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Abstract. The aim of this work is to define an automated method of terrain 
classification in order to evaluate the correlation degree between topographic 
forms of the analyzed territory and registered landslide phenomena with a 
Landslide Inventory and DEMs as unique input data. A reliable procedure that 
identifies areas subject to different levels of susceptibility by a geomorphomet-
ric approach is presented. The main objective is reached by means of intermedi-
ate steps. The first step is the individuation of a set of measures, a geometric 
signature, that describes topographic form to distinguish among geomorphically 
different landscapes; the identified parameters are slope gradient, aspect, plan 
and section curvatures, local convexity and surface texture, computed from a 
30x30m square-grid digital elevation model (DEM). The second step is the 
classification of the analyzed territory in eleven classes using the geometric sig-
nature tool. Finally, the eleven classes are statistically correlated with the Land-
slide Inventory of the analyzed territory. This work represents a useful tool in 
large-scale landslide susceptibility analysis. In fact, the application of this re-
peatable and reliable procedure may return the best results in a short time and 
with low economic resources, providing specific useful information in planning 
Civil Protection investigations and operations. 

Keywords: Terrain Classification, Geomorphometry, Landslide, Susceptibility, 
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1   Introduction  

There are no universally accepted forecasting methods of "natural hazard" and in 
particular of landslide hazard. The proliferation of studies on landslide phenomena 
demonstrates the increasing interest in this field. These studies aim to understand the 
basic mechanisms that regulate these phenomena, in order to develop interpretive 
models for hazard assessment. 

In the literature there are different methodological approaches. From a Civil Protection 
planning perspective, and in particular with forecasting and preventing purposes, the 
study of landslide phenomena does not end with the investigation of a single event; on 
the contrary, its first objective is an understanding of the potential behaviour over a wide 
territory, and subsequently an assessment of the hazard existing on an extended territorial 
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domain and not only on a specific mountainside surface. A large-scale investigation 
allows to consider and analyze the territory in its entirety and then to orientate local spe-
cific analysis where the proclivity to a catastrophic event is the highest registered. 

A landslide susceptibility analysis has as its aim the evaluation of the different pro-
clivity levels of a territory. Susceptibility analysts have to consider and to analyze 
different factors and their temporal evolution in order to reach this objective. These 
factors represent the shapes (morphology) or the specific physical characteristics 
(material, consistency, structure) of a territory. 

Despite the various existing methodological approaches, all analyzed methods are 
based on a conceptual model, which consists of mapping landslides in a given region 
(target) or part of it (training area) and of the idea that it is more probable that a land-
slide will occur in the future where it has already occurred in the past, under certain 
instability conditions. 

There are direct and indirect methods to build up a model and then to use it in the as-
sessment of landslide susceptibility. The statistical method is certainly one of the most 
frequently used in landslide susceptibility analysis [1]. A variable number of morpho-
logical and geological (such as lithology, land cover, pedology) factors are set and corre-
lated with the landslide distribution, in order to measure the correlation degree of each 
factor with landslides and therefore the relative weights to combine the relevant factors in 
a susceptibility map. The objectivity of the first phase of analysis (to determine the rele-
vant factors and how they affect the instability) is the main positive feature, whereas the 
negative aspect is the lack of a correlation analysis between the various factors. In heuris-
tic deductive method, the analyst’s knowledge of instability factors is fundamental for a 
well-made analysis. In fact, instability factors are a-priori selected, classified and 
weighed, not considering the distribution of events [1]. After the definition of these pa-
rameters and their weights, susceptibility map ensues from their combination. At this 
point the map is compared with landslide inventory to verify the accuracy of the original 
hypothesis. This method, unlike the statistical one, considers the existing interactions 
among instability factors, but it is affected by a high subjectivity. 

The geomorphometric approach eliminates the negative aspects of the two mentioned 
methods, referring to parameters representing the shape of the territory. It is a direct 
approach that removes the subjectivity of the heuristic one; running a clustering classifi-
cation by introducing the concept of "geometric signature", it identifies combinations of 
parameters, and combinations that are more destabilising for a certain territory. 

