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THE PLURICOMPLEX POISSON KERNEL
FOR STRONGLY CONVEX DOMAINS

FILIPPO BRACCI, GIORGIO PATRIZIO, AND STEFANO TRAPANI

Abstract. Let D be a bounded strongly convex domain in the complex space
of dimension n. For a fixed point p ∈ ∂D, we consider the solution of a homo-
geneous complex Monge-Ampère equation with a simple pole at p. We prove
that such a solution enjoys many properties of the classical Poisson kernel in
the unit disc and thus deserves to be called the pluricomplex Poisson kernel
of D with pole at p. In particular we discuss extremality properties (such as a
generalization of the classical Phragmen-Lindelof theorem), relations with the
pluricomplex Green function of D, uniqueness in terms of the associated foli-
ation and boundary behaviors. Finally, using such a kernel we obtain explicit
reproducing formulas for plurisubharmonic functions.

Introduction

During the past decades the study of pluripotential theory and its applications
played a central role in complex analysis in several variables. In particular, since
the basic work of Siciak [31] and Bedford and Taylor [7], [8], great effort was made
to understand the complex Monge-Ampère operator and the associated generalized
Dirichlet problems (for instance, see [15], [20] and the references therein).

Let D ⊂ Cn be a bounded convex domain with z0 ∈ D. From the work of
Lempert [21], [24] and Demailly [15] it turned out that the homogeneous Monge-
Ampère equation

(0.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ Psh(D),
(∂∂u)n = 0 in D \ {z0},
limz→x u(z) = 0 for all x ∈ ∂D,

u(z) − log |z − z0| = O(1) as z → z0

has a solution LD,z0 which is continuous in D \ {z0} (actually it is smooth there if
D is strongly convex with a smooth boundary) and unique.

The function LD,z0 shares many properties with the Green function for the unit
disc D ⊂ C. For instance, from an analytic point of view it can be used to repro-
duce continuous plurisubharmonic functions (see [15] or Section 8), while from a
geometrical point of view, its level sets are boundaries of Kobayashi balls centered
at z0 and its associated foliation is the singular pencil of complex geodesics passing
through z0. Thus it can be successfully used in questions such as classification of
domains or biholomorphisms (see, e.g., [28], [29], [9]). Therefore, such a function
deserves the name of pluricomplex Green’s function.
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In [11] the first and second named authors concentrated on studying a homoge-
neous Monge-Ampère equation with a simple singularity at the boundary. Namely,
the following result has been proved:

Theorem 0.1. Let D ⊂ Cn be a bounded strongly convex domain with smooth
boundary and let p ∈ ∂D. The Monge-Ampère equation

(0.2)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u ∈ Psh(D),
(∂∂u)n = 0 in D,

u < 0 in D,

u(z) = 0 for z ∈ ∂D \ {p},
u(z) ≈ ‖z − p‖−1 as z → p non-tangentially

has a solution ΩD,p ∈ C∞(D\{p}) such that d(ΩD,p)z �= 0 and (∂∂ΩD,p)n−1(z) �= 0
for all z ∈ D \ {p}. Moreover the level sets of ΩD,p are boundaries of horospheres
of D with center p.

Here Psh(D) denotes the real cone of plurisubharmonic functions in D, and
horospheres are the “limits of Kobayashi balls” introduced by Abate [1], [2] and
coincide with the sub-level sets of Busemann functions of geodesics whose closure
contains p (see [12]). The function ΩD,p has been defined by means of the boundary
spherical representation of Chang-Hu-Lee [13] (see Section 1). In [11], among other
things, it has been proved that ΩD,p can be used to characterize biholomorphisms
and that its associated foliation is the fibration of complex geodesics of D whose
closure contains p.

The aim of this paper is to study the properties of ΩD,p in depth. We will show
that ΩD,p shares many properties with the Poisson kernel for the unit disc D, and
therefore it deserves the name of pluricomplex Poisson kernel of D with singularity
at p ∈ ∂D.

In more detail, we show that a version of the classical Phragmen-Lindelöf theorem
on the growth of subharmonic functions in D holds for plurisubharmonic functions
in D, proving that ΩD,p is the maximal element of the family⎧⎪⎨⎪⎩

u ∈ Psh(D),
lim supz→x u(z) ≤ 0 for all x ∈ ∂D \ {p},
lim inf

t→1
|u(γ(t))(1 − t)| ≥ 2Re (〈γ′(1), νp〉−1),

where νp is the unit outward normal to ∂D at p and γ is any C1-curve in D such
that γ(1) = p and γ′(1) �∈ Tp∂D (see Section 5). In due course we will find the
exact behavior of ΩD,p(z) as z goes to p along non-tangential directions to ∂D at
p (see Corollary 5.3).

Next, we deal with uniqueness properties of ΩD,p. These are essentially of two
types: analytic and geometric. From an analytic point of view we show that ΩD,p

is the only solution of the homogeneous Monge-Ampère equation which is zero on
∂D\{p} and behaves like ΩD,p as z tends to p (see Theorem 7.1). This is analogous
to the uniqueness statement for the pluricomplex Green function, except that the
behavior of ΩD,p near p is universal only along non-tangential directions, but it
might depend on the domain D itself along other directions. From a geometrical
point of view we show that ΩD,p is the only C2 solution (up to multiplication by
constants) of the homogeneous Monge-Ampère equation which is zero on ∂D \ {p}
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and whose associated foliation is the fibration of D in complex geodesics whose
closure contains p (see Theorem 7.3). This fact is then used to show other interesting
characterizations of ΩD,p both in terms of its level sets (see Proposition 7.4) and
in terms of its behavior under pull-back with holomorphic self-maps of D (see
Proposition 7.5).

We also show in Theorem 6.1 that LD,z0 and ΩD,p have the same relationship
as the Green function and the Poisson kernel in D, namely

(0.3) ΩD,p(z0) = −∂LD,z0

∂νp
(p).

This is used to write explicitly the “noyaux de Poisson pluricomplexes canonique”
of Demailly [15] and, applying his theory, to obtain a somewhat explicit reproducing
formula for continuous plurisubharmonic functions of D in terms of LD,z0 and ΩD,p

(see Theorem 8.2). In particular, for pluriharmonic functions F ∈ C0(D) we obtain
the following formula which is analogous to that for harmonic functions in the disc:

F (z) =
∫

p∈∂D

|ΩD,p(z)|nF (p)ω∂D(p),

where ω∂D is a positive real (2n − 1)-form on ∂D which depends only on D.
As a spin off result, using the properties of ΩD,p, we also prove that horospheres

are (smooth and) strongly convex away from their center (see Theorem 4.1).
The proofs of the previous properties of ΩD,p are based on a mix of different

techniques. In particular we will make a strong use of families of complex geodesics
and their regularity properties. Thus in Section 2 we deal with regularity for such
families, gathering some known but disperse information and proving the precise
results needed for our arguments. In particular, using a suitable “attached analytic
discs” approach, we prove (Theorem 2.1) that the set of complex geodesics in D
is a finite dimensional closed submanifold in the open set of the complex Banach
space Ok+α(D, Cn) made of non-constant holomorphic attached discs whose first
k-th derivatives extend α-Hölder continuous on ∂D. This result, interesting on its
own, allows us to obtain stability and regularities properties for families of complex
geodesics (Section 2) and for their Lempert’s projections, that is, the holomorphic
retractions of D with affine fibers onto complex geodesics introduced by Lempert
in [21] which will play a fundamental role in our discussion (see Section 3).

The plan of the paper is as follows. In the first section we recall some preliminar-
ies about complex geodesics, the boundary spherical representation of Chang, Hu
and Lee [13] and the results in [11] as needed to make this work as self-contained
as possible. In Section 2 we deal with regularity for families of complex geodesics
by studying their differential properties and, as a corollary of our construction, we
recover with a different proof some stability results by Huang [18], [19]. In the
third section we study Lempert’s projections. We first show that holomorphic re-
tractions on given complex geodesics are not unique, but Lempert’s projections can
be characterized as the unique retractions with affine fibers. Then we examine the
variation of Lempert’s projections with respect to boundary data and prove regu-
larity. In Section 4 we investigate the shape of horospheres. We prove that they are
strongly convex away from their center (where they are C1,1) using Jacobi vector
fields. In the fifth section we state and prove the Phragmen-Lindelöf theorem for
strongly convex domains and we compute the limits of ΩD,p along non-complex-
tangential directions. In the sixth section we prove (0.3) and in Section 7 we deal



982 F. BRACCI, G. PATRIZIO, AND S. TRAPANI

with uniqueness. Finally, in Section 8 we recall Demailly’s theory for reproducing
plurisubharmonic functions and find the explicit reproducing formulas using ΩD,p.

1. Preliminaries

Let D be a bounded strongly convex domain in Cn with smooth boundary. A
complex geodesic is a holomorphic map ϕ : D → D which is an isometry between
the Poincaré metric of D = {ζ ∈ C : |ζ| < 1} and the Kobayashi distance kD in D.

According to Lempert (see [21] and [1]), any complex geodesic extends smoothly
to the boundary of the disc and ϕ(∂D) ⊂ ∂D. Moreover, given any two points
z, w ∈ D, z �= w, there exists a complex geodesic ϕ : D → D such that z, w ∈ ϕ(D).
Such a geodesic is unique up to pre-composition with automorphisms of D. Also, if
z ∈ D and v ∈ Cn \ {O} (and v �∈ Tz∂D if z ∈ ∂D) there exists a unique (still, up
to pre-composition with automorphisms of D) complex geodesic ϕ : D → D such
that z ∈ ϕ(D) and ϕ(D) is parallel to v (in the case z, w ∈ ∂D this follows from
Abate [3] and Chang, Hu and Lee [13]). In the cases z ∈ D and w ∈ D, w �= z
(respectively v ∈ TzD) one can uniquely choose a complex geodesic ϕ : D → D
requiring that ϕ(0) = z and ϕ(t) = w for some 0 < t ≤ 1, with t = 1 if and only
if w ∈ ∂D (respect. ϕ′(0) = tv for some t > 0). With an abuse of notation, when
no risk of confusion arises, we also call “complex geodesic” the image of a complex
geodesic ϕ : D → D.

If ϕ : D → D is a complex geodesic, then there exists a holomorphic map
ϕ̃ : D → Cn, called the dual map of ϕ, such that ϕ̃ extends smoothly to ∂D and
ϕ̃(eiθ) = eiθµ(eiθ)∂rϕ(eiθ), with r being a defining function of D near ϕ(∂D) and
µ > 0 normalized so that

(1.1) ϕ̃(ζ) · ϕ′(ζ) ≡ 1

for all ζ ∈ D (see [21]).
Let ϕ : D → D be a complex geodesic. In [22] and [23] (see also Pang [26]) Lem-

pert defines a biholomorphic change of coordinates G : D → D′ which “linearizes”
ϕ. Namely, he proves that G extends smoothly on ∂D, that G ◦ϕ(ζ) = (ζ, 0, . . . , 0)
and that G̃ ◦ ϕ(ζ) = (1, 0, . . . , 0). The domain D′ = G(D) is no longer convex in
general, but it is strictly linearly convex near G(ϕ(∂D)); namely, the real Hessian
of any defining function of D′ is positive on the complex tangent space at any point
of ∂D′ near G(ϕ(∂D)). In the rest of the paper we will refer to such a G as the
Lempert biholomorphism which linearizes ϕ.

Considering the foliation of all complex geodesics passing through a given point
z0 ∈ D, Lempert constructed a map Φz0 : D → Bn, called a spherical representation
of D at z0, which is defined by Φz0(z) = ζϕ′

z(0)/‖ϕ′
z(0)‖ ∈ Bn, where ϕz : D → D

is a complex geodesic such that ϕz(0) = z0, ϕz(ζ) = z for z �= z0 and Φz0(z0) = O.
The map Φz0 , which is continuous on D, extends C∞ on D \ {z0}. In his work [21]
Lempert proved that LD,z0 := log ‖Φz0‖ solves (0.1).

