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We introduce the notion of Markov states and chains on the Canonical Anticommutation
Relations algebra over Z, emphasizing some remarkable differences with the infinite
tensor product case. We describe the structure of the Markov states on this algebra
and show that, contrarily to the infinite tensor product case, not all these states are
diagonalizable. A general method to construct nontrivial quantum Markov chains on the
CAR algebra is also proposed and illustrated by some pivotal examples. This analysis
provides a further step for a satisfactory theory of quantum Markov processes.
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1. Introduction

Recently, Araki and Moriya®~'2 have developed the statistical mechanics of systems
on the CAR algebra. In particular, they have introduced the notion of “product
state” on those algebras and determined their structure. On the other hand, in the
case of infinite tensor products, it is known that the quantum Markov chains intro-
duced in Refs. 1 and 2 can be realized as local perturbations of product states. It is
therefore natural to investigate the possibility of constructing the CAR analogue of
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the quantum Markov states and chains. In this paper we show how to realize such
an extension.

The paper is organized as follows. In Sec. 2 we propose a definition which unifies
the notions of Markov state and of Markov chain extending a proposal of Ohno,?°
and including all the presently known examples. In Sec. 3 we recall some known facts
about the CAR algebra. Section 4 is devoted to investigate some general properties
of quantum Markov states on the CAR algebra. In particular, we classify all the
even Markovian conditional expectations on the CAR algebra. Such conditional
expectations naturally arise in the study and the construction of quantum Markov
states. In Sec. 5 we study the diagonalizable Markov states, a situation which is
similar to what one finds in the case of infinite tensor product.

The main result in this paper is Sec. 6, Subsec. 6.4, where we prove that, con-
trarily to what happens in the tensor product case, on the Fermion algebra there
exist nondiagonalizable Markov states. The structure of these states is explicitly
described.

In Sec. 7 we describe a general method to construct Markov chains on the CAR
algebra. Section 7 also contains concrete examples of Fermi Markov chains.

The theory of quantum Markov chains on infinite tensor products of matrix
algebras (lattice systems) has been greatly enriched by the results of Fannes, Nac-
thergaele, Werner,'*® Hiai, Petz,'® and Matsui'® where quantum Markov chains
(more precisely, the subclass of these chains constructed in Theorem 4 of Ref. 2)
are often called “C*-finitely correlated states or algebraic states” (see also Ref. 6
for some connected results). Some of these papers also prove that quantum Markov
chains emerge naturally, in several physically relevant models, as ground states of
certain nearest neighbor Hamiltonians. Recently, quantum Markov states have been
shown to emerge naturally also in quantum information theory.?! Our hope is that
similar extensions and applications can also be found for Markov chains on the
CAR algebra.

2. Quasi Local Algebras and the Markov Propery

By a (Umegaki) conditional expectation E : A — B C 2 we mean a norm-one
projection of the C*-algebra 2 onto a C*-subalgebra (with the same identity I) 8.
The map F is automatically a completely positive identity-preserving 8-bimodule
map. When 2 is a matrix algebra, the structure of a conditional expectation is well
known. Indeed, let 2 be a full matrix algebra and consider the (finite) set {P;} of
minimal central projections of the range 6 of E, we have

E(x) =) E(PaP)P;. (2.1)

Then F is uniquely determined by its values on the reduced algebras

lei = PZQLPz = Nz &® Niv
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where N; ~ Bp, := BP, and N; ~ B 1= B'P;.* In fact, there exist states ¢; on
N; such that

Consider a triplet € C 9 C 2( of unital C*-algebras. A quasi-conditional expec-
tation w.r.t. the given triplet, is a completely positive, identity-preserving linear
map FE : %A — B such that

E(ca) = cE(a), acid, ced.
Notice that, as the quasi-conditional expectation F is a real map, we have
E(ac) = E(a)c, a€c, ced

as well.

If p is a normal faithful state on the W*-algebra 2, the ¢-conditional expectation
E¥ : 2 — B preserving the restriction of ¢ to the W*-subalgebra 8, provides an
example of quasi-conditional expectation. Namely, it is enough to choose for €
any unital C*-subalgebra of 95 contained in the E¥-fixed point algebra. The -
conditional expectation E¥ is a Umegaki conditional expectation if and only if the
modular group of ¢ leaves globally stable the subalgebra 9B, see Ref. 3.