In order to define geomorphometric classes and to analyze landslide susceptibility, 
a terrain-unit choice is required. The issue of defining a feasible terrain-unit is com-
mon to many other different types of investigations ranging from pollution control to 
archaeological surveys. A suitable terrain-unit is necessary in order to generate a data-
base of the environmental data needed to describe a given process or phenomenon, 
and to build up a predictive model of the spatial distribution of the phenomenon. 

2   Geomorphometry 

Geomorphometry is the science of quantitative land-surface analysis. It draws upon 
mathematical, statistical and image-processing techniques to quantify the shape of the 
earth topography at various spatial scales. 
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The quantitative analysis of a territory, and in particular of its shape, eliminates the 
limitations of the qualitative topographic information. It is important to note how the 
characterization of the topography tends to be qualitative and subjective, because the 
nomenclature is verbal rather than technical. Adjectives such as hilly, steep, moun-
tainous and rough are used with different meanings by different observers, according 
to their personal experience and the scale of observation. A consequence of this sub-
jectivity is that territories, even very different ones, can be encoded with identical 
terms. The different meanings of these qualitative terms make the communication 
about topographical information difficult. 

The study of the geomorphometry stems from the need to establish a reliable nu-
merical model in order to describe the earth shape. The quantitative characterization 
of topographical shape is a multidisciplinary technique applicable at any scale of 
analysis . Therefore, the measure of earth shape is independent of the scale and type 
of surface. 

2.1   The Geometric Signature 

One analytic tool of numerical land-surface classification is the geometric signature. 
In [2] the signature was defined as “a set of measurements sufficient to identify un-

ambiguously an object or a set of objects”. In [3], this concept was adapted from  
remote sensing to geomorphology, defining the geometric signature as “a set of meas-
urements that describes topographic form well enough to distinguish geomorphologi-
cally disparate landscapes”. 

Natural surface processes create different forms that are recognizable in the field. 
The geometric signature abstracts those forms from contour maps or from DEMs and 
expresses them numerically. The measures that constitute a geometric signature ex-
press different but complementary attributes of surface form [4]. The optimal set of 
elements defining a signature has been subject of debate and remain a variable de-
pending on the specific problem at hand and the spatial scale. 

3   Classification Method 

The definition of a reliable and semi-automated method applicable to landslide suscepti-
bility analysis is organized and computed in three different phases: in the first phase, 
existing methodologies are applied to the analyzed territory and the obtained results are 
compared; in the second one, a new methodology is defined and experimented in order to 
improve the obtained classifications; finally, a statistical correlation analysis between the 
Landslide Inventory and the obtained classification is implemented. 

The analysis is developed on the territory of the Province of Rome. 
One of the first and most sensitive operations in a landslide susceptibility analysis 

is the choice of the terrain-unit, because it could affect noticeably the results of analy-
sis. It is worth discussing the criteria for selecting the terrain-unit, as a portion of land 
surface which contains a set of ground conditions which differ from the adjacent units 
across definable boundaries [5]. It depends on various parameters, such as the input 
data type, the scale of analysis, the desired output data quality and spatial resolution 
and on the availability of analytic and information tools [1]. 
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In Table 1 different types of terrain-unit are reported. In the literature, various 
methods have been proposed in order to define the terrain-unit.  

In natural environments, the interrelations between materials, forms and processes  
result in morphological boundaries which frequently reflect geomorphological and geo-
logical differences. The geomorphologic unit was applied in many environmental analy-
sis, but its main drawback lies in the fact that different investigators often classify a  
region in a different way, therefore the technique is intrinsically subjective. A second 
approach implies the division of the region into grid-cells of given size which become the 
terrain-unit. Grid-cells are particularly preferred in the representation of continuous vari-
ables, such as slope gradient, altitude and aspect. One of the most relevant advantages of 
this method is the computational simplicity and velocity that an array offers, while they 
are characterized by a low physical meaning. The third method implies the classification 
of each slope-instability factor into a few significant classes which will be stored into a 
single map or layer. By overlaying all the layers, homogeneous domains are defined. 
Although the technique seems to be fully objective, its main weakness refers to the sub-
jectivity in factor classification. Moreover, by overlaying more than 4 maps, thousands of 
small, statistically meaningless, domains can be generated. The fourth approach repre-
sented in Table 1, based on the partition of a region into slope-units or sub-basin, seems 
the most appropriate for landslide hazard assessment, but it has a substantial limitation in 
manually identifying slope-units or sub-basin boundaries [1]. 

