions regardless of their directionality and to avoid double 
scoring of homodimers. 
The intersection networks derived by combining pairwise the yeast two 
hybrid screens (Ito et al., 2001 and Uetz et al., 2000) and the high 
throughput analysis of complexes (Gavin et al., 2002 and Ho et al., 2002), 
are consistent with cross comparison previously reported in the literature (Ito 
et al., 2002 and Bader & Hogue, 2002). Besides, with these well known sets, 
we compare results of the yeast SH3 containing protein two hybr id 
experiment performed by Tong and co-workers, that contain all the SH3 
domains considered in our studies (Tong et al., 2002). Finally, we 
benchmark every single set against small scale experiments stored in MINT 
data base and against an automatically generated network including all 
known yeast interactions , excluding those from the set under analysis (row 
named “all” in Table 2). On this latter intersection network we evaluate the 
percentage of interactions and the percentage of interacting proteins shared 
by a single set with any other one. Obviously, these two numbers are related, 
because two networks can hardly have a common interaction if the two 
protein partners are not present in both sets. Thus, looking at the ratio of the 
overlapping interaction per common protein, we have a better estimate of the 
ability to recover an interaction of each set.  
 
From these numbers it is easy to see that the network inferred from PepSpot 
results has a similar performance in comparison to the two hybrid screen 
carried out by Tong et al.,. Finally, although the overall coverage in terms of 
number of interactions explored is low, PepSpot method seams to have the 
highest capacity to recover interactions once the proteins of interest are 
submitted to a binding experiment.  
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Dataset size Intersect 
with Ito  

et al. 

Intersect 
with 
Uetz     
et al. 

Intersect 
with 
Tong    
et al. 

Intersect 
with 

Gavin  
et al. 

Intersect 
with Ho 

et al. 

Intersect 
with 

Landgraft      
et al. 

Ito et al.   

interactions 4443       

proteins 3236       
Uetz et al.  

interactions 942 188      

proteins 996 278      
Tong et al.        

interactions 231 5 2     

proteins 144 9 3     
Gavin et al. (*)  

interactions 3757 62 51 5    

proteins 1471 102 82 6    
Ho et al. (*)  

interactions 2583 56 50 5 152   

proteins 1362 95 81 7 189   
Landgraft et al.  

interactions 180 2 1 32 3 5  
proteins 111 3 2 25 4 8  

Small scale data  
interactions 956 29 37 30 56 34 20 

proteins 794 49 60 32 76 56 20 
All ($)  

interactions  276 266 53 272 238 41 
proteins  391 376 42 324 302 30 
% Overlapping interactions  6.21 28.24 22.94 7.24 9.21 22.78 
% Overlapping proteins 12.08 37.75 29.17 22.03 22.17 27.03 

% Ratio (ovrlp. Int. / ovrlp. Prot.) 51.41 74.80 78.66 32.87 41.55 84.28 
Table 2: Interaction data set cross comparison.  
(*) Binary interactions are derived from the co-purified complex only as a set of bait-

prey pairs, according to the “spoke model”. 
($)The “All” set differs for every single dataset and it is generated by combining all 

known yeast interactions and excluding only the set under analysis. 
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SH3 mediated network comparison 
 
 

Focusing on the comparison of SH3 domain connectivity, we can group 
interaction networks according to detection method (see Table 3) and 
generate SH3 mediated subnetworks, by assuming that SH3 containing 
proteins interact exclusively via this domain. 
 

Dataset Dataset 
size 

Number of 
SH3 

containing 
proteins 

Inferred 
SH3 

mediated 
network 

Average 
interactions 
per protein 

in the 
original 
dataset 

Average 
interactions 
per protein 

in the 
inferred 

SH3 
mediated 
network  

Average 
interactions 

per SH3 
containing 
protein in 

the 
inferred 
network 

Complex CoIp 
Gavin + Ho   

          

interactions 6188  94 
proteins 2225  20 90 

2.78 
  

1.04 
  

4.70 
  

Two hybrid 
Ito + Uetz             

interactions 5197  141 
proteins 3535 17  150 

1.47 
  

0.94 
  

8.29 
  

Any method 
Small scale data             

interactions 956  109 
proteins 794 18  85 

1.20 
  

1.28 
  

6.06 
  

Two hybrid 
Tong et al.             

interactions 231  231 
proteins 144 27  144 

1.60 
  

1.60 
  

8.56 
  

PepSpot 
Landgraft et al.             

interactions 180  180 
proteins 111 8  111 

1.62 
  

1.62 
  

22.50 
  

Table 3 : Network comparison of inferred SH3 mediated interactions. 
 
 

In each dataset we identify all the proteins containing an SH3 domain, and 
retrieved their interaction partners. The subnetworks derived from the first 
three sets are inferred to be mediated by SH3 whereas the last two set are 
experimentally determined using exclusively the SH3 domains as probe. 



Comparative genomic approach for protein-protein interaction validation 

 
 

Luisa Montecchi-Palazzi 

28 

Then we calculate the average connectivity of all proteins in each 
subnetwork and compare it with the corresponding value in the original 
network. We expect these two values to be similar for each dataset. This 
would mean that the analysis of SH3 domain containing proteins do not 
affect each method ability to detect interaction. Finally we calculate the 
average number of interactions per SH3 domain inferred or detected using 
each experimental method. These numbers allow the comparison of how 
many partners are identified on average for an SH3 domain by the single 
methods. 
 
Although this is an inference, since only a fraction of the interactions in the 
fourth column are mediated directly by SH3 domains, it is nevertheless 
surprising to see how far SH3 mediated interactions seem to be under-
detected by complex purification approach. The average number of 
interactions per protein drops by more than 50% when the SH3 subnetwork 
is considered and the number of inferred interactions per SH3 is also much 
lower than in any other method. This is consistent with the fact that SH3 
mediated interactions are on average weak interactions, less likely to be 
detected by coimmunoprecipitation (assay requiring several washing steps), 
than by solid phase peptide arrays or two hybrid assay. It is also evident that 
the testing of all possible partner peptides, regardless of their physiological 
co-occurrence with the probe domain, leads to a very high number of 
PepSpot interactions per SH3, and that some of those are likely to be false 
positive.  
 
Although the PepSpot proteomic approach we have presented is an in vitro 
strategy limited to interactions in which one of the partners can be reduced to 
a relatively short peptide , it has a series of interesting features. First, 
genomic sequence information can be fully exploited in the array format to 
equally display a high number of possible partners. Second, the experimental 
output provides topological information and includes an estimate of the  
kinetic dissociation constant. Third, interactions that depend on peptide 
modification can be easily studied. Finally, the identified target peptide can 
be used as a template to develop tighter binding competitors.  
 
In fact the major advantage of the PepSpot method is the easy modulation of 
the protein binding screening to different level of granularity (see Figure ?) : 

1. Proteome scanning (used for yeast SH3 mediated interaction 
screening). All the peptides of a proteome that match the binding motif 
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are synthesized and tested for their ability to undergo interaction with 
probe proteins. 
2. Ligand scanning. All the overlapping peptides derived from a known 
ligand are tested for their ability to interact with the ligand partner to 
identify the best binding region. 
3. Peptide mutagenesis scanning. All possible mutations of a single 
binding peptide are synthesized, replacing in each position the wild type 
amino acid with all other possible residues, leaving the rest of the 
sequence unchanged. The results of this PepSpot variation give 
indication of position specific information about the residues that are 
favourable to binding. As we will explain in the following section, such 
data can be used to estimate the binding ability of any query peptide, and 
thus predict potential interaction partners for the probe protein. 

 
14-3-3 partner prediction based on PepSpot mutagenesis 
 
14-3-3 containing proteins  
 
 

In the remaining parts of this work our study case are 14-3-3 proteins in 
yeast. The 14-3-3 is a family of highly conserved proteins found in almost 
all eukaryotic organisms. In mammalia  seven 14-3-3 encoding genes were 
found and their study revealed that they are functionally related to crucial 
cellular processes, such as signal transduction, metabolism, cell cycle, 
apoptosis and malignant transformation (Mackintosh, 2004). 14-3-3 
regulates the function of their  partners by binding to them. This may lead to 
alteration of the ligand catalytic activity, to interference with molecular 
interactions with other partners, or to regulation of the bound protein 
subcellular localisation (Yaffe & Elia , 2001 ). Interaction screenings in 
mammalia show that 14-3-3 isoforms have hundreds of partners belonging to 
very different functional classes (Rubio et al., 2004 Jin et al., 2004 Aitken et 
al., 2002). 
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Figure 4 : 14-3-3 pocket showing a phosphopetide ligand bound to each monomeric 
subunit. 

 
 

Typically 14-3-3 domain proteins recognize phosphopeptides where serine 
or threonine is phosphorylated. The X-ray analysis of 2 mammalian isoforms 
(Liu et al., 1995 Xiao et al., 1995) reveal the dimeric structure of 14-3-3 
containing proteins forming a large cup shaped pocket able to bind two 
peptides in an extended conformation (see Figure 4). The screening of 
degenerated phosphoserine peptide libraries against human and yeast 14-3-3 
(Yaffe et al., 1997) lead to the identification of two 14-3-3 binding motifs 
(RSxpSxP and RxxxpSxP), while no specie nor isoform specificity was 
observed. However, a discrete number of interactors have significantly 
divergent binding sites. 
Despite the large number of studies concerning 14-3-3 proteins in higher 
eukaryotes, little is known about their function in S. cerevisae. In yeast, two 
14-3-3 proteins have been characterized, encoded by the BMH1 and BMH2 
genes. They are more than 90% and 60% identical respectively to the 
mammalian epsilon isoform. The single genetic  disruption of BMH1 or 
BMH2 has little effect on cellular growth, while the double mutant is not 
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viable (Bruckmann et al., 2004). These two proteins seem to be functionally 
redundant but essential for normal yeast growth. 
 
PepSpot mutagenesis of 14-3-3 binding peptides 
 
 

To investigate BMH1 and BMH2 binding specificity, we choose to 
mutagenize two peptides: IPAWLpSLPS and SRIPFpSERK, known for 
binding 14-3-3 protein, which match only partially the motifs (RSxpSxP and 
RxxxpSxP). 

 
At a first glance, by analysing the membranes (see Figure 5) we can see that 
BHM1 and BMH2 have almost identical recognition specificity. According 
with the binding motifs proposed by Yaffe, positive charges (R, K or H 
residues) at the peptide N-terminus increase the binding, while negative 
charges in the same position considerably reduce it. In all membranes 
position -1 and +1 are the more restrictive in terms of allowed residues 1. 
Position +2 has different preferences depending on the mutagenised peptide. 
While in the case of IPAWLpSLPS position +2 is quite tolerant, with a slight 
preference for the wild type proline, in the case of SRIPFpSERK only the 
wild type arginine is allowed. This points out the influence of the sequence 
context surrounding the single residues. Although according to Yaffe and 
collaborators proline in position +2 should enhance the binding, in the 
context of the SRIPFpSERK sequence it diminishes it.  
 

                                                 
1 In our numbering the phosphorylated serine positions, is positive 0, while residues at the C-

terminus or the N-terminus side have positive or negative numbers respectively. 
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Figure 5 : 14-3-3 binding peptides mutagenesis. In the first column of each membrane 

the wild type peptide is spotted for every row. In the serine column, amino acids are replaced 
with unphosphorylated serine: this explains the lack of signal on the central phosphoserine 
row. The spot triplets in the left upper corners are controls of the colorimetric detection. 

 
 

 
Implementation of a prediction tool based on PepSpot mutagenesis 
 
 

Although there is clear evidence that the results of mutagenesis 
experiments are not independent from the template peptide , we use the 
intensity of the colorimetric reaction measured in Boehringer Light Unit 
(BLU) to build a matrix describing each amino acid preference at each 
position within a generic phosphoserine centred motif (xxxxxpSxxx). To 
calculate each element of this matrix we use the following formula : 

 
 Aff(pos,aa)=BLU(pos,aa)/ (ΣBLU(pos)+ BLUwildtype(pos)) 

 
These figures are related to the preference for each specific amino acids 
relative to all other possible amino acids at any same position. The results 
obtained from the different mutagenesis experiments are combined by 
calculating an average matrix  with the intent of alleviating the bias of any 
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specific peptide context. Finally, the 14-3-3 position specific matrix that we 
obtain (see Table 3) stores relative preference values, ranging from 18% to 
0.06% (proline in position +1). The value for the phosphoserine in position 0 
is arbitrarily set to 100%. 
 

 -5 -4 -3 -2 -1 0 1 2 3 
A 3.99 5.09 5.08 9.2 3.86 0 7.97 3.29 6.69 
D 0.65 1.97 1.3 0.7 0.84 0 5.09 1.49 1.34 
E 0.55 1.37 1.12 1.26 1.87 0 8.16 1.33 1.2 
F 9.93 9.07 8.6 9.47 10.2 0 11.3 7.68 10.3 
G 4.55 3.87 5.5 4.75 1.47 0 1.11 4.76 2.93 
H 3.31 3.97 4.62 5.08 3.49 0 2.84 4.12 7.03 
I 5.2 5.26 4.92 4.92 2.43 0 2.8 2.16 6.8 
K 7.51 5.2 6.21 1.06 6.11 0 1.38 2.11 4.02 
L 6.11 3.71 4.68 5.38 4.52 0 18.4 2.44 7.11 
M 3.42 4.25 4.91 2.96 2.64 0 1.62 2.07 2.92 
N 3.39 3.29 4.15 3.48 2.3 0 1.69 2.26 2.58 
P 4.15 4.66 4 5.2 0.91 0 0.06 18.1 3.23 
Q 5.4 4.17 3.43 1.97 4.16 0 3.18 2.3 3.05 
R 11.8 11.0 9.33 6.53 14.4 0 1.47 18.4 10.9 
S 3.77 3.09 6.54 10.2 3.44 100 4.69 2.51 4.78 
T 4.12 3.6 4.08 5.84 2.58 0 5.01 2.55 5.4 
V 6.79 5.4 4.57 5.03 2.73 0 4.9 2.78 7.57 
W 7.68 5.49 5.7 5.18 3.44 0 6.37 2.22 2.33 
Y 3.66 3.23 3.31 4.09 3.19 0 3.02 2.66 2.26 

Table 3 : 14-3-3 position specific matrix. Higher scores are highlighted in green, lower in 
red. 

