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Via Columbia 2, 00133 Roma, Italy

accardi@volterra.mat.uniroma2.it

FRANCO FAGNOLA

Dipartimento di Matematica, Politecnico di Milano,

Piazza Leonardo da Vinci 32, I-20133 Milano, Italy

franco.fagnola@polimi.it

SKANDER HACHICHA
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We study a special class of generic quantum Markov semigroups, on the algebra of all
bounded operators on a Hilbert space HS , arising in the stochastic limit of a generic
system interacting with a boson–Fock reservoir. This class depends on an orthonormal
basis of HS . We obtain a new estimate for the trace distance of a state from a pure state
and use this estimate to prove that, under the action of a semigroup of this class, states
with finite support with respect to the given basis converge to equilibrium with a speed
which is exponential, but with a polynomial correction which makes the convergence
increasingly worse as the dimension of the support increases (Theorem 5.1). We interpret
the semigroup as an algorithm, its initial state as input and, following Belavkin and
Ohya,10 the dimension of the support of a state as a measure of complexity of the input.
With this interpretation, the above results mean that the complexity of the input “slows
down” the convergence of the algorithm. Even if the convergence is exponential and the
slow down the polynomial, the constants involved may be such that the convergence
times become unacceptable from a computational standpoint. This suggests that, in
the absence of estimates of the constants involved, distinctions such as “exponentially
fast” and “polynomially slow” may become meaningless from a constructive point of
view.

We also show that, for arbitray states, the speed of convergence to equilibrium is
controlled by the rate of decoherence and the rate of purification (i.e. of concentration
of the probability on a single pure state). We construct examples showing that the order
of magnitude of these two decays can be quite different.
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1. Introduction

Let BS be a C∗-algebra. A quantum Markov semigroup (Tt)t≥0 on BS is said to

converge to equilibrium (in a given topology) if there exists a subset S∞, of the set

S(BS) of states on BS , and a map ρ∞:S(BS) → S∞ such that, denoting T ∗
t : BS →

BS the dual of (Tt)t≥0, one has

lim
t→+∞

T ∗
t ρ = ρ∞(ρ) ∀ ρ ∈ S(BS) ,

where the limit is meant in the given topology.

It is worth emphasizing that the term “equilibrium” here refers to dynamics, and

not restricted to thermodynamics. It is clear that any equilibrium state for (Tt)t≥0

is stationary and that the converse is not true in general. The problem of proving

convergence to equilibrium of a dynamical evolution and of estimating its speed

has an established tradition in quantum physics and in quantum probability (see

the survey Ref. 17 for more information). Recent developments of quantum optics

and quantum information provided a stimulus for the study of those q-Markov

semigroups, acting on the bounded operators B(HS) of a Hilbert space HS , such

that:

(i) they enjoy the property of convergence to equilibrium,

(ii) the limit set S∞ consists only of pure states,

(iii) they leave invariant several operator spaces (not necessarily subalgebras) con-

tained in the algebra where they are defined, for example: the diagonal and

off-diagonal spaces, with respect to a given orthonormal basis (ej)j of HS ,

or the “partial off-diagonal spaces”, generated by the flip operators |ej〉〈ek|,
|ek〉〈ej | for some fixed pair j, k with j 6= k.

These semigroups are remarkable because they combine two quite distinct effects

whose time scales can be quite different (cf. comment at the end of the present

section), namely:

(1) decoherence, which is measured by the speed of convergence to zero of the

off-diagonal terms (with respect to a given basis),

(2) purification, i.e. concentration of the probability in a single pure state of the

given basis, which is measured by the speed of convergence to a stationary pure

state.

Important physical examples of such semigroups arise from the study of 3-level

atoms interacting with laser fields, and are discussed in Refs. 4 and 5.

In the following section we will describe some problems of quantum information

which naturally lead to the study of the above described class of quantum Markov

semigroups and which constitute the motivation of this paper.
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The reader who is only interested in the mathematical results and not in their

information theoretical motivations, can proceed directly to Sec. 3.

The paper is organized as follows. In Sec. 3 we define the generic vacuum q-

Markov semigroups. We outline their construction starting from the form generator

(3.1) and recall the explicit formula allowing us to write them as the difference of two

classical sub-Markov semigroup plus a conjugation with a contraction semigroup.

Finally we write the natural hypotheses R1 and R2 that guarantee the existence

of a unique ground state.

In Sec. 4 we prove two estimates (Theorems 4.1 and 4.2) of the trace-norm

distance of a state ρ from a pure state in terms of some matrix elements. These

formulas are the key tools for our results on the speed of convergence towards the

ground state described in Sec. 5.

We compute the exact exponential rate for states with sub-Poisson type tails (a

natural generalization of states with finite support, e.g. coherent states) and give

an example showing that states with heavier tails (Example 6.1) might converge

towards the ground state even with polynomial speed.

The examples discussed at the end of Sec. 4 and in Sec. 5 show that the speed of

convergence of states with sub-Poisson tails is determined by the decay of the off-

diagonal elements which is typically of the type e−gt/2 while, for diagonal elements,

it is of the type e−gt: thus, although both exponential, the decoherence time is twice

the purification time. On the other hand, the diagonal part of states with heavier

tails might decay like t−1 (polynomial purification time) while the decoherence time

(decay of the off-diagonal part) is still exponential.

2. Driving a System to a Ground State: Information Theoretical

Motivations

The reason why these states are of interest in quantum information is that on the

one hand the typical output states of quantum algorithms are pure states; on the

other hand there is a natural analogy between the convergence of an algorithm,

considered as a discrete time dynamical system and convergence to equilibrium in

the usual sense of q-Markov semigroups.8,9

This analogy is the starting point of the so-called control through decoherence

technique. The realizability of this program, from the mathematical point of view,

was proved in Ref. 6 for general finite-dimensional quantum systems. The idea to

combine this technique with the chameleon effect (more precisely its dual) was used

in Ref. 9 to build an amplification effect for the output state of the Ohya–Masuda

q-SAT algorithm.

The idea to replace quantum annealing procedures by control through decoher-

ence in the approach of q-ground state computation with kinematical gates, is being

pursued in Ref. 1 as an attempt to concretely realize the program of kinematical

q-computation, based on triods (3-level systems), described in Refs. 12 and 13.

In these papers the output of a quantum algorithm is represented by the ground

state of a Hamiltonian HS (the network Hamiltonian) and the network itself is
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represented by a set of 3-level atoms. The geometry of the network is described

by the “wires”, i.e. by an interaction term in HS , describing the coupling of two

atoms. In another language we can say that the network is a graph whose vertices

are the atoms and whose edges are the wires.

Castagnoli and Finkelstein associate with each Boolean circuit a network and

a positive Hamiltonian with the property that the Boolean circuit is satisfiable if

and only if the ground state of the corresponding Hamiltonian is associated with

the eigenvalue zero.

On the other hand, from the “driving principle” of the stochastic limit of quan-

tum theory, we know that, if a control quantum field in the vacuum state is weakly

coupled to the network, then for a generic coupling, the field will drive the system

to one of its ground states with an exponential speed (Refs. 4 and 5 for physical

examples of this situation).

In this picture, the q-algorithm is represented by,

(i) the network Hamiltonian (including the interaction with the control field)

(ii) the initial state, for a given Hamiltonian, different input states will correspond

to different algorithms.

We expect that more complex algorithms will converge more slowly than simpler

ones. But in finite dimensions every ergodic Markov semigroup has a mass gap,

which implies exponential decay. Thus, if we want to distinguish between algorithms

of different complexity, we need a finer analysis which allows to account for state-

dependent corrections to the exponential decay.