Similarly, considering all complex geodesics whose closure contains a given
boundary point p ∈ ∂D, Chang, Hu and Lee (see [13, Theorem 3]) constructed
a boundary spherical representation. For the reader’s convenience and since it will
be useful later, we recall the construction of Chang, Hu and Lee as needed for our
purpose. Let p ∈ ∂D and let νp be the unit outward normal to ∂D at p. Denote

Lp := {v ∈ Cn|‖v‖ = 1, 〈v, νp〉 > 0, iv ∈ Tp∂D}
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and let v ∈ Lp. In what follows we will say that a complex geodesic ϕv : D → D
whose closure contains the point p ∈ ∂D is in the Chang-Hu-Lee normal parametri-
zation (with respect to v ∈ Lp) if ϕ(1) = p and ϕ′(1) = 〈v, νp〉v and Im 〈ϕ′′(1), νp〉 =
0. In [13] Chang, Hu and Lee proved that for all v ∈ Lp there exists a unique
complex geodesic in the Chang-Hu-Lee normal parametrization with respect to v.

Up to rigid movements of Cn, assume that νp = e1 = (1, 0, . . . , 0), and thus Lp

reduces to Lp = {v = (v1, . . . , vn) ∈ Cn : ‖v‖ = 1, v1 > 0}. For any v ∈ Lp the
map ηv : D 
 ζ �→ e1 + (ζ − 1)v1v is a complex geodesic of Bn, ηv(1) = e1 and
η′

v(1) = v1v. Then the boundary spherical representation Φp : D → Bn is defined
as follows:

Φp(z) = e1 + (ζz − 1)vz,1vz,

where ζz ∈ D and vz ∈ Lp are the unique data such that ϕvz
(ζz) = z. The map

Φp is a smooth diffeomorphism whose inverse is Φ−1
p (w) = ϕvw

(ζw), where ζw ∈ D

and vw ∈ Lp are the unique data such that w = ηvw
(ζw). Moreover Φp, Φ−1

p extend
continuously up to the boundary and Φp(p) = e1. In particular it follows that Φp

is holomorphic on all complex geodesics in D whose closure contains p and sends
such complex geodesics to complex geodesics in Bn whose closure contains e1.

Following Abate ([1], [2]) we define a horosphere ED(p, z0, R) of center p ∈ ∂D,
pole z0 ∈ D and radius R > 0 as

ED(p, z0, R) := {z ∈ D : lim
w→p

[kD(z, w) − kD(z0, w)] <
1
2

log R}.

The limit in the definition of ED(p, z0, R) exists since D is strongly convex and any
such horosphere ED(p, z0, R) is a sub-level set of the Busemann function of any
geodesic whose closure contains p (see [34]).

In [11, Corollary 6.2] it was proved that Φp maps horospheres of D centered at p
onto horospheres of Bn centered at e1, which, since horospheres of Bn are complex
ellipsoid, implies in particular that the boundaries of horospheres are smooth away
from the center p.

Let ΩBn,e1(z) = − 1−‖z‖2

|1−z1|2 . The sub-level sets of ΩBn,e1 correspond to horospheres
of Bn with center e1 and pole O (see, e.g., [1], [2]). In [11] we defined

ΩD,p := ΩBn,e1 ◦ Φp

and proved Theorem 0.1. For further use we notice that

ED(p, Φ−1
p (O), R) = {z ∈ D : ΩD,p(z) < − 1

R
}.

Finally, let

P (ζ) :=
1 − |ζ|2
|1 − ζ|2

be the Poisson kernel on D = {|ζ| < 1}. Recall that P is harmonic in D, limζ→x P (ζ)
= 0 for x ∈ ∂D \ {1} and limR�r→1− P (r)(1 − r) = 2. From the very definition it
follows that for all v ∈ Lp

(1.2) ΩD,p(ϕv(ζ)) = −P (ζ)/v2
1 .
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2. Regularity for families of complex geodesics

In this section we state some results about regularity of families of complex
geodesics in strongly convex domains which we will need later.

From these we also rediscovered some facts already known or implicitly contained
in other papers such as [21], [22], [18], [19]. Our presentation owes much to the
works [16], [35], [33].

In this section D will be a bounded strongly convex domain of Cn with smooth
boundary. Given k ≥ 2 and α ∈ (1/2, 1) we denote by Ok+α(D, Cn) the set of all
holomorphic maps from D to CN which extends Ck on D and such that their k-th
derivatives are α-Hölder on D (a map f : D → Cn is α-Hölder if there exists C > 0
such that ‖f(ζ0)− f(ζ1)‖ ≤ C|ζ0 − ζ1|α for all ζ0, ζ1 ∈ D). The set Ok+α(D, Cn) is
a complex Banach space when endowed with the norm

‖f‖k+α =
k∑

j=1

sup
ζ∈∂D

‖f (j)(ζ)‖ + sup
ζ0,ζ1∈D,ζ0 �=ζ1

‖f (k)(ζ0) − f (k)(ζ1)‖
|ζ0 − ζ1|α

.

Let G be the set of complex geodesics from D to D. By Lempert’s theory [21] it
follows that G ⊂ Ok+α(D, Cn). Let us also denote by M ⊂ Ok+α(D, Cn) the set of
constants with value in ∂D. It is clear that M is a closed set in Ok+α(D, Cn).

Theorem 2.1. The set G is a closed submanifold of Ok+α(D, Cn) \ M of real
dimension 4n − 1.

Proof. Let {fn} ⊂ G and assume that fn → f in Ok+α(D, Cn). Since the domain
D is strongly (pseudo)convex, either f(D) ⊂ D—and from the continuity of kD it
follows easily that f ∈ G as well—or f ∈ M . Thus G is closed in Ok+α(D, Cn) \M .
Let f0 ∈ G. We want to prove that G is a submanifold of Ok+α(D, Cn) near f0.

Let G : D → D′ = G(D) be the Lempert biholomorphisms which linearizes
f0. Then G ◦ f0(ζ) = (ζ, 0, . . . , 0) and the dual map G̃ ◦ f0(ζ) ≡ (1, 0, . . . , 0).
Notice that G extends C∞ up to ∂D. Thus we can extend (arbitrarily) G|∂D

to some C∞ map, denoted by G̃, from Cn to Cn. We thus have a morphism
Λ : Ck+α(∂D, Cn) → Ck+α(∂D, Cn) given by Λ(f) = G̃ ◦ f . The morphism Λ is
C∞ and maps the set of complex geodesics of D onto the set of complex geodesics
of D′. Assume for the moment that we proved that Λ(G) is a finite dimensional
submanifold of Ok+α(D, Cn) near G◦f0, and thus a finite dimensional submanifold
of Ck+α(∂D, Cn). Repeating the argument with G−1, we find a C∞ map Λ′ :
Ck+α(∂D, Cn) → Ck+α(∂D, Cn) such that Λ ◦ Λ′|Λ(G) = Id|Λ(G). Thus Λ′|Λ(G) is an
embedding with dΛ′(TΛ(G)) finite dimensional, thus closed and complemented in
Ck+α(∂D, Cn). Therefore G = Λ′(Λ(G)) is a finite dimensional submanifold (see,
e.g., [5]). We are then left to show that Λ(G) is a finite dimensional submanifold.

Thus, we can assume from the beginning that f0(ζ) = (ζ, 0, . . . , 0) and f̃0(ζ) =
(1, 0, . . . , 0) in D—here however the domain D is no longer strongly convex, but it is
strictly linearly convex near f0(∂D). By the very definition of the dual map and by
(1.1) it follows that if f is a complex geodesic of D close to f0 in Ok+α(D, Cn), then
f̃ is close to f̃0 in Ok+α(D, Cn), where, with some abuse of notation, we identify
the one form f̃ with the vector of its components.

Let Pn−1(C) be the space of complex hyperplanes passing through the origin O.
Let Ψ : ∂D → Cn×Pn−1(C) be defined by Ψ(p) := (p, T C

p ∂D). Let S = Ψ(∂D). By
the very definition (f0, [f̃0])(∂D) ⊂ S. Moreover, since ∂D is strongly pseudoconvex
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near f0(∂D), then S is a compact maximal totally real submanifold of Cn×Pn−1(C)
near Ψ(f0(∂D)) (see [36]).

Let (z1, . . . , zn) be coordinates in Cn and let [z1 : . . . : zn] be the correspond-
ing homogeneous coordinates in Pn−1(C); that is, the point [z1 : . . . : zn] cor-
responds to the hyperplane {v = (v1, . . . , vn) ∈ Cn :

∑n
j=1 vj · zj = 0}. Let

U1 := {[z] ∈ Pn−1(C) : z1 �= 0} be the chart obtained by identifying Cn−1 with U1

via (w1, . . . , wn−1) → [1 : w1 : . . . : wn−1] and let R : Cn × Cn−1 → R2n−1 be a
defining function for S ∩ Cn × U1 (such a defining function can be easily defined
starting from a global defining function of D in Cn). Let us consider Q = {F =
(f, g) ∈ Ok+α(D, Cn × Cn−1) : R(f, g)|∂D ≡ 0}. In other words, F = (f, g) ∈ Q if
and only if (f, [1 : g])(∂D) ⊂ S. In particular (f0, 0) ∈ Q. Note that if f is a complex
geodesic close to f0 with dual map f̃ = (f̃1, f̃2) ∈ C×Cn−1, then minζ∈D

|f̃1(ζ)| > 0
and therefore (f, f̃2/f̃1) ∈ Q. Conversely, if (f, g) ∈ Q and (f, g) is close to (f0, 0)
in Ok+α(D, Cn ×Cn−1), then |f ′

1(ζ) +
∑n

j=2 f ′
j(ζ)gj(ζ)| > 0 for all ζ ∈ D, and then

f is a stationary disc in D with dual map (1, g)/(f ′
1+

∑n
j=2 f ′

jgj), that is, a complex
geodesic. It should be remarked that in this argument one cannot refer directly to
Lempert’s theory because D is not strongly convex in general. However, since ∂D
is strongly pseudoconvex near f0(∂D), then for f close to f0 in Ok+α(D, Cn) one
can use Pang’s results to relate stationarity to extremality; see [26, Section 2].