 
 

In order to implement a prediction tool based on this data that could rank any 
query peptide for its ability to bind 14-3-3 yeast domains, we follow a 
combined approach. Combining the strategies of two major motif public 
resources, SCANSITE (Obenauer et al., 2003) and ELM (Punterwoll et al., 
2003), we used the 14-3-3 preference matrix as a position specific scoring 
matrix (PSSM), but we also to derived a regular expression that could filter 
out all the peptides containing ill tolerated residues at any specific position. 
SCANSITE and ELM services will be presented in detail in the next section 
while a general description of PSSM and regular expressions is given in the 
materials and methods (see ‘Protein functional patterns’ section). By 
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analysing the score distribution in our matrix (see Graph 1), we can 
arbitrarily distinguish three major classes. The “forbidden” residues of each 
position have a score below 2%, the “neutral” residues range from 2% to 
10% and the “preferred” amino acids score above 10%. By using the scores 
below 2%, we designed a regular expression representing the exclusion of 
specific residues at each position (coded by the symbol [^]) and setting the  
requirement of a serine at position 0. The resulting regular expression is: 
 
 [^DE][^DE][^DE][^DEKQ][^DEPG]S[^RPKGINMQ][^DE][^DE] 
Position -5        -4        -3       -2              -1      0               +1          +2     +3 
 
We first apply this regular expression and then we rank the matching 
peptides by applying the position specific scoring matrix.  
 

Graph 1 : Analysis of the position specific matrix values. Note that position 0 is not 
reported because it has to be a phosphoserine. 

 
 

Our approach has the twofold advantage of overcoming the strict rules 
imposed by a stringent regular expression designed to identify the best 
binding motif, by setting as mandatory the preferred residues, while at the 
same time restricting the number of false hits by using a “softer” filtering 
regular expression. This flexibility suits the case of 14-3-3 peptide 
recognition, since, for instance, a positive charge is required at the amino 
terminus of the ligand peptide, but apparently there is no absolute 
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requirement at any specific position. Thus, by using a PSSM, the best 
ranking ligand peptides will result from any combination of high scoring 
residues alternated with tolerated residues. Whereas peptides having residues 
that in the mutagenesis experiments are shown to compromise drastically the 
binding are discarded by the application of the regular expression.  
 
Benchmark of the prediction tool versus experimental results  
 
 

In order to assess the validity of our tool to infer 14-3-3 target peptides, 
we perform a blind test with new experimental results. For this purpose we 
carry out a PepSpot scanning on the fraction of the yeast proteome 
experimentally proven to contain phospho-residues. In a recent work, Ficarro 
and co-workers describe a methodology to characterize phosphoproteins 
from cell lysate, using immobilized metal affinity chromatography (IMAC) 
to purify phosphopeptides and nanoflow HPLC/electrospray ionization mass 
spectrometry to identify the phosphopeptides (Ficarro et al., 2002). They 
report the sequence of 216 yeast peptides containing a phosphorylated 
serine, threonine or tyrosine: 60 of these are phosphorylated in the single 
position, 145 in two positions and 11 in three. Using these results, we 
therefore synthesise 287 phosphopeptides on cellulose membrane and assay 
their ability to bind BMH1 and BMH2 (see Figure 6). Peptides that are 
found to have multiple phosphorylation sites in vivo are synthesise both as 
single phosphorylated peptides, as well as peptides containing 
phosphorylated residues at two and three positions.  
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Figure 6 : Yeast phosphoproteome scanning against BMH1 and BMH2 probe. 
 
 

Also in this experiment, if we compare the quantitative results of BMH1 and 
BMH2, we observe an almost identical pattern; we establish an arbitrary 
threshold of BLU units to separate good ligand from non-ligand. In order to 
normalize the results of the two membranes (the BMH1 membrane has 
visibly a stronger signal than the BMH2 one) we set the cut-off value as the 
10% of the maximum BLU (see Graph 2), corresponding to BLU values of 
22.000 and 17.000 respectively in BMH1 and BMH2 phosphoproteome 
scanning respectively. Out of 287 peptides known to be phosphorylated in 
vivo, 26 had a score higher than the threshold and were therefore classified 
as putative ligand (see below Table 4).  
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Graph 2 : Analysis of phosphospetides BLUs when screened against the 14-3-3 domain 
of BMH1 and BHM2. T he two 14-3-3 domains show identical specificity, thus we set a cut 
off value corresponding to 10% of each set maximum BLU value. 

 
 

We next tested our prediction tool against the same set of 287 peptides by 
first filtering with the regular expression, and then assigning a score to each 
peptide by summing the values associated to each residue at each position of 
the 14-3-3 position specific scoring matrix (the PSSM score). The prediction 
results are displayed in two tables: in the first (see Table 4) we display the 26 
positive peptides experimentally proven to be high affinity ligands. In the 
second table (see Table 5) we show the top 26 peptides according to their 
PSSM score. 206 out of the 287 peptides do not match the sequence 
requirements summarized in the regular expression. As reported in table 4, 
only one of the positive peptides is filtered out erroneously , whereas 
potential false positives are appropriately excluded from the prediction (see 
also Table 5). As it is also evident in Table 4, the sequences of the positive  
peptides have no striking regularities that could be described by a simple 
regular expression representing the binding motif. In most cases, the 14-3-3 
PSSM succeeded in associating high scores to the experimentally proven 
ligand peptides.  
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11 0.534 MATCH ARFSRRsDSGVHS reg1 141543.5 92.56 2 
2 0.662 MATCH RKRRASsLKA--- rps6a 131403 85.93 3 
5 0.577 MATCH RRLSSLsEFNDPF nth1 98596.5 64.48 4 
3 0.634 MATCH PKFRRAsLNSKTI yak1 96201 62.91 5 
13 0.530 MATCH KARRSMsLLGYRA myo3 91887 60.09 6 
7 0.551 MATCH ERRSMVsSPNRYV spc98 84130.5 55.02 7 

91 0.367 MATCH RTSSSMsVGNNKK YMR261C 84062 54.97 8 
20 0.502 MATCH SQSRSRsSVMFKS sra1 69896.5 45.71 9 
19 0.503 MATCH HRSSLSsLSNQRC YCR023C 68319.5 44.68 10 
14 0.527 MATCH LSSKSHsVPALNT YNL321W 58950 38.55 11 
60 0.414 MATCH ALKVRTsATFRLP rpl25 46136.5 30.17 12 

- - - SKVYARsVYDSRG eno1 43722.5 28.59 13 
16 0.520 MATCH SPLRARsATPTLQ blm3 37490.5 24.52 14 
8 0.538 MATCH KVARPLsVPGSPR gsy2 36775.5 24.05 15 

82 0.378 MATCH RQKSTSsYSSGGR akl1 35210 23.03 16 
12 0.531 MATCH GTFRRRsSVFENI syg1 31427 20.55 17 
9 0.536 MATCH RQRRLSsLSAFND nth1 30260.5 19.79 18 
4 0.581 MATCH GRKRSSsSVSLKA gpd1 29624 19.37 19 
17 0.510 MATCH SRSRSHsFYKGGH YGL181W 28791.5 18.83 20 
10 0.534 MATCH TFRRRSsVFANIS syg1 25922.5 16.95 21 

24 0.472 MATCH GHSRASsFARTLA YML072C 24157.5 15.80 22 

26 0.451 MATCH SMGRTAsALSRTR YGR138C 24084.5 15.75 23 
25 0.458 MATCH QRRRsSYAF YCR077C 22585.5 14.77 24 
16 0.522 MATCH KIARPLsVPGSPK gsy1 17672 11.56 25 

62 0.411 MATCH RTATPQsLQGSNK vps13 17524.5 11.46 26 
Table 4: Prediction results sorted according to the experimental rank. We report the 26 

highest affinity peptides that have BLUs above the cut off threshold. In the first three columns 
we report in bold the prediction for each of these positive peptides. The peptides underlined in 
italics are the 4 false negatives wrongly predicted as low affinity ligands, and have a 
prediction rank below the 26th position. 
 
 
 
 
PSSM  
rank 

PSSM 
score 

Regular 
expression Peptide ORF Average 

BLU 

% 
BLU 
max 

Experimental 
rank 

1 0.717 MATCH YRRRKSsLVVPPA yak1 1927.5 1.26 45 

2 0.662 MATCH RKRRASsLKA--- rps6a 131403 85.93 3 
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3 0.634 MATCH PKFRRAsLNSKTI yak1 96201 62.91 5 

 0.609  VRKMSFsGYSPKP YOR175C 5886.5 3.85 35 

4 0.581 MATCH GRKRSSsSVSLKA gpd1 29624 19.37 19 

 0.580  PRKRAAsIRARVK rpl3 12310.5 8.05 29 
5 0.577 MATCH RRLSSLsEFNDPF nth1 98596.5 64.48 4 

6 0.574 MATCH IRKRRAsSLKA-- rps6a 1364 0.89 49 

 0.555  RKNRSPsPPPVYD YLR116W 59.5 0.04 83 
7 0.551 MATCH ERRSMVsSPNRYV spc98 84130.5 55.02 7 

8 0.538 MATCH KVARPLsVPGSPR gsy2 36775.5 24.05 15 

9 0.536 MATCH RQRRLSsLSAFND nth1 30260.5 19.79 18 
10 0.534 MATCH TFRRRSsVFANIS syg1 25922.5 16.95 21 

11 0.534 MATCH ARFSRRsDSGVHS reg1 141543.5 92.56 2 

12 0.531 MATCH GTFRRRsSVFENI syg1 31427 20.55 17 
13 0.530 MATCH KARRSMsLLGYRA myo3 91887 60.09 6 

14 0.527 MATCH LSSKSHsVPALNT YNL321W 58950 38.55 11 

 0.525  PIRRSDsAVSIVH YOL059W 21 0.01 97 
15 0.522 MATCH KIARPLsVPGSPK gsy1 17672 11.56 25 

16 0.520 MATCH SPLRARsATPTLQ blm3 37490.5 24.52 14 

17 0.510 MATCH SRSRSHsFYKGGH YGL181W 28791.5 18.83 20 
18 0.509 MATCH RMAHRSsLSSLSN YCR023C 152919 100.00 1 

19 0.503 MATCH HRSSLSsLSNQRC YCR023C 68319.5 44.68 10 

20 0.502 MATCH SQSRSRsSVMFKS sra1 69896.5 45.71 9 
21 0.499 MATCH AYRRRKsSLVVPP yak1 1712.5 1.12 47 

22 0.481 MATCH VMKRSAsYTGAKV YDR074W 12801 8.37 28 

23 0.477 MATCH KKSTPVsTPSKEK YHR052W 3548 2.32 41 
24 0.472 MATCH GHSRASsFARTLA YMl072C 24157.5 15.80 22 

25 0.458 MATCH QRRRsSYAF pat1 22585.5 14.77 24 

26 0.451 MATCH SMGRTAsALSRTR YGR138C 24084.5 15.75 23 
Table 5 : Prediction results sorted according to the 14-3-3 PSSM. True posit ives are in 

bold; the only 5 false positives are underlined in italics. Only 4 peptides that have high PSSM 
score and do not match the regular expression are shown in the table, but these are in total 15 
peptides that would rank within the first 26 positions if they were not filtered out by the 
regular expression. 
The proposed prediction tool recovers 21 true positives out of the 26 
experimentally proven ligand peptides. If we compare the experimental and 
prediction rank with a cut off on the 26th position, we see that 4 predicted 
ligand peptides are false negatives (see in Table 4 the experimental positives 
peptides that are predicted to have low affinity) and 5 are false positives (see 
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in Table 5 the experimental low affinity peptides that are predicted to be 
good ligand). 
 
Comparison of our predictions with SCANSITE and ELM 
 
 

In order to compare the performance of our predictions with 
SCANSITE1 and ELM2 predictions , we carried out identical blind test on the 
same dataset with these two specific  tools. 

 
SCANSITE (Obenauer et al., 2003) is based on PSSM derived from 
experimental data, determined either by phage display or using a 
degenerated peptide library. Phage display (Scott & Smith., 1990) is a 
method based on cloning complex peptide libraries in phage vectors 
expressing the exogenous sequence on their capsides. This phage population 
then is incubated with the probe domain fixed on a solid support, and the 
clones expressing ligand peptides are retained. Sequencing the genome of 
the clones that are selected after this panning procedure leads to the 
identification of the binding peptide sequences. Similarly, in peptide library 
experiments (Yaffe & Cantley 2000), degenerate peptides with a single fixed 
central residue are incubated with a given probe domain. Domain binding 
peptides are isolated and sequenced as a mixture by Edman degradation. 
When peptides are sequenced in this manner, one obtains the relative 
enrichment of each amino acid occurring at each position. Both methods 
provide sequence information that is normalized to produce a scoring matrix 
which quantitatively indicates the preference of specific amino acids at each 
position. Matrices for each analyzed domain can be queried on the 
SCANSITE public site to scan entire proteomes or a single protein sequence 
and the server returns high ranking motifs matches. The predictions have 
three possible levels of stringency (“high”, ”medium”, “low”), based on a 
comparative scoring approach. A given match is considered high stringency 
when its score falls within the top 0.2% of all scores calculated when the 
given motif matrix is applied to a reference set of protein, consisting of all 
vertebrate proteins in the UniProt database (Bairoch et al., 2005) . The 
medium and low stringencies are similarly chosen at 1% and 5% 

                                                 
1 http://scansite.mit.edu 

2 http://elm.eu.org 
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respectively. Moreover, the user can also customize the protein reference set 
during the query and, for instance, choose one species proteome. 
 
The Eukaryotic  Linear Motif server, or ELM server (Punterwoll et al., 
2003), is a database of short linear motifs used in eukaryotic organisms for 
cell compartment targeting, protein-protein interaction, regulation by 
phosphorylation, acetylation and other post-translational modifications. The 
collection of motifs characterizing these short functional sites is done by 
manual curation of the literature, meaning that it is based on experimental 
data as well. ELMs are represented as regular expressions and associated to 
extra annotation relative to the motif , such as Gene Ontology (GO)(Gene 
Ontology consortium, 2001) terms describing cellular compartment, 
biological process and molecular function, the specific taxa in which it is 
found and also instances of proteins having true positive matches (sequences 
having the motif and also its associated function). ELMs are in general 
simple motifs with a high number of matches across protein sequences, 
many of which are false positives (sequences having the motif but not its 
associated function); this is because having the required motif is not a 
guarantee that a sequence will be a functional site in the biological context. 
For this reason the aim of the EML server is not only to provide a repository 
of annotated motifs, but also to provide tools to refine predictions of new 
instances of an ELM in a query protein. The so called ELM filters are the 
taxonomy filter, the cell compartment filter and the globular domain filter. 
The taxonomy filter restricts the space of prediction to the allowed 
organisms, according to the annotation associated to the ELM. Similarly , the 
cell compartment filter will filter out the ELM matches belonging to proteins 
with cellular compartments different from the one associated to the specific 
ELM. Finally, the globular domain filter based on the GlobPlot (Linding et 
al., 2003) tool, aims at identifying the matches falling in unfolded regions 
(inter domain or loop segments), that are more likely to be accessible to 
functional interactions compared to those belonging to structured domains. 
 