The goal of this paper is to develop this finer analysis for the special class of

generic vacuum Markov semigropus which have the property of driving the network

to a ground state of a given Hamiltonian. Since the dimension of the state space

of a network with N atoms grows exponentially with N and, for complex circuits,

N can be very large, a natural thing to do is to embed the finite systems into an

infinite one. In this embedding the states of finite systems will correspond to states

whose support is a finite-dimensional projection.

In the estimates on the speed of convergence, that we are going to develop, this

finite dimension will play an explicit role (Theorem 5.1).

3. The Generic Vacuum Quantum Markov Semigroup

Let S be a discrete system with Hamiltonian

HS =
∑

σ∈V

εσ|σ〉〈σ| ,

where V is a finite or countable set, (|σ〉)σ∈V is an orthonormal basis of the complex

separable Hilbert space HS of the system and (εσ)σ∈V are the eigenvalues of HS .

We denote by VS the linear manifold generated by finite linear combinations of

vectors |σ〉.



December 13, 2006 12:5 WSPC/102-IDAQPRT 00254

Generic q-Markov Semigroups and Speed of Convergence of q-Algorithms 571

Following Accardi and Kozyrev,3 p. 34, we call the Hamiltonian HS generic if

the eigenspace associated with each eigenvalue εσ is one-dimensional and one has

εσ − ετ = εσ′ − ετ ′ for σ 6= τ if and only if σ = σ′ and τ = τ ′.
The generic quantum Markov semigroup was obtained by Accardi and Kozyrev3

(p. 27, (1.1.85)) in the stochastic limit of a discrete system with generic free Hamil-

tonian HS interacting with a mean zero, gauge invariant, 0-temperature, Gaussian

field. The interaction between the system and the field has the dipole type form

HI = D ⊗ A+(g) + D+ ⊗ A(g) ,

where D, D+ are system operators, i.e. an operator on HS , with domain containing

VS , such that 〈v, Du〉 = 〈D+v, u〉 for u, v ∈ VS and satisfying the analyticity

condition (Γ is the Euler Gamma function)

∑

n≥1

|〈σ′, Dnσ〉|
Γ(θn)

< ∞

for all σ, σ′ and some θ ∈ ]0, 1[ (a bounded operator, for instance), and A+(g), A(g)

are the creation and annihilation operators on the boson–Fock space over a Hilbert

space with test function g ∈ h1. The function g is called the form factor (or cutoff)

of the interaction.

The form generator of the generic quantum Markov semigroup is

L−(x) =
1

2

∑

σ,σ′∈V,ε′

σ<εσ

(γσσ′ (2|σ〉〈σ′|x|σ′〉〈σ| − {|σ〉〈σ|, x}) + iξσσ′ [x, |σ〉〈σ|]) . (3.1)

Here L−(x) has a meaning as a quadratic form on VS × VS because the sums are

always weakly converging on this domain, the constants γσσ′ are non-negative and

one has (see Accardi and Kozyrev,3 p. 36 (1.1.99))

γσσ′ = 2<e(g|g)−ω |〈σ′, Dσ〉|2 , ξσσ′ = =m(g|g)−ω |〈σ′, Dσ〉|2 , ω = εσ − εσ′ . (3.2)

The complex constants (g|g)−ω , for several choices of g (for instance continuous

and rapidly decreasing at infinity when h1 = L2(Rd) with d ≥ 3) and reasonable

choices of the free evolution of the field, satisfy

|g|σ = sup
σ′∈V

<e(g|g)−εσ−εσ′
< ∞

for all σ ∈ V . In this case we find from (3.2)
∑

σ′∈V,εσ′<εσ

γσσ′ ≤ 2|g|σ ·
∑

σ′∈V,εσ′<εσ

|〈σ′, Dσ〉|2 ≤ 2|g|σ · ‖Dσ‖2 < ∞

for all σ ∈ V . In the same way, if the constants (g|g)−ω are uniformly bounded in ω,

we can show that
∑

εσ′<εσ
|ξσσ′ | < ∞. Therefore, throughout this paper, we shall

assume that the following summability conditions

µσ :=
∑

{σ′∈V |εσ′<εσ}
γσσ′ < +∞ , (3.3)
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∑

{σ′∈V |εσ′<εσ}
|ξσσ′ | < ∞ , κσ :=

∑

{σ′∈V |εσ′<εσ}
ξσσ′ ∈ R , (3.4)

hold for all σ ∈ V . If, for some σ ∈ V , the set {σ′ ∈ V |εσ′ < εσ} is empty, then the

corresponding sums are 0 by definition.

Under this summability condition, the form generator (3.1) can be represented

in the generalized canonical GKLS (Gorini, Kossakowski, Sudarshan, Lindblad)

form

L−(x) = G∗x +
∑

σ,σ′

L∗
σσ′xLσσ′ + xG ,

where

G =
∑

σ∈V

(

−µσ

2
− iκσ

)

|σ〉〈σ| , Lσσ′ =
√

γσσ′ |σ′〉〈σ| . (3.5)

Notice that G is a normal dissipative operator. We denote by (Pt)t≥0 the strongly

continuous contraction semigroup generated by G.

The minimal semigroup associated with G and Lσσ′ (see, for instance, Cheb-

otarev and Fagnola14 or Ref. 15) is defined, on elements x of B(HS), by means of

the non-decreasing sequence of positive maps (T (n)
t )n≥0 defined, by recurrence, as

follows

T (0)
t (x) = P ∗

t xPt ,

〈v, T (n+1)
t (x)u〉 = 〈Ptv, xPtu〉 +

∑

σσ′

∫ t

0

〈Lσσ′Pt−sv, T (n)
s (x)Lσσ′Pt−su〉ds

(3.6)

for all x ∈ B(HS), t ≥ 0, v, u ∈ Dom(G). Indeed, we have

Tt(x) = sup
n≥0

T (n)
t (x)

for all positive x ∈ B(HS) and all t ≥ 0. The definition of positive maps Tt is

then extended to all the elements of B(HS) by linearity. The minimal semigroup

associated with G and Lσσ′ satisfies the integral equation

〈v, Tt(x)u〉 = 〈v, xu〉

+

∫ t

0

{

〈Gv, Ts(x)u〉 +
∑

σσ′

〈Lσσ′v, Ts(x)Lσσ′u〉 + 〈v, Ts(x)Gu〉
}

ds

(3.7)

for all x ∈ B(HS), t ≥ 0, v, u ∈ Dom(G). Moreover, it is the unique solution to

the above equation if and only if it is conservative (or Markov), i.e. Tt(1l) =1l for all

t ≥ 0 (see e.g. Ref. 15).

Theorem 3.1. Assume that (3.3) and (3.4) hold. Then the minimal semigroup

associated with the form generator (3.1) is conservative. In particular it is the unique

contraction semigroup on B(HS) satisfying (3.7).
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Proof. Let sp(HS) be the spectrum of HS . In order to verify conservativity, it

suffices to observe that, for any increasing function f : sp(HS) → [0, +∞[ one has

L−(f(HS)) =
∑

σ∈V

∑

{σ′∈V |εσ′<εσ}
γσσ′(f(εσ′) − f(εσ))|σ〉〈σ| ≤ 0 (3.8)

and apply the well-known criteria (see, for instance, Ref. 15 Corollary 3.41

p. 73) taking as self-adjoint operator C in the inequality 2<e〈Cu, Gu〉 +
∑

σ,σ′〈Lσσ′u, CLσσ′u〉 ≤ b〈u, Cu〉 (u ∈ VS) the operator C = f(HS) for a func-

tion f such that, for all σ,

f(εσ) ≥
∑

{σ′|εσ′<εσ}
γσσ′ = µσ .

As a consequence (see Fagnola and Rebolledo16) there exists a unique quantum

Markov semigroup T on B(HS) associated with the form generator (3.1) whose

generator L is characterized by

Dom(L) = {x ∈ B(HS)|L−(x) is bounded} , L(x) = L−(x)

for all x ∈ Dom(L).