Let X be a fixed set, and Z a directed family of subsets of X closed under
difference, equipped with a map d : T — 7 such that

) WFIF e} = X,

(i) dF C F, F €1,

(i) F C G = dF C dG,

(iv) if {F,} is any family in 7 such that F, T X (i.e. J, Fo = X), then dF, 1 X.

This abstract formulation unifies Nelson’s topological Markov property with
Dobrushin’s discrete d-Markov property.

A quasi-local algebra associated with the family Z of subsets of X is a C*-
algebra 2 equipped with an isotonic family {2} recz of local C*-algebras such
that J{™Ur|F € I} is dense in 2.

Definition 2.1. For F', G € Z with F' C G, a linear map E¢ r : Ag — Ap is said
to enjoy the d-Markov property if

Ec,r(&e\r) C Ap\ar -
In the notations of Definition 2.1, consider
(i) an increasing sequence {Fy }nen in Z such that

anlngnanTX7

aThe commutant %’ is considered in the ambient algebra 2.
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(ii) a sequence of d-Markovian quasi-conditional expectations
EFW,+17F71, : QLFW,-FI = Qan

w.r.t. the triplet Agp, C Ap, € Ap,,,
(iii) a state g, € S(AR,).

Definition 2.2. A state ¢ € S() is called a d-Markov chain for the localization
{™Ap, bnen, if

¢ =limpr, 0 Ep py 00 Br, s

in the *-weak topology, for some sequence {EF, , r, }nen of quasi-conditional ex-
pectation as above.
The state ¢ is called a d-Markov state for the localization {2 g, }nen, if

@[FnOEFn+1,Fn = s0|—Fn+1 ) neN
for some sequence {EF,_,,r, }nen of quasi-conditional expectation as above.

As mentioned in the introduction, this definition of d-Markov chain extends
the notion of “generalized Markov state” introduced by Ohno (cf. Definition 2.1 of
Ref. 20).

A d-Markov state is also a d-Markov chain. It is well known that the converse
is not true in general.

In some interesting situation (cf. Refs. 4, 5, 7, and Proposition 4.2 below), the
following statements are equivalent:

(i) ¢ is a faithful d-Markov state,
(ii) each Eq r can be chosen to be the @-conditional expectation from ¢ into
QlF?
(iii) there exists a subalgebra R, p with

Aar CRe,r CAF CAg

and a surjective Umegaki conditional expectation E¢,  : Ug — Re, p satisty-
ing

poEGp=¢.

3. The CAR Algebra

In this section we recall some basic notions (cf. Ref. 13) concerning the Canonical
Anticommutation Relations (CAR, for short) algebra.

Let I be a set. The CAR algebra over I is the C*-algebra 2l with an identity
Iy, generators {aj,aj_}je 1, and relations

(aj)* :Clj, {a;‘i_vak}:(sjklmv {ajaak}:{aj_aaz_}:ov j,kEI,
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where {z,y} := zy + yx denotes the anticommutator. The parity automorphism ©
of A, is characterized by the property

O(a;) = —a;, @(aj) = —a;r, jel,

and induces on 2 the Zg-grading A = 2 & A_ where
Ay = {a € A|O(a) =a}, A_:={a e AUAO(a) =—a}.

Elements in 2 (resp. A_) are called even (resp. odd).

For any subset A C I, 2Ap denotes the C*-subalgebra of 2 generated by
{a;, aj'|j € A}. Clearly ©(2,) = 2y, therefore the Zs-grading is extended to each
A5, that is in obvious notations, A = Ax 4+ S ™AA,—. This allows to define the map
©A : A+ A which is the the identity on A, and © on Ax. A state ¢ € S() is
said to be even if it is ©-invariant.

If I = Z¢, the space translations naturally act on 2 as automorphisms, and it is
well known that a translation invariant state ¢ € S() is automatically even, see
e.g. Ref. 13, Example 5.2.21. Notice t}lat, the CAR algebra is isomorphic to the C*-

infinite tensor product Q. Mg((C)C , but the isomorphism does not preserve the
natural localization. Hence, it does not intertwine with the corresponding Markov
chains, see Sec. 6.

