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We study a family of importance sampling estimators of the probability of level crossing when the

crossing level is large or the intensity of the noise is small. We develop a method which gives

explicitly the asymptotics of the second-order moment. Some of the results apply to fractional

Brownian motion, some are more general. The main tools are refined versions of classical large-

deviations results.
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1. Introduction

In this paper we address the problem of computing the asymptotics of the second-order

moment of a class of importance sampling estimators arising naturally when dealing with

Gaussian processes. We consider two questions. Let X ¼ (X t) t>0 be a fractional Brownian

motion. A classical problem in risk theory is the investigation of the ruin probability

P sup
t.0

(X r � j t) . B

� �
: (1:1)

Under suitable assumptions on the function j (typically j t ! þ1 as t ! þ1) this

probability is very small and its computation by a naive simulation requires a large number of

iterations in order to achieve a reasonable precision. A natural technique is then importance

sampling, that is, the simulation of the process under a new probability Q, for which the

event considered is not rare, and to compensate by taking into account the density of P with

respect to Q.

A closely related question is the computation, as � ! 0, of the probability

p� ¼def P sup
0, t<1

(�X t � j t) . 1

� �
: (1:2)

More precisely, we consider, for the computation of the level crossing probability (1.2), the

class of admissible importance sampling estimators of the form

1f��<1gZ�� (1:3)
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where the process X is simulated according to a distribution Q�, obtained by translating P

with a path ��1 ª, ª belonging to the reproducing kernel Hilbert space (RKHS) of X . Here ��
is the time at which level 1 is attained (possibly �� ¼ þ1) and Z�� is the density of P with

respect to Q� up to time ��. For the ruin problem (1.1) the class of admissible importance

sampling estimators is similar, (see Section 7).

For the probabilities (1.1) and (1.2) there exist in the literature classical results providing

the asymptotics (see Hüsler and Piterbarg 1999). We point out, however, that our goal here

is mainly to investigate the existence and behaviour of importance sampling estimators in

this context, which is something of importance in itself. The interested reader can refer to

Glasserman and Kou (1995), Glasserman and Wang (1997) and Sadowsky (1996) for results

on existence and/or counterexamples for importance sampling distributions. Also one should

be aware that the above mentioned asymptotics are actually of little help in practice, as the

formulae contains constants (e.g. Pickand’s constant) whose value should be evaluated

numerically.

In our situation the probability p� of (1.2) has a large-deviation limit,

lim
�!0

�2 log p� ¼ �ij:

The importance sampling estimator (1.3) is asymptotically efficient if, for its second-order

moment,

lim
�!0

�2 log EQ� [1f��<1gZ
2
��
] ¼ �2ij: (1:4)

Actually if (1.4) is not satisfied, in order to achieve a given precision, the number of

iterations increases exponentially fast. Conversely, if (1.4) holds, the number of iterations

may increase, but not at an exponential rate.

As stated above, we investigate the existence and properties of asymptotically efficient

importance sampling estimators for the probabilities (1.2) and (1.1). The paper is organized

as follows. In Section 3 we deal with the asymptotics of the probability (1.2) as � ! 0.

These results are well known, but we have chosen to include them because we develop a

method that also works for the computation of the second-order moment. This is the object

of Section 4. It should be pointed out that the results in Sections 3 and 4 hold for general

Gaussian processes: X only needs to be Gaussian, continuous, centred and starting at 0. We

must also make an assumption on X (see Assumption 4.1), which is satisfied for many

Gaussian processes of interest (including fractional Brownian motion).

In Sections 5 and 6 we discuss the existence of asymptotically efficient estimators for the

probability (1.2) for Brownian motion and fractional Brownian motion. In particular, we

prove that if the path j is of the form j t ¼ ktÆ, then no asymptotically efficient importance

sampling estimator of the form considered exists for fractional Brownian motion. We prove

also that, for Brownian motion, an asymptotically efficient change of probability exists only

if Æ . 3
4
.

From the results of Sections 3 and 4 we derive in Section 7 the behaviour of the second-

order moment for the importance sampling estimators for the ruin problem for fractional

Brownian motion and for j of the form j t ¼ ktÆ, k . 0. For fractional Brownian motion

with H 6¼ 1
2
we prove that an asymptotically efficient change of probability does not exist in
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the class of importance sampling distributions considered. We show, however, that if H . 1
2
,

then there exist changes of probability which are close to asymptotic efficiency. This

negative result leads to two questions: how to enlarge the class of admissible distributions,

in order to have existence of an importance sampling distribution; and how to compute the

most efficient change of probability in the class considered.

In this context Michna (1999) proposed an importance sampling estimator. We are able to

compute exactly the behaviour of its second-order moment and show the lack of asymptotic

efficiency (see Section 8).

This kind of phenomenon (non-existence of asymptotically efficient changes of

probability, and in particular lack of efficiency by translating with the most likely path)

have already been pointed out in the literature; see Glasserman and Kou (1995), Glasserman

and Wang (1997) and Sadowsky (1996).

From a technical point of view, the main tool is Varadhan’s lemma from large-deviation

theory, but we have had to overcome some technical problems in order to use it (see

Section 9).

2. The main setting

In this section we introduce the setting that we are going to consider throughout the paper.

Let C t ¼ C([0, t], Rm) be the Banach space of real continuous paths on [0, t] vanishing at

0, endowed with the uniform norm jwj t,1 ¼ sup0<s< tjwsj. Its dual C9t is formed by the

signed measures on [0, t] with finite variation, through the duality

hÆ, wi ¼
ð t
0

ws dÆs:

A probability P on C t is said to be Gaussian if the canonical random variables (r.v.s)

X s : C t ! R, s < t, defined by X s(w) ¼ ws form a Gaussian family. In the following we

assume that P is full, that is, that it gives strictly positive probability to every open set of

C t. Then (X s)s is a (continuous) Gaussian process and we denote by K(u, v) ¼ cov(Xu, Xv)

its covariance function. On C t we consider the filtration F t ¼ � (Xu, u < t) generated by

the process. If Æ 2 C9t, then the r.v.s XÆ(w) ¼ hÆ, wi are also Gaussian. Let C9t,P be the

completion in L2(C t, P) of C9t. It is a closed vector space of L2(C t, P), whose elements form

a Gaussian family. For every r.v. Z 2 C9t,P let us define, for s < t,

ws ¼ E(X s Z): (2:1)

Then w is a continuous path, that is, w 2 C t. It is easy to prove that the application Z ! w is

one to one. We denote by H t the set of the paths w of this form. Endowed with the norm

jwjH t
¼def kZkL2(C t ,P),

H t is a Hilbert space, the RKHS of P. It is useful to remark that the r.v.s X r, r < t, certainly

belong to C9t,P and that the corresponding paths are

ws ¼ E(X sX r) ¼ K(r, s):
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Thus K(r, :) always belongs to H t and jK(r, :)jH t
¼ E[X 2

r]
1=2 ¼ K(r, r)1=2. More generally,

if Z is of the form Z ¼
Ð t
0
X s dÆs, then the corresponding path in the RKHS is

ws ¼ E(X s Z) ¼
ð t
0

K(s, u) dÆu: (2:2)

By construction these paths are dense in H t. In the following we write C, CP and H instead

of C1, C91,P and H1, respectively.

3. Estimates of level crossing

We now compute the limit lim�!0�2 log p� for a fixed continuous path j 2 C. This result is

not new, but we include its proof for completeness’ sake and because the method we use is

quite similar to that developed in the next section for the second-order moment estimation.