Table 1. Comparison among Different Terrain-Units for Landslide Hazard Mapping 

AutomaticMediumHighSlope Unit

AutomaticMediumHighUnique Condition Unit

AutomaticLowHighGrid-Cell

ManualHighLowGeomorphologic Unit

TechniquePhysical MeaningConsistencyTerrain-Unit

AutomaticMediumHighSlope Unit

AutomaticMediumHighUnique Condition Unit

AutomaticLowHighGrid-Cell

ManualHighLowGeomorphologic Unit

TechniquePhysical MeaningConsistencyTerrain-Unit

 

In this study, grid-cells are used as terrain-unit. 
The starting-point data in the computation of the different morphometric parame-

ters is a 30x30m DEM, computed by interpolating the altitude-points extracted from 
contour lines (10m interval) of the Technical Regional Cartography of Lazio, while 
the Landslide Inventory of Tevere Basin Authority (PAI), converted in grid format, is 
used in the correlation analysis. The Landslide Inventory differentiates seven types of 
phenomena and the number of events totally registered on the analyzed territory is 
351 with a total area of 19,35 square kilometres. The total area of the Province of 
Rome is about 5.352 square kilometres. 

The computational tool is ARC/INFO and the analysis are carried out  in a semi-
automated way through ARC/INFO procedures. 

3.1   Applying State-of-the-Art Classification Methods 

Analyzing the state-of-the-art, there is a wide range of algorithmic approaches to earth 
surface classification. Some classifications are supervised, and therefore types of 
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topography are recognized starting from selected “training samples”, while others are 
unsupervised, unconstrained by pre-set conditions, and allow the input data them-
selves to determine “optimal” categories. 

Thus, the first phase is the application of three previous unsupervised studies ([6],  
[7] and [8]) about the evaluation of geometric signature. In these studies single-cell 
and multi-focal parameters are computed and analyzed. In a single-cell analysis, the 
edge of the cell has no physical relationship with the neighborhood environmental 
parameters and therefore the process and the statistical analysis are quick and simple. 
In the literature there are many cases of application of this type of analysis. This 
method identifies the morphometric features scanning the DEM with a local window 
(3x3) and examines the relationships of the cell with its processed neighbourhood [9]. 
The use of a window in the calculation of parameters is due to the lack of meaning of 
a part of them, such as the slope gradient, if they are not in physical relation to a con-
text. The term "single-cell" is due to the fact that the outcome of the analysis leads to 
the determination of "unique" value of the cell. Strictu sensu, the altitude is the only 
real single-cell parameter among the considered ones in these studies, as reported in 
Table 2. 

In computing multi-focal parameters, a local variable window is used to average 
the values in a neighbourhood of the cell. 

Table 2. Classification Method Experimented in this Study 

Nested-Means
Divided
Parameters

Clustering

•Mean

•S.D.

•Variation coefficient

•Symmetry

Pike [8]

•Slope gradient

•Texture

•Convexity

Pike-Iwahashi
[6]

Multi-focal
Analysis

•Slope gradient

•Aspect

•Plan curvature

•Profile curvature

Evans [7]

Single-cell
Analysis

Method

ParametersAuthor
Parameter

Calculation Nested-Means
Divided
Parameters

Clustering

•Mean

•S.D.

