Quotients of flag varieties by a maximal torus

Elisabetta Strickland ${ }^{\star}$

Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, I-00173 Roma, Italy (e-mail: strickla@mat.uniroma2.it)

Received January 25, 1999

1. Introduction

Let G be a semisimple, simply connected algebraic group over an algebraically closed field k and let $T \subset G$ be a maximal torus in G and $B \subset G$ a Borel subgroup containing T.

In two recent papers ([K1] and [K2] Senthamarai Kannan classified all parabolic subgroups $G \supset P \supset B$ with the property that there exists an ample line bundle L on G / P such that, with respect to the T linearization of L induced by the unique G linearization, the set $G / P(T)^{s s}$ of semistable points coincides with the set $G / P(T)^{s}$ of stable points.

In this note, we give a general characterization of those ample line bundles L on G / P. We then show how to recover in a very simple way Kannan's result from ours.

To state our result, we need to introduce some notations and recall a few facts. $X^{*}(T)$ will denote the character lattice of T and $X_{*}(T)$ its dual lattice, i.e. the lattice of one parameter subgroups in T. We shall denote by

$$
\langle,\rangle: X^{*}(T) \times X_{*}(T) \rightarrow \mathbb{Z}
$$

the duality pairing.
Let $\Phi \subset X^{*}(T)$ denote the root system associated to T and let $\Delta=$ $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ denote the set of simple roots corresponding to the choice of B. Similarly let $\check{\Phi} \subset X_{*}(T)$ denote the set of coroots and $\check{\Delta}=\left\{\check{\alpha}_{1}, \ldots, \check{\alpha}_{l}\right\}$ denote the set of simple coroots corresponding to the choice of B. There is a canonical bijection between Δ and $\check{\Delta}$ and we assume that the root

[^0]α_{i} corresponds to the coroot $\check{\alpha}_{i}$ under this bijection. Also, given a subset $\Gamma \subset \Delta$, we shall denote the corresponding subset in $\check{\Delta}$ by $\check{\Gamma}$. Finally we define the set of fundamental weights $\Omega=\left\{\omega_{1}, \ldots, \omega_{l}\right\}$ by $\left\langle\omega_{i}, \check{\alpha}_{j}\right\rangle=\delta_{i, j}$ and the set of fundamental coweights $\check{\Omega}=\left\{\check{\omega}_{1}, \ldots, \check{\omega}_{l}\right\}$ by $\left\langle\alpha_{i}, \check{\omega}_{j}\right\rangle=\delta_{i, j}$ (notice that $\check{\Omega} \subset X_{*}(T) \otimes \mathbb{Q}$).

One knows that $\check{\Delta}$ is a basis for $X_{*}(T)$ and that we can identify the Picard group of G / B with $X^{*}(T)$. Also recall that there is a bijection between parabolic subgroups $P \supset B$ and subsets of Δ (or equivalently $\breve{\Delta}$). Under this correspondence, if P corresponds to $\Gamma \subset \Delta, \operatorname{Pic}(G / P)$ can be identified with the character group $X^{*}(P)$ where, restricting characters to T, we think of $X^{*}(P)$ as the subgroup of $X^{*}(T)$ consisting of those $\lambda \in X^{*}(T)$ such that $\langle\lambda, \check{\alpha}\rangle=0$ for all $\check{\alpha} \in \check{\Gamma}$. Moreover one knows that $\lambda \in X^{*}(P)$ corresponds to an ample (and, using the results in [RR], automatically very ample) line bundle L_{λ} if and only if $\langle\lambda, \check{\alpha}\rangle>0$ for all $\check{\alpha} \in \check{\Delta}-\check{\Gamma}$.

Finally set, as usual, $W=N(T) / T$, the Weyl group. W acts on $X^{*}(T)$ and it is generated by the simple reflections $s_{i}(i=1, \ldots, l)$ with respect to the hyperplanes orthogonal to the simple coroots $\check{\alpha}_{i}$.

We are now in the position to state our main result.
Theorem 1.1. Let $P \subset G$ be a parabolic subgroup. Let $\lambda \in X^{*}(P)$ be such that L_{λ} is ample. Then, if we denote by $(G / P)_{\lambda}^{s s}\left(\right.$ resp. $\left.(G / P)_{\lambda}^{s}\right)$, the set of semistable (resp. stable points) for the T action with respect to L_{λ},

$$
(G / P)_{\lambda}^{s s}=(G / P)_{\lambda}^{s}
$$

if and only if for all $w \in W, \check{\omega}_{i} \in \check{\Omega}$, one has $\left\langle\lambda, w \check{\omega}_{i}\right\rangle \neq 0$.
After this is proved, it is not hard to deduce Kannan's results, as we shall show below.