Because both SCANSITE and ELM do not accept peptides as an input 
sequence, we proceed in the following manner. We submit to SCANSITE an 
artificial protein sequence, generated by merging all the phosphopeptides of 
the experimental set, and perform the query in S. cerevisae context with all 
the 14-3-3 motifs simultaneously. We repeat the query at the three levels of 
stringency and post-process the results, in order to consider only peptides 
centred on appropriate central phosphoserine.  
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For ELM we download the “LIG 14-3-3” entry and mimic the server filters 
locally. The LIG 14-3-3 ELM is annotated as a S. cerevisae motif 
represented by [RHK][STALV].[ST].[PESRDIF] regular expression and 
observed to be biologically active in nucleus, mitochondrion, cytoplasm and 
plasma membrane contexts. Subsequently , we download from SGD 
(Balakrishnan et al., 2005) GO annotation for all yeast ORF and also ask for 
the GlobPlot prediction for the full yeast proteome (kindly provided by Rune 
Linding). We then have all elements to grossly imitate the ELM query by 
running a simple script that, taking the phosphopeptides input sequences, 
will select those matching the LIG 14-3-3 regular expression, then filter 
those belonging to ORF that according to GO are located in the ELM 
subcellular compartment and finally check whether or not the peptide is  
predicted to be in an unstructured region within its protein full sequence.  
 
In parallel we run our prediction tool with and without the regular expression 
filter, also testing different cut-off thresholds of the score calculated from the 
mutagenesis derived matrix. 
 
All the prediction tools receive as input the 287 phosphopeptides scanned by 
PepSpot and for each one of them we estimate their capacity to recover the 
26 positives peptides that are experimentally shown to be good ligands. To 
this aim we calculate the accuracy and coverage using the following 
formula : 
 
Accuracy = (True Positives/ (True Positives+ False Positives)) x100 
Coverage = (True Positives/ Experimental Positives) x100 
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Graph 3 : Accuracy versus coverage plot of the different (SCANSITE, ELM and ours) 
prediction tool results when tested in their ability to mimic the phosphopeptides selection by 
BMH1 and BMH2. 

 
Amazingly , SCANSITE and ELM have a very weak performance (see Graph 
3) and a surprising lack of true positive recovery. SCANSITE at low 
stringency correctly predicts only 15 out of 26 positive peptides, whereas the 
ELM LIG 14-3-3 regular expression matches only 4 of the peptides from the 
same set. Clearly, both tools are meant to receive real protein query and have 
been forced to predict binding of short peptides, but we would have expected 
that these tools could better recognize those primary sequences as potential 
ligand of 14-3-3 domains. 
The approach chosen to derive a prediction tool from mutagenesis data is 
shown to be successful. The combination of PSSM and a regular expression 
filtering peptides with residues incompatible with the binding, seems to be 
very effective at least on this dataset. If we consider a cut-off threshold of 
0.50 in PSSM score, the prediction has an accuracy of 94% and a coverage 
of 58%. Apparently , the “negative” information available from mutagenesis 
and not accessible to others, is an efficient way of reducing the number of 
false positives, with almost no loss of true positives. Of course, the 
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advantage of our prediction tool is that the blind test is performed on data 
collected with the same experimental method used to set up the tool. 
Potential interferences of the membrane in the interaction between any 
peptide and the 14-3-3 domain are equally present in both results of the 
mutagenesis and of the phosphopeptides scan, this could explain part of the 
performance discrepancies. 
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PART 2: APPLICATION OF THE COMPARATIVE 
GENOMIC FILTER AND OTHER VALIDATION 
STEPS FOR AN IN SILICO 14-3-3 BINDING 
PEPTIDE SCREENING  
 

Considering the remarkable  performances of our prediction tool we 
decide to use it to search the full yeast proteome for candidate ligands of 14-
3-3 domains. In order to increase the accuracy of this in silico screening 
approach and to reduce the number of biologically meaningless predictions , 
we set up several filters aimed at identifying which ones among a set of 
interactions either identified in vitro or inferred in silico are likely to occur in 
vivo and have a functional relevance. The comparative genomic filter, is 
based on a new approach to protein-protein interaction validation that we 
propose. Basically we assume that functional binding motifs have a slower 
mutation rate and we expect to find them unaltered in orthologous proteins 
in closely related organisms. Following a detailed description of this novel 
comparative genomic filter procedure, we further present a number of 
different filters based not only on peptide features but also on protein 
properties, such as their location, expression and function. Finally, the 
inferred set of functional partners obtained by applying these filters to the in 
silico screening of 14-3-3 targets is compared with the PepSpot and 
coimmunoprecipitation experimental results. 

 
Comparative genomic filter 
 
Scope 
 
 

The main assumption justifying this filter is that if a particular pair of 
sequences is found to interact in S. cerevisae and they are conserved in other 
genomes, this is more likely to be a biologically relevant interaction. To 
verify this hypothesis we collect the proteomes of 15 yeast species including 
S. cerevisae and identify 5652 clusters of orthologous proteins. In order to 
assess whether our assumption is correct, we analyse the alignments 
obtained from each cluster and assess the level of conservation of PROSITE 
patterns and ELM motifs. Finally, focusing on 14-3-3 domains we establish 
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a procedure to score potential binding peptides according to their level of 
conservation. 
 
 
 
Building of orthologous protein alignments  
 
 

The first step for the comparative genomic filter set up is the collection 
of the ORFs predicted for each yeast genome (see Table 1).  

 
 

Genome Genome reference ORFs sequence source 
S. cerevisae Cherry et al., 1997 http://www.ebi.ac.uk/integr8/ 
S. paradoxus Kellis et al., 2003 ftp://genome-ftp.stanford.edu/pub/yeast/data_download 
S. mikatae Kellis et al., 2003 ftp://genome-ftp.stanford.edu/pub/yeast/data_download 
S. bayanus Kellis et al., 2003 ftp://genome-ftp.stanford.edu/pub/yeast/data_download 
S. kudriavzevii Cliften et al., 2003 ftp://genome-ftp.stanford.edu/pub/yeast/data_download 
S. kluyveri Cliften et al., 2003 ftp://genome-ftp.stanford.edu/pub/yeast/data_download 
C. glabrata Dujon et al., 2004 http://cbi.labri.fr/Genolevures/download.php 
D. hansenii Dujon et al., 2004 http://cbi.labri.fr/Genolevures/download.php 
K. lactis Dujon et al., 2004 http://cbi.labri.fr/Genolevures/download.php 
Y. lipolytica Dujon et al., 2004 http://cbi.labri.fr/Genolevures/download.php 
K. waltii Kellis et al., 2004 http://www.broad.mit.edu/seq/YeastDuplication/ 
A. gossypii Dietrich et al., 2004 http://www.ebi.ac.uk/integr8/ 
C. albicans Jones et al., 2004 http://www-sequence.stanford.edu/group/candida/ 
S. pombe Wood et al., 2002 http://www.ebi.ac.uk/integr8/ 
N. crassa Galagan et al., 2003 http://www-genome.wi.mit.edu/annotation/fungi/ 

Table 1 : 15 yeast species with publicly available genomes considered in our study. 
 
Afterwards we use INPARANOID software (Remm et al., 2001) to 
automatically determine clusters of orthologues sequences. In the early 
seventies (Fitch, 1970) homologous sequences, i.e. sequences that have a 
common ancestor, were classified as orthologous or paralogous according to 
the following definitions. Orthologues are the homologue sequences 
belonging to different species that have directly evolved from a single  
ancestor gene and are believed to share the same function. Whereas 
paralogues are homologue sequences within the same genome, which also 
evolved from a common ancestor, but through gene duplication events that 
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may have lead to functional divergence. These evolutionary hypothesis are 
confirmed either by building phylogenetic trees that is very demanding in 
terms of computer resources when applied to full genomes or by simple all-
versus-all sequence comparison. 
 
The INPARANOID software adopts the latter approach; it requires in input 
the protein sequence files of 2 species (A and B) and uses BLAST (Basic 
Local Alignment Tool) to calculate all possible pairwise similarity scores of 
all proteins within and across proteomes (4 all-versus-all BLAST runs are 
computed A-A, B-B-, A-B and B-A). The scores that are above the threshold 
of similarity (50 bits, where the bit is a normalization of the E-score into 
logarithmic scale ) with identical residues distributed over more than 50% of 
the sequence pair length, are used to cluster the sequences. Each cluster has 
2 main orthologues corresponding to best reciprocal hits across the 2 
proteomes. Moreover, INPARANOID authors distinguish two classes of 
paralogues: out-paralogues, whose duplication happened before the 
speciation event and in-paralogues, duplicated after the speciation event and 
thus genuine co-orthologues. Thus for each orthologue group in-paralogues 
for both species are clustered within specific similarity limits (see figure1)  
defined as the similarity score between the main orthologues. Each in-
paralogue has a confidence value ranging from 0 to 100% that is a measure 
of similarity of a given sequence with its main orthologue. 
 

 
Figure 1 : Clustering of in-paralogues. Each circle represents a sequence from specie A 

(in black) or specie B (in white). A1 and B1 are the main orthologues determined by 
reciprocal BLAST best hits, with a similarity score shown as S. In such a similarity space, in-
paralogues are closer to their same specie main orthologue than any sequence from the other 
specie. According to this definition, in-paralogues are inside the circle of diameter S, whereas 
out-paralogues are outside.  
 

A1 B1 S 
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We reasoned that including in-paralogues with 98% of similarity score in our 
studies will ensure a better coverage of the functional sites conservation 
across species. In fact, there could be cases where few amino acid 
substitutions lead to short functional motifs loss in the main orthologue, but 
not in some of its recent gene replica.  
Moreover, INPARANOID software offers the practical advantage of taking 
as input the two proteomes files under study and by managing automatically 
the BLAST runs and their parsing, it returns directly a table of orthology 
groups. We run INPARANOID fourteen times comparing the proteome of S. 
cerevisae with that of the remaining specie . Finally we merged the 14 
resulting tables by clustering sequences according to their shared S. 
cerevisae main orthologue.  
 
In this manner we obtain 5652 groups of S. cerevisae orthologues (see Table 
2). We have not explored whether or not within each group all sequences are 
orthologues to each other (running INPARANOID with all pairwise 
combinations of proteomes), which is beyond our scope, we just collect 
sequences that are highly homologous to the S. cerevisae ORFs and likely to 
have same functions. 
  

Genome 
N° of ORFs 

 
N° main 

orthologues 
N° in-

paralogues 
% of ORFs being 
main orthologues 

S. cerevisiae 6222 5652 1806 90.84 
S. paradoxus 8955 5415 204 60.47 
S. mikatae 9057 5189 134 57.29 

S. kudriavzevii 3768 3530 109 93.68 
S. bayanus 9424 5149 114 54.64 
C. glabrata 5272 4343 118 82.38 

K. lactis 5331 4298 75 80.62 
S. kluyveri 2968 2753 59 92.76 
K. waltii 5230 4271 80 81.66 

A. gossypii 4713 4125 48 87.52 
D. hansenii 6896 1009 101 14.63 
C. albicans 9256 3571 1759 38.58 
Y. lipolytica 6666 2483 310 37.25 
S. pombe 4931 2780 292 56.38 
N. crassa 10082 2861 78 28.38 

Table 2 : Contribution of the 15 yeasts proteomes to the S. cerevisae centred orthology 
group. Species are sorted according to their divergence from S. cerevisae (see Figure 2). 
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The number of main orthologues retained for each specie  roughly parallels to 
the rDNA phylogeny (Souciet et al., 2000) reported in figure 2 and is 
consistent with other comparative studies among the same yeasts (Gaillardin 
et al., 2000). Gaillardin and co-workers found that 600 genes are conserved 
in several species but missing in S. cerevisae, underlying that a part of the 
yeast diversity results from species specific gene loss or duplication. 
Moreover, they analyse sequence conservation in the different gene 
functional classes, showing that carbohydrate transport and metabolism 
genes are the most variable classes. Thus, the adaptation of yeast to different 
environments is not only due to gene loss or duplication but also to rapid 
evolution of genes and regulatory factors dedicated to sugar metabolism. 
They also indicate that Debaryomyces hansenii and Yarrowia lipolytica have 
a more divergent gene sets than expected from the rDNA phylogenetic 
analysis. This is consistent with the extreme adaptations of these species, D. 
hansenii being a marine osmostolerant yeast and Y. lipoly tica a strictly 
respiratory saprophytic organism.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 : Cladogram constructed from the coding sequences of the 25S rRNAs using the 

maximum parsimony built by Souciet and co-workers (Souciet et al., 2000). We add black 
arrows to the species we have taken into consideration in our studies. Neurospora crassa is 
not included in the tree but, as it belongs to the Pezizomycotina class of yeast phylum, it could 
potentially be displayed as an out-group below S. pombe. 
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Although more divergent species contributed poorly to the S. cerevisae 
orthologues clusters, 73% of the groups contain sequences from more than 7 
species (see Graph 1).  
 

Graph 1 : Composition of the 5652 S. cerevisae centric, orthologues groups in terms of 
other species contributions.  

 
 

Finally, in order to use this data to analyse the conservation of a functional 
site, we automatically generate a multiple -alignment of all sequences within 
each group using EMMA, a ClustalW based software from the EMBOSS 
package (Rice et al., 2000).  
 
Proof of concept using PROSITE patterns and ELM motifs  
 
 

In order to assess whether or not our basic assumption about functional 
site conservation is true, we retrieve from PROSITE and ELM regular 
expressions representing protein signature related to a biological function. 
We then count, for each S. cerevisae sequence matching a regula r expression 
how many orthologs from different species also have a match for the same 
regular expression.  
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PROSITE (Hulo et al., 2004) is a manually curated database of regular 
expressions and profile matrices representation of protein families. The 
database download consists of two text files: prosite.doc and prosite.dat. The 
prosite.doc file contains the manual annotations about protein families, 
whereas the prosite.dat is a computer readable structured file summarizing 
all information about every entry. The prosite.dat file we use is the release 
18.0 (12-Jul-2003) and contains 1639 entries (see in Figure 3 an example of 
an entry). 
In each entry the first two letters refer to the data contained in the 
corresponding line. The ID line specifies the name and the type of 
representation (PATTERN stands for regular expression and MATRIX for 
profile) of the entry, while the AC line gives its accession number. The 
biological function common to the protein family is summarized in the DE 
line.  
 