The computation is actually simple as the process t ! �X t � j t satisfies a large deviation

principle, so that, denoting by I its rate function,

lim
�!0

�2 log p� ¼ � inf
w2A

I(w), (3:1)

where A ¼ fw 2 C; sup0, t<1wt � j t > 1g (see Section 9). The rate function I is I(w) ¼
1
2
jwj2H if w belongs to the RKHS H and I(w) ¼ þ1 otherwise.

Proposition 3.1. The infimum in (3.1) is equal to

inf
0, t<1

(1þ j t)
2

2K(t, t)
,

that is,

lim
�!0

�2 log P sup
0, t<1

(�X t � j t) > 1

� �
¼ � inf

0, t<1

(1þ j t)
2

2K(t, t)
¼def �ij: (3:2)

Proof. Let A t ¼ fw 2 C; wt ¼ 1þ j tg, so that A ¼
S

0, t<1A t, and

inf
w2A

I(w) ¼ inf
0, t<1

inf
w2A t

I(w):

A set of paths which is dense in H is that formed by those which are barycentres of the

r.v.s belonging to C9. That is,

wt ¼ E X t

ð1
0

X s dÆ(s)

� �
¼
ð1
0

K(t, s) dÆ(s): (3:3)

Since jwj2H, is equal to the variance of the centred Gaussian r.v.
Ð 1
0
X t dÆ(t),

jwj2H ¼
ð1
0

ð1
0

K(u, v) dÆ(u) dÆ(v) ¼def V (Æ):

Recalling that I(w) ¼ 1
2
jwj2H,
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inf
w2A t

I(w) ¼ inf V (Æ) ¼ inf
1

2

ð1
0

ð1
0

K(u, v) dÆ(u) dÆ(v),

the infimum on the right-hand side being taken among all Æ 2 C9 such thatÐ 1
0
K(t, s) dÆ(s) ¼ 1þ j t. This is a constrained extremum problem. Using Lagrange

multipliers, we find that Æ must satisfyð1
0

K(u, v) dÆ(v)þ ºK(t, u) ¼ 0, for every u, 0 , u < 1,

for some º 2 R. Bearing in mind the constraint, one finds that

�º ¼ 1þ j t

K(t, t)
, Æ0 ¼

1þ j t

K(t, t)
� t:

Therefore

inf
w2A t

I(w) ¼ 1

2

ð t
0

ð t
0

K(u, v) dÆ0(u) dÆ0(v) ¼
1

2

(1þ j t)
2

K(t, t)
:

h

Remark 3.1. A closer look at the above proof shows that the minimizing path w 2 A is

ws ¼
1þ j�t
K(t�, t�) K(t

�, s), (3:4)

where

t� ¼ argmin
0, t<1

(1þ j t)
2

2K(t, t)
;

in particular, whatever the path j, the minimizing w is of the form const � K(t�, :), for some

t� 2]0, 1].

Example 3.1 Fractional Brownian motion. If j t ¼ ktÆ and X is a fractional Brownian

motion, the infimum in (3.1) becomes

inf
0, t<1

1

2

(1þ ktÆ)2

t2H
:

Its computation is straightforward, as the derivative is negative for t < t� and positive for

t . t�, where

t� ¼ H

k(Æ� H)

� �1=Æ

: (3:5)

If t� < 1 the infimum is attained at t� and, from (3.4), the minimizing path is

ws ¼ a�K t�, s
� �

, (3:6)

where a� is such that a�K(t�, t�) ¼ 1þ j t� , that is a� ¼ (1þ kt�Æ)=t�2H . If t� . 1, then

Importance sampling estimators for fractional Brownian motion 667



the infimum is attained at t ¼ 1. The fact that the most likely path is as in (3.6) was obtained

in O’Connell and Procissi (1998) by a different approach.

4. Importance sampling

In this section we consider a family of importance sampling estimators of the level crossing

probability (1.2) and give explicit estimates for their second-order moments. This will

enable us to study the existence of asymptotically efficient importance sampling estimators.

Let ª 2 H and Z 2 C9P the corresponding r.v. By Girsanov’s theorem, with respect to the

probability dQ� ¼ exp(��1Z � (2�2)�1jªj2H) dP, the process �X has the same distribution as

t ! �X t þ ª t under P. Let j : [0, 1] ! R be a continuous path and define the stopping

times

�(ø) ¼ infft; ø t � j t > 1g, ��(ø) ¼ �(�ø)

with the usual understanding that inf˘ ¼ þ1. In the following, E and EQ� denote the

expectations with respect to P and Q� respectively. Let (Z�
t) t be the right continuous version

of the martingale

Z�
t ¼

dP

dQ�
jF t

:

Then, under Q�, the r.v.

1f��<1gZ
�
��

(4:1)

is an unbiased estimator of p�. Actually, by conditioning with respect to F�� ,

p� ¼ P sup
0, t<1

(�X t � j t) . 1

� �
¼ P(�� < 1) ¼ EQ� [1f��<1gZ

�
t] ¼ EQ� [1f��<1gZ

�
��
]:

We now investigate the existence of asymptotically efficient importance sampling

estimators in the class (4.1). Let us set m2(�) ¼ EQ� (1f��<1g(Z
�
��
)2). Thus this importance

sampling estimator is asymptotically efficient (see (1.4) for the definition) if

lim sup
�!0

�2 log m2(�) ¼ �2ij: (4:2)

Remark that in (4.2) the left-hand side is always equal to or greater than the right-hand side,

as the second-order moment cannot be smaller than the square of the mean. Remark that if

� t ¼ E(Z j F t), then (� t) t is a Gaussian P-martingale (the � -field F t is generated by (X s)s< t

and ((X s)s< t, Z) is a Gaussian family). Hence it has independent increments and, if

v t ¼ E(�2t ), ~ZZ�
t ¼ exp(��1� t � (2�2)�1v t) is also a P-martingale; since ~ZZ�

1 ¼ exp(��1Z�
(2�2)�1jªj2H), then ~ZZ�

t ¼ E(exp(��1Z � (2 �2)�1jªj2j F t). Thus ~ZZ�
t ¼ (dQ�=dP) j F t

and

Z�
t ¼ ( ~ZZ�

t)
�1 ¼ exp(���1� t þ (2�2)�1v t):

The second-order moment of the estimator (4.1) is therefore
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m2(�) ¼ EQ� (1f��<1g(Z
�
��
)2) ¼ EP(1f��<1gZ

�
��
) ¼ EP(1f��<1gexp(���1��� þ (2�2)�1v�� ))

¼
ð
f��<1g

exp(���1��� (ø)þ (2�2)�1v��(ø)) dP(ø)

¼
ð
1f�(�ø)<1g exp ��2 ���(�ø)þ

1

2
v�(�ø)

� �� �
dP(ø),

as � t is a linear function of ø.

Assumption 4.1. We say that the probability P satisfies the continuity of Gaussian martingales

(CGM) property if, for every r.v. Z 2 C9P, the Gaussian martingale (� t) t admits a continuous

version.

The results of this section hold under Assumption 4.1. This assumption is satisfied for

many Gaussian processes of interest and in particular for Brownian motion (of course) and

fractional Brownian motion.