For the convenience of the reader, we report in the case when I is countable,
the Klein—Wigner transformation establishing the mentioned isomorphism between
the CAR algebra and the (infinite) tensor product over I of My(C). Define U; :=

ajaj_ - qj'aj, j = 1,2,..., the last being any enumeration of I. Put Vp := Iy,
Vi=1I._, Un,

e11(j) = ajaj ) e12(j) == Vj_1aj,

e21(j) := Vi1aj ex(j) == aja;.

{exi(4)|k,1 = 1,2} e provides a system of commuting 2 x 2 matrix-units realizing
the mentioned isomorphism.

4. Markov States on the CAR Algebra

Let the CAR algebra 21 := 2A; be on a totally ordered countable set I containing,
possibly a smallest element j_ or a greatest element j;. In other words, I is order-
isomorphic to Z, Z_ or Z, and, in this identification, j_ (j4) becomes equal to —oo
(+00).” We deal only with locally faithful even states and ©-equivariant (i.e. OF =
EO) quasi-conditional expectations without further mention. This allows us to
deal with examples, just the even Markov states and chains, suitable for physical
applications.
The following definition specializes Definition 2.2 to the present situation.

bWe are omitting the simpler case |I| < 4-oo.
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Definition 4.1. A state ¢ on 2 is called a Markov state if, for each n < j, there
exists a quasi-conditional expectation FEj, w.r.t. the triplet 2,,_;; C 2, C 2,4y
satisfying
¥n) © En = @ni1y,
E, (Ql[n,n+1]) - Ql{n} .
We show that the Markov property defined above can be stated by a sequence
of global quasi-conditional expectations, or equally well by sequences of local or

global conditional expectations. In addition, putting e, := E, |—Q[[nm 410 1t will be
enough to consider the ergodic limits

which give rise to a sequence of two-step conditional expectations, called transition
expectations in the sequel.

Proposition 4.2. Let ¢ be a state on the CAR algebra. The following assertions
are equivalent.

(i) ¢ is a Markov state;
(ii) the properties listed in Definition 4.1 are satisfied if we replace the quasi-
conditional expectations E,, with conditional expectations Ey;
(iii) for each n < jy, there exists a conditional expectation Eyy : A — R(Epy) C Ay
satisfying

¥ o 571] =¥,
En)(Rn) CApnys

(iv) the properties listed in (iii) are satisfied if we replace the conditional expecta-
tions Eyp) with quasi-conditional expectations E,).

Proof. It is enough to prove (i)=(ii) and (ii)=-(iii), the remaining implications
being trivial.

(i)=(ii) Consider the restriction E} := En[a, ..,
tive, identity-preserving map leaving invariant a faithful state. Taking the ergodic

, which is a completely posi-

limit
m—1
g =1lim— Y (E})"
lglnmhzo( )"

we provide a projective sequence of conditional expectation defined on A, 417 (n

fixed) leaving invariant the state p[ay, .-

The direct limit lim £*
klj_
uniquely determines a sequence {€,},<;, of conditional expectations fulfilling the
required properties.
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(ii)=-(iii) Let m > n, define
5n,m, 5:gno"'o m—1 -
As
En m—+k [leq] =&Em [Q[mil], the direct limit lim (c/‘mm
mlj4
uniquely determines a sequence {&,) }n<;, of conditional expectations fulfilling the
required properties. O

Proposition 4.3. Let €,:Ap;, 541) = R(en) C Agny be a conditional expectation
as above. The formula
Enlzy) = zen(y), r€Ay_q, Y € App ny1 (4.1)

uniquely defines a (even) conditional expectation of U, 1) into Ay,

Proof. We start by noticing that, if &,, is even, then &, given by (4.1) is automat-
ically even, provided that the latter is well-defined.
Let a € ™, 41)- Then it can be written in a unique way as

a= Z C(jn7jn+1)(kn,kn+1)e(n)jnkne(n + 1)jn+1kn+1 ) (4'2)

where ¢ i) (knknss) € HUn—1) are uniquely determined, and the products
e(n)jpkne(m + 1), 1kny, given in Sec. 3, provide a system of matrix-units for
App,nt1)- We put for a € A, q) written as in (4.2),

5n(a) = Z c(jn,jvz+1)(k7z;k7z+1)€n(e(n)jnkne(n + 1)jn+1kn+1) :

It is easy to show that &, is a well-defined linear map. After some algebraic ma-
nipulation, one can show also that £, is a norm-one projection onto a *-subalgebra
of 2,,), that is a conditional expectation. We verify the complete positivity leaving
the remaining details to the reader.