ID WW_DOMAIN_1; PATTERN. 
AC PS01159; 
DT NOV-1995 (CREATED); NOV-1995 (DATA UPDATE); JUL-1998 (INFO UPDATE). 
DE WW/rsp5/WWP domain signature. 
PA W-x(9,11)-[VFY]-[FYW]-x(6,7)-[GSTNE]-[GSTQCR]-[FYW]-x(2)-P. 
NR /RELEASE=41.16,130569; 
NR /TOTAL=89(62); /POSITIVE=76(49); /UNKNOWN=1(1); /FALSE_POS=12(12); 
NR /FALSE_NEG=9; /PARTIAL=1; 
CC /TAXO-RANGE=??E??; /MAX-REPEAT=4; 
DR O00213, ABB1_HUMAN, T; Q9QXJ1, ABB1_MOUSE, T; P46933, ABB1_RAT , T; 
DR Q92870, ABB2_HUMAN, T; O95704, ABB3_HUMAN, T; O35827, ABB3_RAT , T; 
DR O95817, BAG3_HUMAN, T; Q9JLV1, BAG3_MOUSE, T; P46942, DB10_NICSY, T; 
DR O97592, DMD_CANFA , T; P11533, DMD_CHICK , T; P11532, DMD_HUMAN , T; 
DR P11531, DMD_MOUSE , T; P54353, DOD_DROME , T; Q13474, DRP2_HUMAN, T; 
DR P22696, ESS1_YEAST, T; O60861, GAS7_HUMAN, T; Q60780, GAS7_MOUSE, T; 
DR O55148, GAS7_RAT , T; P46940, IQG1_HUMAN, T; Q9JKF1, IQG1_MOUSE, T; 
DR Q13576, IQG2_HUMAN, T; Q8M9L8, MATK_IMPCA, T; P46934, NED4_HUMAN, T; 
DR P46935, NED4_MOUSE, T; Q62940, NED4_RAT , T; Q13526, PIN1_HUMAN, T; 
DR Q9QUR7, PIN1_MOUSE, T; O15428, PINL_HUMAN, T; P33203, PR40_YEAST, T; 
DR Q92462, PUB1_SCHPO, T; P39940, RSP5_YEAST, T; O60045, SSP1_NEUCR, T; 
DR Q9HCE7, SUF1_HUMAN, T; Q9CUN6, SUF1_MOUSE, T; Q9PUN2, SUF1_XENLA, T; 
DR Q9HAU4, SUF2_HUMAN, T; P46939, UTRO_HUMAN, T; Q9H0M0, WWP1_HUMAN, T; 
DR Q8BZZ3, WWP1_MOUSE, T; O00308, WWP2_HUMAN, T; Q9DBH0, WWP2_MOUSE, T; 
DR Q09685, YA12_SCHPO, T; P46936, YAP1_CHICK, T; P46937, YAP1_HUMAN, T; 
DR P46938, YAP1_MOUSE, T; P43582, YFB0_YEAST, T; P46941, YLE5_CAEEL, T; 
DR P34600, YO61_CAEEL, T; 
DR P11530, DMD_RAT , P; 
DR Q9H4Z3, CT67_HUMAN, N; P59114, CT67_MOUSE, N; Q8WYQ5, DGR8_HUMAN, N; 
DR O04425, FCA_ARATH , N; Q9C0H5, KG88_HUMAN, N; P59281, KG88_MOUSE, N; 
DR O74448, PIN1_SCHPO, N; Q9H4B6, SAV1_HUMAN, N; Q8VEB2, SAV1_MOUSE, N; 
DR P40318, SSM4_YEAST, ?; 
DR Q9P2S6, AKY1_HUMAN, F; P53868, ALG9_YEAST, F; P12807, AMO_PICAN , F; 
DR Q26307, ANA_DROME , F; Q12647, GUNB_NEOPA, F; P47332, LGT_MYCGE , F; 
DR P75547, LGT_MYCPN , F; Q9UHC1, MLH3_HUMAN, F; Q00019, RHGB_ASPAC, F; 
DR Q07307, UAPA_EMENI, F; P48777, UAPC_EMENI, F; P53076, YGX7_YEAST, F; 
3D 1EG3; 1EG4; 1F8A; 1I5H; 1I6C; 1I8G; 1I8H; 1JMQ; 1K9Q; 1K9R; 1O6W; 1PIN; 
DO PDOC50020; 

Figure 3 : The WW_DOMAIN_1 PROSITE entry. 
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The regular expression is given in the PA line while MA lines refer to 
profiles. NR (numerical results) lines contain statistics describing the ability 
of the pattern to discriminate family members from other unrelated SWISS-
PROT sequences. By manual cross-check of SWISS-PROT functional 
annotation, PROSITE curators can specify for all the sequences that match 
the pattern (/TOTAL) the number of, true positives (/POSITIVES), false 
positives (/FALSE_POS) or uncertain hits (/UNKNOWN). They also collect 
from SWISS-PROT the cross-references of the full sequences 
(/FALSE_NEG), or fragments (/PARTIAL) that are missed by the pattern 
but are known to have the family biological function. The DR (Database 
Reference) lines list the SWISS-PROT entries that are picked or missed by 
the pattern. SWISS-PROT accession numbers followed by “T” are the single 
instances of the true positives, while “N” stands for false negatives, “F” for 
false positives and “?” for unknown. 
From the proside.dat file we automatically collect 59 pattern entries (i.e. 
only those having a PATTERN, discarding the entries with a MATRIX 
representation) that have at least one true positive and one false positive  
matches in S. cerevisae SWISS-PROT sequences. The 496 S. cerevisae 
sequence matches, relative to the 59 patterns, consist of  295 true positives 
and 201 false positives.  
 
As already mentioned at the end of part1 (see “Comparison of our 
predictions with SCANSITE and ELM”), ELM is a database of short linear 
motifs associated to a biological function. ELMs are short stretches of 
contiguous residues, that do not characterize protein families as PROSITE 
patterns do, but are nevertheless related to a biological activity. In figure 4 
we report an ELM entry that stores a short description of the biological 
function and the regular expression representing the associated motif. 
Moreover, every entry reports possible taxonomical restrictions, the GO 
terms related to the motif and in some cases, ELM instances. The instances 
are the sequences experimentally demonstrated to have the ELM function, 
and are equivalent to PROSITE true positive matches. ELM database does 
not collect false positives, the motifs being low complexity sequence 
signatures, they can have very high number of matches (LIG_CYCLIN_1 for 
instance has 18.670 matches in S. cerevisae proteome only) and very few are 
true positives. Therefore, if a sequence is not listed as true positive in the 
ELM instances we consider it as a false positive. 
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Figure 4 : ELM entry for the LIG_CYCLIN_1 motif. 
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Unfortunately we could only collect 4 ELMs having ELM instances in S. 
cerevisae proteins : LIG_CYCLIN_1, LIG_AP_GAE_1, LIG_PCNA and 
LIG_MAD2.  
 
We now have all the inputs necessary to verify whether sequence 
conservation is a criterion that properly discriminates between true positive 
and false positive matches of a regular expression associated to a biological 
function. Moreover to quantify the “noise” conservation due to the 
evolutionary proximity of the chosen yeasts species, we include in our 
analysis random, functionally meaningless, patterns. Random patterns are 
generated inverting the reading direction of the biologically meaningful 
regular expressions (for instance an AxC motif is inverted to CxA). We 
measure the conservation of a pattern or motif match in a specific S. 
cerevisae ORF, by automatically counting how many other species still have 
a match in the ORF orthologues alignment. Because in some alignment the 
same species can be represented by more than one ortholog (main ortholog 
and in-paralogs, whenever present) we decide to count the matches per 
species and not per sequence. Moreover, we impose that the orthologue 
matches fall in range boundaries dictated by the position of the signature in 
the S. cerevisae sequence. By querying with a regular expression and 
matching ORF, our procedure returns a percentage of specie s that keep the 
pattern unaltered in at least one sequence as a fraction of all the species 
present in the ORF ortholog alignment. When a pattern or a motif has many 
matches the “conservation” associated to it is the arithmetic average of all its 
matches. 
 
Then for each PROSITE and ELM regular expression (see materials and 
methods section about protein functional patterns for other details) we 
analyse independently the conservation of the true positives, or false 
positives and of all the matches of the randomized pattern. In order to 
observe the effect of phylogenetic divergence on pattern conservation, we 
repeat the measures by increasing stepwise the number of species considered 
in the alignments. The species are added in an order corresponding to their 
phylogenetic distance from S. cerevisae. As shown in graph 2 and graph 3, 
our analysis confirms that the conservation of peptide sequences in an 
ortholog alignment decreases more rapidly at increasing phylogenetic 
distance in random peptides than in peptides matching a functional pattern. 
Although the difference is less important in the case of the ELM motifs, true 
positives matches are on average much more conserved than false positives. 
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One possible explanation to the weaker conservation of ELMs, are possible  
cases of co-evolution of molecular interfaces underlying a biological 
function.  

Graph 2 : Average conservation of the 59 PROSITE patterns having true positives and 
false positives matches in S. cerevisae. 

Graph 3 : Average conservation of the 4 ELMs having true positives instances in S. 
cerevisae. 
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Co-variation of residues or “correlated mutations” events where two 
interacting partners display at their interface different residue combinations 
in different species, have been reported in the literature (Pazos & Valencia, 
2002). It is reasonable  to assume that co-evolution is likely to affect in a 
stronger manner ELMs in comparison with PROSITE patterns. In fact 
PROSITE entries mostly define complex long patterns generally 
characterizing structured protein domains. For this reason a PROSITE 
pattern does not exclusively report residues directly linked to its specific 
function, but represents a general sequence signature including residues 
critical for its structural features. Whereas ELMs, by definition are short 
linear stretches of sequences experimentally shown to be target of some 
enzyme or localization signal or just ligand of some other protein. Thus, the 
residues reported in an ELMs are likely to be all involved in the molecular 
function much more than the elements of a PROSITE pattern. 
 
Scoring the conservation of putative 14-3-3 ligands  
 
 

Having acquired evidence that the pattern conservation criterion 
properly discriminates biologically active sequences, we decide to use it to 
filter false positive from our prediction of 14-3-3 ligands. However, we have 
to exclude the eventuality that 14-3-3 domains and their ligands could 
undergo co-evolution in the range of species we take into consideration. If 
this happen we might not find the same binding consensus that we have 
experimentally established in S. cerevisae. Although the two patterns 
representing 14-3-3 domains in the PROSITE database are both almost 
perfectly conserved in all the orthologs of BMH1 and BMH2 (see Graph 4), 
we perform a more detailed analysis of the full sequences conservation of 
the 14-3-3 domains.  
We focus on the orthologues alignments generated for BMH1 and BMH2, as 
expected BMH1 is an in-paralogue of BMH2 and vice-versa. Thus we merge 
the two sequences files (un-aligned sequences) and align them with all the 
14-3-3 proteins of the fifteen yeast species that we have considered. Finally 
this alignment is submitted to PROT DIST, a software from the PHYLIP 
package (Felsenstein, 2004) that calculates protein sequence similarity 
according to the standard amino acid replacement methods (Dayhoff et al., 
1972). The all-versus-all comparison results are reported in graph 5. With 
the exclusion of N. crassa, S. pombe, Y. lipolytica and C. albicans all other 
sequences have very high similarity. Among these we find BMH1 and 
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BMH2 from S. cerevisae for which we have experimental evidence of their 
identical binding specificity. 

Graph 4 : Conservation of 14-3-3 PROSITE patterns in BMH1 and BMH2 alignments. 

Graph 5 : All-versus-all sequence comparison of BMH1 and BMH2 orthologues. 
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Thus, we decide not to consider N. crassa, S. pombe, Y. lipolytica and C. 
albicans orthologue sequences for validation of 14-3-3 ligands, as we fear 
their 14-3-3 domain may have different specificities. Furthermore, as D. 
hansenii does not have any orthologue sequence to BMH1 or BMH2, we 
also exclude this specie from the rest of our study. 
 
 
Procedure for the in silico 14-3-3 binding peptide 
screening 
 
 

Our aim is to screen all decapeptides from the S. cerevisae proteome that 
have a central serine, use the 14-3-3 prediction tool derived from the  
PepSpot mutagenesis experiment, to select potential partners and restrict by 
other criteria the number of predicted interactors. Together with the 
comparative genomic filter we set up a number of other selection criteria, 
based on the current protein interaction validation methods, to increase the 
accuracy of the prediction of yeast 14-3-3 partners on a proteome scale. We 
now present each filter, beginning with those that we use to select peptides 
and then continuing with those applied at protein level to restrict the range of 
our in silico peptide screening.  

 
Selection criteria at the peptide level 

 
 
The first selection undergone by serine centred decapeptides consists in 

matching the regular expression and having a high score according to the 
PSSM derived from 14-3-3 binding data. Furthermore, we use the 
comparative genomic filter to verify that the regular expression pattern 
representing not tolerated residues is conserved in all orthologous sequences. 

 
Then we try to assess whether or not a given peptide has the sequence 

requirements to be phosphorylated. We therefore utilize again ELM resource 
to retrieve all regular expressions representing serine phosphorylation sites. 
We find 10 target motifs (see Table 3) describing the features of the main 
eukaryote kinase substrates. We also collect a larger number of eukaryote 
kinase target consensus from the literature (see Table 4) (Brinkworth et al., 
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2003). Regular expressions from both sources show that the protein kinase A 
targets are more likely to be binding partners of 14-3-3 domains. The 
remaining protein kinases phosphorylate targets containing residues that are 
incompatible with 14-3-3 binding since they require negatively charged 
residues or proline in position +1  

 
ELM ID Regular expression Motif description 

MOD_CDK ...[ST]P.[KR] CDK motif for Ser/Thr phosphorylation 
MOD_CK1_1 S..[ST] CK1 motif  for Ser/Thr phosphorylation 
MOD_CK2_1 [ST]..E CK2 motif  for Ser/Thr phosphorylation 
MOD_GSK3_1 ..[ST]...[ST] GSK3 motif  for Ser/Thr phosphorylation 

MOD_PK_1 [RK]..S [VI] PK motif  for Ser/Thr phosphorylation 
MOD_PKA_1 [RK][RK].[ST] PKA motif for Ser/Thr phosphorylation 
MOD_PKA_2 R.[ST] PKA motif for Ser/Thr phosphorylation 
MOD_PKB_1 R.R..[ST]. PKB motif for Ser/Thr phosphorylation 
MOD_PLK [DE].[ST][ILFWMVA] Polo-like-Kinase motif for Ser/Thr phosphorylation 

MOD_ProDKin_1 ...[ST]P.. MAP Kinase motif for Ser/Thr phosphorylation 
Table 3 : ELM phosphorylation motifs.  
 

Protein Kinase Consensus derived from known substrates 
AKT R[RTSL][SPRT][ST][YSF][PGAST][EAND] 

AMPK R[SNT][MEQN][ST][FIGK][LAI][HFLA] 
ARK [NTK][NVT][DS][ST][ENDQ][EDNG][RQEDN] 

CaMKII [RKG][QARKLS][AQLG][ST][VLIF][SADG][SEMD] 
CDK2 [TL][PVLSH][LATS][ST]P[PR][KRL] 
CDK5 [EG][TVH][KA][ST]P[VPE]K 
CHK2 R[STI][FHKP][ST][DFM][LVPS][WLKE] 
CK1 [SDET][SEAV][SLDE][ST][ELSVI][ESTD][ESGD] 
CK2 [DSE][ESD][EGS][ST][DE][ED]E 

ERK1 [PAVTL][PV][LT][ST]P[PSR][PARKFG] 
PHK R[AQSTL][ILR][ST][VITA][RHY][RKFS] 
PKA [RK][RK][SLRGAP][ST][LSVR][STPV][SAVGE] 
PKC [RKS][RKAG][LSAR][ST][FLVRK][RKAS][RKS] 
PKG R[RK][RLI][ST][RASIK][SALK][EPT] 
S6K R[RAS][LS][ST][SVL][SRL][SRAG] 

SLK1 [LA][AV].[ST][FL][TA][TG] 
Table 4 : Substrate specificity of some protein kinases retrieved from the literature. 
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This set of kinase target patterns is not complete, we observed that 20% of 
the naturally phosphorylated peptides (used in our predictor blind test) do 
not match any of the regular expression. However, the usage of these regular 
expressions allow us to screen a full proteome avoiding false positive 
matches by applying the comparative genomic filter. In fact whatever 
phosphorylation pattern is matched by a peptide under analysis, we also 
check its conservation in the orthologous sequences. In this way we first 
identify sites that show simultaneously binding capacity for 14-3-3 domains 
and target sequence for Ser/Thr phosphorylation, and then select those that 
are likely to be true functional sites requiring the high conservation of these 
two properties in other yeasts species sequences 
 
Moreover we decide to use GlobPlot (Linding et al., 2003) in order to select 
peptides that belong to “disordered regions”. In this way we exclude the sites 
that belong to some conserved region but are likely to be buried within the 
folded protein structure. GlobPlot is a tool simply based on each amino acid 
propensity to be in an unstructured or structured region (see Graph 6).  
 