The previous discussion shows that there exists an open neighborhood W0 ⊂
Ok+α(D, Cn×Cn−1) of (f0, 0) such that π1 : Q∩W0 → G∩π1(W0) is bijective, where
π1 is the projection on the first factor, namely π1(f, g) := f . The map π1|Q∩W0

is clearly C∞, and its inverse is C∞ as well, being given by f �→ (f, f̃2/f̃1), with
f̃ = (f̃1, f̃2) ∈ C×Cn−1 the dual of f . Thus dπ1|TQ is injective and its image is finite
dimensional, and hence is closed and complemented in Ok+α(D, Cn). Therefore, if
we prove that Q is a finite dimensional submanifold of Ok+α(D, Cn × Cn−1) near
(f0, 0), then the claim on G will follow. To prove that Q is a submanifold by
means of the implicit function theorem in Banach spaces, it is enough to show
that dRf0 : Ok+α(D, Cn × Cn−1) → Ok+α(D, Rn) is surjective and its kernel is
complemented in Ok+α(D, Cn × Cn−1). We have dRf0(f(ζ)) = 2Re Af(ζ), with A

being the (2n−1)×(2n−1) matrix with entries ∂Rj

∂zk
(f0). Since S is maximal totally

real, arguing as in [32, Theorem 3.1, Lemma 3.2] one can prove that all the Birkhoff
partial indices of the operator f �→ 2Re Af(ζ) are ≥ 1, and thus by [16] (see also
[35] and [33]) dRf0 is surjective. Notice that the computation of Birkhoff partial
indices in [32, Lemma 3.2] was proved under the assumption that ∂D is strongly
convex. It is easy to check that in fact such a result holds for strictly linearly
convex domains, and therefore it can be used here since, in Lempert’s coordinates,
the domain is strictly linearly convex near f0(∂D). Finally, a direct computation
(or see [34]) shows that its kernel has finite (real) dimension 4n − 1, and therefore
Q is a submanifold of dimension 4n − 1 near f0. �

Let κD be the Kobayashi metric in D. According to Lempert ([21], [23]) the
map D × (Cn \ {O}) → R given by (z, v) �→ κD(z; v) is C∞. Moreover, since
κD(z, λv) = λκD(z, v) for all (z, v) ∈ D × (Cn \ {O}) and λ > 0, it follows that
d(κD)(z,v) �= 0 for all (z, v) ∈ D × (Cn \ {O}). Therefore the set

K = {(z, v) ∈ D × (Cn \ {O}) : κD(z; v) = 1}

is a (4n − 1)-real dimensional submanifold of D × (Cn \ {O}).
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Theorem 2.2. The map V : G → K defined by V : f �→ (f(0), f ′(0)) is a diffeo-
morphism.

Proof. By the uniqueness of complex geodesics [21], the map V is bijective. Since
V is the restriction of a linear bounded map from Ok+α(D, Cn) to C2n, then it is
linear and C∞. By [23, Theorem 5] the inverse V −1 is C∞ as well, and hence V is
a diffeomorphism. �

From this result we obtain some corollaries which will be useful later on.

Corollary 2.3. Let {fn} ⊂ G be such that fn → f uniformly on compacta of D. If
f is not constant, then f ∈ G and f

(j)
n → f (j) uniformly on D for all j = 0, 1, . . ..

Proof. By Theorem 2.1 if f is not constant, then it belongs to G. Thus, fn → f
uniformly on compacta of D implies that fn(0) → f(0) and f ′

n(0) → f ′(0). By
Theorem 2.2 it follows that fn → f in Ok+α(D, Cn) for all fixed k ∈ N. In particular
f

(j)
n → f (j) for all j = 0, 1, . . .. �

Corollary 2.4. If (0, 1) 
 t �→ ft ∈ G is a family of complex geodesics such that
t �→ ft(0) and t �→ f ′

t(0) are C∞, then t �→ ft is C∞ in Ok+α(D, Cn). In particular
the map ζ �→ ∂jft

∂tj (ζ) is smooth on D for all j = 1, 2, . . ..

Lemma 2.5. The map G 
 f �→ f(0) ∈ D is proper.

Proof. If {zn} ⊂ D is such that zn → z ∈ D, let fn ∈ G be such that fn(0) = zn.
Let {fnk

} be a converging subsequence. Since the Kobayashi distance is continuous
on D, it follows that the limit f of {fnk

} is not constant. Then by Corollary 2.3 it
follows that f ∈ G and f(0) = z. Hence the map f �→ f(0) is proper. �

As a straightforward corollary of Lemma 2.5 we have the following result, first
proved using different methods by Huang [19, Proposition 1]:

Proposition 2.6. Let c > 0 and let Gc := {f ∈ G : dist(f(0), ∂D) ≥ c}. Then
there exists c′ > 0 such that ‖f‖k+α ≤ c′ for every f ∈ Gc.

3. Lempert’s projections

Let D ⊂ Cn be a bounded strongly convex domain with smooth boundary and
let ϕ : D → D be a complex geodesic. According to Lempert ([21], [22], [23]), for
all z ∈ D the equation ϕ̃(ζ) · (z − ϕ(ζ)) ≡ 0 in the unknown ζ ∈ D has a unique
solution ζ := ρ̃(z). The map ρ̃ : D → D is holomorphic, extends smoothly on ∂D
and is called the left inverse of ϕ because it satisfies ρ̃ ◦ ϕ = idD. By the very
definition

(3.1) ϕ̃(ρ̃(z)) · (z − ϕ(ρ̃(z))) ≡ 0.

Remark 3.1. Let z ∈ D. If ζ ∈ D is such that ϕ̃(ζ) · (z − ϕ(ζ)) = 0, then ρ̃(z) = ζ.
Indeed, by the strong convexity of ∂D, if z ∈ D \ϕ(∂D), then the winding number
of the function ∂D 
 ζ �→ ϕ̃(ζ) · (z − ϕ(ζ)) is 1 (see [22], [23]), hence ζ = ρ̃(z).
On the other hand, if z = ϕ(eit) for some t ∈ R, by continuity of ρ̃ it follows that
ρ̃(ϕ(eit)) = eit. Suppose by contradiction that ϕ̃(ζ) · (ϕ(eit) − ϕ(ζ)) = 0 for some
ζ ∈ D \ {eit}. Since the domain is strongly convex the interior of the real segment

 joining ϕ(eit) to ϕ(ζ) is contained in D. Then the segment 
 belongs to the fiber
of ρ̃ at ϕ(ζ) and, since ρ̃ is continuous on D, it follows that ρ̃(ϕ(eit)) = ζ which
contradicts ρ̃(ϕ(eit)) = eit.
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Let ϕ be a complex geodesic and let ρ̃ be its left-inverse. The map ρ : D →
ϕ(D) ⊂ D defined as ρ := ϕ ◦ ρ̃ is a holomorphic retraction on ϕ(D), i.e., ρ is a
holomorphic self-map of D such that ρ ◦ ρ = ρ and ρ(z) = z for any z ∈ ϕ(D). It
extends smoothly to ∂D and is called the Lempert projection associated to ϕ. The
triple (ϕ, ρ, ρ̃) is the so-called Lempert projection device. As remarked for instance
in [10, p. 145] the Lempert projection ρ depends only on the image ϕ(D).

In this section we study regularity of Lempert’s left-inverse. Before that, we
make some comments on holomorphic retractions on strongly convex domains. We
start with an example which shows that there exist infinitely many holomorphic
retractions:

Example 3.2. Let fjk : Bn → D be holomorphic functions, j, k = 2, . . . , n, and let
ε < 1/2n. The holomorphic map

(3.2) ρ(z) := (z1 + ε
n∑

j,k=2

zjzkfjk(z), 0, . . . , 0)

is a holomorphic retraction of Bn onto the complex geodesic ϕ(ζ) = (ζ, 0, . . . , 0). In-
deed, it is clear that ρ(Bn) ⊂ C×{(0, . . . , 0)}, that ρ2 = ρ and that ρ is holomorphic.
Moreover, if we let r = |z1|, then |zj | ≤

√
1 − r2 and |z1 + ε

∑n
j,k=2 zjzkfjk(z)| ≤

r + nε(1 − r2), proving that for ε < 1/2n the image ρ(Bn) ⊂ Bn.

From (3.1) it follows that the fibers of Lempert’s projection are intersections
of D with complex affine hyperplanes. Lempert’s projection can be characterized
exactly by this property:

Proposition 3.3. Let ϕ : D → D be a complex geodesic. If ρ : D → ϕ(D) is a
holomorphic retraction whose fibers are intersections of D with complex affine hy-
perplanes, then ρ is the Lempert projection. In other words, the Lempert projection
is the only “affine-linear” retraction.

Proof. Let ρ : D → ϕ(D) be a retraction whose fibers are intersections of D with
complex affine hyperplanes. Let ED = ED(ϕ(eit), ϕ(ζ0), R) be a horosphere of D
with radius R > 0. Since ρ ◦ ϕ = ϕ, if z ∈ ED we have

lim
w→ϕ(eit)

[kD(ρ(z), w) − kD(ϕ(ζ0), w)]

= lim
r→1

[kD(ρ(z), ρ(ϕ(reit))) − kD(ϕ(0), ϕ(reit))]

≤ lim
r→1

[kD(z, ϕ(reit)) − kD(ϕ(0), ϕ(reit))] <
1
2

log R.

(3.3)

Therefore ρ(z) ∈ ED ∩ ϕ(D). Let η ∈ D and ϕ(η) ∈ ∂ED. Let H be the affine
hyperplane which contains ρ−1(ϕ(η)). Then ED ∩ H = ∅, because if z ∈ ED ∩ H,
then ϕ(η) = ρ(z) ∈ ED ∩ϕ(D), which is a contradiction. Since ϕ(η) ∈ ED ∩H and
ED is convex, it follows that H−ϕ(η) = T C

ϕ(η)∂ED. Now, T C

ϕ(η)∂ED = ker(∂ρL)ϕ(η),
where ρL is the Lempert projection. Thus ρ and ρL have the same fibers at ϕ(η),
and by the arbitrariness of the choices it follows that ρ = ρL as claimed. �

Next we examine the variation of the left inverse of Lempert’s projection with
respect to boundary data.

Lemma 3.4. Let {zk} ⊂ D be a sequence converging non-tangentially to p. Let
vk ∈ Lp be such that zk ∈ ϕvk

(D) (where, for v ∈ Lp, ϕv : D → D denotes the
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unique complex geodesic in the Chang-Hu-Lee normal parametrization with respect
to v). If vk → v0, then v0 ∈ Lp and ϕvk

→ ϕv0 , ϕ
(j)
vk → ϕ

(j)
v0 uniformly on D for all

j = 1, 2, . . . .

Proof. We can assume that νp = e1. To see that v0 ∈ Lp we need to show that
〈v0, e1〉 > 0. Assume this is not the case. Then v0 ∈ T C

p ∂D.
First of all, we claim that for any open neighborhood U of p it follows that

ϕvk
(D) ⊂ U eventually. Indeed, let Φp : D → Bn be the spherical representation

of Chang-Hu-Lee and denote it by ηvk
:= Φp ◦ ϕvk

. By construction ηvk
(ζ) =

e1 + (ζ − 1)〈vk, e1〉vk and thus ηvk
(D) → e1. Since Φ−1

p is uniformly continuous on
Bn the claim follows.

Therefore, {ϕvk
(D)} converges to {p} and, by [18, Theorem 2], given any ε > 0

there exists k0 such that, for all k > k0, it follows that ‖(ϕ′
vk

(ζ))N‖ ≤ ε‖(ϕ′
vk

(ζ))T‖
for all ζ ∈ D where, if z ∈ D and z′ ∈ ∂D is the unique point of ∂D nearest to z,
then, for all vectors w ∈ TpD = Cn the vectors wN and wT denote the complex
normal and the complex tangential components of w at z′ (namely, wT ∈ T C

z′∂D
and wN = 〈w, νz′〉νz′ , with νz′ being the unit outward normal to ∂D at z′).

Let K ⊂ D be a cone with vertex p such that {zk} ⊂ K. In particular, there
exists c > 0 such that if w ∈ Cn and (w − p) ∈ K, then ‖w − p‖N ≥ c‖w − p‖T

(at p). Therefore, if γ : [0, 1] → D ∪ {p} is a C∞ curve such that γ′(1) = p
and ‖γ′(1)N‖ ≤ (c/2)‖γ′(1)T ‖ (at p), then γ(t) �∈ K for t ≈ 1. Moreover, we
can find a small open neighborhood U of p such that, if γ([0, 1)) ⊂ U ∩ D and
‖γ′(t)N‖ ≤ (c/2)‖γ′(t)T ‖ for all t ∈ [0, 1] (here the projection is at the point of ∂D
nearest to γ(t)), then γ(t) �∈ K for t ∈ [0, 1)).