•Variation coefficient

•Symmetry

Pike [8]

•Slope gradient

•Texture

•Convexity

Pike-Iwahashi
[6]

Multi-focal
Analysis

•Slope gradient

•Aspect

•Plan curvature

•Profile curvature

Evans [7]

Single-cell
Analysis

Method

ParametersAuthor
Parameter

Calculation

 

The [6] classifies earth topography from DEMs by an unsupervised nested-means 
algorithm and a three-part geometric signature. It has been applied on the territory of 
the Province of Rome. The authors consider three morphometric parameters, in par-
ticular slope gradient, local convexity and surface texture, treating topography as a 
continuous random surface, independent of any spatial or morphologic orderliness 
imposed by fluvial activity or other geomorphic processes. The first parameter is 
computed by a single-cell analysis, while the others result from a multi-focal analysis, 
averaged on a 10-cell-radius circle. 

This method identifies topographic types by using rules within a simple decision 
tree to apply image-processing operations to digital maps of the three variables. 
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Fig. 1. Flow Chart for Automated Nested-Means Classification of Topography 

 

Fig. 2. Classes 1 to 4 of the Classification Obtained from [6] 

 

The distribution of the three parameters is twofold-partitioned and the dividing 
threshold for each variable is its mean value, as represented in Figure 1. The result of 
the classification underlines a remarkable distinction among mountainside surfaces in 
four different classes, characterized by  increasing values of elevation and slope gra-
dient from Class 1 to 4 (Figure 2). The four classes from 5 to 8 represent earth sur-
faces less steeper than mean value, i.e. flat and semi-flat surfaces. This distinction 
(Classes 1 to 4) is fundamental to differentiate landslide correlation analysis results. 
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The second group of experimented classification methods works by a statistical 
multivariate approach. The statistical multivariate analysis consists of a sequence of 
operations as represented in Figure 3. This semi-automated classification method 
classifies the analyzed territory by the principle of maximum internal homogeneity 
and minimum external homogeneity (cluster method). The mean of the variable dis-
tributions and the correlation between the distributions are the discriminating values 
in defining the eight classes. 

Stack
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Classification

Input Data 
Computation

Stack
Definition

Cluster
Definition

Classification
Cluster

Analysis

Classification
Analysis

Stack
Analysis
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Classification

Input Data 
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Cluster

Analysis

Classification
Analysis

 

Fig. 3. Flow Chart for a Statistical Multivariate Analysis (Clustering) 

First, the same parameters of [6] are considered as input data for this experimenta-
tion. The obtained results show a positive distinction among mountainside surfaces, 
but they do not identify important elements in trigger phenomena of landslides, such 
as hydrological ones. The eight classes show an increasing of elevation and slope 
gradient from class 1 to 8. 

The second experimented statistical multivariate study [7] considers five mor-
phometric parameters, computed by a single-cell approach, such as altitude, slope 
gradient [10], aspect, profile convexity and plan convexity. 

 

 

Fig. 4. Representation of Profile and Plan Convexity 

 

The best result of multiple experimentations of this method is registered with slope 
gradient, aspect, profile curvature and plan curvature, normalized as follow: 

i x

x

x
X

μ
σ
−=  (1) 
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X
μ : mean of i-variable distribution 

X
σ : standard deviation of i-variable distribution 
 

A particular of the most relevant classes obtained applying the previous method are 
represented in Figure 5. 

 

Fig. 5. A Particular of the Classification Obtained from [7] 

The result of this method of classification underlines a remarkable distinction 
among terrain elements originated by hydrological and wind erosive activities, such 
as torrential (Class 1) and fluvial (Class 6) riverbeds and ridges (Class 8). 

Among the considered morphometric variables, both curvatures discriminate these 
elements. In particular high values of both curvatures are registered in Class 8: there 
are high positive values of plan curvature corresponding to a convex surface and high 
negative values of section curvature corresponding to a concave surface. Both Class 1 
and 6 have similar negative values of plan curvature (convergent water flow), but they 
differ in elevation and slope values: the first class has higher values of both variables 
than the second one. Furthermore, a topological continuity between classes 1 and 6, 
representing torrential and fluvial riverbeds respectively, is detectable in Figure 5. 

These elements are the main actors in triggering phenomena of landslides, while a 
distinction among different types of mountainside surfaces is essential in a landslide 
susceptibility analysis. 

