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Let M, = My, (C) be the space of n X n complex matrices endowed with the Hilbert—
Schmidt scalar product, let Sy, be the unit sphere of My, and let D,, C M, be the space of
strictly positive density matrices. We show that the scalar product over D,, introduced by
Gibilisco and Isola® (that is the scalar product induced by the map Dy, > p — VP € Sn)
coincides with the Wigner—Yanase monotone metric.
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1. Introduction

In commutative information geometry the Fisher—-Rao metric can be characterised
in (at least) three ways: (i) it is the unique statistically monotone metric (Chentsov
theorem); (ii) it is the Hessian of the Kullback—Leibler relative entropy; (iii) it is
obtained by division of square root of densities. In noncommutative information
geometry, the classification theorem of Petz shows that there exists a whole family
of statistically monotone metrics parametrised by the family of operator monotone
functions.® Nevertheless the results of Lesniewski and Ruskai” and Gibilisco and
Isola* prove that each monotone metric is the Hessian of a suitable generalised
relative entropy and is obtained by division of a generalised square-root operator.
In view of these results it is important to have characterisations that single out a
particular monotone metric (for an example see Dittmann?). Indeed it is sometimes
difficult to decide which monotone metric is the good one for a certain application
in quantum physics (Refs. 10 and 11). In a previous paper® we considered a scalar
product on density matrices derived by the pull-back of the map p — /p. It is
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natural to ask if this pull-back metric is a statistically monotone one. We show in
this note that the pull-back of the square-root embedding is the Wigner—Yanase
monotone metric introduced by Hasegawa and Petz.5°

2. Pull-Back of Riemannian Metrics

Let M be a differentiable manifold and (N, g) a Riemannian manifold (see Ref. 1
for differential geometric concepts). Suppose ¢: M — N is an immersion, that is
a differentiable map such that its differential D,p: T,M — TN is injective, for
any p € M. Then

Proposition 2.1. On M there exists a unique Riemannian scalar product g% :=
©*g compatible with the differential structure of M such that ¢: (M, g?) — (N, g)
18 an isometry.

Proof. If p is an arbitrary point of M, and u,v € T,M, define

97 (U, ) := gp(p) (Dpip(w), Dpip(v)) .
Since ¢ is differentiable, g¥ is compatible with the differential structure of M and

makes ¢ an isometry. The uniqueness is obvious. O

Definition 2.2. Under the above hypothesis g is said the pull-back metric induced
by .

Remark 2.3. Let : [0,1] — M be a curve, and denote by L(7) the length of ~.
Then L(y) = L(p o 7).

3. The Fisher—Rao Metric and the Square Root

Let P, C R™ be the simplex of strictly positive probability vectors, i.e. P, := {p €
R* Y pi=1,p>0,i=1,...,n}

Definition 3.1. The Fisher-Rao Riemannian metric on TP, = {u € R™ Y |
u; = 0} is given by

n
U;
MER(u,v) = E -,
=1 Pi

for u, v € T,Pp.
Consider the map ¢: p € P, — (/p € S,, where S, is the unit sphere of R™,

endowed with the natural metric as a Riemannian submanifold of R™. Then, the
following result is well known.

Theorem 3.2. The pull-back by the map ¢ of the natural metric on S, coincides
with the Fisher—Rao metric (namely the unique commutative statistically monotone
metric).
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Proof. An easy calculation shows that, up to a scalar, the differential of ¢ is given
by D,p = M,;l/z, where M,(u) := (p1u1, ..., pntn). Therefore

g;f(“) ’U) = Gp(p) (Dp@(u)v DP‘P(U))

(M, V2 (), M2 (0)

p
= (u, M, *(v))

o " U/i'Ul’ o FR

f; o =M, (u,v) -

4. The Wigner—Yanase Skew Information

Let p € D,, be a density matrix and let A be a self-adjoint matrix. The Wigner—
Yanase information (or skew information, information content relative to A) is
defined as

I(p, A) = =Tx([p"/?, 4]%),

where [-,-] denotes the commutator. The tangent space to D, at p is given
by T,D, = {A € M,: A = A*,Tr(A) = 0}, and decomposes as T,D,, =
(TpDn)® @ (T,D,)°, where (I,D,)° := {A € T,D,: [A,p] = 0}, and (T,D,)° is
the orthogonal complement of (T,,D,,)°, with respect to the Hilbert—-Schmidt scalar
product (A, B) := Tr(A*B). Let f be a symmetric operator monotone function and
cr(z,y) == m the associated Chentsov—Morotsova function.

Petz classification theorem states that each statistically monotone metric on
TD,, has the form Mpf(A, B) := Tr(Acs(L,, R,)(B)), where L,(A) := pA and
R,(A) := Ap. Each statistically monotone metric has a unique expression (up to a
constant) given by Tr(p~! A?), for A € (T,,D,,)°, because of the Chentsov uniqueness
theorem. Now consider the function

fwy (@) = (Vo +1)?,
which is operator monotone.® The associated Chentsov—Morotsova function is
1 1
CWY (a:, y) = =

yiwy(z/y) (Ve +y)?

Let us consider the monotone metric

MY (4, B) := Te(Acwy (Ly, R,)(B)).

A typical element of (T),D,,)° has the form i[p, A, where A is self-adjoint. We have
MWVY (i[p, Al i[p, A])
= Tr(i[p, AJ(L/? + R/?)"*(ilp, A]))

= —((L}/? + RY*)[p, A, (L)/? + RY/*) " [p, A])
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= —((LY? + RY*) 7ML, — R)(A), (LY? + RY*) (L, - R,)(A)
— —((LY? = RY/)(4), (L}/* - RY/?)(4)

— —([p"/%, AL, [02, A

— —Te([p/?, AP) = I(p, 4).

5. The Main Result

Let us consider the unit sphere of M,,, denoted by S5,,, as a real Riemannian subman-
ifold of M,,. The natural metric on .S,, is the one induced by the Hilbert—Schmidt
scalar product of M,.

Let D, C M, be the manifold of strictly positive definite matrices. The map
p: p € Dy — /p € Sy is differentiable so we can apply the results of Sec. 2. We
have the following:

Theorem 5.1. The pull-back by the map ¢ of the natural metric on S, coincides
with the Wigner—Yanase monotone metric.

Proof. The differential of ¢ at the point p is given by D, := (L;/2 + R;p)’1
(see Ref. 8 for example). Therefore the pull-back metric is

95 (A, B) := gy(p) (Dpp(A), Dpp(B))
= (L2 + R)/*) 7 (A). (L) + R)/*) 7N (B))
= Tr(A(Ly? + R,/*)7(B))
= Tr(Aewy (Lp, Ry)(B)) = MyYY (A, B),

which was to be proved. O
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