It is possible to find examples of continuous Gaussian processes that do not satisfy

Assumption 4.1. In Section 9 we prove that, under Assumption 4.1, the functional

��� þ 1
2
v� (4:3)

satisfies the assumptions of Varadhan’s lemma (Theorem 9.2). This gives

lim
�!0

�2 log m2(�)

¼ lim
�!0

�2 log EP(1f��<1g exp(���1��� þ (2�2)�1v�� )) ¼ sup
ø,�(ø)<1

f���(w)þ 1
2
vr � I(w)g

¼ sup
t<1

sup
w2H;wt�j t¼1

f�� t(w)þ 1
2
v t � 1

2
jwj2Hg ¼ �inf

t<1
inf

w2H;wt�j t¼1
f� t(w)� 1

2
v t þ 1

2
jwj2Hg:

In the next statements we investigate the infima on the right-hand side.

Proposition 4.1. Let t 2 [0, 1]. Then

inf
w2H;wt�j t¼1

f� t(w)� 1
2
v t þ 1

2
jwj2Hg ¼ �v t þ

1

2K(t, t)
, (1þ j t þ ª t)

2: (4:4)

Proof. � t ¼ E(Z j F t) is a Gaussian r.v. and the corresponding path in the RKHS is

ª( t)s ¼ E(X s� t). Obviously the paths ª( t) and ª coincide up to time t. If w 2 H,

� t(w) ¼ hª( t), wiH. Thus we are looking for the minimum of the functional

F(w) ¼ hª( t), wiH þ 1
2
jwj2H on the hyperplane wt ¼ 1þ j t. This is, again, a constrained

extremum to be handled by Lagrange multipliers. As F is convex and tends to þ 1
as jwjH ! þ1, it is sufficient to look for a critical point. For h 2 H,

DF(w)h ¼ hª( t), hiH þ hw, hiH and, if G(w) ¼ wt, DG(w)h ¼ ht. Thus the Lagrange

multipliers relation for a critical point is
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hª( t), hiH þ hw, hiH þ ºht ¼ 0:

The only vector y 2 H such that hy, hiH ¼ ºht for every h 2 H is y ¼ K(t, :). Thus the

relation hª( t) þ w, hiH ¼ �ºht for every h 2 H implies ª( t) þ w ¼ �ºK(t, :), that is,

ws ¼ �ª( t)s � ºK(t, s). The constraint wt ¼ 1þ j t implies �º ¼ (1þ j t þ ª t)K(t, t)
�1

(recall that ª( t)t ¼ ª t). Thus, the critical path ~ww is

~wws ¼ �ª( t)s þ 1þ j t þ ª t

K(t, t)
K(t, s):

Replacing the value of ~ww and using the relationships

hª( t), ª( t)iH ¼ E(�2t ) ¼ v t, hª( t), K(t, :)iH ¼ ª t, hK(t, :), K(t, :)iH ¼ K(t, t),

one obtains

� t( ~ww) ¼ h ~ww, ª( t)iH ¼ �v t þ ª t

1þ j t þ ª t

K(t, t)
,

j ~wwj2H ¼ v t þ 2ºª t þ º2K(t, t) ¼ v t þ 2ª t

1þ j t þ ª t

K(t, t)
þ (1þ j t þ ª t)

2

K(t, t)

and, finally, putting things together gives (4.4). h

Let us define

Hª(t) :¼ �v t þ
1

2K(t, t)
(1þ j t þ ª t)

2: (4:5)

We shall call Hª the master function associated with the translation ª. Let

r(ª) :¼ inf
0< t<1

Hª(t): (4:6)

Since, by Varadhan’s lemma,

lim
�!0

� log m2(�) ¼ �inf
t<1

Hª(t) ¼ �r(ª), (4:7)

ª is asymptotically efficient if and only if r(ª) ¼ 2ij. The next statement is useful in

determining whether ª 2 H is asymptotically efficient.

Proposition 4.2. For every . ª 2 H and . 0 , t < 1,

Hª(t) <
(1þ j t)

2

K(t, t)
: (4:8)

Moreover, if ª is asymptotically efficient, the infimum in (4.6) is attained at every

t� 2 argmin
0,s<1

(1þ j t)
2

2K(t, t)
,

and ª must be of the form ªs ¼ a�K(t�, s) for s < t�, where a� ¼ (1þ j t�)=K(t
�, t�).

Proof. For every t, the master function can be rewritten as
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Hª(t) ¼ � v t �
1

K(t, t)
ª2t

� �
� 1

2K(t, t)
(1þ j t � ª t)

2 þ (1þ j t)
2

K(t, t)
: (4:9)

If Z is the r.v. associated with ª in C9P, then ª t ¼ E(X t Z) ¼ E(X tE(Z j F t)), so that

ª2t < E(E(Z j F t)
2)E(X t

2) ¼ v t K(t, t), (4:10)

which implies

v t �
1

K(t, t)
ª2t > 0:

Therefore the first two terms on the left-hand side of (4.9) are both negative, which proves

(4.8). Rewriting (4.9) for t ¼ t� gives

Hª(t
�) ¼ � v t� �

1

K(t�, t�) ª
2
t�

� �
� 1

2K(t�, t�) (1þ j t� � ª t�)
2 þ (1þ j t�)

2

K(t�, t�)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼2ij

:

Therefore a necessary condition for ª to be asymptotically efficient is that both the relations

v t� �
1

K(t�, t�) ª
2
t� ¼ 0, 1þ j t� � ª t� ¼ 0

hold. The second inequality implies ª t� ¼ 1þ j t� . As for the first one, a closer look at

(4.10) shows that the inequality is strict unless the r.v.s E(Z j F t� ) and X t� are collinear,

that is, unless ª t� ¼ ºE(X 2
t�) ¼ ºK(t�, t�). The condition ª t� ¼ 1þ j t� implies º ¼

(1þ j t�)=K(t
�, t�) ¼ a�. Thus, if s < t�, then

ªs ¼ E(X s Z) ¼ E[X sE(Z j F t�)] ¼ a�E(X sX t� ) ¼ a�K(t�, s):

h

Remark 4.1. It is useful to point out the two key features of Proposition 4.2. First, any

asymptotically efficient translation ª must be of the form ªs ¼ a�K(t�, s) for s < t�. No
condition is stated concerning the behaviour of ª after time t�. Second, as

Hª(s) < (1þ js)
2=K(s, s) for every 0 , s < 1 and ij ¼ (1þ j t�)

2=(2K(t�, t�)), if ª is

asymptotically efficient then t� must necessarily be a point of absolute minimum of Hª and

Hª(t
�) ¼ (1þ j t�)

2=K(t�, t�).
In the following we apply the results of this section and compute the asymptotics of the

second moment of the importance sampling estimator in two natural situations.

5. Application: Brownian motion

In this section we assume that P is the Wiener measure. Thus X is a continuous Brownian

motion and K(t, s) ¼ t ^ s. Proposition 4.2 states that an asymptotically efficient translation

ª must necessarily be such that ª�s ¼ a�s for s < t� ¼ argmin(1þ j t)
2=t. This is only a

necessary condition for asymptotic efficiency and an asymptotically efficient translation may
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not exist. There are, however, a number of situations in which it can be shown that the

translation ª�s ¼ a�s, 0 < s < 1, is asymptotically efficient.