Formula (3.8) also shows that the Abelian subalgebra L∞(HS) of B(HS) gen-

erated by the system Hamiltonian HS is invariant under the action of the form

generator; a well-known fact in the stochastic limit of quantum theory (see Accardi

and Kozyrev,3 Sec. 1.1.9, p. 29). Moreover, it is clear from (3.8) that the restriction

of the form generator to this Abelian algebra is the generator of a classical jump

process with state space {εσ|σ ∈ V } jumping from levels εσ to lower levels εσ′ with

intensity γσσ′ .

We shall refer to the Abelian algebra L∞(HS) as the diagonal subalgebra and

denote it by D. Moreover, we shall denote by Doff the operator space of off-diagonal

operators namely the closed (in the norm, strong and weak∗ topologies) subspace

of x ∈ B(HS) such that 〈σ, xσ〉 = 0 for all σ ∈ V .

Theorem 3.2. The Abelian subalgebra D and the operator space Doff are Tt-

invariant for all t ≥ 0. Moreover, Tt(x) = P ∗
t xPt for all x ∈ Doff .

Proof. We check first that Doff is Tt-invariant. Indeed, an element of Doff can be

written as a sum
∑

τ 6=τ ′ xττ ′ |τ〉〈τ ′| convergent in the weak operator topology and

P ∗
t xPt =

∑

τ 6=τ ′

e−((µτ+µτ′ )/2+i(κτ−κτ′ )txττ ′ |τ〉〈τ ′| .

Computing the second iteration step according to the definition of the minimal

semigroup (3.6) we find

L∗
σσ′P ∗

t xPtLσσ′ = γσσ′

∑

τ 6=τ ′

e−((µτ+µτ′ )/2+i(κτ−κτ′ )txττ ′ |σ〉〈σ′| · |τ〉〈τ ′| · |σ′〉〈σ| = 0
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because τ 6= τ ′ and then there are no terms with τ = σ′ = τ ′. Therefore we have

T (n)
t (x) = P ∗

t xPt for all n ≥ 2 and, letting n tend to infinity, Tt(x) = P ∗
t xPt.

We check then by induction on n that D is T (n)
t -invariant for all n. By for-

mula (3.6) defining the minimal semigroup this is clear for n = 0. Indeed, if

x =
∑

σ xσ |σ〉〈σ|, then

P ∗
t xPt =

∑

σ

e−µσtxσ |σ〉〈σ| .

Therefore P ∗
t xPt belongs to D. Suppose that T (n)

s (x) belongs to D. Then, for all

σ, σ′ we have

L∗
σσ′T (n)

s (x)Lσσ′ = γσσ′ 〈σ′, T (n)
s (x)σ′〉|σ〉〈σ| .

This shows that

L∗
σσ′T (n)

s (x)Lσσ′ , P ∗
t−sL

∗
σσ′T (n)

s (x)Lσσ′Pt−s

are bounded operators in D as well as the operator defined by the weak∗ integral
∫ t

0

P ∗
t−sL

∗
σσ′T (n)

s (x)Lσσ′Pt−sds .

Writing now x as a linear combination of four non-negative operators we can assume

that x is non-negative. It follows then from the recursion formula (3.6) that the sum

of positive operators

∑

{σ,σ′|εσ′<εσ}

∫ t

0

P ∗
t−sL

∗
σσ′T (n)

s (x)Lσσ′Pt−sds

is strongly convergent. Moreover, its limit is an element of D. As a consequence

T (n+1)
t (x), which is the sum of this limit and P ∗

t xPt, also belongs to D. This

completes the induction argument.

Denote by Tt the restriction of Tt to D. Then T = (Tt)t≥0 is a weakly∗-
continuous classical Markov semigroup on D whose generator A is characterized

(see, for example, Lemma 2.19 of Ref. 17) by

Dom(A) = Dom(L) ∩ D , Af = L(f)

for all f ∈ Dom(A). A straightforward computation shows that the operator A

satisfies

Aσσ′ = γσσ′ , for all σ, σ′ with εσ′ < εσ , Aσσ = −
∑

{σ,σ′∈V |εσ′<εσ}
γσσ′ = −µσ .

(3.9)

We denote by Ad the diagonal part of A. Clearly it generates a sub-Markov semi-

group (etAd)t≥0 on `∞(V ) given explicitly by

(etAdf)(σ) = e−µσtf(σ) . (3.10)
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Notice that Ad coincides formally with G∗+G. However, the former is the generator

of a semigroup on `∞(V ) space and the latter, a negative self-adjoint operator on

HS , is the generator of a contraction semigroup on the Hilbert space. Clearly HS

is isometrically isomorphic to `2(V ) and, up to this isomorphism, Ad and G + G∗

coincide on `2(V ) ⊆ `∞(V ).

The generic quantum Markov semigroup admits a quite explicit representation

formula due to Accardi, Hachicha and Ouerdiane8 (in the case when κσ = 0 for all

σ). In order to recall briefly this formula we start by the following:

Lemma 3.1. Let M be a classical sub-Markov transition operator on L∞(HS).

The linear map Φ[M ] : B(HS) → L∞(HS) defined by

Φ[M ](x) =
∑

σ,σ′∈V

Mσσ′〈σ′, xσ′〉|σ〉〈σ| ,

is a completely positive contraction on L∞(HS) vanishing on Doff . If M 1l=1l, then

Φ[M ](1l) =1l.

Proof. The map Φ[M ] is well-defined. Indeed, since M is a classical sub-Markov

transition operator, we have Mσσ′ ≥ 0 for all σ, σ′ and
∑

σ′ Mσσ′ ≤ 1. Therefore,

for each σ ∈ V , we have
∣

∣

∣

∣

∣

∑

σ′

Mσσ′ 〈σ′, xσ′〉
∣

∣

∣

∣

∣

≤ ‖x‖
∑

σ′

Mσσ′ ≤ ‖x‖ .

It follows that Φ[M ](x) is an element of L∞(HS) with norm bounded by ‖x‖.
Moreover, Φ[M ] is completely positive because of the identity

Φ[M ](x) =
∑

σσ′∈V

Mσσ′ |σ〉〈σ′|x|σ′〉〈σ|

showing that Φ[M ] is a sum of positive multiples of the completely positive maps

x → |σ〉〈σ′|x|σ′〉〈σ|. This formula also shows that Φ[M ] vanishes on Doff .

A straightforward computation shows that Φ[M ](1l) =1l whenever M 1l=1l.

We are now in a position to prove the representation formula for the generic

semigroup.

Theorem 3.3. The generic quantum Markov semigroup T satisfies

Tt(x) = Φ[etA](x) − Φ[etAd ](x) + P ∗
t xPt (3.11)

for all x ∈ B(HS) and t ≥ 0. Moreover, Tt(x) = Φ[etA](x) for all x ∈ D and

Tt(x) = P ∗
t xPt for all x ∈ Doff .

Proof. Every element of B(HS) can be decomposed into the sum of its diagonal

and off-diagonal part. Therefore it suffices to prove the identity (3.11) separately

for all x ∈ D and all x ∈ Doff .
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The identity holds for all x ∈ Doff . Indeed, by Lemma 3.1, both Φ[etA] and

Φ[etAd ] vanish on Doff .

We consider then x ∈ D. Writing x in the form x =
∑

σ xσ |σ〉〈σ| we find

immediately

P ∗
t xPt =

∑

σ

e−µσtxσ |σ〉〈σ| = Φ[etAd ](x) .

Therefore the right-hand side of (3.11) coincides with Φ[etA](x). On the other hand,

the formula

Φ[etA](x) =
∑

σσ′∈V

(etA)σσ′xσ′ |σ〉〈σ|

shows that Φ[etA] coincides with the restriction of Tt to the Abelian subalgebra D.

It follows then form Theorem 3.2 that (3.11) holds for all x ∈ D.