Graph 6 : Amino acid propensity to be in unstructured protein regions. 
 
 

These propensity values are calculated by counting how many times a given 
amino acid is found in regular secondary structure (alfa-helices or beta 
strands) or outside of them (random coil, turns, or loops), in a non redundant 
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protein structure set (Velankar et al., 2005). When the first derivative of the 
propensity curve obta ined scoring a full length protein is positive in a 
window of more than 4 residues, this is predicted to be a disorder region, 
whereas when it is negative for more than 30 amino acid a globular 
structured region is inferred. GlobPlot successfully predicts ordered region 
corresponding to SMART (Letunic et al., 2004) domains and disordered 
stretches in the inter-domain segments (see Figure 5). Moreover GlobPlot 
finds short regions (7-14 residues) nested within SMART domains.  
 

Figure 5 : Disorder propensity plot of the human transcription factor SMA2_HUMAN. 
GlobPlot downhill regions overlap two SMART structured domains, small peaks within them 
correspond to the turns between helices and strands.  

 
 
GlobPlot predictions for single sequences are available online1 but the 

full S. cerevisae proteome we need for our in silico screening has been 
kindly provided by R. Linding in an upper/lower case code for (upper case 
residues corresponding to disordered regions). In our studies we have 
                                                 

1 http://globplot.embl.de/ 
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applied the rule indicated by the author and considered a peptide as 
potentially unstructured when it has at least 4 amino acid stretch predicted to 
be disordered.  

 
 

Selection criteria at the protein level 
 
 

As presented in the introduction, protein interaction data can be 
validated by checking that the binding partners satisfy basic co-occurrence 
rules. Physical protein interaction requires that partners have overlapping 
expression patterns and are available in the same subcellular location. 
Moreover, as protein interactions underlie  molecular mechanisms supporting 
biological processes, protein partners with a similar functional annotation are 
more likely to be binding partners. 
 
Considering the co-expression criterion, ideally we would like to identify all 
the yeast ORFs with an expression profile that is similar to BMH1 and 
BMH2 in RNA array hybridisation experiments carried out on different 
conditional time series (cell cycle, shock treatments, growth conditions ect). 
Kemmeren and co-workers published a comprehensive list of S. cerevisae 
ORFs pairs that have significantly similar RNA expression profiles in a 
number of different microarray experiments (Kemmeren et al., 2002). 
Unfortunately only 4 ORFs show to have some correlation with BMH2 
transcription (KSP1, SEF1, RIF2 and ECM13) and only SRP1 result to have  
an expression profile similar to BMH1.  
As an alternative we decide to take advantage of the global analysis of 
protein expression in S. cerevisae, that aim at quantifying protein products 
during log-phase growth (Ghaemmaghami et al., 2003). In this work the 
authors successfully introduce within yeast chromosome a TAP (Tandem 
Affinity Purification) cassette on each gene 5’ end, and therefore obtain 
more than 6100 mutants able to express at their natural level, engineered 
proteins carrying the same purification flag at their C-terminus. 4.463 
proteins were found to be expressed during normal growth and their 
abundance range from 50 molecules to 106 molecules per cell. 1.500 proteins 
do not have a detectable expression. Nearly 1.000 proteins are known to be 
required only in specialized conditions (sporulation, or alternative 
metabolisms) and the remaining 500 are stated to be spurious ORFs 
generated by automatic translation of the genomic sequence. This statement 
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is supported by the excellent overlap of this set of spurious ORFs with the 
one reported from comparative analysis of genomic sequences of S. 
cerevisae with three very closely related species (S. paradoxus, S. mikatae 
and S. bayanus) (Kellis et al., 2003). In our in silico screening we decide to 
take into consideration only the 4.463 proteins that have a detectable 
expression during log-phase growth and include BMH1 and BMH2. This 
way we first eliminate spurious proteins from our 6.232 S. cerevisae protein 
collection (see the material and methods section “Building a proteomic table 
to combine S. Cerevisae data”), moreover we “normalize” our screening 
with those performed experimentally that always occur under normal growth 
conditions. This set of 4.463 proteins includes around 800 well characterized 
ORFs whose expression is observed in the localisation experiment below but 
not detected in the present one. The authors state these proteins that may be 
expressed at a level below the experimental resolution, or undetected for 
technical reasons. 
 
Similarly, in order to set up a co-localization filter we use the results of a 
single large scale protein localisation experiment performed in S. Cerevisae 
(Huh et al., 2003). In this case protein fusions with GFP (Green Fluorescent 
Protein) are generated engineering 6.029 ORFs, and are co-expressed with 
12 protein fusions with RFP (Red Fluorescent Protein) acting as markers of 
distinct subcellular compartments. Each expressed ORF product is assigned 
to a compartment by inspecting the yeast cells with a fluorescent 
microscope. In total 4.156 protein products are located and the specific 
assignments show strong correlation with previous studies performed with 
different technologies and formalized in GO format at SGD1. We choose to 
use the data from Huh and co-workers instead of GO annotations for 
subcellular compartments because of the assignment done for BMH1 and 
BMH2. According to the authors our two favourite proteins result to be both 
cytoplasmic and nuclear, whereas according to GO annotations they are only 
nuclear, that is inconsistent with evidences of BMH2 presence in the 
cytoplasm (Beck & Hall, 1999). Thus we retrieve the full results2 and 
identify all the proteins that have a coherent subcellular location with BMH1 
and BMH2. When we exclude the proteins that are isolated by membranes 
from the nucleus and the cytoplasm 2.882 ORFs result  to be co-located with 
14-3-3 proteins. When we consider only the proteins that are visualized in 

                                                 
1 http://www.geneonto logy.org/cgi-bin/downloadGOGA.pl/gene_association.sgd 

2 http://yeastgfp.ucsf.edu/allOrfData.txt 
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the nucleus or in the cytoplasm 2.377 ORFs results to have the same location 
as BMH1 and BMH2.  
 
Finally we create a GO based filter able to select proteins that share BMH1 
and BMH2 biological process (see materials and methods, the gene ontology 
section). We retrieve the biological process ontology and the GO 
assignments for all S. cerevisae ORFs1. We analyse the GO biological 
process terms assigned to BMH1 and BMH2 and the position of these terms 
within the ontology tree (see Figure 6). As expected, BMH1 and BMH2 
share all their GO processes that are terms ranging from depth 4 to depth 8, 
and these terms properly reflect the heterogeneous group of biological 
functions where our two proteins are known to be involved (from signal 
transduction to metabolism).  
 
Next, we automatically generate a list of ORFs having at least one common 
term with BMH1 and BMH2 (i.e. ORFs annotated with any of the GO term 
reported in Figure 6) , excluding the ORFs that are annotated with the term 
‘Biological Process Unknown’ (GO:0000004). According to the biological 
process tree, any pair of ORFs always has at least one GO process in 
common that is the root term itself ‘Biological Process’ (GO:0008150). For 
this reason we also record the depth of the common term shared by any 
ORFs with BMH1 and BMH2, excluding the trivial pairs whose only 
common parents term is ‘Biological Process’ at depth 0 of the tree. 3.598 S. 
cerevisae ORFs result to be sharing with BMH1 and BMH2 at least one 
parent term, that has depth equal or greater than 1. Only 48 ORFs have a 
common term at depth 1 whereas nearly 3.300 ORFs share a GO process 
having a depth ranging from 2 to 4 (see Graph 7). This is when we consider 
for each ORF only its highest depth term in common with BMH1 and 
BMH2. In fact if one ORF shares a term at depth 8 it also has other common 
parent terms at each lower depth level, but in graph 7 we do not report these 
redundancies.  

                                                 
1  http://www.geneontology.org/ 
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Figure 6 : Part of GO Biological Process tree that includes all the terms assigned to 
BMH1 and BMH2 (indicated by bold lines). In the right side we indicate the numbering of the 
tree depth. This image is derived from the graphical output of the GO Term Finder 
(http://db.yeastgenome.org/cgi-bin/GO/goTermFinder) tool, when queried with BMH1 and 
BMH2. 
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Graph 7 :  Common term depth distribution. The terms that can be shared by BMH1 and 
BMH2 at each GO process tree level are reported in figure 6.  

 
 

None of the three protein selection criteria alone can give us indications 
about specific  binding partners of the 14-3-3 domains. Each of them 
identifies 3 or 4 thousands proteins that may interact with BMH1 or BMH2 
according to the selected criteria . However by combining these three filters 
the number of sequences left to be screened at peptide level drops from the 
initial 6.232 ORFs to around 2.000 proteins that have all the biological 
requirements to be 14-3-3 partners. Submitting only these 2000 proteins to 
the peptide screening (see Figure 7) we ensure that our predicted partners are 
existing proteins (and not only predicted ORFs), that co-occur in time and 
location with the 14-3-3 proteins, and also share some common cellular 
process with them.  
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Figure 7 : Overall structure of the in silico screening of S. cerevisae proteome for 14-3-3 
mediated interactions. Experimental data are highlighted in blue, whereas predictions and 
annotations are respectively  in grey and green boxes. 

 
 

 
Result of the in silico screening and comparison with 
experimental results 
 
 

In order to assess the performance of our large scale screening, we take 
advantage of the interaction data concerning BMH1 and BMH2 extracted 
from the literature and stored in the MINT database. Moreover we carry out 
in our laboratory further co-immunoprecipitation (CoIp) and PepSpot assays. 
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We therefore use these experimental interaction results to assess the 
accuracy of each filter in selecting 14-3-3 domain partners. In this way we 
can establish appropriate thresholds and refine our final prediction of BMH1 
and BMH2 partners.  
 
In vivo detection of S. cerevisae  14-3-3 ligands   
 
 

By querying the MINT database we find 27 proteins that interact with 
one or both the two yeast 14-3-3 proteins, BMH1 and BMH2 (see Table 5). 
Because in our studies we cannot observe any divergence in specificity of 
these two isoforms we consider all their partners as 14-3-3 domain 
interactors. Most of the interactions have been identified by high throughput 
screening and only three proteins (KCS1, NTH1 and REG1) have two 
independent experiments supporting their interaction with 14-3-3 domains.  
 
Nevertheless we repeat a TAP Co-Ip (Tandem Affinity Purification tag Co-
Immunoprecipitation) using BMH1 and BMH2 as bait to isolate protein 
complexes (Panni et al., in prep). The tagged 14-3-3 are retained by a 
calmodulin resin with their partners. The complexes are then disassembled 
by SDS PAGE (Sodium Dodecyl Sulphate PolyAcrylamide Gel 
Eelectrophoresis) and the 14-3-3 interacting proteins identified by mass 
spectrometry. As shown in figure 8, the patterns for BMH1 and BMH2 are 
very similar with the largest bands being the tagged baits themselves. 
Moreover these results confirm that BMH1 and BMH2 form homo and 
heterodimers in vivo. In fact BMH1 is fished as interactor when BMH2 is 
used as bait and vice versa. The proteins identified both in the BMH1 and 
BMH2 CoIp are REG1, RGT2, NTH1, MKS1, HEM15, YPL100C and 
FAS1, whereas FAS2 is found only in the BMH1, and MYO2 exclusively in 
the BMH2 experiments. Only 3 of these 14-3-3 partners are already known 
raising once again the issue of explaining the lack of overlap in independent 
interaction screening results. However, to test the in silico prediction we 
need information about the peptides responsible for the interaction. Thus we 
carry out a PepSpot ligand screening, i.e. the analysis of all the serine  
containing peptides derived from each protein sequence that is known to be a 
14-3-3 partner. 
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Partner Interaction identification method Reference  
ADR1 flag tag coimmunoprecipitation Ho et al., 2002 
BNR1 flag tag coimmunoprecipitation Ho et al., 2002 
BOI2 flag tag coimmunoprecipitation Ho et al., 2002 
BOP3 two hybrid array Uetz et al., 2000 
CSR2 flag tag coimmunoprecipitation Ho et al., 2002 
CYK3 flag tag coimmunoprecipitation Ho et al., 2002 

ECM13 two hybrid array Uetz et al., 2000 
FUN31 tap tag coimmunoprecipitation Gavin et al., 2002 
GSY2 flag tag coimmunoprecipitation Ho et al., 2002 
KCS1 two hybrid array Uetz et al., 2000 
KCS1 flag tag coimmunoprecipitation Ho et al., 2002 
LCB2 tap tag coimmunoprecipitation Gavin et al., 2002 
MSN2 coimmunoprecipitation Beck et al., 1999 
MSN4 coimmunoprecipitation Beck et al., 1999 
NTH1 tap tag coimmunoprecipitation Gavin et al., 2002 
NTH1 flag tag coimmunoprecipitation Ho et al., 2002 
NTH2 tap tag coimmunoprecipitation Gavin et al., 2002 
PIK1 tap tag coimmunoprecipitation Gavin et al., 2002 
REG1 flag tag coimmunoprecipitation Ho et al., 2002 
REG1 two hybrid/pull down Mayordomo et al.,  2003 
RIF2 two hybrid pooling approach Ito et al., 2001 
RTG2 tap tag coimmunoprecipitation Gavin et al., 2002 
SEF1 two hybrid pooling approach Ito et al., 2001 
SNF4 tap tag coimmunoprecipitation Gavin et al., 2002 
SOK1 flag tag coimmunoprecipitation Ho et al., 2002 
SRP1 two hybrid pooling approach Ito et al., 2001 
SVL3 flag tag coimmunoprecipitation Ho et al., 2002 
YAK1 coimmunoprecipitation Moriya et al., 2001 

YFR017C flag tag coimmunoprecipitation Ho et al., 2002 
YIL028W flag tag coimmunoprecipitation Ho et al., 2002 

Table 5 : 14-3-3 domain partners stored in the MINT database. Proteins in bold are those 
whose interaction with BMH1 or BMH2 was observed twice in independent experiments. 
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Figure 8 : SDS PAGE of complexes purified using BMH1 and BMH2 as bait. 
 