2. Quotients

Let us start by recalling a few facts about Geometric Invariant Theory (see [MFK] [Se]). Given a projective algebraic variety X over k on which a reductive group H acts and an H linearized very ample line bundle L, we can consider the ring

$$
R=\oplus_{n \geq 0} H^{0}\left(X, L^{n}\right)
$$

as an H-module and consider the ring R^{H} of H invariant elements. Since H acts on R in a degree preserving way, R^{H} is naturally graded and we can consider R_{+}^{H}, its part of positive degree. At this point one can define the set of semistable points as the set

$$
X^{s s}=\left\{x \in X \mid \exists s \in R_{+}^{H} \text { with } s(x) \neq 0\right\} .
$$

We define the set of stable points X^{s} as the subset of $X^{s s}$ consisting of those points having finite stabilizer and whose orbit is closed.

This is not the place where to discuss properties of $X^{s s}$ and X^{s}, let us just say that a good categorical quotient $X^{s s} / / H$ exists and furthermore the image of X^{s} in $X^{s s} / / H$ coincides with the set theoretical quotient X^{s} / H and has only finite quotient singularities (it is indeed smooth, if each point in X^{s} has trivial stabilizer).

Here we shall be only interested in the case $H=T$. In this special case we take a point $x \in X$, we take a representative $\tilde{x} \in H^{0}(X, L)$ for x and write

$$
\tilde{x}=\sum_{\lambda \in X^{*}(T)} v_{\lambda}
$$

where v_{λ} is a weight vector for $t \in T$ of weight λ. We set $M_{x}=\{\lambda \in$ $\left.X^{*}(T) \mid v_{\lambda} \neq 0\right\}$. It is clear that M_{x} does not depend on the choice of \tilde{x}. We define now, following [Se] Section 2, for every $\check{\chi} \in X_{*}(T)$,

$$
\mu^{L}(x, \check{\chi})=-\min _{\lambda \in M_{x}}\langle\lambda, \check{\chi}\rangle
$$

It is then not hard to see that x is semistable if and only if $\mu^{L}(x, \check{\chi}) \geq 0$ for all $\check{\chi} \in X_{*}(T)$, while x is stable if and only if $\mu^{L}(x, \check{\chi})>0$ for all $\check{\chi} \in X_{*}(T)-0$.

If we furthermore suppose, as we shall do from now on, that $X=G / P$ and that $L=L_{\lambda}$, we can say a little bit more.

Let P correspond to a subset Γ of $\check{\Delta}$. Consider the subgroup $W_{P} \subset W$ generated by the reflections s_{i} for $\check{\alpha}_{i} \in \Gamma$. One knows [Bou], that every coset $w W_{P}$ contains a unique element of shortest length so that we can identify W / W_{P} with a subset of W. Then Bruhat decomposition tells us that G / P is the disjoint union of the Schubert cells $B w P / P$, where w runs through W / W_{p}. If $x \in B w P / P$ and $\check{\chi}$ is such that $\left\langle\alpha_{i}, \check{\chi}\right\rangle \geq 0$ for all $\alpha_{i} \in \Delta$, then one has ([Se] Lemma 5.1)

$$
\begin{equation*}
\mu^{L}(x, \check{\chi})=\langle w \lambda, \check{\chi}\rangle \tag{2.1}
\end{equation*}
$$

With these preliminaries in mind, we can now give the following:
Proof of Theorem 1.1. Let $L=L_{\lambda}$ be ample on G / P. Assume that for all $w \in W, \check{\omega}_{i} \in \check{\Omega}$, one has $\left\langle\lambda, w \check{\omega}_{i}\right\rangle \neq 0$.

Choose, once and for all for each $w \in W$, a representative $n_{w} \in N(T)$. Take $x \in(G / P)_{\lambda}^{s s}$. It is now clear from the definitions that $M_{n_{w}} x=w M_{x}$. Also, since the pairing \langle,$\rangle is obviously W$ invariant, we deduce that for all $\check{\chi} \in X_{*}(T), \mu^{L}\left(n_{w} x, w \check{\chi}\right)=\mu^{L}(x, \check{\chi})$. In particular we deduce that $n_{w} x$ is also semistable.