Thinking of the classical jump process obtained by restriction to D it is clear that

the generic semigroup can have several different behaviors according to the values

of the εσ and γσσ′ . In this paper, since we are interested in the speed of convergence

towards a pure state we suppose that the following hypothesis on “regularity” of

the Hamiltonian holds

R1. For every σ ∈ V there exists only a finite number of σ′ ∈ V with εσ′ < εσ .

Under this regularity assumption it is clear that the generic system Hamiltonian

HS has a unique ground state. We shall denote it by |e0〉 and denote by ε0 the

corresponding lowest energy level. Clearly, R1 implies conditions (3.3) and (3.4).

Moreover, since we are interested in those cases when the quantum Markov

semigroup converges to the pure invariant state |e0〉〈e0| we suppose that this state

can actually be reached in the evolution. This means that the following obviously

necessary (and, as we shall see later, sufficient) condition for convergence to this

invariant state holds

R2. For every σ ∈ V with σ 6= 0, there exists a σ′ with εσ′ < εσ and γσσ′ > 0.

Notice that this hypothesis implies that

µσ =
∑

{σ′∈V |εσ′<εσ}
γσσ′ > 0 , for all σ > 0 ,

and, by definition µ0 = 0.

Under the hypotheses R1 and R2 it is quite natural to take as V the set of

natural numbers and denote by (en)n≥0 the canonical orthonormal basis of the

system space.

We shall denote by T∗ the predual semigroup of T acting on the trace class

operators on HS and by L∗ its generator.
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Proposition 3.1. Suppose that the hypotheses R1, R2 hold. The quantum Markov

semigroup T has the invariant state |e0〉〈e0|.

Proof. Finite rank operators belong to the domain of the generator of the predual

semigroup T∗. Therefore |e0〉〈e0| belongs to the domain of L∗. A straightforward

computation yields L∗(|e0〉〈e0|) = 0 proving that |e0〉〈e0| is an invariant state.

Remark. In Sec. 5, as a corollary of Theorem 5.1, we shall prove that the above in-

variant state. Moreover, given any initial state ρ, its time evolution T∗t(ρ) converges

towards |e0〉〈e0| for the trace norm as t goes to ∞.

4. Distance from a Pure State

In this section we prove a useful inequality for estimating the trace distance of any

state ρ from a pure state in terms of a single matrix element of ρ.

Theorem 4.1. Let ρ be a normal state and e0 a unit vector. Then one has

‖ρ − |e0〉〈e0|‖1 ≤ 2(1− ρ00)
1/2 ,

where ρ00 = 〈e0, ρe0〉.

Proof. Denoting by E the projection |e0〉〈e0| we can write

ρ = ρ00E + E⊥ρE + EρE⊥ + E⊥ρE⊥ . (4.1)

Let v be the vector E⊥ρe0 which is orthogonal to e0. The normalization tr(ρ) = 1

yields ρ00 + tr(E⊥ρE⊥) = 1. The positivity of ρ gives immediately the inequalities

ρ00E
⊥ρE⊥ ≥ |v〉〈v| , ‖v‖2 ≤ ρ00tr(E

⊥ρE⊥) = ρ00(1 − ρ00) .

The triangular inequality yields

‖ρ − |e0〉〈e0|‖1 ≤ ‖(ρ00 − 1)E + E⊥ρE + EρE⊥‖1 + ‖E⊥ρE⊥‖1

= ‖(ρ00 − 1)E + E⊥ρE + EρE⊥‖1 + (1 − ρ00) .

Notice that, if v = 0, then E⊥ρE = EρE⊥ = 0 and we have the classical commu-

tative identity

‖ρ− |e0〉〈e0|‖1 = (1 − ρ00) +
∑

σ 6=0

ρσσ = 2(1 − ρ00)

which implies the claimed inequality. Therefore we can assume v 6= 0. In order to

compute the norm of (ρ00 − 1)E + E⊥ρE + EρE⊥ note that, in any orthonormal

basis of the form (e0, v/‖v‖, . . .) it is representable as 2 × 2 matrix B

B =

(

ρ00 − 1 ‖v‖
‖v‖ 0

)

.
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Put r = 1 − ρ00. Elementary matrix computations yield

B∗B =

(

r2 + ‖v‖2 −r‖v‖
−r‖v‖ ‖v‖2

)

|B| =
√

B∗B =
1

√

r2 + 4‖v‖2

(

r2 + 2‖v‖2 −r‖v‖
−r‖v‖ 2‖v‖2

)

.

It follows that the trace norm of B is equal to
√

r2 + 4‖v‖2.

Therefore, since ‖v‖2 ≤ ρ00(1 − ρ00), we find

‖ρ − |e0〉〈e0|‖1 ≤ ((1 − ρ00)
2 + 4‖v‖2)1/2 + (1 − ρ00)

≤ (1 − ρ00)
1/2((1 − ρ00)

1/2 + (1 + 3ρ00)
1/2) .

Observing that x 7→
√

1 − x +
√

1 + 3x is increasing in [0, 1] we deduce that

max
0≤x≤1

(
√

1 − x +
√

1 + 3x) = 2

which proves our inequality.

Remark. The inequality of Theorem 4.1 is sharp. Indeed, taking the 2×2 matrices

|e0〉〈e0| =

(

1 0

0 0

)

, ρ =
1l + u · σ

2
,

where (σ1, σ2, σ3) are the Pauli matrices, u2
1+u2

2+u2
3 ≤ 1, u·ρ = u1σ1+u2σ2+u3σ3,

we have ρ − |e0〉〈e0| = (v · σ)/2 with v = (u1, u2, u3 − 1). Therefore we find the

identity |ρ − |e0〉〈e0| |2 = ‖v‖2 1l/4. It follows that

‖ρ− |e0〉〈e0| ‖1 = ‖v‖ = ((1 − u3)
2 + u2

1 + u2
2)

1/2

≤ ((1 − u3)
2 + 1 − u2

3)
1/2 =

√
2(1 − u3)

1/2 .

Now, since ρ00 = (1 + u3)/2, we have 1 − ρ00 = (1 − u3)/2 and

‖ρ − |e0〉〈e0| ‖1 = 2(1− ρ00)
1/2 .

This shows that the inequality of Theorem 4.1 is sharp.

Remark. In this paper we will only consider convergence to pure states. However,

if pj ≥ 0,
∑

j pj = 1 and (ej)j≥0 is an orthonormal basis of HS , then the inequality
∥

∥

∥

∥

∥

∥

ρ −
∑

j

pj |ej〉〈ej |

∥

∥

∥

∥

∥

∥

1

≤
∑

j

pj‖ρ − |ej〉〈ej | ‖1 ≤ 2
∑

j

pj(1 − 〈ej , ρej〉)1/2

allows us to extend Theorem 4.1 to non-pure states.

Theorem 4.1 shows that, in the study of convergence to the pure state |e0〉〈e0|,
it suffices to find estimates of

1 − 〈e0, T∗t(ρ)e0〉 =
∑

n>0

〈en, T∗t(ρ)en〉 .
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However, if the off-diagonal part decays twice more quickly than the diagonal part

it might be useful to use a different estimate.

Theorem 4.2. Let ρ be a normal state and e0 a unit vector. Then one has

‖ρ− |e0〉〈e0| ‖1 ≤ 2(1 − ρ00) + 2

(

∑

k>0

|ρ0k|2
)1/2

, (4.2)

where ρ0k = 〈e0, ρek〉.

Proof. Indeed, with the notation of the proof of Theorem 4.1, writing ρ as in (4.1)

we clearly have the inequality

‖ρ − |e0〉〈e0| ‖1 ≤ ‖(ρ00 − 1)E + E⊥ρE⊥‖1 + ‖E⊥ρE + EρE⊥‖1

= 2(1− ρ00) + ‖ |v〉〈e0| + |e0〉〈v| ‖1

= 2(1− ρ00) + 2‖v‖ .