Now, let k be such that ϕvk
(D) ⊂ U ∩ D and ‖(ϕ′

vk
(ζ))N‖ ≤ (c/2)‖(ϕ′

vk
(ζ))T‖

for all ζ ∈ D. Let θk ∈ Aut(D) be an automorphism such that θk(1) = 1 and
ϕvk

(θk(0)) = zk. By the previous argument γ(t) := ϕvk
(θk(t)) does not belong to

K for any t, which contradicts the fact that zk ∈ K. Thus 〈v0, e1〉 > 0 and v0 ∈ Lp.
We are left to show that ϕvk

→ ϕv0 and ϕ
(j)
vk → ϕ

(j)
v0 uniformly on D. Let

ηvk
:= Φp ◦ϕvk

: D → Bn. By the very definition ηvk
(ζ) = e1 +(ζ−1)〈vk, e1〉vk and

clearly ηvk
→ ηv0 uniformly on D. Since Φp is a homeomorphism between D and

Bn it follows that ϕvk
→ ϕv0 uniformly on D. By Corollary 2.3 then ϕ

(j)
vk → ϕ

(j)
v0

uniformly on D. �

Lemma 3.5. For any v ∈ Lp denote by ϕv : D → D the unique complex geodesic
in the Chang-Hu-Lee normal parametrization with respect to v and let ρ̃v be its left-
inverse. Then, if {vk} ⊂ Lp is such that vk → v0 ∈ Lp it follows that dρ̃vk

→ dρ̃v0

uniformly on D.

Proof. Differentiating (3.1) with respect to zj we obtain for z ∈ D

∂ρ̃v

∂zj
ϕ̃′

v(ρ̃v(z)) · (z − ϕv(ρ̃v(z))) + ϕ̃v(ρ̃v(z)) · (ej −
∂ρ̃v

∂zj
ϕ′

v(ρ̃v(z))) ≡ 0,

holding for z ∈ D. Taking into account that ϕ̃(ζ) · ϕ′(ζ) ≡ 1, we have

(3.4)
∂ρ̃v

∂zj
[ϕ̃′

v(ρ̃v(z)) · (z − ϕv(ρ̃v(z))) − 1] ≡ −ϕ̃v(ρ̃v(z)) · ej .
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Notice that, since ϕ̃v(ζ) �= 0 for all ζ ∈ D, for all z ∈ D there exists j ∈ {1, . . . , n}
such that ϕ̃v(ρ̃v(z)) · ej �= 0. In particular it follows that

ϕ̃′
v(ρ̃v(z)) · (z − ϕv(ρ̃v(z))) − 1 �= 0

for all z ∈ D. Therefore

(3.5)
∂ρ̃v

∂zj
(z) =

−ϕ̃v(ρ̃v(z)) · ej

ϕ̃′
v(ρ̃v(z)) · (z − ϕv(ρ̃v(z))) − 1

.

Let {vk} ⊂ Lp be such that vk → v0 ∈ Lp. We claim that

ρ̃vk
→ ρ̃v0 , ϕ̃vk

→ ϕ̃v0 , ϕ̃′
vk

→ ϕ̃′
v0

ϕvk
→ ϕv0

uniformly on D and D respectively. By Lemma 3.4 it follows that ϕvk
→ ϕv0

uniformly on D.
As for ϕ̃v, if vk → v0 in Lp then by Lemma 3.4 it follows that ϕ

(j)
vk → ϕ

(j)
v0

uniformly on D for all j = 0, 1, 2, . . .. By the very definition and by (1.1), if r is a
defining function for ∂D, it follows that for ζ ∈ ∂D

(3.6) ϕ̃vk
(ζ) =

1
∂rϕvk

(ζ)(ϕ′
vk

(ζ))
∂rϕvk

(ζ),

and therefore, since |∂rϕvk
(ζ)(ϕ′

vk
(ζ))| ≥ c > 0 for all k, it follows that ϕ̃vk

→
ϕ̃v0 uniformly on ∂D. By the maximum principle ϕ̃vk

→ ϕ̃v0 uniformly on D.
Differentiating (3.6) for ζ = eit and t ∈ R by d

dt we see that ϕ̃′
vk

is expressed as
a continuous combination of ϕvk

, ϕ′
vk

, ϕ′′
vk

, and by Lemma 3.4 it follows then that
ϕ̃′

vk
→ ϕ̃′

v0
uniformly on D.

We are left to show that ρ̃vk
→ ρ̃v0 uniformly on D. If not, there exists a

sequence {zkm
} ⊂ D (which we may assume converging to some z0 ∈ D) such that

|ρ̃vkm
(zkm

)− ρ̃v0(zkm
)| > ε0 for some ε0 > 0 and for all km. By (3.1) it follows that

for all km

ϕ̃vkm
(ρ̃vkm

(zkm
)) · (zkm

− ϕvkm
(ρ̃vkm

(zkm
))) = 0.

Up to subsequences, we can assume that ρ̃vkm
(zkm

) → ζ0 ∈ D. For what we have
already proved it then follows that

ϕ̃v0(ζ0) · (z0 − ϕv0(ζ0)) = 0.

This implies that ζ0 = ρ̃v0(z0), since the only zero of the function ζ �→ ϕ̃v0(ζ) ·
(z0−ϕv0(ζ)) is ρ̃v0(z0) by Remark 3.1. But then both {ρ̃vkm

(zkm
)} and {ρ̃v0(zkm

)}
converge to ρ̃v0(z0), and then |ρ̃vkm

(zkm
) − ρ̃v0(zkm

)| → 0, contradiction. Thus
ρ̃vk

→ ρ̃v0 uniformly on D, and the claim is proved.
Since, as we remarked at the beginning, the denominator of the right hand side

of (3.5) for v = v0 is never zero for all z ∈ D, the previous claim implies that
dρ̃vk

→ dρ̃v0 uniformly on D. �

Remark 3.6. By (3.5) it follows that d(ρ̃v)p = ϕ̃(1) and by (3.6) we have (cf. [1,
Lemma 2.6.44]) for w ∈ Cn

(3.7) d(ρ̃v)p(w) =
∂rp(w)

∂rp(ϕ′
v(1))

=
〈w, νp〉

〈ϕ′
v(1), νp〉

.
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4. The shape of horospheres

Let D ⊂ Cn be a bounded strongly convex domain and let p ∈ ∂D. As we
recalled in Section 1, for any R > 0 and z0 ∈ D, the set ∂ED(p, z0, R) is smooth
away from its center p ∈ ∂D. It should be noted that smoothness of horospheres
away from the center was known after [34, Section 4], but we do not know any
previous reference for this fact.

In [1] (see also [4]) it is proved that horospheres are convex domains (since they
are an increasing union of Kobayashi balls of D). In [11, Remark 4.2], referring to
[1, Corollary 2.6.49] it was claimed that (boundaries of) horospheres are strongly
convex at their center. Unfortunately the proof of [1, Corollary 2.6.49] does not
seem to show smoothness at the center, and thus one can only infer that horospheres
are geometrically strictly convex (i.e., the intersection of their closure with the
supporting hyperplane at the center is just the center). However from [2, pp. 231-
232] it follows that if ED(p, z0, R) ⊂ D is a horosphere of center p ∈ ∂D and radius
R > 0 and B ⊂ D is a ball tangent to ∂D at p, then there exists a horosphere
EB(p, R′) ⊂ B for some R′ > 0 such that EB(p, R′) ⊂ ED(p, z0, R). In particular,
since horospheres of the ball B are smooth complex ellipsoids, it follows that there
exists a ball B′ ⊂ ED(p, z0, R) tangent to ∂ED(p, z0, R) at p. Namely, horospheres
have the inner-ball property at the center. Therefore ∂ED(p, z0, R) is C1,1 at p
(see, e.g., [17, Proposition 2.4.3]).

Here we prove that the boundaries of horospheres are strongly convex away from
the center:

Theorem 4.1. Let D ⊂ Cn be a strongly convex domain with smooth boundary.
Let p ∈ ∂D. Let ED(p, R) be a horosphere in D with center p and radius R > 0.
The boundary ∂ED(p, R) \ {p} is smooth and strongly convex.

Proof. Let ΩD,p be the function defined in Theorem 0.1. Its level sets are boundaries
of horospheres of D with center p. Thus, to show that such boundaries are strongly
convex we need to prove that the (real) Hessian of ΩD,p is positive definite on the
tangent space of ∂ED(p, R) (for all R > 0). It is known (see [1]) that ∂ED(p, R) are
convex for all R > 0 (and strongly pseudoconvex for all R > 0 and strongly convex
for big radii; see [11, Remark 7]). Thus the real Hessian of ΩD,p is non-negative
definite on the (real) tangent space of ∂ED(p, R) for all R > 0.

Let q ∈ D and let ϕ : D → D be a complex geodesic such that ϕ(0) = q and
ϕ(1) = p. Up to post-composing with automorphisms of Bn fixing e1, we can
suppose that Φp(q) = O. Thus Φp(ϕ(ζ)) = (ζ, O). Let F : D → Hn := {(ζ, w) ∈
C×Cn−1 : Im ζ > ‖w‖2} be given by F = C ◦Φp, where C : Bn → Hn is the Cayley
transform defined as

C(ζ, w) = (i
1 + ζ

1 − ζ
,

w

1 − ζ
), (ζ, w) ∈ C × Cn−1.

We write F (z) = (F0(z), F̃ (z)) ∈ C × Cn−1. By definition,

(4.1) F0(ϕ(ζ)) = i
1 + ζ

1 − ζ
, F̃ (ϕ(ζ)) ≡ O.

By the very definition of ΩD,p (Equation (1.2)) it follows ΩD,p(F−1(ζ, w)) = ‖w‖2−
Im ζ for (ζ, w) ∈ C × Cn, (ζ, w) ∈ Hn. Therefore

(4.2) ΩD,p(z) = ΩD,p(F−1(F (z))) = ‖F̃ (z)‖2 − ImF0(z).
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Thus, from (4.1) and (4.2) we have for v ∈ Cn

(4.3) Hess(ΩD,p)ϕ(ζ)(v, v) = 2‖dF̃ϕ(ζ)(v)‖2 − Hess(Im F0)ϕ(ζ)(v, v)

where, for a real function f , Hess(f)x denotes the real Hessian of f at x.
Now, let r ∈ D ∩ R and let θr ∈ Aut(D) be such that θr(0) = r and θr(1) = 1

(notice that necessarily θ′r(0) ∈ R). Let ϕ̃ ◦ θr : D → D be the dual map of ϕ ◦ θr.
From the very definition, a direct computation shows that

ϕ̃ ◦ θr(ζ) =
ϕ̃(θr(ζ))

θ′r(ζ)
.

By [34, Lemma 4.1] (and since θ′r(0) ∈ R) it follows that if ϕ(r) ∈ ∂ED(p, R(r)),
then

Tϕ(r)(∂ED(p, R(r))) = {v ∈ Cn : Re (ϕ̃ ◦ θr(0) · v) = 0}
= {v ∈ Cn : Re (ϕ̃(r) · v) = 0}.

(4.4)

On the other hand, by (4.2) and (4.1) it follows that

Tϕ(r)(∂ED(p, R(r))) = ker d(ΩD,p)ϕ(r) = ker d(Im F0)ϕ(r).

Thus, since they have the same kernel, the two (real) forms v �→ Re (ϕ̃(r) · v) and
v �→ Im d(F0)ϕ(r)(v) are multiples of each other. Since Re (ϕ̃(r) ·ϕ′(r)) = 1 by (1.1),
and by (4.1)

Im d(F0)ϕ(r)(ϕ′(r)) = Im
d

dξ
F0(ϕ(ξ))|ξ=r = Re

d

dξ

1 + ξ

1 − ξ
|ξ=r =

2
(1 − r)2

,

it follows that for all v ∈ Cn

(4.5) d(ImF0)ϕ(r)(v) =
2Re (ϕ̃(r) · v)

(1 − r)2
.