The experimented statistical multivariate classification method does not detect this 
distinction, creating only a class with all mountainside surfaces. 
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A third set of derived parameters [8] are computed and considered as input data for 
the fourth experimentation. This method classifies the earth surface by a multivariate 
statistical approach, in the same way as the previously presented, but it considers 
statistical derived parameters, such as the mean, the standard deviation and variation 
and symmetry coefficients of the not-derived parameters. These statistical parameters 
are computed using ARC/INFO focal functions with different analysis windows ac-
cording to the “topographic grain” concept. The result of this classification are not 
remarkable in discriminating different topographic classes of the analyzed territory. 

3.2   Classification Scheme 

The previous classification methods do not allow to reach the aim of the first step of 
analysis, i.e. a classification discriminating elements of territory relevant to a land-
slide susceptibility assessment. In this analysis, both terrain elements originated by 
hydrological and wind erosive activities, such as torrential and fluvial riverbeds and 
ridges, considered as main actors in trigger phenomena of landslides, and a distinction 
among mountainside surfaces in different classes are key factors. 

Analyzing and comparing the different results obtained from previous classifica-
tion methods, it is detectable that the multivariate statistical classification method 
considering not-derived parameters and the unsupervised nested-means procedure 
give the most interesting results. 

Table 3. Comparison Among Different Obtained Results 
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Distinction
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Method of Analysis

Unacceptable

Good
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The statistical multivariate analysis considering DEM-first-derived parameters, 
such as slope gradient, aspect and both curvatures, returns a remarkable distinction 
among landslide trigger elements (Classes 1, 6, 8), but also a class (n.7) that contains 
all mountainside surfaces. The second classification method allocates these surfaces 
into four different classes. From a comparison between these classes (from 1 to 4) and 
Class 7 of the first classification method, it is detectable that the four classes essen-
tially coincide with Class 7; analyzing areas of these classes it is well-rendered that 
the four classes, including all grid-cells with more than 7.5 slope degree (mean of the 
distribution), cover a larger area than Class 7 and therefore in general they always 
comprise it, but they have a more specific division of mountainside surfaces. 

Thus, the development of a new classification method that integrates the positive 
results of the experimented procedures and avoids negative ones is necessary to cor-
rectly analyze landslide susceptibility. 
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Fig. 6. Flow Chart of the Integrated Classification 

The integrated classification is developed on a grid-cell based analysis. Both classifi-
cations are 30x30m square-grid data, like the input DEM. The output grid have eleven 
different groups of cells and the selection of relevant classes of the input classifications is 
implemented by a conditional function (If…Then…), as represented in Figure 7. 
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Fig. 7. Representation of the Procedure Adopted in Defining the New Classification Method 
from the Two Previous Ones and Percentage Distribution of Cells within the New Classes 

The relevant classes of the first classification, i.e. terrain elements originated by 
hydrological and wind erosive activities, such as torrential (Class 1) and fluvial (Class 
6) riverbeds and ridges (Class 8) remain unchanged. All classes of the second classifi-
cation are integrated in the new one. 

Therefore, in this classification Classes (2 – 5) represent mountainside surfaces, 
now distinguished in four classes and previously all included in Class 7 (Classifica-
tion 1). Analyzing morphological values of these four classes (Table 4), it is easy 
detectable an increasing of elevation and slope gradient mean in the order Class 4, 
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Table 4. Elevation and Slope Value Distributions in the Obtained Classes 