As a consequence, denoting ρ(t) the state at time t, if (1 − ρ00(t)) ≤ e−k0t and

‖v(t)‖ ≤ e−kdt with kd > k0/2, then the estimate of Theorem 4.2 is more convenient

than that of Theorem 4.1 for large times t.

5. Convergence Towards the Ground State

In this section we shall estimate the speed of convergence towards the invariant

state |e0〉〈e0| finding that it depends on the γm` and on the initial state ρ.

The off-diagonal elements

〈ej , T∗t(ρ)em〉 = 〈P ∗
t ej , ρP ∗

t em〉 = e−(
µj+µm

2
+i(κj−κm))t〈ej , ρem〉 (5.1)

with j 6= m are explicit. Moreover, the last term on the right-hand side of (4.2) for

the state T∗t(ρ) satisfies the inequality

(

∑

k>0

|〈e0, T∗t(ρ)ek〉|2
)1/2

=

(

∑

k>0

e−µkt|ρ0k|2
)1/2

≤ e−gt/2

(

∑

k>0

|ρ0k|2
)1/2

,

where g = infm>0 µm. This shows that the off-diagonal part of any initial states ρ

converges to 0 with exponential rate g/2.

We now concentrate on the diagonal elements for j = m > 0.

Lemma 5.1. Let ρ =
∑

h,k≥0 ρhk|eh〉〈ek | be a normal state. Then, for all m ≥ 0,

we have

〈em, T∗t(ρ)em〉 =
∑

k≥0

ρkk〈em, T∗t(|ek〉〈ek|)em〉 .
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Proof. Indeed, since 〈em, T∗t(ρ)em〉 = tr(T∗t(ρ)|em〉〈em|), we have

〈em, T∗t(ρ)em〉 = tr(ρTt(|em〉〈em|)) =
∑

k≥0

ρkk〈ek, Tt(|em〉〈em|)ek〉 .

This elementary lemma shows that it suffices to restrict ourselves to pure initial

states. In this case the problem of estimating the decay of diagonal matrix elements

is finite-dimensional as shown:

Lemma 5.2. For every d ≥ 0 we have

〈em, T∗t(|ed〉〈ed|)em〉 = 〈ed, Tt(|em〉〈em|)ed〉 = 0

for all m > d and all t ≥ 0.

Proof. Clearly 〈ed, P
∗
t (|em〉〈em|)Pted〉 = e−µmt|〈ed, em〉|2 = 0. Recalling the

identity (3.6) defining the minimal semigroup, assume that we proved

〈ed, T (n)
t (|em〉〈em|)ed〉 = 0 for all m > d. Then we have

〈ed, T (n+1)
t (|em〉〈em|)ed〉 =

∑

j>d

∫ t

0

e−µd(t−s)〈Ljded, T (n)
s (|em〉〈em|)Ljded〉ds .

Since Ljded = 0, the conclusion follows.

We shall now prove our key lemma for estimating the decay of the diagonal

elements of a state.

Definition 5.1. Given two d × d matrices A, B with non-negative entries, we say

that A is smaller than B entry wise and write A � B if Ajk ≤ Bjk for all 1 ≤ j,

k ≤ d.

This definition can obviously be extended in the same way to rectangular ma-

trices and vectors. Notice that, if A � B, then for every vector u ∈ Rd with

non-negative entries we have also Au � Bu.

The following lemma is the key step of our estimates.

Lemma 5.3. Let M, N be d × d matrices (d ≥ 1) with M ≤ 0 diagonal and N

lower triangular with non-negative entries and zero diagonal entries. Then one has

et(M+N) � e−gt
d−1
∑

k=0

tkNk

k!
,

where g = inf1≤k≤d{−Mkk}.

Proof. Starting from the identity

d

ds
e(t−s)Mes(M+N) = e(t−s)MNes(M+N)
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and integrating it on [0, t] we find

et(M+N) = etM +

∫ t

0

e(t−s)MNes(M+N)ds .

Iterating d times we have

et(M+N) = etM +

∫ t

0

e(t−s1)MNes1Mds1 + · · ·

+

∫ t

0

e(t−s1)MNds1 · · ·
∫ sd−2

0

e(sd−2−sd−1)MNesd−1Mdsd−1

+

∫ t

0

e(t−s1)MNds1 · · ·
∫ sd−1

0

e(sd−1−sd)MNesd(M+N)dsd .

Notice that the last term vanishes because it contains the product of d lower trian-

gular (with zero diagonal) d × d matrices erMN .

Observing that erM � e−gr and that the entries of N are non-negative, we find

the inequality

et(M+N) � e−gt
d−1
∑

k=0

Nk

∫ t

0

ds1 · · ·
∫ sk−1

0

dsk .

The conclusion then follows.

Theorem 5.1. For any state ρ with 〈ek, ρek〉 = 0 for all k > d we have

∑

m>0

〈em, T∗t(ρ)em〉 ≤ e−gdt
d−1
∑

k=0

(Cdt)k

k!
, (5.2)

where gd = inf0<m≤d µm and Cd = sup0<m≤d µm.

Proof. Put πm(t) = 〈em, T∗t(ρ)em〉 and recall that 〈em, T∗t(ρ)em〉 = 0 for m > d

by Lemma 5.2. Since |em〉〈em| belongs to Dom(L), differentiating we find

π′
m(t) = −µmπm(t) +

∑

m<h≤d

γhmπh(t) for 1 ≤ m ≤ d (5.3)

with the initial condition πm(0) = 〈em, ρem〉. Denoting Π(t) the d-dimensional row

vector (π1(t), . . . , πd(t)), Eq. (5.3) can be written in the form Π′(t) = Π(t)(M +N)

where M is the d×d diagonal matrix diag(−µ1, . . . ,−µd) and N the lower triangular

matrix Nhm = γhm for h > m, Nhm = 0 for h ≤ m. The initial condition is the

d-dimensional row vector Π(0). From Lemma 5.3 we then have

Π(t) � e−gt
d−1
∑

k=0

tk

k!
Π(0)Nk .
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It follows that

∑

m>0

〈em, T∗t(ρ)em〉 =

d
∑

m=1

πm(t) ≤ e−gt
d−1
∑

k=0

tk

k!

d
∑

m=1

(Π(0)Nk)m .

Denote `1(1, . . . , d) the Banach space of d-dimensional row vectors Π endowed with

the norm ‖Π‖1 =
∑d

m=1 |Πm|. Clearly N leaves invariant the cone `1
+(1, . . . , d) of

vectors with non-negative components. A straightforward computation shows that

‖ΠN‖1 is equal to

sup
Π,‖Π‖1≤1

‖ΠN‖1 = sup
Π,‖Π‖1≤1

∣

∣

∣

∣

∣

d
∑

m=1

d
∑

h=m+1

Πhγhm

∣

∣

∣

∣

∣

= sup
Π,‖Π‖1≤1

∣

∣

∣

∣

∣

d
∑

h=2

Πh

h−1
∑

m=1

γhm

∣

∣

∣

∣

∣

.

Recalling that µh =
∑h−1

m=1 γhm we have

sup
Π,‖Π‖1≤1

‖ΠN‖1 ≤ sup
2≤h≤d

µh sup
Π,‖Π‖1≤1

d
∑

h=2

Πh ≤ sup
2≤h≤d

µh ≤ Cd .

It follows that

d
∑

m=1

(Π(0)Nk)m = ‖Π(0)Nk‖1 ≤ Cd‖Π(0)Nk−1‖1 ≤ · · · ≤ ‖Π(0)‖1 · Ck
d .

This proves the inequality (5.2).

Corollary 5.1. Suppose that R1 and R2 hold. Then, for all normal state ρ,

lim
t→∞

‖T∗t(ρ) − |e0〉〈e0|‖1 = 0 .