Now, let R > 0 be such that q ∈ ∂ED(p, R) and assume that v ∈ Tq∂ED(p, R)
verifies Hess(ΩD,p)q(v, v) = 0. We want to show that v = 0.

Write (λ, U) = (d(F0)q(v), d(F̃ )q(v)). Since the map Φp transforms boundaries
of horospheres onto boundaries of horospheres, it follows that the vector (λ, U) is
tangent to the boundary of the horosphere {(ζ, w) ∈ C × Cn−1 : Im ζ − ‖w‖2 > 1}
whose closure contains (i, O) ∈ Hn. Thus λ ∈ R.

Let us now consider the smooth one-parameter family of complex geodesics gt :
D → Hn depending smoothly on t given by

gt(ζ) := (i
1 + ζ

1 − ζ
+ tλ + it2‖U‖2, tU),

and we denote

ġ(ζ) :=
∂gt(ζ)

∂t
|t=0, g̈(ζ) :=

∂2gt(ζ)
∂2t

|t=0.

Notice that ġ(ζ) = (λ, U) and g̈(ζ) = (2i‖U‖2, O) are independent of ζ. Let
ft := F−1(gt). By construction ft : D → D is a smooth one-parameter family
of complex geodesics, ft(1) = p and f0(0) = q. Therefore f0 = ϕ. Again, denoting
by ḟ(ζ), f̈(ζ) the derivative of ft(ζ) with respect to t at t = 0, it follows that
ḟ(1) = 0 and f̈(1) = 0 because ft(1) = p for all t (see Corollary 2.4).

Let us denote by J(ζ) the Jacobi vector field J(ζ) := ḟ(ζ) along ϕ. We can
write J(ζ) = λ(ζ)ϕ′(ζ) + J⊥(ζ) for some holomorphic function λ and vector field
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J⊥ such that ϕ̃(ζ) ·J⊥(ζ) ≡ 0 and λ(ζ) = α + iβζ −αζ2 for some α ∈ C and β ∈ R

(see [34, Theorem 3.1.c]).
Since ḟ(1) = 0 then J(1) = 0. Since the map Φp transforms boundaries of horo-

spheres onto boundaries of horospheres, it follows that J(0) ∈ Tϕ(0)(∂ED(p, R)).
In other words, by (4.4), Re (ϕ̃(0) · J(0)) = 0, which implies that Re α = 0 for
ϕ̃(0)·ϕ′(0) = 1. Therefore J(ζ) = iγ(1−ζ)2ϕ′(ζ)+J⊥(ζ) with γ ∈ R and J⊥(1) = 0.
This implies that Re (ϕ̃(r) ·J(r)) = 0 for r ∈ (−1, 1). Hence by (4.4) it follows that
J(r) ∈ Tϕ(r)(∂ED(p, R(r))), where R(r) > 0 is such that ϕ(r) ∈ ∂ED(p, R(r)).
Since boundaries of horospheres are convex, we have

(4.6) Hess(ΩD,p)ϕ(r)(J(r), J(r)) ≥ 0, r ∈ (−1, 1).

Now differentiating with respect to t the identity F ◦ ft = gt and setting t = 0
we obtain

dF̃ϕ(ζ)(J(ζ)) = U,

Hess(ImF0)ϕ(ζ)(J(ζ), J(ζ)) + d(Im F0)ϕ(ζ)(f̈(ζ)) = Im g̈(ζ) = 2‖U‖2.
(4.7)

Putting together (4.3), (4.5) and (4.7), we obtain for r ∈ (−1, 1)

(4.8) Hess(ΩD,p)ϕ(r)(J(r), J(r)) =
Re ϕ̃(r) · f̈(r)

(1 − r)2
.

Our next aim is to compute ϕ̃(r) · f̈(r). In order to do this, we choose a suit-
able defining function: according to Pang [26, Proposition 2.36] there exists a
C∞ defining function ρ for D near ϕ(D) such that for all θ ∈ R it follows that
ϕ̃(eiθ) = eiθ∂ρϕ(eiθ). For all t and for all θ ∈ R it follows that ρ(ft(eiθ)) ≡ 0. Thus
differentiating such an identity (as we can, by Corollary 2.4) with respect to t at
t = 0 we obtain 2Re (∂ρ · f̈(eiθ)) + Hess(ρ)eiθ(J(eiθ), J(eiθ)) ≡ 0; namely,

(4.9) Re (ζϕ̃(ζ) · f̈(ζ)) = −1
2
Hess(ρ)ζ(J(ζ), J(ζ)), |ζ| = 1.

Now, the function ζ �→ ϕ̃(ζ) · f̈(ζ) is holomorphic in D. Write ϕ̃(ζ) · f̈(ζ) =
A + ζB + ζ2C(ζ) for some A, B ∈ C and some holomorphic function C. Then

(4.10) Re (ζϕ̃(ζ) · f̈(ζ)) = Re (Aζ + B + ζC(ζ)), |ζ| = 1.

Let T1 denote the Hilbert transform which associates to any harmonic function u in
D, Hölder continuous on ∂D, its harmonic conjugated T1(u), still Hölder continuous
on ∂D, normalized so that T1(u)(1) = 0. Let h denote the holomorphic function in
D whose trace on ∂D is −1/2(id + iT1)(Hess(ρ)(J, J)). Notice that Reh ≤ 0 on ∂D

since ∂D is convex. Moreover, since J(1) = 0 and by the normalization chosen for
T1, it follows that h(1) = 0.

By (4.9) and (4.10) we obtain that h(ζ) = Aζ + B + ζC(ζ) + iα for some α ∈ R.
Hence ϕ̃(ζ) · f̈(ζ) − ζh(ζ) = −Aζ2 − iαζ + A and, since h(1) = f̈(1) = 0, we get
−A − iα + A = 0. Writing A = a + ib with a, b ∈ R, we obtain

ϕ̃(ζ) · f̈(ζ) = ζh(ζ) + a(1 − ζ2) + ib(1 − ζ)2.

Substituting this expression in (4.8) for ζ = r ∈ (−1, 1), we find

(4.11) Hess(ΩD,p)ϕ(r)(J(r), J(r)) = a
1 + r

1 − r
+

rRe (h(r))
(1 − r)2

.

By construction, a = Hess(ΩD,p)ϕ(0)(J(0), J(0)) = Hess(ΩD,p)q(v, v) = 0. By
(4.6) and (4.11) it follows then that Re (h(r)) ≥ 0 for r ∈ (0, 1). However Re h(ζ)
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is harmonic on D and non-positive on ∂D, and thus by the maximum principle
Re h(ζ) ≡ 0. Thus

Hess(ρ)ζ(J(ζ), J(ζ)) = 0, ζ ∈ ∂D,

and, since ∂D is strongly convex, it follows that J = 0 on ∂D and thus J ≡ 0 on
D, proving that v = 0. �

5. Extremality

Let D ⊂ Cn be a bounded strongly convex domain with smooth boundary. We
let Γp be the set of all C∞ curves γ : [0, 1] → D ∪ {p} such that γ(1) = p and
γ′(1) �∈ Tp∂D (notice that, if νp is the unit outward normal to ∂D at p, then
γ′(1) �∈ Tp∂D if and only if Re 〈γ′(1), νp〉 > 0).

Theorem 5.1. Let D ⊂ Cn be a bounded strongly convex domain with smooth
boundary and let p ∈ ∂D. Let νp be the unit outward normal to ∂D at p. Consider
the following family Sp(D):

(5.1)

⎧⎪⎨⎪⎩
u ∈ Psh(D),
lim supz→x u(z) ≤ 0 for all x ∈ ∂D \ {p},
lim inf

t→1
|u(γ(t))(1 − t)| ≥ 2Re (〈γ′(1), νp〉−1) for all γ ∈ Γp.

Then ΩD,p ∈ Sp(D) (where ΩD,p is the function defined in Theorem 0.1) and
u ≤ ΩD,p for all u ∈ Sp(D).

To prove the theorem we need some preliminary results. Let subh(D) denote the
real cone of subharmonic functions in the unit disc D.

Lemma 5.2 (Phragmen-Lindelöf). Let c > 0. Consider the following family Sc(D)
in the unit disc:

(5.2)

⎧⎪⎪⎨⎪⎪⎩
u ∈ subh(D),
u < 0 in D,

lim inf
R�r→1−

|u(r)(1 − r)| ≥ 2c.

Then −cP (ζ) ∈ Sc(D), and for all u ∈ Sc(D) it follows that u ≤ −cP (ζ).

For the sake of completeness we give a short proof of Lemma 5.2, based on some
notes of Professor P. Poggi-Corradini. We thank him for letting us use his notes.

Proof. It is clear that −cP (ζ) ∈ Sc(D). We have to show that −cP is the maximal
element of the family.

First of all, let C(ζ) = (1 + ζ) · (1 − ζ)−1 be the Cayley transformation from D

to H = {w ∈ C : Re w > 0}. Then we consider the family C∗(Sc(D)) = {ũ : ũ =
u ◦ C−1 for some u ∈ Sc(D)}. Then, if ũ ∈ C∗(Sc(D)) it follows that ũ ∈ subh(H),
ũ < 0 in H and

lim sup
R�R→+∞

ũ(R)
R

≤ −c.

Notice that P ◦ C−1(w) = Re w is the Poisson kernel in H. Let ũ = u ◦ C−1 ∈
C∗(Sc(D)) and let L = lim supR�R→+∞ ũ(R)/R ≤ −c. We are going to show that
ũ ≤ LRew, from which it follows that u ≤ −cP .
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Let ε > 0 be such that ε < −L. Let v(w) = ũ(w)−(L+ε)Rew. Now, v ∈ subh(H),
lim supw→iy v(w) ≤ 0 for all y ∈ R and

lim sup
R�R→+∞

v(R) = lim sup
R�R→+∞

R

(
ũ(R)

R
− (L + ε)

)
≤ 0.

Therefore there exists δ > 0 such that v(R) ≤ 1 for R ≤ δ and R ≥ 1
δ . Moreover,

since v is semicontinuous, there exists K > 0 such that v(R) ≤ K for δ < R < 1
δ . We

now consider V (w) = v(
√

iw)−K. Again, V ∈ subh(H) and lim supw→iy V (w) ≤ 0
for all y ∈ R. Moreover,

sup
−π/2<θ<π/2

V (reiθ) = sup
0<θ<π/2

v(
√

reiθ) − K

= sup
0<θ<π/2

[ũ(
√

reiθ) − (L + ε)
√

r cos θ − K]

≤ sup
0<θ<π/2

(−(L + ε)
√

r cos θ − K)

= −(L + ε)
√

r − K.

By the classical estimates on sub-linear growth of subharmonic functions (see, e.g.,
[30]), it follows that V (w) ≤ 0 for all w ∈ H, and therefore v ≤ K in the first
quadrant. A similar argument shows that v ≤ K on the fourth quadrant, and as
before, v ≤ 0 on H which implies ũ(w) ≤ (L+ε)Rew for w ∈ H. By the arbitrariness
of ε we have the statement. �
Proof of Theorem 5.1. Up to rigid movements, we can suppose that νp = e1.

First of all, notice that the function identically 0 does not belong to Sp(D)
because of the estimates at p.

We claim that if u ∈ Sp(D), then u < 0 in D. Indeed, let ϕ : D → D be a
complex geodesic not containing p in its closure (in fact, any attached analytic disc
not containing p would be enough). Then ũ = u ◦ ϕ : D → R is subharmonic
and lim supζ→x ũ(ζ) ≤ 0 for all x ∈ ∂D. Thus by the maximum principle for
subharmonic functions, ũ ≤ 0 in D and hence u ≤ 0 in D, as ϕ was an arbitrary
complex geodesic. Again, the maximum principle for plurisubharmonic functions
implies that u < 0 in D or u ≡ 0, and the latter cannot be the case. Thus u < 0 in
D as wanted.