Let us first make a couple of remarks. Let t� 2 ]0, 1[ be a time at which

r(t) ¼ (1þ j t)
2=2t has a local minimum. The relation r9(t�) ¼ 0 straightforwardly implies

easily j9t� ¼ (1þ j t� )=2t*. If ªs ¼ as for some a 2 R, then

Hª(t) ¼ �a2 t þ 1

2t
(1þ j t þ at)2 ¼ � 1

2
a2 t þ (1þ j t)

2

2t
þ aj t (5:1)

and

H9ª(t
�) ¼ � 1

2
a2 þ d

dt

(1þ j t)
2

2t

����
t¼ t�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ aj9t� ¼ � 1

2
a2 þ a

2t� (1þ j t�) ¼
a

2t� (1þ j t� � at�):

Thus, if a ¼ a� ¼ (1þ j t�)=t
�, t� is also a critical point for Hª. Moreover, with a ¼ a� in

(5.1), we can immediately see that Hª�(t
�) ¼ 2ij. Therefore ª�(t) ¼ a� t is asymptotically

efficient if and only if t� is an absolute minimum for Hª� (see Figures 1 and 2). This is

immediate if Hª� is convex,

Figure 1. Graph of Hª� (recall that ª�t ¼ a� t) for Æ ¼ 0:83 and k ¼ 3. Hª� is not convex, but the

minimum is attained at t� ¼ 0:439 and ª� is asymptotically efficient.

Figure 2. Graph of Hª� for Æ ¼ 0:8 and k ¼ 3. Now the minimum is attained at t ¼ 1 and t� ¼ 0:48
is only a local minimum. ª� is no longer asymptotically efficient.
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H 0ª�(t) ¼ j 0t aþ
j 0t(1þ j t)

t
þ (tj9t � 1� j t)

2

t3
,

and it is easy to check that, if j is convex, then Hª� itself is a convex function of t. Thus, if

j is convex, ª�s ¼ a�s provides a translation which is asymptotically efficient.

Proposition 5.1. Let . j t ¼ ktÆ. If . Æ > 1 then the path . ª�s ¼ a�s is asymptotically

efficient. If . 0 , Æ < 3
4
, then an asymptotically efficient path does not exist.

Proof. The previous arguments settle the question Æ > 1. Otherwise, by Proposition 4.2, an

asymptotically efficient translation ª� must satisfy ª�s ¼ a�s for s < t�. Simple calculations

show that H 0ª�(t
�) ¼ C(4Æ� 3), with C . 0. Thus, if Æ , 3

4
, then Hª� does not have a

minimum at t� and, by the remark at the beginning of this section, ª� cannot be

asymptotically efficient (Figure 3). Finally, for Æ ¼ 3
4
, H 0ª�(t

�) ¼ 0 but H -ª�(t
�) 6¼ 0;

therefore t� is a point of inflection and ª� cannot be asymptotically efficient. h

Remark 5.1. For Æ . 3
4
, t� is only a local minimum. It may not be an absolute minimum

(Figure 2), but let us consider, under Q�, the estimator

1fsup t���< t< t�þ�(�Wt�j t).1gZ�� :

Since

EQ��
1fsup t���< t< t�þ�(�Wt�j t).1gZ��

� �
¼ P sup

t���< t< t�þ�
(�Wt � j t) . 1

� �
,

a repetition of the arguments in Section 2 shows that this estimator is biased, but its bias

tends to zero exponentially faster than the probability to be estimated. The same arguments as

in Proposition 4.1 allow us to state that the logarithm of its second-order moment goes to

�1 as

� inf
t���< t< t�þ�

Hª� (t)
1

�2
:

If � is small enough, the infimum is attained at t ¼ t� and the estimator is asymptotically

efficient.

Figure 3. Graph of Hª� for Æ ¼ 0:7 and k ¼ 3. There is no minimum at t�, and ª� is not

asymptotically efficient.
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Finally, as for the uniqueness, it is easy to see that, if ª�t ¼ a� t is asymptotically

efficient, then the path that is defined by ~ªª t ¼ a� t if t < r and ~ªª t ¼ a� r if t > r is also

asymptotically efficient if r is chosen close enough to 1.

6. Application: fractional Brownian motion

Assume now that (C, (X t) t<1, P) is a fractional Brownian motion. Norros et al. (1999) (see

also Molchan and Golosov 1969) proved that, if

w(t, s) ¼ c1s
1
2
�H (t � s)

1
2
�H , if 0 < s , t,

0 if s > t

(
(6:1)

where c1 ¼ 2Hˆ(H þ 1
2
)ˆ(3

2
� H)

� ��1
, then

Mt ¼
ð t
0

w(t, s) dX s

is a Gaussian martingale (the fundamental martingale) such that E(M2
t ) ¼ c22 t

2�2H , where

c22 ¼
ˆ(3

2
� H)

2H(2� 2H)ˆ(H þ 1
2
)ˆ(2� 2H)

: (6:2)

Figure 4 shows c22 as a function of H , its behaviour being relevant in what follows. Norros et

al. (1999) prove two important properties of the fundamental martingale, namely, the

representation formula

X t ¼
ð t
0

~zz(t, s) dMs, (6:3)

where the integral is an ordinary stochastic integral with respect to the continuous square

integrable martingale (Mt) t, and

~zz(t, s) ¼ 2H t H�1=2(t � s)H�1=2 � (H � 1
2
)

ð t
s

u H�3=2(u� s)H�1=2 du

� �
: (6:4)

The fundamental martingale generates the filtration (F t) t and every r.v. in the Gaussian space

C9P can be written in the form

Figure 4. Behaviour of c22 as H varies. For H . 1
2
, the values remain very close to 1.
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ð1
0

g(s) dMs (6:5)

for g in the Hilbert space L2H of functions such that
Ð 1
0
g(s)2 dhMis ¼

c22(2H � 2)
Ð 1
0
g(s)2s1�2H ds , þ1. The representation formula (6.5) implies that the

CGM property of Assumption 4.1 is satisfied for fractional Brownian motion. Actually, if

Z 2 C9P, then it is of the form (6.5), so that

� t ¼ E(Z j F t) ¼
ð t
0

g(s) dMs:

The term v t appearing in the master function is now, for t < t�,

v t ¼ a�2E(E(X t� j F t)
2) ¼ E E

ð t�
0

~zz(t�, u) dMujF t

 !2
2
4

3
5

¼ E

ð t
0

~zz(t�, u) dMu

� �2
" #

¼ a�2(2� 2H)c22

ð t
0

~zz(t�, s)2s1�2H ds: (6:6)

Proposition 6.1. If j t ¼ ktÆ, Æ . 0, then an asymptotically efficient path does not exist.

Proof. We first consider the case H . 1
2
. Proposition 4.2 states that the corresponding

translation ª should be of the form ª t ¼ a�K(t�, t) ¼ a�E(X tX t�) for t < t�, where t� is a

point at which the infimum in (3.2) is attained. We now prove that the associated master

function Hª has a minimum that is strictly smaller than 2ij. This will follow from the fact

that H9ª(t
��) ¼ 0, H 0ª(t

��) ¼ �1, thus Hª is increasing in a left neighbourhood of t�, and
therefore has a minimum that is strictly smaller than Hª(t

�) ¼ 2ij. The computation of these

derivatives is somewhat involved, mostly because of the term v t, which is to be handled by

derivation under the integral sign using (6.4) and (6.6). Since

H9ª(t) ¼ �v9t þ
(1þ j t þ ª t)[(j9t þ ª9t)t � H(1þ j t þ ª t)]

t2Hþ1
,

one obtains H9ª(t
��) ¼ 0, as ª9t� ¼ j9t� ¼ H(1þ j t�)=t

� and ~zz(t�, t�) ¼ 0. As for the

second-order derivative, denoting by . . . the terms that have a finite limit in t�,

H 0ª(t) ¼ � v 0t þ
(1þ j t þ ª t)

t2H
ª 0

þ . . . ’ 2(2H � 1)Ha�2(t� � t)2H�2 ˆ(3
2
� H)

ˆ(H þ 1
2
)ˆ(2� 2H)

� 1

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼K H

:

The quantity KH is strictly negative for every H 6¼ 1
2

(see Figure 5). Therefore

H 0ª(t
��) ¼ �1 and the master function is increasing in a left neighbourhood of t�.