In particular |e0〉〈e0| is the unique normal T -invariant state.

Proof. Let ρ be a normal invariant state. For all ε > 0 let ρ′ be a normal state

with 〈ek, ρek〉 = 0 for all k larger than some integer d > 1 such that ‖ρ − ρ′‖1 < ε.

By Theorems 4.1 and 5.1 we then have

‖T∗t(ρ) − |e0〉〈e0|‖1 ≤ ‖T∗t(ρ) − T∗t(ρ
′)‖1 + ‖T∗t(ρ

′) − |e0〉〈e0|‖1

≤ ε +

(

∑

m>0

〈em, T∗t(ρ
′)em〉

)1/2

≤ ε + e−gdt
d−1
∑

k=0

(Cdt)k

k!
.

Since ε is arbitrary, the claimed limit is proved by letting t tend to infinity.

It also follows that the only invariant state is |e0〉〈e0|. Indeed, if ρ and ρ̃ are two

invariant states, then ρ− ρ̃ = T∗t(ρ)−T∗t(ρ̃) and, letting t tend to infinity, we find

ρ − ρ̃ = |e0〉〈e0| − |e0〉〈e0| = 0.
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Remark. The inequality (5.2) is sharp. Indeed, taking

γmm−1 = 1 for 1 ≤ m ≤ d , ρ = |ed〉〈ed| ,

with the notation of Lemma 5.3 we have

M = diag(−1, . . . ,−1) , N =

d−1
∑

m=1

|em〉〈em+1| , ρ = (0, . . . , 0, 1) .

Therefore we can compute explicitly

(0, . . . , 0, 1)et(M+N) = e−t(td−1/(d − 1)!, td−2/(d − 2)!, . . . , t, 1) .

Since gd = Cd = 1, it follows that the right- and left-hand sides of (5.2) coincide.

The estimate (5.2) shows that the speed of convergence towards the invariant

state can depend on the initial state. Indeed, the constants gd and Cd depend on

d. We shall see later that this is unavoidable therefore this is not a real drawback.

The inequality (5.2) however, has two drawbacks:

(a) depends only the “size” of the support of the initial state,

(b) involves the constants Cd that, for big d, behave essentially as the operator

norm of the generator L.

We shall now try to find estimates (Theorem 5.2 here below) for arbitrary initial

states requiring weaker properties of the generator L and depending on the “tail”

of the initial state ρ.

As a preliminary step we prove the following:

Lemma 5.4. Let N be the lower triangular matrix with non-negative entries

Ndm = γdm for d > m and Ndm = 0 for d ≤ m and let c = sup{d,m|d>m} γdm.

Then, for all d > m and all k with 1 ≤ k ≤ d − m, the following inequality holds

(Nk)dm ≤ ck

(

d − m − 1

k − 1

)

.

Proof. The inequality obviously holds when d = m + 1 and k = 1. Suppose then

d > m + 1. In this case, since N is lower triangular with zero diagonal, we have

(Nk)dm =
∑

m<i1<i2<···<ik−1<d

γdi1γi1i2 · · · γik−2ik−1
γik−1m

≤ ck
∑

m<i1<i2<···<ik−1<d

1 .

The conclusion follows because the number of terms of the above sum is equal to

the number of subsets of the set {m + 1, . . . , d − 1} containing k − 1 elements.
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Theorem 5.2. Let ρ be a normal state. Then

∑

m>0

〈em, T∗t(ρ)em〉 ≤ e−gt

(

1 − ρ00 +

∞
∑

k=1

(ct)kRk(ρ)

k!

)

, (5.4)

where

g = inf
m>0

µm , c = sup
{d,m|d>m}

γdm , Rk(ρ) =
∑

h≥k

(

h − 1

k − 1

)

∑

d>h

ρdd .

Proof. Take d ≥ 1 and consider the truncation of the state ρ defined by ρ′ =
∑

0≤j,k≤d ρjk|ej〉〈ek|. For all t ≥ 0 and m ≥ 1 put

πm(t) = 〈em, T∗t(ρ
′)em〉 =

d
∑

j=1

ρjj〈em, T∗t(|ej〉〈ej |)em〉 .

Arguing as in the proof of Theorem 5.1 we find

∑

m>0

〈em, T∗t(ρ
′)em〉 =

d
∑

m=1

πm(t) ≤ e−gt
d−1
∑

k=0

tk

k!

d
∑

m=1

(Π(0)Nk)m ,

where Π(0) = (ρ11, . . . , ρnn). Letting d tend to infinity we have the inequality

∑

m>0

〈em, T∗t(ρ)em〉 ≤ e−gt
∞
∑

k=0

tk

k!

∞
∑

m=1

(Π(0)Nk)m

= e−gt
∞
∑

k=0

tk

k!

∞
∑

m=1

∞
∑

d=1

ρdd(N
k)dm .

By Lemma 5.2 and we have then

∑

m>0

〈em, T∗t(ρ)em〉 ≤ e−gt

(

∑

d>0

ρdd +
∞
∑

k=1

tk

k!

∞
∑

d=1

∞
∑

m=1

ρdd(N
k)dm

)

= e−gt

(

(1 − ρ00) +

∞
∑

k=1

tk

k!

∑

d>k

d−k
∑

m=1

ρdd(N
k)dm

)

≤ e−gt

(

1 − ρ00 +

∞
∑

k=1

(ct)k

k!

∑

d>k

ρdd

d−k
∑

m=1

(

d − m − 1

k − 1

))

.

The conclusion follows changing the index m by h = d − m and exchanging sum-

mation in h and d.

The series on the right-hand side of (5.4) can be divergent. This is not the case,

however, if the tails of the state ρ are small enough.
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Corollary 5.2. Suppose that the state ρ has sub-Poissonian tails, i.e.

∑

d>h

ρdd ≤ rh

h!

for some constant r > 0 and all h ≥ 0. Then the following inequality holds

∑

m>0

〈em, T∗t(ρ)em〉 ≤ e−gt/2

(

1 + er
∞
∑

k=1

(crt)k

(k!)2

)

, (5.5)

where g = infm>0 µm and c = sup0<m<n γnm. If ρ has sub-exponential tails, i.e.

∑

d>h

ρdd ≤ rθh

for a θ ∈ ]0, 1[, an r > 0, and all h ≥ 0 then
∑

m>0

〈em, T∗t(ρ)em〉 ≤ e−gt/2(1 + rθ(e−cθt/(1−θ) − 1)) . (5.6)

In particular, if θ < g(g + 2c)−1, then
∑

m>0

〈em, T∗t(ρ)em〉 ≤ e−gt/2(rθ + e−gt/2) . (5.7)

Proof. Indeed, if the first hypothesis on the tails of the state ρ yields

Rk(ρ) ≤
∑

h≥k

(h − 1)!

(k − 1)!(h − k)!

rh

h!
≤ rk

k!

∑

h≥k

rh−k

(h − k)!
= er rk

k!
.

On the other hand, if the state ρ satisfies ρdd ≤ rθd, then
∑

d>h ρdd ≤ rθh+1/(1−θ).

Moreover, by a well-known formula on the Pascal (or negative binomial) distribu-

tion, we have

Rk(ρ) ≤ r
∑

h≥k

(

h − 1

k − 1

)

θh+1 =
rθk+1

(1 − θ)k

∑

h≥k

(

h − 1

k − 1

)

(1 − θ)kθh−k =
rθk+1

(1 − θ)k
.

It follows that, denoting η = θ(1 − θ)−1, the series

∞
∑

k=1

(ct)k

k!
Rk(ρ) ≤ rθ

∞
∑

k=1

(cηt)k

k!

and the inequality (5.6) follows.

It is now easy to check (5.7).