Now, let v ∈ Lp and let ϕv : D → D be a complex geodesic parameterized in
the Chang-Hu-Lee normal parametrization. Let ρ̃v : D → D be its left inverse. We
show that the function uv : D → R− defined by

(5.3) uv(z) = −P (ρ̃v(z))
v2
1

belongs to Sp(D). It is clear that uv ∈ Psh(D), lim supz→x uv(z) ≤ 0 for all
x ∈ ∂D \ {p} since ρ̃v(D \ ϕv(∂D)) ⊂ D. We claim that for all smooth curves
γ : [0, 1] → D ∪ {p} such that γ(1) = p and 〈γ′(1), e1〉 �= 0 (that is, γ′(1) is not
complex tangential to ∂D), it follows

(5.4) lim
t→1

|uv(γ(t))(1 − t)| =
2Re 〈γ′(1), e1〉
|〈γ′(1), e1〉|2

.

Indeed,

|uv(γ(t))(1 − t)| =
1
v2
1

1 − |ρ̃v(γ(t))|2
1 − t

(1 − t)2

|1 − ρ̃v(γ(t))|2 .
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Now

lim
t→1

1 − ρ̃v(γ(t))
1 − t

=
d

dt
(ρ̃v(γ(t)))|t=1 = d(ρ̃v)p(γ′(1)) =

〈γ′(1), e1〉
〈ϕ′

v(1), e1〉
,

where the last equality follows from (3.7) and because ϕ′
v(1) = v1v. Moreover

lim
t→1

1 − |ρ̃v(γ(t))|2
1 − t

=
d

dt
(|ρ̃v(γ(t))|2)|t=1

= ρ̃v(γ(1))
d

dt
(ρ̃v(γ(t)))|t=1 + ρ̃v(γ(1))

d

dt
(ρ̃v(γ(t)))|t=1

= 2Re
d

dt
(ρ̃v(γ(t)))|t=1 = 2Re

〈γ′(1), e1〉
〈ϕ′

v(1), e1〉
.

Therefore

lim
t→1

|uv(γ(t))(1 − t)| =
2
v2
1

Re
〈γ′(1), e1〉
〈ϕ′

v(1), e1〉
· |〈ϕ

′
v(1), e1〉|2

|〈γ′(1), e1〉|2
.

Taking into account that 〈ϕ′
v(1), e1〉 = v2

1 , we have the claim. In particular equation
(5.4) holds if γ ∈ Γp, showing that uv belongs to Sp(D).

Notice that ΩD,p(ϕv(ζ)) = uv(ϕv(ζ)) for all ζ ∈ D. Moreover, if u ∈ Sp(D), then
ũ : ζ �→ u(ϕv(ζ)) is in the family S1/v2

1
(D) given by (5.2) (with c = 1/v2

1). Indeed,
ũ ∈ subh(D), u < 0, in D and

lim inf
R�r→1

|ũ(r)|(1 − r) ≥ 2Re 〈ϕ′
v(1), e1〉

|〈ϕ′
v(1), e1〉|2

=
2

〈ϕ′
v(1), e1〉

=
2
v2
1

,

since ϕ′
v(1) = v2

1e1 + e⊥1 . Thus, by Lemma 5.2 it follows that for all ζ ∈ D

u(ϕv(ζ)) = ũ(ζ) ≤ −1
v2
1

P (ζ) =
−1
v2
1

uv(ϕv(ζ)) = ΩD,p(ϕv(ζ)).

Thus for all u ∈ Sp(D) we have u ≤ ΩD,p. It remains only to show that ΩD,p ∈
Sp(D). To this aim, we let ϕvt

: D → D be the complex geodesic in Chang-Hu-
Lee normal parametrization such that γ(t) ∈ ϕvt

(D). Moreover, we denote it by
vt = ϕ′

vt
(1) ∈ Lp. Thus

ΩD,p(γ(t)) = uvt
(γ(t)) =

−1
〈vt, e1〉2

P (ρ̃vt
(γ(t))).

Hence

(5.5) |ΩD,p(γ(t))|(1 − t) =
1

〈vt, e1〉2
1 − |ρ̃vt

(γ(t))|2
1 − t

(1 − t)2

|1 − ρ̃vt
(γ(t))|2 .

Fix v = vt. By the mean value theorem it follows that

1 − Re ρ̃v(γ(t))
1 − t

=
d

dt
Re ρ̃v(γ(t))|t=s = Re d(ρ̃v)γ(s)(γ′(s)),

for some t < s < 1, and similarly for the imaginary part and for the modulus
|ρ̃vt

(γ(t))|2. Notice that s depends on v, but clearly s → 1 as t → 1.
Now let {vtk

} be a converging subsequence of {vt}. By Lemma 3.4 if vtk
→ v0,

then v0 ∈ Lp (and in particular 〈vtk
, e1〉2 → 〈v0, e1〉2 > 0). Therefore, by Lemma

3.5 we have
lim
t→1

d(ρ̃vt
)γ(s)(γ′(s)) = d(ρ̃v0)p(γ′(1)).
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Thus by (5.5) and (3.7) it follows that

lim
tk→1

|ΩD,p(γ(tk))|(1 − tk) =
1

〈v0, e1〉2
2Re d(ρ̃v0)p(γ′(1))
|d(ρ̃v0)p(γ′(1))|2 =

2Re 〈γ′(1), e1〉
|〈γ′(1), e1〉|2

.

Since this holds for any converging subsequence of {vt}, we have that

lim
t→1

|ΩD,p(γ(t))|(1 − t) =
2Re 〈γ′(1), e1〉
|〈γ′(1), e1〉|2

.

�

Corollary 5.3. Let ΩD,p be the function given by Theorem 0.1. Then for all
smooth curves γ : [0, 1] → D ∪ {p} such that γ(1) = p and γ′(1) �∈ T C

p ∂D, it follows
that

lim
t→1

|ΩD,p(γ(t))|(1 − t) = Re
2

〈γ′(1), νp〉
.

Proof. If γ′(1) �∈ Tp∂D, then the claim follows from the proof of Theorem 5.1.
In case γ′(1) ∈ Tp∂D \ T C

p ∂D—that is, Re 〈γ′(1), νp〉 = 0 but 〈γ′(1), νp〉 �= 0—let
v ∈ Lp and let uv be given by (5.3). By Theorem 5.1 it follows that for all z ∈ D

0 ≤ |ΩD,p(z)| ≤ |uv(z)|.
By (5.4) it follows that |uv(γ(t))|(1 − t) → 0 and then |ΩD,p(γ(t))|(1 − t) → 0,
proving the statement. �

6. Green’s versus Poisson’s pluricomplex functions

Let D be a bounded strongly convex domain in Cn with smooth boundary and let
z0 ∈ D. Consider the problem in (0.1). In his outstanding work [21], [24], Lempert
proved that there exists a unique solution LD,z0 , given by LD,z0 = log ‖Φz0‖, where
Φz0 : D → Bn is the Lempert spherical representation with center z0 introduced in
Section 1. Rephrasing the very definition of Φz0 , it follows that for z ∈ D

(6.1) LD,z0(z) = log(tanh kD(z0, z)).

We have the following relations between the pluricomplex Green function LD,z0

and the pluricomplex Poisson kernel ΩD,p solution of problem (0.2) which general-
izes the corresponding relation in D between the classical Green function and the
classical Poisson kernel (see for instance [20, Proposition 2.2.2]):

Theorem 6.1. Let D be a bounded strongly convex domain in Cn with smooth
boundary. Let z0 ∈ D and p ∈ ∂D. Let νp be the outer normal of ∂D at p. Then

(6.2) ΩD,p(z0) = −∂LD,z0

∂νp
(p).

Proof. Let Kz0 := exp(LD,z0). Let ϕ : D → D be a complex geodesic such that
ϕ(0) = z0 and ϕ(1) = p. Since ∂Kz

∂νp
(p) > 0 for all z ∈ D, by [1, Theorem 2.6.47]

(see also [4]) it follows that

lim
R�t→1

[kD(z, ϕ(t)) − kD(z0, ϕ(t))] =
1
2
[log

∂Kz0

∂νp
(p) − log

∂Kz

∂νp
(p)].

On the other hand by [11, Proposition 7.1]

lim
R�t→1

[kD(z, ϕ(t)) − kD(z0, ϕ(t))] =
1
2
[log |ΩD,p(z0)| − log |ΩD,p(z)|],
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which implies that there exists C > 0 such that for all z ∈ D

ΩD,p(z) = −C
∂Kz

∂νp
(p).

We want to show that C = 1. Let ϕ : D → D be the unique complex geodesic
in Chang-Hu-Lee normal parametrization such that ϕ(1) = p and ϕ′(1) = νp. By
the very definition ΩD,p(ϕ(ζ)) = −P (ζ), where P is the Poisson kernel of D and
Kϕ(0)(ϕ(ζ)) = |ζ| for all ζ ∈ D. Since

∂Kϕ(0)

∂νp
(p) =

d

dr
(Kϕ(0) ◦ ϕ(r))|r=0 =

d

dr
r = 1

and P (0) = 1, it follows that C = 1, as wanted. Finally, since ∂Kz

∂νp
(p) = Kz(p)∂LD,z

∂νp

and K(p) = 1 for p ∈ ∂D, we get (6.2). �

7. Uniqueness properties

In this section we study some analytical and geometrical properties which char-
acterize the pluricomplex Poisson kernel introduced before.

Before we start, recall that, according to Bedford and Taylor [8] (see also [20,
Section 3.5], the complex Monge-Ampère operator (ddc)n (here dc = i(∂ − ∂)) can
be defined for all u ∈ Psh(D)∩L∞

loc(D) for any bounded domain D ⊂ Cn. Moreover,
if u ∈ Psh(D) ∩ L∞

loc(D), then (ddcu)n = (∂∂u)n = 0 if and only if u is maximal in
D; namely, for all relatively compact open subsets E ⊂ D and all plurisubharmonic
functions v in E such that lim supE�z→x v(z) ≤ u(x) for all x ∈ ∂E, it follows that
v ≤ u in E.

Now we can state and prove the first uniqueness result, which is analogous in
our setting of the uniqueness statement for the Monge-Ampère equation with one
concentrated logarithmic singularity in the domain D (see [24]).

Theorem 7.1. Let D ⊂ Cn be a bounded strongly convex domain with smooth
boundary and let p ∈ ∂D. Let u ∈ Psh(D) ∩ L∞

loc(D) be such that (∂∂u)n = 0,
limz→x u(z) = 0 for all x ∈ ∂D \ {p} and

(7.1) lim
z→p

u(z)
ΩD,p(z)

= 1.

Then u ≡ ΩD,p.

Proof. First of all we notice that (7.1) implies that u belongs to the family (5.1)
because for all γ ∈ Γp (here Γp is the set of curves defined in Section 5) it follows
that

lim
t→1

u(γ(t))(1 − t) = lim
t→1

u(γ(t))
ΩD,p(γ(t))

ΩD,p(γ(t))(1 − t) = −Re
2

〈γ′(1), νp〉
.