 

We include in this screening all the proteins identified in our Co-Ip 
experiment plus GSY2, MNS2 YAK1 and RTG3, for whom we have both an 
in vivo interaction evidence in MINT and an in vitro confirmation in the 
phosphopeptide PepSpot analysis. From these 13 ligand proteins we derive 
1051 peptides having a central serine residue synthesized in their 
phosphorylated state on membrane and subsequently incubated with BMH1 
and BMH2 (see Figure 9). The BLU intensity associated to each of the 1051 
peptides show an exponential distribution similar to the one reported 
previously resulting from the phosphopeptides screening (see Graph2 in 
part1). Similarly we set a cut off value as the 10% of the maximum BLU 
score obtain in the screening and identify 69 peptides that we classified as 
ligands as they have a BLU signal above the threshold. Each of the 13 ligand 
protein has at least two putative ligand peptides that may mediate complex 
formation. 
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Figure 9 : PepSpot experiment where peptides derived from 13 ligand proteins are 
screened.  

 
 

Summarizing we have identified sixty nine 14-3-3 binding peptides derived 
from thirteen known ligand proteins that constitute a set of experimental data 
that we can use as a test set for the selection criteria of our in silico 
screening. We also take into consideration, in a separate set, the remaining 
twenty fourth proteins stored in MINT as 14-3-3 partners although for these 
we do not have experimental information about the target peptide.  
 
Filters benchmark against experimental data  
 
 

At this stage our scope is to establish appropriate parameters regulating 
the stringency of each filter. We then test our system to identify the 
thresholds that lead to the largest recovery of experimentally determined 
partner and the smallest number of new inferred interactors of 14-3-3 
domains from the full yeast proteome. Most of our filtering criteria  do not 
have a set threshold , such as the regular expression, the peptide disorder 
prediction and the protein expression in vivo assessment. These three filters 
allow sorting of the peptides and proteins satisfying their requirements, and 

BMH1 BMH2 



Comparative genomic approach for protein-protein interaction validation 

 
 

Luisa Montecchi-Palazzi 

72 

eliminate from further analysis the biological objects which do not meet their 
criteria. On the other hand the PSSM derived from mutagenesis, the 
comparative genomic filter and the common GO process criteria produce a 
quantitative output and suitable thresholds should be established to modulate 
their stringency.  
 
Previous analysis in this work already gives us some elements to define filter 
thresholds. As shown in part1, our prediction of 14-3-3 partners has an 
accuracy ranging from 80 to 90% with PSSM thresholds from 0.48 to 0.50. 
Concerning the comparative genomic filter in conformity with the result 
obtained with ELM motifs and PROSITE patterns we require the regular 
expression to be conserved at least in 70% and ideally in 100% of the 
species. Regarding the GO process we need to explore if the increase of the 
depth (ranging from 1 to 8) of the common term in GO process tree 
increases the accuracy of the prediction. Finally we also generate two 
alternative sets of proteins co-localized with BMH1 and BMH2: the first 
includes all proteins (2.882) that are not separated by membranes from the 
nucleus and the cytoplasm, whereas the second includes only proteins 
(2.377) that are located in the nucleus or the cytoplasm.  
 
Thus we explore a reasonable number of parameter combinations and run the 
14-3-3 in silico screening on the full S. cerevisae proteome. We analyse the 
accuracy and coverage of the filters using as a reference set for validation the 
experimental data we have collected. Each filter is validated independently 
and in various combinations with the others. The accuracy and the coverage 
are calculated using the same formula of our previous studies: 
 

Accuracy = (True Positives / (True Positives + False Positives)) x 100  
Coverage = (True Positives / Experimental Positives) x 100 

 

In table 6 we report the 12 combinations of thresholds and the resulting 
accuracy and coverage of the full system calculated at peptide level (using 
the 69 high affinity peptides) and at protein level (referring to the 13 ligand 
proteins of our experimental set). The coverage and accuracy values we 
obtained are in general quite weak, but this is normal considering the 
discrepancy in size between the full yeast proteome that is analyzed (6.232 
protein and the more than 250.000 peptides with a central serine) and our 
control dataset (13 ligand proteins and 69 binding peptides).  
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Surprisingly coverage calculated at peptide level is drastically lower than 
coverage at protein level. However we identify optimum parameters that 
lead to an overall prediction with almost 70% coverage and 10% accuracy. 
 

Graph 8 : Accuracy versus coverage plot of the prediction obtained using different sets 
of cut-off values (the thresholds set in each screening are reported in Table 6). The 
performance of the screenings with all filters is compared with those carried out considering 
either protein or peptide filters exclusively. Accuracy and coverage are calculated considering 
the 13 ligand proteins as reference set. 

 
 

We first analyse the contribution of all protein filters and all peptide filters, 
combined in groups of two, to the full system accuracy (see Graph 8). As we 
expected peptide selection for 14-3-3 partners results on average more 
accurate than protein filtering criteria (Expression, co-localisation, and GO 
term sharing). However, when GO process term is shared at depth 5 (set n° 
12 in Graph 8) protein filtering reaches the highest level of accuracy (see 
below Graph 9) but with considerable loss in coverage. Nevertheless, we can 
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observe that protein criteria when applied with low cut-off values succeed in 
increasing the accuracy of 14-3-3 partners selection without affecting the 
prediction coverage (see for instance set n° 9 in Graph 8).  
 

Graph 9 : Accuracy versus coverage plot of each protein filter independently and 
grouped as a whole at increasing values of GO term depth (from 1 to 5). 

 
 

By analysing the accuracy of each protein selection criteria we can see that 
our expression filters, although rather unspecific , succeed in excluding 
spurious ORFs none of which is on our ligand set. The co-localisation 
criteria can be applied in the strictest manner by including only proteins that 
are exclusively located in the nucleus and the cytoplasm without significant 
variations in performances. Besides increasing the depth of the shared GO 
process term above level 2 strongly affects the proteins selection. We 
observe that depth 1 and 2 have identical performances whereas depth 3 
reduces coverage without increasing accuracy as depth 4 and 5 do. So 
although GO criteria can increase accuracy when applied at high depth level, 
we choose depth_2 for our final prediction. Here again the combination of 
all the criteria i.e. the selection of the proteins satisfying all requirements, 
give the best results. 
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Graph 10 : Peptide filters accuracy versus coverage plot using the 13 known ligand 
protein as reference set. 

Graph 11 : Peptide filters performances in recovering from the yeast genome the 69 
known binding peptides.  
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Concerning the filters applied at peptide level, we report their performances 
at increasing cut-off values, both in terms of peptide and protein selection 
(see Graph 10 and Graph 11). It is interesting to see how these filters have a 
different coverage at peptide and protein level.  
 
The regular expressions (derived from mutagenesis or collected for 
phosphorylation patterns) and the conservation according to comparative 
genomic filters seem to be a very unspecific  criteria at protein level, whereas 
they are stringent at peptide level. Similarly the 14-3-3 PSSM and the 
regular expression derived from the mutagenesis data positively select 
around 40-50% of the peptides corresponding to 90% or more proteins. This 
coverage variation depends on the fact that very few peptides per protein are 
selected and that the small population of selected peptides identifies an 
almost equivalent number of proteins. In fact when we combine all the filters 
we find only one peptide that satisfies all requirements per protein.  
 
In graph 11 we verify that the PSSM together with the regular expression 
derived from the mutagenesis is the highest accuracy filter in selecting 14-3-
3 binding partner before the application of the other filters at the protein 
level. Moreover, we assess that the best PSSM score threshold is 0.50 when 
applied to full proteome screening. Furthermore we acknowledge that the 
comparative genomic filter validated around 50% of the regular expression 
matches and, when combined with other criteria , increases the overall 
accuracy values of a 4 folds with relatively little effect on coverage. In 
establishing the comparative genomic cut-off values (see Table 6) we 
determine that for the regular expression representing phosphorylation 
patterns the threshold can be set at 87% whereas the optimum cut-off for the 
regular expression to identify putative binding partners is 70%. This 
difference can be partially explained by the fact that most of the peptides 
match regular expressions from ELM phosphorylation pattern (see Table 3) 
that impose few restrictions (in three or fewer positions) compared to our 
regular expression for 14-3-3 target (9 positions defined). Thus it is not 
surprising that shorter stretches of sequences are better conserved than 
longer ones. This decision is also taken considering the results themselves 
(see below) and the peptides that would be excluded in case we use the same 
cut-off value for both applications of the comparative genomic filter. 
 
Finally GlobPlot predictions have performances similar to the regular 
expressions, i.e. all proteins have at least one disordered peptide centred on a 
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Ser residue, but only 60% of our set of binding peptides are predicted to be 
unstructured. We observe that the experimental peptides already selected by 
all the other filters are also predicted to be in a disorder region and we 
consider this as an extra evidence of their biological relevance. Thus the 
GlobPlot filter results further supported the selection of putative 14-3-3 
binding sites as it is unlikely that co-occurrence on the same peptide of all 
the requested sequence properties (14-3-3 binding, phosphorylation target, 
conservation in orthologous sequences and disorder propensity) happens by 
chance. 
 
In silico prediction of 14-3-3 mediated interactions  

 
 
When we apply the optimized set of cut-off values, the peptide filters 

select 302 out of the 250.000 decapeptides with a central serine in S. 
cerevisae proteome (0.12%). Beside all protein filters select 1.633 ORFs out 
of the initial 6.232 (26%) and the combination of both procedures leads to 
the prediction of 92 peptides belonging to 82 proteins (see Appendix). 9 
proteins out of 13 from our experimental set are correctly predicted as 
putative ligand, whereas 4 proteins are discarded by the filtering system we 
set up. Moreover according to our prediction 4 proteins from the set of 24 
known 14-3-3 ligands retrieved from the MINT database, for which we do 
not have experimental confirmation of the binding at peptide level, have an 
optimal binding site (see Table 7).  
 
In the set of the 9 true positives ligands, 3 peptides belonging to GSY2, 
YAK1 and NTH1 are known to be phosphorylated in vivo, whereas the 
predicted binding sites for RTG3, MSN2 and REG1 are not known to be 
phosphorylated. The NTH1 peptide has the weakest conservation of the 
phosphorylation pattern but, because we have the in vivo evidence that this 
specific site is phosphorylated we decided to set the cut-off value 
accordingly. Moreover the validity of this specific peptide compared to other 
possible binding sites within NTH1 sequence is confirmed by BIACORE 
affinity measures (Panni et al. in prep.). Overall we also observe that in 5 
cases out 9 the selected peptides are the best ligand site (rank first) within 
each protein sequence according to the ligand scanning PepSpot experiment. 
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Among the proteins known to be 14-3-3 ligands but not included in our 
ligand scanning experiment, we infer KCS1: this protein is one of the 3 most 
reliable partners (together with REG1 and NTH1) as it has two independent 
evidences of its interaction with BMH1 and BMH2 in vivo (see Table 5).  
 
Moreover, we observe that the expression level of this set of ligands together 
with MSN2, GSY2, YAK1, and RGT3 is lower than 1000 molecules per 
cell, and this could explain why we did not detect them in our CoIp 
experiment.  
 
In particular, YAK1 and MSN4 are suspected to have a very low number of 
copies as they have no detectable expression (Ghaemmaghami et al., 2003 
see section: ’Selection criteria at protein level’) while proven to be existing 
gene product, as they were visualized as GFP fusion proteins (Huh et al., 
2003).  
 
Concerning the false negatives, YPL110C is the only partner that we feel 
could be in fact a true negative. Apart from being an uncharacterized ORF 
whose GO process term is “unknown process”, we cannot find a possible site 
both matching the patterns for 14-3-3 binding and showing some acceptable  
level of conservation of the relative regular expressions. We display in table 
7 only one YPL110C peptide but this observation occurred along all its 
sequence. For RGT2 and MKS1 we report the peptides that satisfy almost all 
requirements except the score derived from our PSSM. Both these peptides 
have a limited number of positive charges at the N-terminus, together with 
hydrophobic amino acids in positions +1 and -1. This combination of 
residues is shown to be appropriate for 14-3-3 binding in the PepSpot 
experiment but is wrongly underrated by our PSSM score. HEM15 protein is 
excluded for two reasons: first it is annotated as a mitochondrial protein, 
second the best scoring peptide we report does not match any 
phosphorylation pattern. Regarding the localisation we do not discuss the 
validity of this assignment but only the static representation of proteins it 
gives. In fact as HEM15 is encoded by the nuclear genome and not by the 
mitochondrial, it is likely that the protein passes through the cytoplasm 
during its lifetime before reaching its final destination. Besides 14-3-3 
proteins are known to be regulators of their partners location by retaining 
them either in cytoplasm or in the nucleus. Finally the HEM15 peptide 
belongs to a class of peptides having an XsLP pattern and showing good 
scoring in our PepSpot screenings. Despite this we could not find any 
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phosphorylation regular expression matching such residues stretch and we 
do not observe any occurrence of this pattern among the known yeast 
phosphopeptides. On the other hand in mammalians cells at least seven 
partners of 14-3-3 isoforms are reported to have a phosphorylated binding 
site matching this XsLP pattern (Aitken et al., 2002). Furthermore in high 
eukaryotes it has also been observed that some 14-3-3 complexes may not 
require phosphorylation of the target peptide. In our yeast system, we have 
evidence that the IPAWLsLPS template of our mutagenesis is a high affinity 
ligand of BMH1 and BMH2 that we choose in order to investigate 14-3-3 
binding ability in absence of positive charges at the N-terminus of the site. 
For the time being we have no further clue to understand whether this 
binding consensus is discarded from our prediction because our collection of 
phosphorylation patterns is incomplete or because it is an artefact of our in 
vitro PepSpot data.  
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CONCLUSIONS 
 
 
From this study case where we have compared experimental and in 

silico analysis of interaction mediated by 14-3-3 proteins interaction we can 
delineate general rules for protein interaction validation. We confirm that the 
search of coherent evidence supporting an interaction in different 
experimental data types such as proteins expression levels, proteins location 
in the cell and proteins functional characterisation is indeed a powerful mean 
to restrict the “social environment” wherein proteins can interact with each 
other. For co-expression analysis we take advantage of a proteomic study 
providing absolute concentration of each yeast protein. These data do not 
allow us to identify specific gene products that share the 14-3-3 expression 
pattern as RNA profiles could. On the other hand we circumvent possible 
regulation events at translation level and have direct information about the 
protein concentrations and not about their RNA precursor. Moreover, protein 
concentration data can sometimes explain discrepancies or the lack of 
overlap between the interaction networks detected by methods having 
different experimental resolution. In order to exploit protein location and 
function as validation criteria , GO is a very powerful tool for automatic 
annotation comparison. Although we could not use the GO compartment 
ontology and even for process we could not take advantage of the full tree 
depth, the growing usage of GO should quickly provide increasingly specific 
and high coverage mean for protein interaction validation. Each of these 
three criteria is rather unspecific in respect of interactions analysis but 
combining them helps to exclude artefact partners. In fact, although BMH1 
and BMH2 are located in the two largest subcellular compartments 
(cytoplasm and nucleus) and do cooperate in several biological processes we 
could reduce by three quarters the number of yeast ORFs that satisfy all co-
occurrence criteria under normal growth conditions. These elements are 
particularly valuable when coupled with sequence based analysis, in vitro 
screenings or even in vivo assays that can alter or overcome physiological 
conditions. 
 