Fix $\check{\chi} \in X_{*}(T)$. Then there exists $w \in W$ such that $w \check{\chi}$ is dominant, i.e. $\left\langle\alpha_{i}, w \check{\chi}\right\rangle \geq 0$ for all $i=1, \ldots, l$.

Now assume that $n_{w} x$ lies in the Schubert variety $B u P / P$ for a given $u \in W / W_{p}$. Then by (2.1) we have

$$
\begin{equation*}
\mu^{L}(x, \check{\chi})=\mu^{L}\left(n_{w} x, w \check{\chi}\right)=\langle u \lambda, \check{\chi}\rangle . \tag{2.2}
\end{equation*}
$$

Write $w \check{\chi}=\sum_{i} n_{i} \check{\omega}_{i}$ with $n_{i} \geq 0$ for each $i=1, \ldots, l$. Since $n_{w} x \in$ $(G / P)_{\lambda}^{s s}$, we deduce applying (1.2) to $\check{\omega}_{i}$ that $\left\langle u \lambda, \check{\omega}_{i}\right\rangle \geq 0$ for all $i=$ $1, \ldots l$. But $\left\langle u \lambda, \check{\omega}_{i}\right\rangle=\left\langle\lambda, u^{-1} \check{\omega}_{i}\right\rangle \neq 0$, so that $\left\langle u \lambda, \check{\omega}_{i}\right\rangle<0$ for all $i=$ $1, \ldots l$. Substituting in (1.3), we deduce that if $\check{\chi} \neq 0$ so that not all n_{i} are zero. It follows that

$$
\mu^{L}(x, \check{\chi})=\langle u \lambda, \check{\chi}\rangle=\sum_{i} n_{i}\left\langle u \lambda, \check{\omega}_{i}\right\rangle<0
$$

so that $x \in(G / P)_{\lambda}^{s}$ as desired.
Let us now suppose that there is a fundamental coweight $\check{\omega}_{i}$ and an element $w \in W$ such that $\left\langle\lambda, w \check{\omega}_{i}\right\rangle=0$. Multiply $w \check{\omega}_{i}$ by an integer m so that $m w \check{\omega}_{i} \in X_{*}(T)$ and it corresponds to a one parameter subgroup $\phi: G_{m} \rightarrow T$. Set $H \subset G$ equal to the centralizer of $\phi\left(G_{M}\right)$. Since $\check{\omega}_{i}$ is a fundamental coweight, H has semisimple rank $l-1$. Indeed it is the the Levi factor of the parabolic subgroup $n_{w}^{-1} Q n_{w}^{-1}$ where Q is the parabolic subgroup containing B corresponding to $\Delta-\left\{\alpha_{i}\right\}$. From this we deduce that $B H$ is a Borel subgroup of H, hence $P_{H}=P \cap H$ is a parabolic subgroup of H and $H / P_{H} \subset G / P$ is a closed subvariety.

If we take the restriction L_{H} of L_{λ} to H / P_{H}, then the G linearization of L induces an H linearization of L_{H}. It is clear that the one parameter group $\phi\left(G_{M}\right)$ fixes H / P_{H} pointwise. Also $\phi\left(G_{M}\right)$ acts on the fiber of L_{H} over the point $\left[P_{H}\right]$ by the character

$$
(-\lambda) \circ \phi(t)=t^{-m\left\langle\lambda, w \omega_{i}\right\rangle}=1 .
$$

Hence $\phi\left(G_{M}\right)$ acts trivially on L_{H} and we get an $\bar{H}=H / \phi\left(G_{M}\right)$ on L_{H}. Take now a highest weight vector $s \in H^{0}\left(G / P, L_{\lambda}\right)$. It is clear that the restriction $\bar{s} \in H^{0}\left(H / P_{H}, L_{H}\right)$. Set $W_{H}=N(T) \cap H / T \subset W$, the Weyl group of H. Consider the section

$$
z=\prod_{u \in W_{H}}\left(n_{u} s\right) \in H^{0}\left(G / P, L_{\lambda}^{\left|W_{H}\right|}\right) .
$$

Then the restriction $\bar{z} \in H^{0}\left(H / P_{H}, L_{H}^{\left|W_{H}\right|}\right)$ is non zero and it is a weight vector whose weight is W_{H} invariant and is trivial on $\phi\left(G_{m}\right)$. We deduce immediately that \bar{z} and hence z is a T invariant vector. The fact that $\bar{z} \neq 0$ clearly means that there exists a point $x \in(G / P)^{s s} \cap H / P_{H}$. Since $\phi\left(G_{m}\right)$ fixes H / P_{H} pointwise, we deduce that $x \in(G / P)^{s s}-(G / P)^{s}$, as desired.