Similar computations show that, if H , 1
2
, the derivative of the master function, Hª, for
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ª t ¼ a�K(t�, t), converges to þ 1 as t"t�. Thus, in this case an asymptotically efficient

translation also cannot exist. h

Remark 6.1. The computations of the this section raise two questions. First, concerning

fractional Brownian motion, there is no importance sampling distribution which is

asymptotically efficient in the class considered. Is there a reasonable, larger, class of

importance sampling distributions in which an asymptotically efficient one can be found?

Second, if an asymptotically efficient importance sampling distribution does not exist, is it

possible to find an importance sampling distribution that is optimal in the class considered

(even if it fails to be asymptotically efficient)? In other words, if J (ª) ¼ inf0, t<1 Hª(t), does

the functional J attain a maximum as ª varies in H? If it does, what are these maxima?

7. The ruin probability

In this section we apply the results of Sections 2 and 3 and compute the asymptotics of the

second moment for the importance sampling estimator of the ruin probability (1.1) as

B ! þ1. Whereas the results of Sections 3 and 4 hold for general Gaussian processes

(albeit centred and continuous and satisfying Assumption 4.1), in this section we deal with

fractional Brownian motion.

Let ~XX ¼ ( ~XX s)s>0 be a fractional Brownian Motion and c . 0, Æ . 0. We investigate the

behaviour, as B ! þ1, of

P sup
s.0

( ~XX s � csÆ) . B

� �
: (7:1)

Proposition 7.1. If Æ . H, up to an exponentially negligible term, the ruin probability (7.1)

is equivalent to p� ¼ P(sup0, t<1(�X t � ktÆ) . 1), where X is a fractional Brownian motion

with Hurst exponent H, � ¼ B�1þH=Æ d H=Æ and k ¼ cd, if d is large enough.

Proof. Let d be a positive number. By scaling,

P sup
0,s<(Bd)1=Æ

( ~XX s � csÆ) . B

 !
¼ P sup

0, t<1

(B�1þH=Æd H=ÆX t � cdtÆ) . 1

� �
, (7:2)

Figure 5. Behaviour of KH as H varies. KH is strictly negative unless H ¼ 1
2
.
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where X t ¼ (Bd)�H=Æ ~XX t(Bd)1=Æ is again a fractional Brownian motion with Hurst exponent

equal to H . If Æ . H , � ¼ B�1þH=Æd H=Æ and k ¼ cd, the large-deviations asymptotics of the

probability (7.2) can be deduced by the results of the previous sections: if

s� ¼ H

c(Æ� H)

� �1=Æ

and d is such that d . s�Æ, then

lim
B!þ1

B�2þ2H=Æ log P sup
0,s<(Bd)1=Æ

( ~XX s � csÆ) . B

 !

¼ d�2H=Æ lim
�!0

�2 log P sup
0, t<1

(�X t � ktÆ) . 1

� �
¼ d�2H=Æ inf

0, t<1

(1þ ktÆ)2

2t2H
¼def �~ii: (7:3)

With the assumptions made on d,

t� ¼ H

cd(Æ� H)

� �1=Æ

, 1:

Thus the critical point t� belongs to ]0, 1[ and

~ii ¼ d�2H=Æ 1

2

Æ

Æ� H

	 
2 k(Æ� H)

H

� �2H=Æ

¼ 1

2

Æ

Æ� H

	 
2 c(Æ� H)

H

� �2H=Æ

(7:4)

does not depend on d (provided that d . s�Æ). In order to complete the proof it is sufficient

to show that

lim sup
B!þ1

B�2þ2H=Æ log P sup
s.(Bd)1=Æ

( ~XX s � csÆ) . B

 !
, �~ii:

This is a straightforward application of Fernique’s theorem, as outlined in Duffield and

O’Connell (1995). h

Let us denote by H and ~HHB the RKHS of (X t) t<1 and ( ~XX t) t<(Bd)1=Æ respectively. If

~ªª 2 ~HHB, then ~ªª t ¼ E( ~ZZ ~XX t), where ~ZZ belongs to the Gaussian space generated by the r.v.s

( ~XX t) t<(Bd)1=Æ . As pointed out in Section 6, this Gaussian space is well described using the

fundamental martingale of Norros et al. (1999). Let

~MMt ¼
ð t
0

w(t, s) d ~XX s,

where w is as in (6.1); every r.v. belonging to the Gaussian space generated by ( ~XX t) t<(Bd)1=Æ is

of the form

~ZZ ¼
ð(Bd)1=Æ
0

~gg(s) d ~MMs
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for some function ~gg such that
Ð (Bd)1=Æ
0

~gg(s)2dh ~MMis , þ1. We denote by ~LL2H the Hilbert space

of these functions, endowed with the scalar product

h ~gg, ~hhi ~HH ¼
ð(Bd)1=Æ
0

~gg(s)~hh(s) dh ~MMis ¼ (2H � 2)c22

ð(Bd)1=Æ
0

~gg(s) ~hh(s)s1�2H ds:

With every function ~gg 2 ~LL2H one can therefore associate a path ~ªª 2 ~HHB by setting

~ªªs ¼ E ~XX s

ð(Bd)1=Æ
0

~gg(u) d ~MMu

 !
¼
ð s
0

~zz(s, u) ~gg(u) dh ~MMiu: (7:5)

Moreover, the relation (7.5) between ~LL2H and H is one to one. We remark that the Gaussian

spaces generated by (X t) t<1 and ( ~XX t) t<(Bd)1=Æ obviously coincide. Thus, if Y is a Gaussian r.v.

belonging to this common Gaussian space, one may associate with it the paths

ª t ¼ E[X tY ], 0 < t < 1,

~ªªB(s) ¼ E[ ~XX sY], 0 < s < (Bd)1=Æ:

Of course ª 2 H and ~ªªB 2 ~HHB.

The relationship between ª and ~ªªB, can be made explicit. Actually

~ªªB(s) ¼ BE[X s(Bd)�1=ÆY ] ¼ Bª(s(Bd)�1=Æ): (7:6)

We consider the family of importance sampling estimators for the ruin probability of the

form

1f~��B<(Bd)1=Æg ~ZZ~��B (7:7)

where the r.v.s ~XX s are simulated under the distribution, ~QQB, of a fractional Brownian motion

translated with a path ~ªªB of the form (7.6) for some ª 2 H, and (Z t) t is the martingale

(under ~QQB) that gives the density of the change of probability, that is,

~ZZ t ¼ exp �
ð t
0

~ggB(s) dMs þ
1

2

ð t
0

~ggB(s)
2 dhMis

� �
,

where ~ggB 2 ~LL2H represents the path ~ªªB as in (7.5). The second-order moment of this

estimator is

~mm2(B) ¼ E 1f~��B<(Bd)1=Æg exp �
ð t
0

~ggB(s) dMs þ
1

2

ð t
0

~ggB(s)
2 dhMis

� �� �
:

Similarly to the definition given in Section 4, we say that the estimators defined through a

family of paths (~ªªB)B is asymptotically efficient if

lim sup
B!þ1

B�2þ2H=Æ log ~mm2(B) ¼ �2~ii:

Lemma 7.2. Let X be a fractional Brownian motion and ~XX t ¼ º�H X º t, so that ~XX is still a

fractional Brownian motion. If g 2 L2H ([0, T ]), then
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ðT
0

g(s) dX s ¼ ºH

ðT=º
0

g(ºs) d ~XX s almost surely:

Proof. As all the r.v.s considered belong to the Gaussian space generated by (X t) t, it is

sufficient to prove that the two r.v.s above have the same covariance with respect to each of

the r.v.s X t, t . 0, which is straightforward. h

From this lemma one obtains the relation between the fundamental martingales of X and
~XX . These are defined by

Mt ¼
ð t
0

w(t, s) dX s, ~MMt ¼
ð t
0

w(t, s) d ~XX s:

Thus Mt ¼ º1�H ~MMt=º and ð t
0

g(s) dMs ¼ º1�H

ð t=º
0

g(ºs) d ~MMs (7:8)

for every function g 2 L2(dhMis). Let us define

�� ¼ infft; �X t � ktÆ . 1g, ~��B ¼ inffs; ~XX s � csÆ . Bg,

with � ¼ B�1þH=Æd H=Æ, k ¼ cd. It immediately follows that �� ¼ (Bd)�1=Æ~��B. Moreover,

thanks to formula (7.8) with º ¼ (Bd)�1=Æ, for every g 2 L2(dhMis),ð��
0

g(t) dMt ¼
ð(Bd)�1=Æ~��B

0

g(t) dMt ¼ (Bd)�(1�H)=Æ

ð~��B
0

g(t(Bd)�1=Æ) d ~MMt,

whereas ð��
0

g(t)2 dhMi t ¼ (Bd)�(2�2H)=Æ

ð~��B
0

g(s(Bd)�1=Æ)2 dh ~MMis:

Therefore, recalling that � ¼ B�1þH=Æd H=Æ,

� 1

�

ð��
0

g(t) dMt þ
1

2�2

ð��
0

g(t)2 dhMi t

¼ �B1�1=Æd�1=Æ

ð~��B
0

g(s(Bd)�1=Æ) d ~MMs þ
1

2
B2�2=Æd�2=Æ

ð~��B
0

g(s(Bd)�1=Æ)2 dh ~MMis:

Thus, if we define ~ggB(s) ¼ B1�1=Æd�1=Æ g(s(Bd)�1=Æ), the two r.v.s

1f��<1g exp � 1

�

ð��
0

g(t) dMt þ
1

2�2

ð��
0

g(t)2 dhMi t
� �

,

1f~��B<(Bd)1=Æg exp �
ð~��B
0

~ggB(s) d ~MMs þ
1

2

ð~��B
0

gB(s)
2 dh ~MMis

� � (7:9)

are P-a.s. equal. Thanks to (7.9), we have ~mm2(B) ¼ m2(�) and
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lim
B!1

B2�2H=Æ log ~mm2(B) ¼ d2H=Æ lim
�!0

�2 log m2(�):

Comparing with (7.3) and (7.4) we have proved the following proposition:

Proposition 7.3. The family of translations (~ªªB)B is asymptotically efficient for the

probability (1.1) if and only if ª is asymptotically efficient for the probability (1.2).

8. Asymptotic efficiency for the ruin problem

Michna (1999) investigates the efficiency of the importance sampling estimator for the ruin

probability P sup0, t<1 (X t � ct) . Bð Þ obtained by a translation with a path of the form

ª t ¼ at. He studied, using extensive simulations, the efficiency of importance sampling

distributions of this kind. This choice corresponds, in the notation introduced above, to

~ggB � 1 and g � 1. Asymptotic efficiency is achieved if and only if

inf
0, t<1

Hª(t) ¼ inf
0, t<1

(1þ kt)2

t2H
:

Thanks to Proposition 4.2 we know that this cannot be (see Figure 6) as, in order to produce

an asymptotically efficient translation, the path ª must be of the form ª t ¼ a�K(t�, t), for
t < t�. One can, however, search for the best value of a and check whether this estimator is

far from asymptotical efficiency.

If ª t ¼ at, v t ¼ a2E(E(M1 j F t)
2) ¼ a2E(M2

t ) ¼ a2c22 t
2�2H . Therefore the master function

is

Hª(t) ¼ �a2c22 t
2�2H þ 1

2t2H
(1þ (k þ a)t)2

and one must determine the value of a such that inf0, t<1 Hª(t) is largest. It can be shown

that in this case sup and inf can be interchanged and

Figure 6. Graphs of t ! (1þ kt)2 t�2H (dotted line) and of Hª (solid line), with ª t ¼ at. It is

apparent that the infimum of the latter is strictly smaller. Thus the translation is not asymptotically

efficient. Here H ¼ 0:6, k ¼ 3, a ¼ (1þ kt�)=((2c22 � 1)t�) ¼ 4:95; the infimum of Hª is equal to

14.29 instead of 14.36 for asymptotic efficiency.
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max
a.0

�a2c22 t
2�2H þ 1

2t2H
(1þ (k þ a)t)2


 �
¼ c22

2c22 � 1

(1þ k t)2

t2H
(8:1)

the maximum being attained at a ¼ a(t) ¼ (1þ kt)=((2c22 � 1)t). The infimum of the right-

hand side of (8.1) is attained at t� ¼ H=(c(Æ� H)) and the value of the infimum is

c22
2c22 � 1

(1þ kt�)2
t�2H ¼ c22

2c22 � 1
2ij:

This estimator would be asymptotically efficient but for the presence of the factor

c22(2c
2
2 � 1)�1. The graph of c22, in Figure 4 suggests that, for 1

2
< H < 1, c22 is very close to

1, as well as c22(2c
2
2 � 1)�1, and the graph in Figure 7 confirms this fact. Therefore, for

1
2
, H < 1, this importance sampling estimator, while not asymptotically efficient, is not far

from being so (see also Figure 6). If H ¼ 0:6, c22(2c
2
2 � 1)�1 ¼ 0:995. It might, however, be

interesting to check numerically whether this estimator is useful in practice for the usual

values of the level B. Its performance is much poorer for values of H smaller than 1
2
.

The computations above allow us to determine the best value of a. Actually

a� ¼ 1þ kt�

(2c22 � 1)t� ¼ k

(2c22 � 1)H
:

The path ª t ¼ a� t has the lowest second-order moment among the linear paths for the

simulation of the probability (1.2). The corresponding path for the simulation of the

probability (1.1) is therefore, using (7.6), ~ªªB(s) ¼ c((2c22 � 1)H)�1s. Numerical evidence in

Michna (1999) indicates that, for H ¼ 0:6 and c ¼ 1, the best path of this form is ª t ¼ at

with a between 1:5 and 1:9 – beware that a corresponds to 1þ a in Michna (1999). The

computation above gives a ¼ ((2c22 � 1)H)�1 ¼ 1:65.