Besides we show how a similar multiple properties check of binding sites 
sequence can be used to infer or validate interacting partners. This approach 
requires appropriate investigations of the recognition determinants that rule 
partner recognition and therefore cannot be used for proteome wide 
interaction screening. Moreover it is applicable only when an interaction is 
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mapped to binding region sequences on both partners Nevertheless we can 
already identify a number of domain-ligand pairs having characterized 
interaction features that are suitable for a sequence level validation similar to 
the one we proposed (see Table 1). Furthermore the systematic collection 
and analysis of such pairs of interacting sequence signature could also be 
very useful to predict the topology of complexes detected by co-
immunoprecipitation. 
 

Domain Domain PROSITE signature  Corresponding ligand ELM 
14-3-3 PS00796 ;PS00797 LIG_14-3-3_(1-3) 
FHA PS50006 LIG_FHA_1 
GYF PS50829 LIG_GYF 
PDZ PS50106 LIG_PDZ_(1-3) 
SH2 PS50001 LIG_SH2_(1-7) 
SH3 PS50002 LIG_SH3_(1-5)  
WW PS01159 LIG_WW_1-4 
Dynein PS01239 LIG_Dynein_DLC8_1 
Clathrin PS00224 PS00581 LIG_Clathr_ClatBox 
Table 1: List of interaction template where both the domain signature and its ligands 

sequences requirements are well established and represented by either regular expression or 
position specific matrices. 

 
 

We show that sequence conservation across several yeast species of 14-3-3 
mediated interaction constrains successfully discriminates binding sites from 
spurious region matching by chance ligand consensus. Beltrao and Serrano, 
using a very similar approach showed that comparative proteomics can 
greatly increase the performance of a consensus based prediction of SH3 
targets (Beltrao & Serrano submitted). However, binding sites conservation 
in close species is in contrast with co-variation of interacting sequence 
observed by Pazos and Valencia across bacterial proteomes (Pazos & 
Valencia 2002). Certainly both processes occur during evolution but further 
studies are required to determine an optimal divergence time for the 
genomes used when searching for conservation of ligand consensus. 
Moreover, it should be analyzed to what extent the co-variation of 
interacting sequences actually alters ligand consensi or domain signature 
conservation. From our preliminary studies we expect the ligand consensi to 
be more sensitive to co-evolution and potentially leading to different binding 
requirements in various species. On the other hand, we show that a regular 
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expression representing the residues that must be avoided to allow the 
binding is highly conserved in the fifteen yeast species we considered. By 
extending our studied to more distant species for whom we have 
experimental data on 14-3-3 partners, we could verify whether our negative 
rules reflect general requirements of an extended conformation peptide to be 
lying on any 14-3-3 groove leaving enough flexibility to specific residues 
combination to occur.  
 
Although the conservation of interaction is an open issue, currently many 
investigations are carried out to extend interaction information from one 
organism to another treating interaction data like functional or structural 
information to be extended by sequence similarity. The notion of 
“interologs” was first proposed by Walthout and co-workers (Walthout et al. 
2000). Protein interaction networks determined in S. cerevisae are used to 
infer candidate interaction partners in C. elegans. By using BLAST 
reciprocal best hits methods they identify pairs of orthologs sequences that 
are known to interact in yeast and verify whether the corresponding 
interaction among worm “interologs” could be determined experimentally. 
Out of 216 inferred interaction 35 (16%) result to be true (Matthews et al. 
2001). Interestingly they do not find detectable correlation between 
orthologs sequence similarity and likelihood of an interaction being 
conserved between yeast and worm. Furthermore, in this study the authors to 
circumvent ambiguities in defining orthologs with the best BLASTP 
reciprocal hits, finally extend interaction to all the good scoring homologues 
protein and state this do not affect the interolog prediction. This supports our 
decision to consider large orthology groups including in-paralogs as defined 
by INPARANOID software is indeed a correct approach when analysing 
interaction properties across proteomes. 
 
Following similar approaches a human interaction map has been inferred 
from S. cerevisae, C. elegans and D. megalonaster experimental data 
(Lehner et al., 2004). The inferred network is validated counting how many 
predicted interaction partner share a GO term. The authors find that 
considering interaction dataset for the single organism supported by at least 
two independent evidences or inferring human interaction only when two 
distinct organism networks support the same interolog pair are both very 
effective ways to improve the accuracy of the prediction. HomoMINT is the 
human interaction predictions regularly rebuilt on all the MINT data 
(including other mammalian model organisms) according to interologs 
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method and available online as a parallel database (Cesareni et al., 2005). 
Only 3.5% of the 17.000 predicted interactions in HomoMINT have some 
supporting experimental evidence stored in MINT or in any other interaction 
database.  
 
Some answers come from investigations about transferability of protein 
interaction in relationship with the orthologs sequences similarity (Yu et al., 
2004). This study is carried out by considering in H. pylori, S. cerevisae, C. 
elegans and D. megalonaster experimental interaction networks (see 
Introduction Table1) and counting true positive interologs among these 
model organisms. It results that an interaction is very likely to be conserved 
in different organism if the joint sequence identity (geometric mean of the 
individual sequence identity) between the protein pair in the two organism is 
greater than 80%. This value correspond to BLASTP E-value lower than 10-

10 for each candidate ortholog partner with 80% of the sequence length 
included in the alignments. Thus sequence identity criterion is in itself not 
extremely stringent (E-values ranged between 10-10 and 10-151) but the fact 
that a large part of the protein must be involved confirm that the proteins 
overall domains structure should be maintained. 
 
In this context the comparative genomic method we propose, based on the 
domain-ligand sequence signatures, could be used not only to validate a 
single interaction network but as a tool to infer interolog interactions across 
organisms. 
 
 
 
 
 
 
 
 
 



Comparative genomic approach for protein-protein interaction validation 

 
 

Luisa Montecchi-Palazzi 

86 

APPENDIX 
 

Below we report all the predicted 92 ligand peptides (belonging to 82 
proteins) obtained running the in silico screening of 14-3-3 binding partners 
on the full S. cerevisae proteome with the optimized cut-off values. For 
practical reasons we do not report all criteria that are satisfied by these 
peptides, such as being disordered peptides and belonging to expressed 
proteins and being located in the nucleus or in the cytoplasm ORFs. Data are 
sorted according to the GO process term depth, shared by each ORF with 
BMH1 and BMH2. 

 
Peptide ORF 

Name 
PSSM 
score 

% 
conserv 
Reg Exp 

Mut  

% 
conserv 
Reg Exp 
Phosp  

GO depth 
GO ID 

QRRLSSLSAFN NTH1 0.53 71.43 100 5 GO:0006112 
IARPLSVPGSP GSY1 0.5224 100 100 5 GO:0005976 
KKSVLSLANVG GPH1 0.5051 100 100 5 GO:0005976 
VARPLSVPGSP GSY2 0.5383 100 100 5 GO:0005976 
PVRVYSTPGDE AAP1' 0.5011 100 100 5 GO:0005976 
FQRATSEARTA PYC1 0.5501 85.71 100 4 GO:0005975 
DFKSHSLPFAR HAP5 0.7036 100 100 4 GO:0005975 
VLIRWSLQHGY YJR096W 0.5084 90 100 4 GO:0005975 
FQRATSEARTA PYC2 0.5501 100 100 4 GO:0005975 
TKFVRSLVREI RPL36A 0.667 100 100 3 GO:0043170 
SRIPFSERKLK FAS1 0.521 100 100 3 GO:0043170 
VMRAISLGLLK RPN9 0.5986 100 100 3 GO:0043170 
LRLARSEKKFR RPL13B 0.576 100 100 3 GO:0043170 
GKQSSSLLSRL FAS2 0.5006 87.5 87.5 3 GO:0043170 
LRLARSEKKFR RPL13A 0.576 100 100 3 GO:0043170 
KKLIQSLPPTL RPL38 0.6612 100 100 3 GO:0043170 
HKFVKSSPVVP ALA1 0.5851 77.78 100 3 GO:0043170 
NSKSASLFKQR RPL24B 0.5691 100 100 3 GO:0043170 
SSRNFSLAIID PRE4 0.6318 100 100 3 GO:0043170 
LKFVTSLPHRD HOG1 0.6839 100 100 3 GO:0043170 
SIRRRSFNVGS GCN2 0.5386 100 100 3 GO:0043170 
PTRHFSALIGW YNL045W 0.5193 100 100 3 GO:0043170 
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RRLVNSLKKDD MRP8 0.5729 88.89 88.89 3 GO:0043170 
RKMSKSLKNYP ILS1 0.5669 100 100 3 GO:0043170 
HTTTRSLRKIN YTA7 0.5367 87.5 87.5 3 GO:0043170 
RRFNSSIGRTA RPL17B 0.5405 100 100 3 GO:0043170 
KRASKSSGKMK HIR3 0.5344 100 100 3 GO:0008151 
KKAIRSASTSA MBP1 0.5048 88.89 88.89 3 GO:0008151 
PLMRSSLFHNS MBP1 0.5587 88.89 88.89 3 GO:0008151 
FWKIFSSAKDH RGA2 0.5355 80 100 3 GO:0008151 
LLNPRSSFSGA IDS2 0.5072 100 100 3 GO:0008151 
TRVLNSLHLST CDC26 0.5705 100 100 3 GO:0008151 
HSKVCSLPTVC SSL1 0.5946 100 100 3 GO:0008151 
VNKSRSSGHFS CDC53 0.5741 88.89 88.89 3 GO:0008151 
GGRLSSKPIIM SPT3 0.5137 87.5 100 3 GO:0008151 
HRRSQSELTNL SSD1 0.5163 77.78 100 3 GO:0008151 
GGGRKSLFAPY SSD1 0.5935 100 100 3 GO:0008151 
VKSSASLRWHS RRD2 0.5105 100 100 3 GO:0008151 
LKQPASAPVLP HLR1 0.5734 100 100 3 GO:0008151 
KQRRRSSYAFN PAT1 0.5332 100 100 3 GO:0008151 
IFSRFSTLFPN MDM20 0.5228 100 90 3 GO:0008151 
GPASFSLRSEN RHC18 0.6273 87.5 87.5 3 GO:0008151 
VKNPKSEFVVS NGG1 0.5086 100 100 3 GO:0008151 
RLRPFSYSKAD RHO2 0.5209 100 100 3 GO:0008151 
FKNRISLNHSP DBF20 0.5126 100 100 3 GO:0008151 
TLRTSSPPFIP DBF20 0.5144 100 100 3 GO:0008151 
KKQTSSLKLAP SLF1 0.5095 80 100 3 GO:0008151 
KKVGFSAFGGL MSH6 0.5268 87.5 87.5 3 GO:0008151 
RRSFISLRGSS BCK1 0.548 100 88.89 3 GO:0008151 
RAKMRSLFPFK BEM3 0.6684 77.78 88.89 3 GO:0008151 
HKVINSLGVLD ERB1 0.5105 90 90 3 GO:0008151 
LKRTRSMGLLD REG1 0.5275 100 100 3 GO:0008151 
TRNNFSEHFKI TOM1 0.5706 75 87.5 3 GO:0008151 
LIKWKSLFPPF DCC1 0.582 80 90 3 GO:0008151 
LSASFSLKNGD RPL6B 0.5794 100 100 3 GO:0008151 
RKPMASVPSCH ADA2 0.5255 88.89 100 3 GO:0008151 
LIVHLSSPLEG LTE1 0.5534 75 100 3 GO:0008151 
KRNFLSWKRGL MYO2 0.5151 88.89 88.89 3 GO:0008151 
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KFRRASLNSKT YAK1 0.5743 88.89 88.89 3 GO:0008151 
LSASFSLKNGD RPL6A 0.5794 100 100 3 GO:0008151 
YIIAKSSPSSI PMD1 0.5662 100 100 2 GO:0030154 
SRRSSSLAEYV PMD1 0.5952 100 100 2 GO:0030154 
VASRRSSHSTR PMD1 0.5294 100 100 2 GO:0030154 
RKSSSSDARRI PMD1 0.5654 100 100 2 GO:0030154 
FARGSSSPTLS PMD1 0.6063 100 100 2 GO:0030154 
LKFASSSPISE PMD1 0.6204 80 100 2 GO:0030154 
ARTHRSSGKLP YEL047C 0.5205 100 100 2 GO:0008152 
STRYHSLHVNP ABZ1 0.5439 100 100 2 GO:0008152 
VQRFSSLTKPS GPX2 0.5317 100 100 2 GO:0008152 
KILLLSLKAGG RAD5 0.5246 88.89 88.89 2 GO:0008152 
VKRSKSDAASG PAP1 0.5274 90 90 2 GO:0008152 
VRSPSSSFRAG RTG3 0.563 90 100 2 GO:0008152 
DTRSFSSPQSD SPT23 0.6391 100 100 2 GO:0008152 
LPWRKSLNPKR MET13 0.5076 90 90 2 GO:0008152 
HVKKFSDFVSL FUN31 0.5026 77.78 88.89 2 GO:0008152 
LNVAKSLKIGG ABD1 0.545 100 100 2 GO:0008152 
TRSSTSLRRRN PBP1 0.6128 80 90 2 GO:0008152 
QRPIFSTQFHP CPA1 0.5236 100 100 2 GO:0008152 
KRHIRSVHSTE MSN4 0.5628 100 100 2 GO:0008152 
RYKSCSAFAPI YJL068C 0.5383 100 100 2 GO:0008152 
VTRPLSLKTDI GAT1 0.5326 87.5 87.5 2 GO:0008152 
IGRPSSLHKAE TRP5 0.536 100 100 2 GO:0008152 
TCLRWSFPRDD MET6 0.547 100 100 2 GO:0008152 
LVNTASLKRYM ADE4 0.5471 88.89 88.89 2 GO:0008152 
SISARSSVHES SRB8 0.5089 100 88.89 2 GO:0008152 
IRLFRSARRWV ADE6 0.6121 87.5 87.5 2 GO:0008152 
KSFKRSEHLKR MSN2 0.5299 100 100 2 GO:0008152 
KRHVRSVHSNE MSN2 0.5639 100 100 2 GO:0008152 
GFSARSLRSLQ TFC3 0.6489 77.78 100 2 GO:0008152 
RRKLSSLSYEI CET1 0.5629 88.89 88.89 2 GO:0008152 
GKQVFSLLIKP RPO31 0.5843 87.5 87.5 2 GO:0008152 
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MATERIALS AND METHODS 
 
 

Writing this work I have tried to present methods and discuss results 
simultaneously. Because I did not personally carried out any wet experiment 
and used along my research a lot of bioinformatics software from public 
resources, my job basically consisted in a lot of python1 () scripts that ensure 
the overall data flow. Thus here I just want to mention some relevant 
technicalities and expand some bioinformatics concepts that I give for 
granted in the text. 
 