Therefore, by Theorem 5.1 it follows that u(z) ≤ ΩD,p(z) for all z ∈ D. Suppose
that u(z0) < ΩD,p(z0) for some z0 ∈ D. Then there exist 0 < c < 1 and δ > 0 such
that the set

Eδ,c := {z ∈ D : ΩD,p(z) > cu(z) + δ}
is non-empty. Since u is upper semi-continuous the set Eδ,c is open. If we prove
that Eδ,c is relatively compact in D, since (∂∂(cu+δ))n = 0 and ΩD,p(z) ≤ cu(z)+δ
on ∂Eδ,c, by maximality it follows that ΩD,p(z) ≤ cu(z) + δ in Eδ,c, contradicting
the definition of Eδ,c.
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Thus we are left to show that Eδ,c is relatively compact in D. First of all,
since u(x) = ΩD,p(x) = 0 for all x ∈ ∂D \ {p}, then Eδ,c ⊂ D ∪ {p}. Seeking a
contradiction, we assume that p ∈ Eδ,c. Thus there exists {zk} ⊂ Eδ,c such that
zk → p. Therefore for all k ∈ N

(7.2) ΩD,p(zk) − cu(zk) − δ > 0.

Up to subsequences, we can assume that ΩD,p(zk) → L for some L ∈ [−∞, 0]. If
L < 0, then dividing (7.2) by ΩD,p(zk) < 0 and passing to the limit, taking into
account (7.1), we would find 1 − c ≤ 0, a contradiction since c < 1. If L = 0,
(7.1) implies that u(zk) → 0 as k → ∞, and therefore we reach a contradiction by
passing to the limit for k → ∞ in (7.2). Hence p is not in the closure of Eδ,c, which
is thus relatively compact in D. �
Remark 7.2. As pointed out in the Introduction, Theorem 7.1 is analogous of the
uniqueness statement for problem (0.1), where uniqueness is established in the class
of plurisubharmonic functions u ∈ Psh(D) such that limz→x u(z) = 0 for all x ∈ ∂D
and u(z) proceeds like the pluricomplex Green function LD,z0 for z → z0. Since for
any convex domain the function LD,z0 proceeds like log ‖z − z0‖ at z0, then in the
case of a inner singularity, there is a “universal” behavior. When the singularity is
at p ∈ ∂D, it turns out that, thanks to Corollary 5.3, we know that the behavior
of ΩD,p along all non-tangential directions is independent of D, but we do not
have any hint on the behavior of ΩD,p along the tangential directions, which might
depend on D near p.

Next we characterize the pluricomplex Poisson kernel in terms of its associated
Monge-Ampère foliation, with no hypotheses on the behavior near the boundary
singularity.

Theorem 7.3. Let D ⊂ Cn be a bounded strongly convex domain with smooth
boundary and let p ∈ ∂D. Let u ∈ Psh(D) ∩ C2(D) be such limz→x u(z) = 0 for
all x ∈ ∂D \ {p}. Then the restriction of u to each complex geodesic whose closure
contains p is harmonic if and only if there exists c ≥ 0 such that u = cΩD,p.

Proof. One direction is obvious. Assume then that u ∈ Psh(D)∩C2(D) is harmonic
on each complex geodesic whose closure contains p and limz→x u(z) = 0 for all
x ∈ ∂D \ {p}. Arguing as in the proof of Theorem 5.1 we see that u < 0 in D or
u ≡ 0. In the latter case c = 0, and the theorem is proved. Thus we can assume
that u < 0 in D.

First of all, it is a well known result that if v ≥ 0 is a harmonic function in D

such that limζ→x v(ζ) = 0 for all x ∈ ∂D \ {1}, then v = cP for some c ≥ 0 (here,
as usual, P denotes the Poisson kernel).

Therefore u = λΩD,p for some C2 function λ : D → (0,∞) which is constant
on each complex geodesic whose closure contains p. We need to show that λ is
constant.

To this aim, we argue as in the proof of Theorem 4.1 and retain the notation
introduced there. Let q ∈ D. Up to post-composing with automorphisms of Bn and
with the Cayley transform, we let F : D → Hn be the diffeomorphism defined by
means of the boundary spherical representation Φp, such that F (q) = (i, O). We let
U = u ◦ F−1. Then U is a C2 negative function on Hn, and by the very definition
of ΩD,p and [11, Theorem 7.3], it follows that U(ξ, w) = λ̃(w)(‖w‖2 − Im ξ). We
are going to prove that w = O is a critical point for λ̃; from this, since F is a
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diffeomorphism from D to Hn, it will follow that λ has a critical point at q =
F−1(i, O) and, by the arbitrariness of q, it will follow that all points of D are
critical for λ, which turns out to be constant.

Since λ̃ is a real function, it is enough to prove that the vector valued function
V := ( ∂λ̃

∂w1
(0), . . . , ∂λ̃

∂wn−1
(0)) is zero. Let ϕ : D → D be the complex geodesic such

that ϕ(0) = q and ϕ(1) = p. According to [26, Section 2.39] we can assume to be
working with a system of holomorphic coordinates (z1, . . . , zn) in a neighborhood
of ϕ(D) for which (among other conditions on the defining function of D which
we only use implicitly when referring to the paper [32] in the course of the proof)
ϕ(ζ) = (ζ, 0, . . . , 0) for ζ ∈ D.

By construction it follows that if we write G := F−1 = (G1, . . . , Gn), then
G1(ξ, O) = (ξ − i)/(ξ + i) and Gj(ξ, O) = 0 for j > 1 and Im ξ > 0.

Now let t �→ w(t) be a smooth curve in Cn−1 such that w(0) = O. Let gt(ζ) :=
(i(1 + ζ)/(1 − ζ) + i‖w(t)‖2, w(t)) for ζ ∈ D and t close to 0. By definition, {gt}
is a family of complex geodesics in Hn, and thus ϕt := G(gt(ζ)) is a smooth real
one-parameter family {ϕt} of complex geodesics in D such that ϕ0(ζ) = (ζ, O).
The associated Jacobi vector field J(ζ) = ∂ϕt

∂t (ζ) can be written in the form

J(ζ) = J1(ζ)
∂

∂z1
+ J⊥(ζ),

where J⊥(ζ) =
∑n

k=2 Jk(ζ) ∂
∂zk

, and, since ϕt(1) = p for all t, by Corollary 2.4 it
follows that J(1) = O. Therefore, from [32, Section 3] it follows that there exist
a ∈ C, X, Y ∈ Cn−1 (depending on J) and a unique continuous map M : D →
GL(2n−2, C) holomorphic in D which depends only on D and ϕ with the following
properties. If M(ζ) =

(
M1(ζ) M2(ζ)
M3(ζ) M4(ζ)

)
where the Mj ’s are suitable (n− 1)× (n− 1)-

matrices with M1(1) = 1
2 Id, M2(1) = −i

2 Id (and M3(1), M4(1) satisfy suitable
conditions that we do not need here), then

J1(ζ) = (1 − ζ)(a + aζ),

J⊥(ζ) = i(1 − ζ)(M1(ζ)X + M2(ζ)Y ).
(7.3)

By the very definition of G and by (7.3), taking into account that G maps complex
tangent spaces to the boundary of horospheres in Hn to complex tangent spaces to
the boundary of horospheres in D (see the proof of Theorem 6.3 in [11]), it follows
that for Im ξ > 0 and ζ ∈ D

∂Gj

∂ξ
(ξ, 0) = 0 for j = 1, . . . , n,

∂G1

∂ξ
(ξ, 0) =

∂

∂ξ
(ξ − i)(ξ + i)−1,

∂Gj

∂ξ
(ξ, 0) = 0 for j = 2, . . . , n,

∂G1

∂wj
(ξ, 0) =

∂G1

∂wj
(ξ, 0) = 0 for j = 1, . . . , n − 1,

∂Gk

∂wj
(i

1 + ζ

1 − ζ
, 0) = i(1 − ζ)(M1(ζ)Sj + M2(ζ)Tj)k for j, k = 2, . . . , n,

∂Gk

∂wj
(i

1 + ζ

1 − ζ
, 0) = i(1 − ζ)(M1(ζ)Sj + M2(ζ)T j)k for j, k = 2, . . . , n,

(7.4)
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for some vectors (S2, . . . , Sn), (T2, . . . , Tn) ∈ Cn−1. Let S (respectively T ) be the
matrix whose columns are S2, . . . , Sn−1 (respectively T2, . . . , Tn−1) and set

N =
(

S S
T T

)
.

We claim that N is invertible. Indeed, since dG is invertible at (i, O), equations
(7.4) imply that the only vector v which satisfies the equation (M1(0), M2(0)) ·
(2Re ( S

T ) v) = 0 is the zero vector v = O. Therefore S2, . . . , Sn, T2, . . . , Tn form a
real basis of Cn−1.

From this it follows easily that if the vector ( v
w ) belongs to the kernel of N t,

then v = w = 0, and thus N is invertible.
Now we are in good shape to compute ∂U

∂wj
(ξ, O). Since U = u◦G = λ̃(w)(‖w‖2−

Im ξ), from (7.4) we have for j = 1, . . . , n − 1 and Im ξ > 0

(7.5) − ∂λ̃

∂wj
(O)Im ξ =

n∑
k=2

[
∂u

∂zk
(
ξ − i

ξ + i
, O)

∂Gk

∂wj
(ξ, O) +

∂u

∂zk
(
ξ − i

ξ + i
, O)

∂Gk

∂wj
(ξ, O)].

Notice that since u is plurisubharmonic in D and harmonic on the complex geodesics
whose closure contains p, it follows that the functions ∂u

∂zk
( ξ−i

ξ+i , O) are holomorphic
for Im ξ > 0. Moreover, by (7.4) both ∂G

∂wj
(ξ, O) and ∂G

∂wj
(ξ, O) are holomorphic for

Im ξ > 0. Taking the real and imaginary part in (7.5) and writing V (= ∂λ̃
∂w (i, O)) =

C + iD with C, D ∈ Rn−1, we find that there exist two vectors C ′, D′ ∈ Rn−1 such
that for all Im ξ > 0

iCjξ + iC ′
j =

n∑
k=2

[
∂u

∂zk
(
ξ − i

ξ + i
, O)

∂Gk

∂wj
(ξ, O) +

∂u

∂zk
(
ξ − i

ξ + i
, O)

∂Gk

∂wj
(ξ, O)],(7.6)

−Djξ + D′
j =

n∑
k=2

[
∂u

∂zk
(
ξ − i

ξ + i
, O)

∂Gk

∂wj
(ξ, O)− ∂u

∂zk
(
ξ − i

ξ + i
, O)

∂Gk

∂wj
(ξ, O)].(7.7)

Let V ′ = iC ′ + D′, let fk(ζ) = −2i(1 − ζ)2 ∂u
∂zk

(ζ, O) and let f = (f1, . . . , fn)
for ζ ∈ D. Summing (respectively subtracting) (7.6) with (7.7), composing with
ζ �→ i 1+ζ

1−ζ , multiplying by (1 − ζ) and using (7.4) we obtain for ζ ∈ D \ {1}(
ζ(V + V ′) + (V − V ′)
ζ(V − V

′
) + (V + V

′
)

)
= N t

(
M1(ζ)t

M2(ζ)t

)
· f(ζ).

From this, since N is invertible and also M1(ζ), M2(ζ) are invertible for ζ close
to 1 (since by the very definition M1(1) = 1

2 Id and M2(1) = −i
2 Id), it follows that

f(ζ) has a limit L at ζ = 1 and

(7.8)
(

4V
4V

)
= N t

(
Id

−iId

)
L.

Therefore (St − iT t)L− (St + iT t)L = O. Writing L = α + iβ for α, β ∈ Rn−1, we
have Stβ − T tα = O, and, since α, β are real, this is equivalent to

N t

(
β
−α

)
= O.