Remark 8.1. If the translation ª t ¼ at is not asymptotically efficient, one can investigate

whether it is optimal, in the sense of the second point of Remark 6.1. The answer to this

question is also negative, as we are able to produce a translation ª such that inf 0, t<1 Hª(t) is

larger: let ª be a path associated to an r.v. of the form Z ¼ a�X t� þ Y , with Y independent

of F t� . Thus Y is of the form Y ¼
Ð 1
t� g(s) dMs with g 2 L2H . Z being of the form above,

Figure 7. Graph of c22(2c
2
2 � 1)�1 as a function of H . Between 1

2
and 1 the minimum is attained at

’ 0:82 and takes a value ’ 0:9817.
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ª t ¼ E[X t(a
�X t� þ Y )] ¼

a�E(X tX t�) ¼ a�K(t�, t), if t < t�,

a�K(t�, t)þ
Ð t
t� ~zz(t, s)g(s) dhMis, if t . t�:

(

Assuming for simplicity that H . 1
2
, for t > t�,

ª t ¼ a�K(t�, t)þ 2H(2� 2H)(H � 1
2
)c22

ð t
t�
g(s)s1�2H ds

ð t
s

u H�1=2(u� s)H�3=2 du

¼ a�K(t�, t)þ 2H(2� 2H)(H � 1
2
)c22

ð t
t�
uH�1=2

ðu
t�
g(s)s1�2H (u� s)H�3=2 ds:

The corresponding conditional variance v t ¼ E(E(Z j F t)
2) takes the form

v t ¼
a�(2� 2H)c22

ð t
0

~zz(t, s)2s1�2H ds, if t < t�,

v t ¼ a�K(t�, t�)þ (2� 2H)c22

ð t
t�
g2s s

1�2H ds, if t > t�:

8>>><
>>>:

If g is of the form g(s) ¼ c0(s� t�)�s2H�1 for some values of c0, � to be chosen later, one

obtains

ª t ¼ a�K(t�, t)þ
c0ˆ(�þ 1)ˆ(3

2
� H)

ˆ(H þ �þ 1
2
)ˆ(2� 2H)

ð t
t�
uH�1=2(u� t�)Hþ��1=2 du (8:2)

for t > t�, whereas, for the same values of t,

v t ¼ a�K(t�, t�)þ (2� 2H)c20c
2
2

ð t
t�
(s� t�)2�s2H�1 ds:

The master function Hª is easily computed numerically. Figures 8 and 9 show that, for a

good choice of c0 and �, ª is closer to asymptotic efficiency than Michna’s estimator.

Figure 8. Graphs of t ! (1þ kt)2 t�2H (dotted) and Hª (solid), again for H ¼ 0:6, k ¼ 3, with

ª ¼ a�K(t�, t) for t < t� and defined as in (8.2) for t . t�. Here c ¼ 4:7 and � ¼ 0:01. The

infimum of Hª is now equal to 14.3527, which is very close to asymptotic efficiency (the required

value is still 14.3588). The minimum is attained at t ¼ 0:526.
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9. Some basic facts

In this section we recall some well-known facts about continuous Gaussian processes. Many

references are available in the literature; we refer mainly to Lifshits (1995). We prove also

an extension of Varadhan’s lemma that is needed in the proofs in Section 4.

9.1. Girsanov’s theorem

If w 2 H t and Z 2 C9t,P is the corresponding r.v., then the r.v.

e Z�1
2
jwj2H t ¼ eZ�

1
2
kZk2

L2

has mean 1 with respect to P, so that dQ ¼ e Z�1
2
jwj2H t dP is a probability measure on C t. Moreover,

if we denote by Pw the probability obtained by a translation by w, then it is easy to see thatQ ¼ Pw.

9.2. Restriction of an RKHS path

If a path ª belongs to HT and t < T, then one can consider its restriction to [0, t] and

inquire whether it belongs to H t.

Proposition 9.1. Let ª 2 HT and t < T, and denote by ~ªª the restriction of ª to [0, t]. Then

~ªª 2 H t and there exists a unique path ª( t) 2 HT coinciding with ª up to time t and such that

jª( t)j2HT
¼ j~ªªj2H t

, (9:1)

jª( t)j2HT
¼ inf jwj2HT

, (9:2)

the infimum being taken over all paths w 2 HT whose restriction to [0, t] coincides with ~ªª.
Moreover, ª( t) is the unique path at which this infimum is attained.

Proof. Let Z 2 C9T ,P be the r.v. corresponding to ª 2 HT . Thus ªs ¼ E(X s Z). The r.v.

� t ¼ E(Z j F t) is still Gaussian, as fZ, Xu, u < tg is a Gaussian family. The corresponding

path, ª( t) say, enjoys the property that, for s < t,

ª( t)s ¼ E(X s
~ZZ) ¼ E(X s Z) ¼ ªs,

Figure 9. Enlargement of Figure 8, showing the behaviour near t�. Recall that, at the left of t�, the
path is ª t ¼ Æ�K(t�, t).
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that is, it coincides with ª up to time t. However, it immediately follows that � t 2 C9P, t and
that the path in H t corresponding to � t is the restriction ~ªª of ª to [0, t]. This immediately

gives (9.1), as both sides are equal to E(�2t ). Moreover, if w 2 HT is any path coinciding with

ª up to time t, by repeating the previous argument, since its corresponding Gaussian r.v. Zw

satisfies ws ¼ E(ZwX s), we have, for s < t, E(Zw j F t) ¼ E(Z j F t) ¼ � t; therefore

Zw ¼ ~�� t þ W , for some r.v. W 2 C9T ,P independent of F t. Thus

jª( t)j2HT
¼ E(�2t ) < E( ~ZZ2)þ E(W 2) ¼ E(Z2

w) ¼ jwj2HT
, (9:3)

which gives (9.2). Moreover, in (9.3) equality holds if and only if W ¼ 0, that is, if and only

if w ¼ ª( t). h

9.3. Large deviations

Let (CT , F T , P) be a Gaussian process as in Section 3 and let P� be the probability

obtained by scaling with parameter �: P�(A) ¼ P(��1A). Then the following large-

deviations result is well known: for every closed set F � C t and every open set G � C t,

lim sup
�!0

�2 log P�(F) < �inf
w2F

I(w), lim inf
�!0

�2 log P�(G) > � inf
w2G

I(w), (9:4)

where I(w) ¼ 1
2
jwj2H t

if w 2 H t and I(w) ¼ þ1 otherwise (see Lifshits 1995: Chapter 12).

9.4. An extension of Varadhan’s lemma

Varadhan’s lemma states that if the family of probability measures (��)� on the complete

metric space (E, d) satisfies a large-deviation principle with rate function I and f : E ! R

is a continuous function satisfying suitable tail properties, then, for a closed set F,

lim
�!0

� log

ð
F

e f (x)=� d�� < sup
x2F

[ f (x)� I(x)]:

In Section 4 we applied this result to the functional ��� þ 1
2
v�, which is not continuous in

general. We now prove an extension of Varadhan’s lemma and then show that actually the

functional ��� þ 1
2
v� satisfy its assumptions. The extension is quite natural and the proofs are

straightforward revisitations of the classical ones (see Dembo and Zeitouni 1998: 139).

Definition 9.1. Let (��)� be a family of probability measures on the complete metric space

(E, d) satisfying a large-deviation principle with rate function I with speed � as � ! 0. A

function � : E ! R is said to be quasi-upper semicontinuous (quasi-lower semicontinuous)

with respect to (��)� if for every r . 0, R . 0, � . 0 there exist � . 0, �0 . 0 such that for

every � < �0 ,

�� x; �(x) . �(ª)þ �, d(x, ª) , �ð Þ < e�R=�

(�� x; �(x) , �(ª)� �, d(x, ª) , �ð Þ < e�R=�) (9:5)
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uniformly for I(ª) < r. � is said to be quasi-continuous if it is quasi-upper semicontinuous

and quasi-lower semicontinuous.

The extension of Varadhan’s lemma is the following.

Theorem 9.2. Assume that the family of probability measures (��)� on the complete metric

space (E, d) satisfies a large-deviation principle with rate function I and speed � as � ! 0.