Gene Ontology 
 
 

The Gene Ontology (GO) (Gene Ontology consortium, 2001) project 
was established to provide a common language to describe aspects of gene 
products biology. This project was started as a collaboration between three 
model organism databases, Saccharomyces Genome Database (SGD), 
FlyBase (Drosophila) and Mouse Genome Informatics (MGI); but nowadays 
a plethora of databases has adopted GO terms for gene product annotation 
(including UniProt, Genbank, ELM ect). The centralized creation of a 
comprehensive set of controlled vocabularies and their widespread usage, 
increase interoperability of many databases and facilitate annotation 
comparison of gene products across different species.  
 
GO is a database of terms2 for the description of the Molecular function, the 
Biological process and the Cellular component associated to gene 
products. Molecular function is defined as the biochemical activity of a gene 
product including specific binding to ligands (e.g. ‘enzyme’, ‘trasporters’, 
’receptor’). Biological process refers to a biological objective to which the 
gene or proteins contributes to (e.g. ‘cell growth’, ‘translation’, ’pyrimidine 
metabolism’). Cellular component refers to the place in the cell where a gene 
product is active (e.g. ‘nucleus’, ’vacuole’, ‘Golgi apparatus’). Molecular 
function, biological process and cellular component are three independent 
attributes of gene products and thus are maintained as three separate 
ontologies.  
                                                 

1 http://www.python.org/ 
2 http://www.geneontology.org/ 
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An ontology does not provide only a list of controlled vocabularies but it 
also represents the relationship among its terms through a hierarchical tree. 
More precisely, GO terms are organized in a directed acyclic graphs (DAG) 
where higher level terms can have many children terms and also each child 
term can have more than one parent. Moreover, within an ontology terms 
can have two different relationships, a child can be “part of” or “instance” of 
its parents (see Figure 1). For example, in the cellular component ontology, 
the vacuole  is part of the cytoplasm and also is an instance intracellular 
membrane bound organelle. 

Figure 1: Fragment of the cellular component ontology graphically visualized with 
AMIGO browser (http://www.godatabase.org/cgi-bin/amigo). 
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GO database itself does not store gene products, but only keeps the 
ontologies updated to the scientific community needs, curating each term 
definition and maintaining the vocabulary trees.  
 
The assignment of GO terms is a work performed by the single databases 
that refer to GO for the annotation of the gene products they store1. For 
instance, SGD is responsible for the annotation of the S. cerevisae ORFs 
according to GO terms and GOA (GO Annotation initiative) aims at adding 
GO cross references within UNIPROT entries starting from the model 
organisms. GO user databases have common rules for assigning detailed 
terms based on the evidences that support the associa tion of a given gene 
product to a specific term. Evidences are reported with a three letter code 
(e.g. IDA stands for ‘Inferred from Direct Assay’ or ISS refers to ‘Inferred 
from Sequence Similarity’) and attached to every assignment. In this way 
end users can select subsets of gene products annotations according to their 
own idea of information reliability.  
 
Combining data from GO database and the related gene product annotation 
efforts one can build very powerful analysis tool. For example the GO Term 
Finder at SGD 2 can be queried with any set of S. cerevisae ORFs and it 
returns the GO terms that are shared by the ORFs of interest. ORFs may not 
have identical GO terms assigned but navigating upwards the ontology three 
a common parent term can identified, providing clues about what the ORFs 
have in common in their biology. Alternatively many tools are built to 
analyse experimental results according to the GO terms. One of these is the 
hierarchView embedded in IntAct database that allows the exploration of 
interaction networks in the context of the GO annotations assigned to 
interacting proteins.  
 
Curation of protein-protein interaction 
 
 

During my PhD years I have been deeply involved in the development of 
MINT (Zanzoni, A. et al., 2002) protein-protein interaction database. 
Consequently I participated in the Proteomics Standards Initiative (PSI) 
(Hermjakob et al., 2004a) that aims at establishing common standards in 

                                                 
1 http://www.geneontology.org/GO.current.annotations.shtml 

2 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder 
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order to exchange data among protein interaction databases: MINT, Intact 
(Hermjakob et al., 2004b), DIP (Xenarios et al., 2002), CYGD (Guldener U 
et al., 2005), BIND (Alfarano et al., 2005) and STRING (von Mering, C. et 
al., 2005). 
 
My main contribution to the protein databases consisted in the systematic 
curation of most of the high through put interaction sets mentioned in this 
work, including of course the PepSpot data coming from Prof. G. Cesareni 
laboratory (more than 40.000 interactions in total). Protein interaction 
curation is a process of extraction and formalisation of experimental results 
published in the literature, in order to submit and store it into a dedicated 
database. The first step is the assignment of a UNIPROT protein sequence 
database (Bairoch et al., 2005) reference to the set of interacting proteins. 
This is a critical point, because most times the authors of a paper provide a 
list of protein or gene names that may not be univocally related to a single 
protein sequence. Because protein names are not standardized, it is 
absolutely necessary to associate interaction to specific  sequences in order to 
integrate information from different sources. Thus a specific procedure has 
been established to assign, in a reliable manner sequence references to 
interacting proteins. This could also lead to discard interactions because an 
appropr iate reference could not be found. The second step of the submission 
is the extraction of any protein specific feature known to be required for the 
interaction to occur. The so called “interactor features” include the 
information, if present, about the binding domain responsible for the 
interaction, the post translation modification and mutations required for the 
interaction to occur. The third step, consists in the annotation of the 
interaction itself, in term of what kind of interaction it is (aggregation, or an 
enzymatic reaction ect..), where it takes place (the organisms, the cell line, 
and if known the cellular compartment), kinetic information if provided. The 
fifth and last step is the description of the experimental evidence supporting 
the interaction. 
 
Practically all databases in their submission process take advantage of 
controlled vocabularies presenting to curators alternative terms to describe 
the object being annotated. For instance, drop down menu are still in use to 
list all possible post translation modifications or experimental methods. I 
was deeply involved in the transformation of all these drop down menus, 
from the consorted protein interaction databases, into a single formal 
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ontology that could be used as common reference glossary to describe 
protein interactions.  
 

Figure 2 : Subpart of the PSI ontology tree describing the interaction detection method 
and an example of terms definition. This hierarchical representation can be visualized with the 
DAG editor tool (see http://www.geneontology.org/GO.tools.html). 



Comparative genomic approach for protein-protein interaction validation 

 
 

Luisa Montecchi-Palazzi 

94 

Following the Gene Ontology example, we provided a definition and 
references for every term and built a hierarchical tree representing the 
relationship among terms (see Figure 2). The resulting PSI ontology ensures 
that all databases give the same meaning to the terms employed and the 
hierarchy facilitates the analysis, according to a single classification, of 
interaction data coming from different databases. This ontology is nowadays 
dynamically maintained to include terms for new methods and also to 
expand PSI efforts to protein interaction in a broader sense, including 
protein-nucleic acid and protein-small molecules interactions. 
 
Building a proteomic table  to combine S. Cerevisae data. 
 
 

In many occasions while achieving this work we integrate experimental 
results and also Gene Ontology annotation with sequence features. All these 
kinds of information were associated to S. cerevisae ORFs via different 
pointers such as their gene names, their UniProt accession number or simply 
their sequence. Thus we needed to create a reference table to navigate 
univocally from any ORF or gene name to its protein sequence or UniProt 
accession number. Fortunately S. cerevisae is a well characterized model 
organism, which genome and proteome are rather simply related and where 
every ORF has a unique systematic name (e.g. YER177W). We built our S. 
cerevisae proteomic table taking the non-redundant set of protein sequence 
from Integrat81 and merged it with the gene name registry table from SGD 
fungal database2 (Balakrishnan et al., 2005) using ORFs systematic names as 
key element. The resulting table lists 6200 gene product one per row, and in 
every row there is the systematic ORF name, the gene name (e.g. BMH1), 
the UniProt primary and secondary accession number (e.g. P29311) and the 
full amino acid sequence. Using this table , whatever reference was used to 
point to a S. cerevisae protein, we were able to map it and associate 
information from different sources to the same biological object. 

 
 
 
 
 

                                                 
1 ftp://ftp.ebi.ac.uk/pub/databases/integr8/fasta_files/proteomes/4932.FASTAC.gz 

2 ftp://ftp.yeastgenome.org/yeast/data_download/gene_registry/registry.genenames.tab 
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Protein functional patterns 
 
 
A functional pattern or motif is a representation of a particular cluster of 
residues characteristic for a particular biological function. Although pattern 
and motif are almost synonym, in this work we preferentially use the term 
pattern to refer to a long and variable functional signature whereas we call 
motif simpler and shorter patterns. Functional motifs are discovered either 
by experimental evidence that allows identification of residue directly 
responsible for the function or by sequences comparison of proteins sharing 
the same function, or by combining both information. The resulting motif 
can be used to infer the function of proteins that do not show globally in 
their sequences strong similarity with any other protein of known function. 
The fact that such sequences have a given cluster of residues in fixed 
positions is considered a reasonable evidence to predict their function. The 
accuracy of function inference depends on the “reliability” of a pattern: a 
pattern is considered “reliable” if most of the proteins (ideally all) sharing 
the function match the pattern (the so called true positives) and very few 
proteins (ideally none) outside the family match the pattern (the so called 
false positives).  
 
Functional motifs can have different “grammar” for the representation of 
their sequence signature. Important residues can be represented as columns 
of a multiple alignment, a regular expression, a position specific scoring 
matrix (PSSM) (Gribskov et al., 1987) or a hidden Markov model (HMM) 
(Baldi et al., 1994). Each type of pattern “grammar” requires specific 
algorithms to search matches along sequences and returns different results.  
 
Regular expressions are deterministic representations whereas PSSM and 
HMM are probabilistic. Regular expression patterns are deterministic in the 
sense that a sequence either has or does not have a match. Whereas PSSM 
and HMM are probabilistic because they assign a score to any sequence 
match related to its probability of being a biologically meaningful 
occurrence of the pattern.  
 
A regular expression can be formally defined as a “grammar” to search 
patterns. It allows quick searching of substrings (i.e. a pattern match) within 
another string (i.e. a protein sequence). Regular expressions are made of 
normal characters and metacharacters that have special meanings.  
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Rule or metacharacters PROSITE standar d ELM standar d 
Amino acids representation  The standard IUPAC 

one-letter code 
The standard IUPAC 
one-letter code 

Representation of a mandatory 
residue in a position  

The corresponding one 
character 

The corresponding one 
character 

Metacharacter used to describe 
wildcard specifying that any 
amino acid is allowed in a given 
positions  

‘x’ (lower case x) ‘.’ (period) 

Metacharacter used to describe 
a set of allowed residues in a 
given position.  

Square brackets, for 
example [KR] stands 
for Lys or Arg. 

Square brackets, for 
example [KR] stands 
for Lys or Arg. 

Metacharacter used to denote a 
set of residues that are not 
accepted in a given position.  

Curly brackets, for 
example {DE}  stands 
for any amino acid 
except Asp or Glu. 

Square brackets with a 
caret, [^DE] stands for 
any amino acid except 
Asp or Glu. 

Metacharacter used to describe 
separate positions  

‘-‘ (hyphens) none  

Metacharacter used to describe 
repetition of an element for an 
exact number of n times. 

(n) for example A(4) 
stands for a repetition 
of four Ala 

{n} for example A{4} 
stands for a repetition 
of four Ala 

Metacharacter used to des cribe 
repetition of an element for a 
number of times ranging from n 
to m 

(n,m) for example 
A(1,3) stands for a 
repeat of one, or two or 
three Ala in 
consecutive positions  

{n,m}  for example 
A{1,3} stands for a 
repeat of one, or two or 
three Ala in 
consecutive positions 

Metacharacter used to restrict a 
pattern starting at the N -
terminal  

‘<’ ‘^’ 

Metacharacter used to restrict a 
pattern ends at the C-terminal 

‘>’ ‘$’ 

Metacharacter used to describe 
the end of the pattern 

‘.’ (period) none 

Table 1 : Syntax for regular expressions according to PROSITE and ELM standards 
 
Metacharacters are not mandatory, but are very useful to provide flexibility 
to a regular expression. For instance they are required to specify that some 
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positions can contain a given subset of amino acids or even any kind of 
amino acid. A regular expression containing only normal characters is the 
most stringent type and implicates that the substring that we are searching 
must be identical to the string used as regular expression in every pos ition. 
The syntax adopted for PROSITE pattern (Hulo et al., 2004) and its 
equivalency with ELM is reported in table 1.   
 
In this work we follow ELM (Puntervoll et al., 2003) standard that is also 
the syntax dictated by python programming language. Thus, when we used 
PROSITE patterns we automatically convert their syntax according to this 
equivalency table. A typical Position Specific Scoring Matrix (PSSM) has 20 
columns and as many rows as there are positions in the pattern. It generally 
stores observed frequencies of residues either resulting from experiment or 
from analysis of multiple alignments. The observed frequencies of residues 
(that may not be detected for all possible residues) are often combined with 
substitution matrices (Dayhoff et al., 1972) to provide a final weight to any 
possible  amino acid in each position. A substitution matrix is a 20x20 table 
where a value is associated to each possible residue-residue pair. Pairs of 
identical residues are associated to the highest values while the lowest values 
are associated to pairs of residues that have very different chemico-physical 
properties. The resulting PSSM, when used to assign function to an unknown 
protein are able to detect weaker similarities compared to regular 
expressions because even new combination of residues within a pattern can 
have a good score.  
 
HMM is a dynamic kind of statistical profile. Like an ordinary profile, it is 
built by analyzing the distribution of amino acids in a training set of a 
protein family and can be used to perform sensitive database searching 
using the statistical description of a sequence family consensus. 
However, an HMM cannot be built on short sequences like the peptides 
resulting from PepSpot experiments, this is why this method have been 
discarded in this work. 
 
Currently , there are many sequence pattern databases that describe protein  
globular domains, including PFAM (Bateman et al., 2002), SMART 
(Letunic et al., 2004), PROSITE (Hulo et al., 2004), PRODOM (Bru et al., 
2005) and BLOCKS (Henikoff et al., 2000), each one using different 
discovery methods and different pattern representations. The inferred protein 
domains from all these database are also stored and harmonized under the 
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INTERPRO umbrella  (Mulder et al., 2005). These resources provide an 
accurate overview of the domain architecture of a polypeptide and can 
therefore help to infer the functions of uncharacterized proteins. ELM is the 
only database that focuses on un-structured short sequence patterns that are 
required for post-translation modification, protein interaction or cell 
compartment targeting. In a very schematic way, one can say that the linear 
motifs stored in ELM are the targets of the protein domains whose pattern 
representations are collected in the above mentioned databases.  
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