We now want to analyze for which G and $P \subset G$ there exists a $\lambda \in$ $X^{*}(P)$ such that L_{λ} is ample and $(G / P)^{s s}=(G / P)^{s}$. As we have seen this means that, if P corresponds to the subset $\Gamma \subset \Delta$, we have to find a character $\lambda \in X^{*}(T)$ such that
(1) $\left\langle\lambda, \check{\alpha}_{i}\right\rangle=0$ for all $\check{\alpha}_{i} \in \check{\Gamma}$.
(2) $\left\langle\lambda, \check{\alpha}_{i}\right\rangle>0$ for all $\check{\alpha}_{i} \notin \check{\Gamma}$.
(3) $\left\langle\lambda, w \check{\omega}_{i}\right\rangle \neq 0$ for all $w \in W, \check{\omega}_{i} \in \check{\Omega}$.

We first reduce to the case in which G is essentially simple. Recall that if $G=G_{1} \times G_{2}$ then $T=T_{1} \times T_{2}$ with $T_{i}=T \cap G_{i}(i=1,2)$ and for every parabolic subgroup $P=P_{1} \times P_{2}$ with $P_{i}=P \cap G_{i}(i=1,2)$. Also $\operatorname{Pic}(G / P)=\operatorname{Pic}\left(G_{1} / P_{2}\right) \times \operatorname{Pic}\left(G_{2} / P_{2}\right)$. We then have

Proposition 2.1. Then there exist an ample line bundle L_{λ} on G / P such that $G / P_{\lambda}^{s s}=G / P_{\lambda}^{s}$ if and only if, writing $\lambda=\left(\lambda_{1}, \lambda_{2}\right), G / P_{\lambda_{i}}^{s s}=G / P_{\lambda_{i}}^{s}$ for $i=1,2$.

Proof. The proof follows, since clearly the element $\lambda \in X^{*}(T)$ satisfies properties (1), (2) and (3) above if and only if the elements $\lambda \in X^{*}\left(T_{i}\right)$ also satisfy the same properties for $i=1,2$.

From now on we shall assume the our group G is essentially simple. We leave to the reader to formulate, using the above Proposition, results in the general case.

We have
Theorem [K2] 2.2. Assume G is not of type A. Then if $P \subset G$ is a parabolic subgroup such that there is an ample line bundle L_{λ} on G / P with $G / P_{\lambda}^{s s}=$ G / P_{λ}^{s}. Then $P=B$, a Borel subgroup .

Proof. First of all it is clear that if $P=B$, there exists a line bundle L_{λ} on G / B such that $G / B_{\lambda}^{s s}=G / B_{\lambda}^{s}$, otherwise it would easily follow that $X^{*}(T)$ would be contained in the union of the finitely many hyperplanes orthogonal to the elements $w \check{\omega}_{i}$, with $w \in W, i=1, \ldots, l$.

Now remark that if G is not of type A_{n}, also the dual root system $\check{\Phi}$ is not of type A_{n} and one knows, see for example [Bou], that each coroot is W conjugate to a multiple of a fundamental coweight. Now let $P \supsetneq B$. Let $\lambda \in X^{*}(P)$. There exists a simple coroot $\check{\alpha}_{i}$ with $\left\langle\lambda, \check{\alpha}_{i}\right\rangle=0$. Assume that $\check{\alpha}_{i}=m w \check{\omega}_{j}$. Then

$$
0=\frac{1}{m}\left\langle\lambda, \check{\alpha}_{i}\right\rangle=\left\langle\lambda, \check{\omega}_{j}\right\rangle
$$

and our claim follows.

It remains to analyze the case $G=S L(n)$ i.e. G is of type A_{n-1}. In this case the Dynkin diagram is

and we index the set of fundamental weights and simple roots accordingly. We have

Lemma 2.3. For each $i, j=1, \ldots, n$, there exists an element $w \in W$ with $\left\langle\omega_{j}, w \check{\omega}_{i}\right\rangle=0$ if and only if n divides $i j$.