Let F � E be a closed (G � E an open) set and � : E ! R a function such that:

(i) For every R . 0 there exist M . 0, �0 . 0 such that for every � < �0 ,ð
e�(x)=�1fj�(x)j.Mg d�� < e�R=�: (9:6)

(ii) � is quasi-upper (quasi-lower) semicontinuous with respect to (��)�.

Then

lim sup
�!0

� log

ð
e�(x)=�1F d�� < sup

x2F

[�(x)� I(x)]

lim inf
�!0

� log

ð
e�(x)=�1G d�� > sup

x2G
[�(x)� I(x)]

� �
(9:7)

We now prove that the functional ��� þ 1
2
v� appearing in (4.3) satisfies the assumptions

of Theorem 9.2 with respect to the family (P�)�. First, we take care of (9.6). The term v� is

bounded. If �� ¼ sup0< t<1j� tj, then obviously �� > ���, and it is sufficient to prove (9.6)

for � ¼ ��. Since (� t) t is a continuous Gaussian process, the r.v. �� is finite and Borell’s

inequality (see van der Vaart and Wellner 1996) gives

P(�� > r) < 2e�c� r2

for some c� . 0 (actually one can choose c� ¼ (8E[(��)2])�1).

Lemma 9.3. For every R . 0 there exists M . 0 such that

lim sup
�!0

�2 log

ð
C
exp(��2�(x))1fx;��(x).Mg dP

�(x) < �R:

Proof. Observe, first, that the distribution of �� under P� is the same as the distribution of

��(��) under P, and that ��(�x) ¼ ���(x) P-a.s. Therefore,ð
C
exp(��2��(x))1fx;��(x).Mg dP

�(x) ¼
ð
C
exp(��1��(x))1fx;���(x).Mg dP(x)

< P �� >
M

�

� �1=2

E(exp(2��1��))1=2: (9:10)

By Borell’s inequality,
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E(exp(2��1��)) ¼
ðþ1

0

P(exp(2��1��) > r) dr < 1þ
ðþ1

1

P(exp(2��1��) > r)dr

¼ 1þ
ðþ1

0

P(exp(2��1��) > e t)e t dt ¼ 1

ðþ1

0

P �� >
�

2
t

	 

e t dt

< 1þ
ðþ1

0

exp � c��2
4

t2 þ t

� �
dt

< 1þ exp
1

c��2

� �ðþ1

�1
exp � c��2

4
t � 2

c��2

� �2
 !

dt

¼ 1þ 1

�
exp

1

c��2

� � ffiffiffiffiffi
�

c�

r
:

Going back to (9.10),

ð
C
exp(��2��(x))1fx;��(x).Mg dP

�(x) < 1þ 1

�
exp

1

c��2

� � ffiffiffiffiffi
�

c�

r� �1=2

exp � c�M2

2�2

� �
,

which gives

lim sup
�!0

�2 log

ð
C
exp(��2��(x))1fx;��(x).Mg dP

�(x) <
1

2c� � c�M2

2
,

allowing us to conclude. h

Let us now check that the functional ��� þ 1
2
v� is quasi-continuous. v� is continuous

almost surely, since � is continuous P�-a.s. for every � . 0, as proved below in Proposition

9.7. The following statement gives an elementary, consequence of the CGM property (see

Assumption 4.1).

Lemma 9.4. If the CGM property is satisfied, then t ! ª( t) is continuous from [0, T ] to HT .

Proof. It is sufficient to remark that, for s < t, jª( t) � ª(s)j2HT
¼ E[(E(Z j F t)� E(Z j F s))

2]

and use the fact that for Gaussian r.v.s almost sure convergence implies convergence in L2.

h

The quasi-continuity of �� follows from the following statement. Recall that

� t ¼ E(Z j F t), where Z is the Gaussian r.v. associated with the path ª 2 H and that we

assume that (� t) t is continuous.

Proposition 9.5. For every r . 0, R . 0, � . 0 there exist �0 . 0, � . 0 such that, for every

w 2 H,
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P x; sup
0< t<1

j�� t(x)� hw, ª( t)iHj > �, k�x� wk1 < �

� �
< e�R=�2 , (9:11)

for every � < �0, uniformly for jwjH < r.

Proof. The two-dimensional process (X t, � t) t takes its values in C([0, 1], R2) and is

Gaussian. It is easy to check that its RKHS ~HH is formed by the paths (w, g), where w 2 H
and g t ¼ hw, ª( t)iH, with the norm j(w, g)j ~HH ¼ jwjH. The rest of the proof consists in

majorizing the left-hand side in (9.11) using large deviations. Actually (9.11) is more or less

equivalent to the the large-deviations estimates for (X t, � t) t, as developed in Baldi and Sanz

(1991), whose arguments we reproduce here. The estimates (9.4) give

lim sup
�!0

P x; sup
0< t<1

j�� t(x)� hw, ª( t)iHj > �, k�x� wk1 < �

� �
< �inf 1

2
j(y, g)j2~HH, (9:12)

the infimum being taken among those paths (y, g) such that ky� wk1 < � and

kg � hw, ª(:)iHk1 > �. Let us fix R . 0. Thanks to Lemma 9.6 below, for every � . 0

there exists � . 0 such that, if j ~wwj2H , 2R and k ~ww� wk1 < �, then kh ~ww, ª(:)iH
� hw, ª(:)iHk1 < �. With this choice of �, if (y, g) satisfies ky� wk1 < � and

kg � hw, ª(:)iHk1 > �, then j(y, g)j2~HH > 2R and the right-hand side in (9.12) is smaller

than �R, which completes the proof. h

Lemma 9.6. Let KR ¼ fw; I(w) < Rg. If w, wn 2 KR, n > 1 and kwn � wk1 ! 0, then

wn ! w in the weak topology of H, and the map w ! (t ! hw, ª( t)iH) from KR to C, both
endowed with the k:k1 topology, is continuous.

Proof. The statement follows by the Lebesgue theorem if wn, w, ª 2 H are of the form

wn(t) ¼
ð
K(t, s) dÆn(s), w(t) ¼

ð
K(t, s) dÆ(s), ª(t) ¼

ð
K(t, s) d�(s), (9:13)

with Æ, Æn, � 2 C9. Then remark that paths of the form (9.13) are dense.

As for the second part of the statement, let (wn)n � KR such that kwn � wk1 ! 0. It is

straightforward that the set (hwn, ª(
:)iH)n is equi-bounded and equi-continuous and, by the

Arzelà–Ascoli theorem, relatively compact. Since we already know that

hwn, ª( t)iH ! hw, ª( t)iH for every t, all the limit points in C of the sequence

(hwn, ª(
:)iH)n must coincide with hw, ª(:)iH and the proof is complete. h

Finally, let, for a . 0, �a(w) ¼ infft > 0; X t(w) > ag.

Proposition 9.7. �a is a functional of the path w which is P�-a.s. continuous for every � . 0.

Proof. �a is not a continuous functional of the path. It is, however, lower semi-continuous.

Similarly, the stopping time �9a(w) ¼ infft > 0; X t(w) . ag is upper semi-continuous. The

statement then follows if �a ¼ �9a P�-a.s. Let q . 0, then
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P�(�a < q , �9a) ¼ P� sup
s<q

X s ¼ a

 !
¼ 0

as, by Tsyrelson’s theorem (see Lifshits 1995: 136) the r.v. sups<q X s has a density. Thus the

event f�a , �9ag is negligible, being the countable union of the events f�a < q , �9ag,
q 2 Q. h
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