But N is invertible and therefore α = β = O, which means L = O. Finally, from
(7.8) it follows that V = O. �
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The pluricomplex Poisson kernel can also be characterized in terms of its level
sets:

Proposition 7.4. Let D ⊂ Cn be a bounded strongly convex domain with smooth
boundary and let p ∈ ∂D. Let u ∈ Psh(D) ∩ L∞

loc(D) be such (∂∂u)n = 0 in D and
limz→x u(z) = 0 for all x ∈ ∂D \ {p}. If u has the same level sets as ΩD,p, then
there exists c > 0 such that u = cΩD,p.

Proof. By hypothesis there exists a function Y : R− → R− such that u(z) =
Y (ΩD,p(z)) for all z ∈ D. We need to show that there exists c > 0 such that
Y (t) = ct for all t ∈ R−. To this aim, since each complex geodesic whose closure
contains p intersects every horosphere, it is enough to prove that u(z) = cΩD,p(z)
for z belonging to any complex geodesic whose closure contains p.

Let S be a complex geodesic in D such that p ∈ S and ρ : D → S, the associated
Lempert’s projection. We can assume that D is linearized along S in Lempert’s
coordinates. Let B̃ be an open disc relatively compact in S. Let

P :=

{
ṽ ∈ subh(B̃),
lim supζ→x ṽ(ζ) ≤ u(x) ∀x ∈ ∂B̃.

If we prove that u|B̃ is the maximum of P, then by the arbitrariness of B̃ it follows
that u is harmonic on S. Therefore u ◦ ϕ is harmonic and negative in D and it is
zero on ∂D \ {1}; hence it is a constant multiple of the Poisson kernel of D. That
is, there exists c > 0 such that u(ϕ(ζ)) = cΩD,p(ϕ(ζ)) for all ζ ∈ D, as wanted.

In order to prove that u|B̃ is the maximum of P, let ε > 0 small. Let T =
ρ−1(B̃)∩D and let B = {z ∈ T : dist(z, ∂D) > ε} (a cylinder in D). The boundary
of the set B is made of two parts: R1 which has the property that ρ(R1) = ∂B̃, and
R2 (the bottom and top of the cylinder) such that ρ(R2) ⊂ B̃; ∂B = R1∪R2. Since
u = 0 on ∂D and p �∈ T , we can choose ε so small that infx∈R2 u(x) > maxx∈∂B̃ u(x).

Let ṽ ∈ P, and let v := ṽ◦ρ|B. Then v is plurisubharmonic in B and supx∈B v(x)
= supx∈∂B̃(lim supz→x v(z)). In particular by construction lim supz→x v(z) ≤ u(x)
for all x ∈ R2. Also, we have that lim supB�z→x v(z) = lim supB�z→x ṽ(ρ(z)) ≤
u(ρ(x)) for all x ∈ R1. Now u has the same level sets as ΩD,p, and thus by (3.3) we
have that u(x) ≥ u(ρ(x)) for all x ∈ D and hence lim supB�z→x v(z) ≤ u(x) for all
x ∈ R1. Therefore lim supB�z→x v(z) ≤ u(x) for all x ∈ ∂B, and by the maximality
of Monge-Ampere solutions, it follows that v ≤ u in B and in particular ṽ ≤ u|B̃ ,
and the arbitrariness of ṽ implies that u|B̃ is maximal in P. �

The previous argument, together with Theorem 7.3, shows that if u ∈ Psh(D)∩
C2(D) is such that (∂∂u)n = 0 on D and limz→x u(z) = 0 for all x ∈ ∂D \ {p},
then u = cΩD,p for some c > 0 if and only if u(ρ(z)) ≤ u(z) for all z ∈ D and for
all Lempert’s projections ρ.

More generally, if f : D → D is holomorphic and f(p) = p as a non-tangential
limit we can define the boundary dilatation coefficient αf (p) of f at p by means of

1
2

log αf (p) := lim inf
z→p

[kD(z0, z) − kD(z0, f(z))].

It turns out that αf (p) > 0 and, if αf (p) < ∞, we can rephrase Abate’s generaliza-
tion of the classical Julia Lemma (see [1], [2]) saying that αf (p)f∗(ΩD,p) ≤ ΩD,p.
In [11, Theorem 7.3], with the assumption of slightly more regularity of f at p, it
is proved that f is an automorphism of D if and only if f∗(ΩD,p) = αf (p)ΩD,p.
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Using Abate’s version of the Julia-Wolff-Caratheodory theorem for strongly con-
vex domains (see [1], [4]), it is easy to see that αρ(p) = 1 for all Lempert’s pro-
jections ρ. Therefore, the above discussion shows that the property f∗(ΩD,p) ≤
αf (p)ΩD,p characterizes ΩD,p. In other words:

Proposition 7.5. Let D ⊂ Cn be a bounded strongly convex domain with smooth
boundary and let p ∈ ∂D. Let u ∈ Psh(D) ∩ C2(D) be such that (∂∂u)n = 0 in
D and limz→x u(z) = 0 for all x ∈ ∂D \ {p}. Then there exists c ≥ 0 such that
u = cΩD,p if and only if for all f : D → D holomorphic such that f(p) = p as a
non-tangential limit and αf (p) < ∞, it follows that

αf (p)f∗(u) ≤ u.

Some remarks about uniqueness properties are in order. First, it would be
interesting to see whether Theorem 7.3 (and thus its corollaries) holds without any
regularity hypothesis on u. A direct argument using the sub-media property of
plurisubharmonic functions shows that Theorem 7.3 holds in the unit ball Bn with
no regularity hypothesis on u. Such an argument seems however to fail in general.

Another (maybe more) interesting open question is the following:

Question 7.6. Let D ⊂ Cn be a bounded strongly convex domain with smooth
boundary and let p ∈ ∂D. Let u ∈ Psh(D) ∩ L∞

loc(D) be such that (∂∂u)n = 0 in
D and limz→x u(z) = 0 for all x ∈ ∂D \ {p}. Is it true that u = cΩD,p for some
constant c ≥ 0?

As we already recalled, the answer to such a question is “yes” in the case where
D = D is the unit disc, u < 0 in D and ΩD,p is the (negative) Poisson kernel.

8. Reproducing formulas

Let D be a bounded strongly convex domain in Cn with smooth boundary. As
usual, let dc := i(∂ − ∂). Let r be a defining function of D and let ωD be the real
(2n − 1)-form defined as

ω∂D :=
(ddcr)n−1 ∧ dcr

‖dr‖n
|∂D.

Such a form ω∂D is positive, and it is easily seen to be independent of the defining
function r chosen to define it.

Let LD,z0 denote the Lempert solution of (0.1) and denote by ΩD,p the solution
of (0.2) with singularity at p ∈ ∂D given by Theorem 0.1. From the very definition
of ΩD,p and since the boundary spherical representation Φp of Chang-Hu-Lee is
smooth out of the diagonal of ∂D × ∂D as the vertex p varies on ∂D (see [13,
Theorem 3]), it follows that the map D × ∂D 
 (z, p) �→ ΩD,p(z) ∈ R is C∞ on
(D × ∂D) \ {(p, p) ∈ ∂D × ∂D}.

We briefly recall Demailly’s theory [14], [15]. Let ϕ ∈ Psh(D) be such that
exp(ϕ) ∈ C0(D), that ϕ < 0 on D and that ϕ = 0 on ∂D. Let R < 0 and let
BR = {z ∈ D : ϕ(z) < R}. Moreover let SR = ∂BR and ϕR(z) = max{ϕ(z), R}.
By [15, (1.4)] we can write

(ddcϕR)n = 1Cn\BR
(ddcϕ)n + µϕ,R

where 1Cn\BR
is the characteristic function of Cn\BR and µϕ,R is a positive measure

supported on SR. By [15, Théorème 3.1] if the total Monge-Ampère mass of ϕ is
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finite, i.e., if
∫

D
(ddcϕ)n < +∞, then as R → 0 the measures µϕ,R converge weakly

on Cn to a positive measure µϕ supported on ∂D, with total mass
∫

D
(ddcϕ)n. We

denote by µz the limit measure of LD,z. By [15, Théorème 5.1] it follows that for
all F ∈ Psh(D) ∩ C0(D) we have the following representation formula:

(8.1) F (z) = µz(F ) − 1
2πn

∫
w∈D

|LD,z(w)| ddcF (w) ∧ (ddcLD,z)n−1(w).

We can prove the following result:

Theorem 8.1. Let D be a bounded strongly convex domain in Cn with smooth
boundary. Then

dµz(p) = |ΩD,p(z)|nω∂D(p).

Proof. First of all, since LD,z is C∞ on D \ {z} and dLD,z|∂D �= 0, arguing as in
[15] we see that

dµz = (ddcLD,z)n−1 ∧ dcLD,z|∂D.

From (6.2) we have

|ΩD,p(z)| = ‖∂LD,z

∂νp
(p)‖ = ‖d(LD,z)p‖,

where the last equality follows from LD,z|∂D = 0 which implies that d(LD,z)p is a
positive multiple of νp, the unit normal to ∂D at p ∈ ∂D (here, as usual and with
an abuse of notation, we identify the gradient of a function with its differential).
Thus

dµz = |ΩD,p(z)|n (ddcLD,z)n−1 ∧ dcLD,z

‖dLD,z‖n
|∂D.

To end the proof we only need to check that

ω∂D =
(ddcLD,z)n−1 ∧ dcLD,z

‖dLD,z‖n
|∂D.

To this aim, it is enough to show that if r is a (local) defining function for D on
a neighborhood Up of p ∈ ∂D, then LD,z = h · r on Up ∩ D for some positive
h ∈ C∞(Up ∩ D). Then a direct computation gives the result. Up to changes
of coordinates we can assume that Up ∩ D = {(x, y) ∈ C × Cn−1 : x < 0}. Thus
LD,z(x, y)/x is defined and positive on Up∩D. If we let h(x, y) =

∫ 1

0
∂LD,z

∂x (tx, y)dt,
then h is C∞(Up ∩ D) and coincides with LD,z(x, y)/x in Up ∩ D. Moreover, since
dLD,z �= 0 on ∂D it follows that h > 0 on Up ∩ D. �

From (8.1) and Theorem 8.1 we obtain:

Theorem 8.2. Let F ∈ Psh(D) ∩ C0(D). Then for all z ∈ D

F (z) =
∫

p∈∂D

|ΩD,p(z)|nF (p)ω∂D(p)

− 1
2πn

∫
w∈D

|LD,z(w)| ddcF (w) ∧ (ddcLD,z)n−1(w).

In particular if F is pluriharmonic, then

F (z) =
∫

p∈∂D

|ΩD,p(z)|nF (p)ω∂D(p).
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Remark 8.3. If F ∈ C2(D) (but not plurisubharmonic in D), then there exists
C > 0 such that F (z) + C‖z‖2 ∈ Psh(D) ∩ C0(D). Thus Theorem 8.2 applies and
one gets

F (z)+C‖z‖2 =
∫

p∈∂D

|ΩD,p(z)|nF (p)ω∂D(p)

+ C

∫
p∈∂D

|ΩD,p(z)|n‖p‖2ω∂D(p)

− 1
2πn

∫
w∈D

|LD,z(w)| ddcF (w) ∧ (ddcLD,z)n−1(w)

− C
1

2πn

∫
w∈D

|LD,z(w)| ddc‖w‖2 ∧ (ddcLD,z)n−1(w)

=
∫

p∈∂D

|ΩD,p(z)|nF (p)ω∂D(p)

− 1
2πn

∫
w∈D

|LD,z(w)| ddcF (w) ∧ (ddcLD,z)n−1(w) + C‖z‖2.

Therefore Theorem 8.2 applies to any F ∈ C2(D) (not necessarily plurisubhar-
monic). As a consequence, it follows that the kernel given by |ΩD,p(z)|nω∂D(p) is
the unique reproducing kernel associated to LD,z; namely, (8.1) cannot hold with
any other measure Tz in place of µz.
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