DEM SLOPE 
CLASS 

MIN MAX RANGE MEAN MEAN_ST MIN MAX RANGE MEAN MEAN_ST 

1 0 1815,4 1817,4 430,7 906,7 0 44,0 44,0 12,5 22,0 

2 0 1839,7 1848,7 368,5 915,4 7,5 41,8 34,3 13,2 24,6 

3 4,9 1828,9 1824,0 613,4 916,9 7,5 46,0 38,5 20,1 26,7 

4 4,3 1770,8 1766,4 310,6 887,6 7,5 37,0 29,5 12,7 22,3 

5 4,0 1719,9 1715,8 477,6 861,9 7,5 45,4 37,9 17,7 26,5 

6 0 1815,9 1829,8 297,5 908 0 45,2 45,1 9,4 22,6 

8 0 1846,3 1852,1 494,0 920,2 0 52,1 52,1 14,0 26,0 

9 0 1821,8 1828,6 165,4 907,5 0 7,5 7,5 3,2 3,7 

10 0 1820,2 1823,4 114,5 908,5 0 7,5 7,5 2,0 3,7 

11 0 1732,4 1734,9 168,5 864,9 0 7,5 7,5 3,0 3,7 

12 0 1673,8 1676,2 118,4 835,7 0 7,5 7,5 1,3 3,7 

  

Class 2, Class 5 and finally Class 3. Physically, this succession correctly corresponds 
to the natural trend of mountainside surfaces. 

Classes from 9 to 12 represent flat or semi-flat surfaces, introducing a new hydro-
logical feature. In fact, comparing the classification with the drainage system of this 
territory it is clearly visible the overlap with Class 11, i.e. fluvial riverbeds located in 
valley floor. These further elements complete the characterization of the hydrological 
feature, filling the registered gap of the first classification. 

Therefore, the first step of analysis is complete and the obtained results allow to 
analyze the correlation between the identified classes and landslides. 

4   Landslide Susceptibility Assessment 

Assessing the correlation levels between topographic signatures and landslide events 
is the second objective of this work. Its final product, a first level of a landslide sus-
ceptibility map, provides Civil Protection planners with a practical and cost-effective 
way to zone areas potentially susceptible to landslide occurrences. 

Interpretation of future landslide occurrence requires an understanding of condi-
tions and processes controlling landslides in the study area [11]. Two physical factors, 
past history and slope steepness, are the minimum components necessary to assess 
landslide susceptibility. It is also desirable to add a hydrologic factor to reflect the 
important role which ground water often plays in the occurrence of landslides. 

As explained in Chapter 3.2, the final result of the first step of analysis is a terrain 
classification which considers the shapes of both physical and hydrological features 
and therefore it could be optimally used as input data in a landslide susceptibility 
assessment. 
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The overlap of the Landslide Inventory Map with the integrated classification 
allows to identify which classes are associated with a certain type of landslide and 
which are not. To assess different levels of correlation it is used a statistical ap-
proach.  

1
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Area
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=
∑
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k: type of landslide 
j: geomorphometric class 
m: number of k-type landslides in class j 
n: total number of k-type landslides 
 
The correlation values are computed in (2) for each geomorphometric class in rela-

tion to each registered type of landslide. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8. Landslides Inventory Map with Drainage System and Overlapping of the LIM with the 
Geomorphologic Classes 

The Landslide Inventory differentiates seven types of phenomena [12], such as 
falls or topples (Type 2), translational and rotational slides (Types 4 and 5), flow 
(Type 1), debris flow (Type 6), surface deformation (Type 3) and complex (Type 7). 

The results of the statistical correlation analysis, presented in Figure 9, show a re-
markable distinction among classes representing mountainside surfaces and high 
percentage of correlation only for a subset of these classes. In particular only five 
classes are correlated, in a significant way, to landslide phenomenon; they cover the 
signatures mainly relevant for landslide occurrence, such as torrential and fluvial 
riverbeds (Classes 6 and 1), main actors in trigger phenomena of landslides. 

These results, from the Civil Protection point of view, mean that the percentage of 
territory to be investigated with a more specific predictive analysis is reduced. 
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Fig. 9. Schematic Representation of Percentage Values of Correlation between Each Type of 
Landslide and Geomorphometric Class 

Analyzing single class correlation values, we note that: 
 

• Class 8 (ridges) presents an high correlation value with “falls or topples” landslide 
type; 

• Class 1 (torrential riverbeds) is one of the most correlated identified class, in par-
ticular in relation with various types of flow (debris, earth/rock flow). A low corre-
lation percentage results with “falls or topples”; 

• Class 3 (high mountainside surfaces) presents high values for all types of landslide, 
excepted for surface deformations and translational slides. It presents the highest 
value for debris flows; 

• Class 5 (medium mountainside surfaces) is the most correlated class; it presents 
values higher than 30% for rotational slides and debris flows, values between 10% 
and 20% for “flows, falls or topples and surface deformations”, values lower than 
10% only for translational slides; 

• Class 6 (fluvial riverbeds) is correlated in particular with the two types of slides 
and surface deformations. 