Proof. Recall that, if we consider R^{n}, with basis $e_{1} \ldots e_{n}$, and usual scalar product, then we can set $\alpha_{i}=\check{\alpha}_{i}=e_{i}-e_{i+1}$ and $\omega_{i}=\check{\omega}_{i}=\frac{n-i}{n}\left(e_{1}+\right.$ $\left.\cdots+e_{i}\right)-\frac{i}{n}\left(e_{i+1}+\cdots+e_{n}\right)$ for $i=1, \ldots, n$. Recall that $W=S_{n}$ acting by permuting coordinates. Computing we get that

$$
\left\langle\omega_{i}, w \check{\omega}_{j}\right\rangle=0
$$

if and only if the system

$$
\left\{\begin{array}{l}
j x+(n-j) y=0 \tag{2.3}\\
z x+(i-z) y=0
\end{array}\right.
$$

admits a solution (x, y, z) with $x \neq 0$ and z an integer such that $0<z<i$. Indeed the vector $v=x\left(e_{1}+\cdots+e_{j}\right)+y\left(e_{j+1}+\cdots+e_{n}\right)$ is a non zero multiple of ω_{j} if and only if it is orthogonal to $e_{1}+\cdots+e_{n}$, that is if $j x+(n-j) y=0$ with x (and y) not equal to zero. On the other hand let w be a permutation and suppose that $z=|\{1, \ldots i\} \cap w\{1, \ldots i\}|$. Then a vector v, which as above is a multiple of ω_{j}, is orthogonal to $\breve{\omega}_{i}$ if and only if it is orthogonal to $w\left(e_{1}+\cdots e_{i}\right)$. That is. if and only if $z x+(i-z) y=0$. Finally the fact that x and y are both not equal to zero implies that $0<z<i$, proving our claim.

Now eliminate x from (2.3) getting $n z=i j$. This proves that n divides $i j$.

Suppose now that n divides $i j$. Then clearly the triple (x, y, z) with $z=\frac{i j}{n}, x=n-j, y=-j$ is a solution of the system (2.3) and hence taking as w any permutation such that $z=|\{1, \ldots i\} \cap w\{1, \ldots i\}|$ we get that $\left\langle\omega_{i}, w \check{\omega}_{j}\right\rangle=0$ as desired.

We have seen that a parabolic subgroup $P \supset B$ if associated to a subset $\Gamma \subset \Delta$. To Γ there corresponds the set $I=\left\{i \mid \alpha_{i} \notin \Gamma\right\}$ and we shall denote P by P_{I}. We have
Theorem 2.4 [K2](see also [K1]). Let $G=S L(n)$. Let $I=\left\{i_{1}, \ldots, i_{r}\right\}$ with $1 \leq i_{1} \cdots \leq i_{t}<n$. Then there exists an ample line bundle L_{λ} on G / P_{I} such that $\left(G / P_{I}\right)_{\lambda}^{s s}=\left(G / P_{I}\right)_{\lambda}^{s}$ ifandonlyifGCD $\left(n, i_{1}, \ldots, i_{r}\right)=1$

Proof. From Lemma 2.3, we have that an L_{λ} with the above properties exists if and only if there is no $j<n$ with n dividing $i_{s} j$ for each $s=1, \ldots, r$.

Assume that $\left(n, i_{1}, \ldots, i_{h}\right)=1$, and that such a j exists. Let p be a prime such that $p^{t}, t>0$ is the highest power of p dividing n. Then there must exist an index s such that p does not divide i_{s}. This implies that p^{t} divides j, hence n divides j, contrary to the fact that $n>j$.

Viceversa assume that p divides $\left(n, i_{1}, \ldots, i_{h}\right)$. Then set $j=\frac{n}{p}$. We have $j i_{s}=n \frac{i_{s}}{p}$ as desired.

References

[Bou] N. Bourbaki, Groupes et algèbres de Lie (chap. 4,5,6) Masson Paris 1981.
[MFK] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory (Third Edition), Springer - Verlag Berlin, Heidelberg, New York, 1993.
[K1] S. Senthamarai Kannan, Torus Quotients of Homogeneous spaces, Proceedings of the Indian Acad. Sci.(Math. Sci.) 108 1998, 1-12.
[K2] S. Senthamarai Kannan, Torus Quotients of Homogeneous spaces II, Proceedings of the Indian Acad. Sci.(Math. Sci.) to appear.
[RR] S. Ramanan, A. Ramanathan, Projective normality of flag varieties and Schubert varieties, Invent. Math. 79 no. 2 1985, 217-224.
[Se] C.S.Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. Math.95, 1972, 511-556.

[^0]: * Partially supported by M.U.R.S.T. 40\%