Remark. Notice that, for states with exponential tails, the exponential rate g on

the right-hand side of (5.6) becomes g − cθ/(1 − θ) which is positive if and only if

θ < g(g + c)−1.

We shall see in the next section that the decrease of the exponential rate g in

the right-hand side of (5.4) is unavoidable for states with exponential tails.
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Coherent states ρ = |v〉〈v| with

v = e−|z|2/2
∑

n≥0

zn

√
n!

en ,

(z ∈ C) (normalized exponential vector) have sub-Poissonian tails. Indeed ρdd =

|〈ed, v〉|2 = e−|z|2 |z|2d/d! and

∑

d>k

ρdd = e−|z|2
∑

d>k

|z|2d

d!
≤ e−|z|2 |z|2(k+1)

(k + 1)!

∑

d>k

|z|2(d−k−1)

(d − k − 1)!
≤ |z|2(k+1)

(k + 1)!
.

Clearly also states with finite support in the basis (en)n≥0 (i.e. such that 〈ek, ρek〉 =

0 for all k larger than a certain integer d) satisfy this hypothesis.

In order to determine the asymptotic behavior of the series on the right-hand

side of (5.5) recall that, for all x ≥ 0,

∑

k≥0

xk

(k!)2
= I0(2

√
x) ,

where I0(r) is the modified Bessel function that solves the differential equation

r2y′′(r) + y′(r) − r2y(r) = 0.

Proposition 5.1. The following inequality holds

ex

√
2πx + 1

≤ I0(x) ≤ ex

√
2πx + 1

(

1 +
2

2πx + 1

)

for every x > 0.

The factor (k!)−2 in (5.5) improves drastically the factor (k!)−1 in (5.4). Indeed,

we have the following:

Theorem 5.3. For any state ρ we have

‖T∗t(ρ)−|e0〉〈e0|‖1 ≤ 2e−gt

(

1 − ρ00 +

∞
∑

k=1

(ct)kRk(ρ)

k!

)

+2e−gt/2

(

∑

k>0

|ρ0k|2
)1/2

,

where

g = inf
m>0

µm , c = sup
{d,m‖d>m}

γdm , Rk(ρ) =
∑

d>k

ρdd

d−1
∑

h=k

(

h − 1

k − 1

)

.

In particular, if the state ρ has sub-Poissonian tails, i.e.
∑

d>h ρdd ≤ rh/h! for

some constant r > 0 and all h ≥ 0, then

‖T∗t(ρ) − |e0〉〈e0|‖1 ≤ e−gt/2 + 2e−gt(1 + er(3e2
√

crt − 1)) .
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Proof. The first inequality follows immediately from Theorem 4.2, applied to the

state T∗t(ρ), identity (5.1) and Theorem 5.2.

The second inequality, for states with sub-Poissonian tails, follows from the first

noting that, by the positivity of ρ, we have

∑

k>0

|ρ0k|2 ≤
∑

k>0

ρ00ρkk ≤ ρ00(1 − ρ00) ≤ 1/4

and, by Proposition 5.1, the inequality (5.5) yields

∞
∑

k=1

(crt)k

(k!)2
= I0(2

√
crt) − 1 ≤ 3e2

√
crt − 1 .

Remark. The exponential rate g/2 in Theorem 5.3 cannot be improved. Indeed,

let γmm−1 = 1 for all m ≥ 1 so that g = 1 and let ρ = |v〉〈v|, for the unit vector

v = (e0 +e1)/
√

2. We can compute explicitly T∗t(ρ) and find that it is representable

as the 2 × 2 matrix

1

2

(

2 − e−t e−t/2

e−t/2 e−t

)

.

Therefore, since the eigenvalues of |T∗t(ρ) − |e0〉〈e0|2 are e−t/2(1 − e−t/2)/2 and

e−t/2(1 + e−t/2)/2, we have

‖T∗t(ρ) − |e0〉〈e0|‖1 = e−t/2 .

This example also shows that the off-diagonal terms can decay slower than diagonal

terms.

6. A Nearest Neighbour Generic Semigroup

In this section we compute the exact decay rate of the diagonal part for a special

choice of the γhk and three pure initial states. These examples show that we can

find initial states converging to the unique invariant state as slow as we want. Here

we call our generic semigroup nearest neighbour because transitions are possible

only from level εh+1 to level εh at constant rate

γh+1h = 1 , γkh = 0 , k > h .

With this choice of the γkh, we computed in the previous section (see the remark

following Theorem 5.1)

〈em, T∗t(|ed〉〈ed|)em〉 =











0 if m > d ,

e−ttd−m

(d − m)!
if m ≤ d .
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Therefore, if the initial state is a pure state |v〉〈v| for some unit vector v ∈ HS , we

have

〈em, T∗t(|v〉〈v|)em〉 =
∑

k>m

|〈v, ek〉|2〈em, T∗t(|ek〉〈ek|)em〉

= e−t
∑

k≥m

|〈v, ek〉|2
tk−m

(k − m)!
.

6.1. Slowly convergent states

Let v be the vector

v =
∑

k≥0

((k + 1)(k + 2))−1/2ek .

Clearly it has norm one because

‖v‖2 =
∑

k≥0

(k + 1)−1(k + 2)−1 =
∑

k≥0

((k + 1)−1 − (k + 2)−1) = 1 .

For the pure state |v〉〈v| one finds

∑

m>0

〈em, T∗t(|v〉〈v|)em〉 = e−t
∑

m>0

∑

k≥m

tk−m

(k + 1)(k + 2)(k − m)!

= e−t
∑

m>0

t−(n+2)
∑

k≥m

∫ t

0

ds

∫ s

0

rk

(k − m)!
dr

= e−t
∑

n>0

t−(n+2)

∫ t

0

ds

∫ s

0

rnerdr

= t−2e−t

∫ t

0

ds

∫ s

0

r/t

1 − r/t
erdr

= t−2e−t

∫ t

0

rer

t − r
dr

∫ t

r

ds = t−2e−t

∫ t

0

rerdr

= t−2e−t(te−t − et + 1) = t−1(1 − t−1 + t−1e−t) .

The off-diagonal elements, however, decay faster at an exponential speed. Indeed

〈e0, T∗t(|v〉〈v|)ek〉 = e−t/2 for k > 0 and 〈eh, T∗t(|v〉〈v|)ek〉 = e−t for h 6= k and h,

k > 0.

6.2. Number states

These are the pure stares |v〉〈v| with v unit vector

v = (1 − θ2)1/2
∑

k≥0

θkek = (1 − θ2)1/2θa∗a
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with |θ| < 1 and a∗a the number operator defined by (a∗a)ek = kek. In this case

|〈v, ek〉|2 = (1 − θ2)θ2k , therefore one finds

∑

k>0

〈en, T∗t(|v〉〈v|)en)〉 = (1 − θ2)e−t
∑

k>0

∑

k≥n

θ2k tk−n

(k − n)!

= (1 − θ2)e−t
∑

n>0

θ2n
∑

k≥n

(θ2t)k−n

(k − n)!

= (1 − θ2)e−t
∑

n>0

θ2neθ2t = θ2e−t(1−θ2) .

Then the diagonal part of ρ decays at the exponential rate (1 − θ2).

6.3. Coherent states

Let v = e−|z|2/2e(z) be the normalized exponential vector with z ∈ C. In this case

we have immediately

〈em, T∗t(|v〉〈v|)em〉 = e−|z|2e−t
∑

k≥m

|z|2ktk−m

k!(k − m)!
= e−|z|2 |z|2me−t

∑

j≥0

(|z|2t)j

j!(j + m)!
.

Therefore we find the identity

∑

m>0

〈em, T∗t(|v〉〈v|)em〉 = e−|z|2e−t
∑

j≥0

(|z|2t)j

j!

∑

m>0

|z|2m

(j + m)!
.