 

Analyzing the obtained distinction among mountainside surfaces in the four identified 
classes and their correlation values with landslides, it is possible to exclude Classes 2 
and 4 from group characterized by high correlation levels. At the same time, it is 
clearly detectable that differences exist also between Class 3 and 5: in particular Class 
5, covering only the 5.4% of the investigated territory, is characterized by high values 
of correlation. The final result is the identification of a more precise definition of the 
limits of these zones and which types of events affect every class, especially for those 
classes with higher susceptibility levels. 
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Fig. 10. Representation of the Geomorphometric Classes by Correlation Values with Land-
slides 
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5   Conclusions 

A reliable semi-automated method, working by a geomorphometric approach, is ap-
plied to the territory of the Province of Rome in order to define a classification ori-
ented to landslide susceptibility assessment. The main objective is reached by means 
of intermediate steps. 

The result of the first step of analysis is the individuation of six parameters, slope 
gradient, aspect, plan and section curvature, local convexity and surface texture, as a 
set of measures, a geometric signature, that describes topographic form to distinguish 
among different landscapes; these parameters are computed from a 30x30m square-
grid digital elevation model (DEM). The result of the second step of analysis is the 
classification of the analyzed territory in eleven classes using the geometric signature 
analytic tool. The results of the classification method have been validated by means of 
a GIS-based comparison and analysis between the different obtained geomorphomet-
ric classes and the theme of the drainage system of this territory and an analytic inves-
tigation of the elevation, slope, plan and section curvatures values distributions in 
each class. Finally, the eleven classes are statistically correlated with the Landslides 
Inventory of the analyzed territory. 

This work represents a useful tool in a landslide susceptibility analysis, due to its 
capacity to discriminate, in a large-scale context, and by simply using a DEM as input 
data, the specific part of a territory more meaningful for the landslide occurrences. Of 
course, it provides just a first level of a susceptibility assessment, but the application 
of this repeatable and reliable procedure may return the best results in a short time and 
with low economic resources, providing specific useful information in planning great-
scale Civil Protection investigations and operations. 

However, we have to consider that to carry out a complete susceptibility assessment is 
necessary the integration of these results with information concerning the physical factors 
influencing landslide occurrences. Finally, in order to determine the extent and the 
strength of landslide hazard it is necessary to identify those areas which could be affected 
by a damaging landslide and to assess the probability of the landslide occurrence within 
some time period. In general, the evaluation of a time frame for the occurrence of a land-
slide is not simple to determine even under ideal conditions. 

Factors influencing where landslides occur, can be divided into two groups, perma-
nent and variable. Permanent factors represent the landscape which remains unchanged 
or varies little from a human perspective. The steepness of a slope, for example, presents 
changes only with the passage of long periods of time. By examining existing landslides 
in an area, it is possible to recognize how permanent factors contributed to these slope 
failures. Identifying conditions and processes promoting past instability makes it possible 
to use these factors to estimate landslide susceptibility. Variable factors are terrain char-
acteristics that change quickly as a result of some triggering event. Ground vibrations due 
to earthquakes, a rapid rise in groundwater levels, and increased soil moisture due to 
intense precipitation are examples of variable factors. 

In order to evaluate the probability of the landslide occurrence, and subsequently 
the landslide hazard, it is necessary to integrate the results obtained in this study with 
other physical factors, then to assess the probability of the occurrence of these trigger-
ing variable factors and finally to integrate this assessment with landslide susceptibil-
ity analysis. These analysis will be subjects of future studies. 
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