Lemma 6.1. For every j ≥ 0, x ≥ 0 we have

∑

n>0

xn

(j + n)!
=

ex

j!xj

∫ x

0

sje−sds .

Proof. The above formula holds for j = 0. We assume that it is true for j and we

prove it for j + 1. Note that

d

dx

∑

n>0

xn+j+1

(j + 1 + n)!
=
∑

n>0

xj+n

(j + n)!
,

d

dx

ex

(j + 1)!

∫ x

0

sj+1e−sds =
xj+1

(j + 1)!
+

ex

(j + 1)!

∫ x

0

sj+1e−sds

integrating by parts one gets

=
xj+1

(j + 1)!
+

ex

(j + 1)!
[sj+1e−s]x0 +

ex

j!

∫ x

0

sje−sds .

From the induction assumption for j the equality of the derivatives follow and

therefore, since the functions coincide for x = 0,
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∑

n>0

xj+1+n

(j + 1 + n)!
=

ex

(j + 1)!

∫ x

0

sj+1e−sds .

This proves the lemma.

Therefore we find the identities

∑

m>0

〈em, T∗t(|v〉〈v|)em〉 = e−t
∑

j≥0

tj

(j!)2

∫ |z|2

0

sje−sds

= e−t

∫ |z|2

0

∑

j≥0

(ts)j

(j!)2
e−sds

= e−t

∫ |z|2

0

I0(2
√

ts)e−sds . (6.1)

We now prove a standard estimate on Gaussian integrals.

Lemma 6.2. For all a > b > 0 we have

e−a2

2a
(1 − e−b(b+2a))

(

1 − 1

2a2

)

≤
∫ a+b

a

e−s2

ds ≤ e−a2

2a
(1 − e−b(b+2a)) . (6.2)

Proof. In order to prove the upper bound notice that

∫ a+b

a

e−s2

ds ≤
∫ a+b

a

s

a
e−s2

ds =
e−a2

2a
(1 − e−b(b+2a)) .

We now prove the lower bound
∫ a+b

a

e−s2

ds =

∫ a+b

a

1

s
(se−s2

)ds .

Integrating by parts we have

∫ a+b

a

e−s2

ds =

[

−e−s2

2s

]a+b

a

− 1

2

∫ a+b

a

e−s2

s2
ds

≥ e−a2

2a
− e−(a+b)2

2(a + b)
− 1

2

∫ a+b

a

( s

a

)3 e−s2

s2
ds

=
e−a2

2a
− e−(a+b)2

2(a + b)
− 1

4a3
(e−a2 − e−(a+b)2)

=
e−a2

2a

(

1 − 1

2a2

)

− e−(a+b)2

2

(

1

a + b
− 1

2a3

)

≥ e−a2

2a

(

1 − 1

2a2

)

− e−(a+b)2

2(a + b)

(

1 − 1

2a2

)

.
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Therefore, if a2 ≥ 1/2, we have

∫ a+b

a

e−s2

ds ≥ e−a2

2a

(

1 − 1

2a2

)

− e−(a+b)2

2a

(

1 − 1

2a2

)

.

If a2 < 1/2, then the left-hand side of (6.2) is negative and the claimed inequality

obviously holds. This proves the lemma.

Proposition 6.1. For all t > |z|2 we have

∑

m>0

〈em, T∗t(|v〉〈v|)em〉 ≤ |z|1/2e−(
√

t−|z|)2

2π1/2t1/4(t1/2 − |z|)
1 + 3(4π|z|

√
t)−1

1 + (4π|z|
√

t)−1
, (6.3)

∑

m>0

〈em, T∗t(|v〉〈v|)em〉 ≥ |z|1/2e−(
√

t−|z|)2

2π1/2t1/4(t1/2 − |z|) (1 + (4πt1/2|z|)−1)−1/2

− e−(
√

t−|z|)2

2(1 − |z|t−1/2)(
√

t − |z|)2
. (6.4)

Proof. Recalling formula (6.1) and Proposition 5.1 the left-hand side of (6.3) is

dominated by

e−t

∫ |z|2

0

e2
√

ts

√

4π(ts)1/2 + 1
e−s

(

1 +
2

4π
√

ts + 1

)

ds

=

∫ |z|2

0

e−(
√

s−
√

t)2 4π
√

ts + 3

(4π
√

ts + 1)3/2
ds

=

∫

√
t

√
t−|z|

2(
√

t − r)(4π
√

t(
√

t − r) + 3)

(4π
√

t(
√

t − r) + 1)3/2
e−r2

dr ,

where the last integral has been obtained by the change of variables r =
√

t −√
s.

Notice that the function on [0, +∞[

y → y(4π
√

ty + 3)

(4π
√

ty + 1)3/2

is increasing since

d

dy

y(4π
√

ty + 3)

(4π
√

ty + 1)3/2
=

8π2ty2 + 2π
√

ty + 3

(4π
√

ty + 1)5/2
> 0 .

Therefore, for each r ∈ [
√

t − |z|,
√

t], we have

2(
√

t − r)(4π
√

t(
√

t − r) + 3)

(4π
√

t(
√

t − r) + 1)3/2
≤ 2|z|(4π

√
t|z| + 3)

(4π
√

t|z| + 1)3/2
.
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It follows then from Lemma 6.2 that the left-hand side of (6.3) is not larger than

2|z|(4π
√

t|z| + 3)

(4π
√

t|z| + 1)3/2
e|z|

2 e−(
√

t−|z|)2

2(
√

t − |z|)
from which (6.3) follows.

The left-hand side of (6.4), by Proposition 5.1, is greater than or equal to

e−t

∫ |z|2

0

e−2
√

ts

√

4π(ts)1/2 + 1
e−sds =

∫ |z|2

0

e−(
√

t−√
s)2

√

4π(ts)1/2 + 1
ds

=

∫

√
t

√
t−|z|

2(
√

t − r)e−r2

√

4πt1/2(
√

t − r) + 1
dr ,

where the last integral has been obtained by the change of variables r =
√

t −√
s.

Let ϕ : [
√

t − |z|,
√

t] → [0, +∞[ be the function

ϕ(r) =
(
√

t − r)

r
√

4πt1/2(
√

t − r) + 1
.

Integrating by parts we find

∫

√
t

√
t−|z|

2(
√

t − r)e−r2

√

4πt1/2(
√

t − r) + 1
dr =

∫

√
t

√
t−|z|

ϕ(r)2re−r2

dr

=
|z|e−(

√
t−|z|)2

(
√

t − |z|)
√

4πt1/2|z| + 1
+

∫

√
t

√
t−|z|

ϕ′(r)e−r2

dr .

A straightforward computation yields

ϕ′(r) = −
√

t

r2

√

4πt1/2(
√

t − r) + 1
+

2π
√

t(
√

t − r)

r(4πt1/2(
√

t − r) + 1)3/2
.

Therefore the left-hand side of (6.4) is larger than or equal to

|z|e−(
√

t−|z|)2

(
√

t − |z|)
√

4πt1/2|z| + 1
−
∫

√
t

√
t−|z|

√
te−r2

r2

√

4πt1/2(
√

t − r) + 1
dr

≥ |z|e−(
√

t−|z|)2

(
√

t − |z|)
√

4πt1/2|z| + 1
−

√
t

(
√

t − r)2

∫

√
t

√
t−|z|

e−r2

dr

≥ |z|e−(
√

t−|z|)2

(
√

t − |z|)
√

4πt1/2|z| + 1
− e−(

√
t−|z|)2√t

2(
√

t − |z|)3

where the last inequality follows from Lemma 6.2.

The following exact asymptotic result now follows immediately.
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Corollary 6.1. For v = e−|z|2/2e(z) we have

lim
t→∞

∑

m>0〈em, T∗t(|v〉〈v|)em〉
(2
√

π)−1t3/4|z|1/2e−(
√

t−|z|)2
= 1 .
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