Fix a sequence {b;} C 2, 41). We can write b; = ) ¢} eq, where a denotes the
generic index (jn, jnt1)(kn, kns1). We compute

En(bib}) = En Z cfxeaezcé*

=&, Zc cﬁ++aaﬁ) )eaez
= Zc T Fo(a 6) “en(eaes)

= Z cgen(eae}})cé* .
o,
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Here, o(a, () is a sign depending on the parity of eqej; (the last being always
even or odd), and the last equality follows by ©-equivariance which implies that
En(eae*ﬁ) has the same parity as eqej. As g, is completely positive, the matrix
[en(ea€)y)la,p is positive, which implies that the matrix [£,(b;b})]; ; is positive too,
see e.g. Sec. IV.3 of Ref. 22. O

As is stated in Proposition 4.2, the main object is the ©-equivariant transition
conditional expectation £,,. We start by investigating all the ©-invariant subalgebras
of A¢py. Of course, CI and My (C) are trivially ©-invariant. It remains open the
case when the ©-invariant subalgebra is a maximal abelian subalgebra of My (C).

Proposition 4.4. We have two posibilities for the ©-invariant maximal Abelian
subalgebras of the CAR algebra generated by a, a™:

(i) one is generated by the projections aa™ and a™a,
(ii) the other one is generated by the projections Q5 and Q_,, where

1
QX::§(I+xa+>Za+), x€T,
T being the unit circle.

Proof. Let P be one of the minimal projection generating the algebra under con-
sideration. Notice that [P,©(P)] = 0. Let P = P + P_ the splitting of P into even
and odd parts. If ©(P) is different from P, then ©(P) = I — P, which is equivalent
to P = @, for some x € T. The remaining possibility is ©(P) = P, which means
P=aat,or P=a"ta. O

In the notations of Proposition 4.2, denote
En = gn [m[n,n-H] ’ ne I\{]Jr} .
Lemma 4.5. If R(cn) = Ay, then e, (Ani1y,—) = 0.

Proof. If z,4; € A(nt1y is odd, then x,41 anticommutes with ap, at. Hence,
€n(Tps1) anticommutes with a,, a as well. As by ©-equivariance,

en(Tnt1) = aal + Bay,,
we have

anen(Tni1) = aana en(Tns1)an = aatay, .

Using the above anticomutation properties, we infer that
a(anal +ata,) =0,
which implies @ = 0. By the similar argument applied to a;, we get 8 = 0. O
We pass to exhibit all the ©-equivariant transition expectations. By Proposi-

tion 4.3, they allow us to construct all the even Markovian conditional expectations
on the CAR algebra.
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Put

Pl :=anat, Py = atan;
1 (4.3)
Qy = 5T +xan +Xay).

Proposition 4.6. Under the above assumptions, the following assertions hold true.

(i) IfR(en) = CI, then there exists an even state ®,, on U, 1] such that e,(x) =
D, ().

(ii) If R(en) = Uy +, then there exist even states @7, @y on Uy, 1) such that,
Jorx € Agny, y € Agnyrys

en(zy) = Tr(x PP @Y (y) PI' + Tr(xPy') @3 (y) Py -

iii) R(en) = Ug,y then there exists an even state ¥, on Ay, 11y such that, for
{n} {n+1}
€ Agny, ¥ € Apngays enlzy) = 2V, (y).
iv) If R(en) is generated by Q7 , Q™ ., there exists a state n?* on the reduced algebra
X X X
QYA nt 1@y such that

en(z) =y (QYzQY)QY + 1y (QYO(2)QY)Q" - (4.4)
Proof. (i) and (ii) easily follow by (2.1), (2.2), by taking into account

Ainy + \/ A1y ~ A+ @ Agry

and the O-equivariance of ¢,,.
(iii) By Lemma 4.5, if x € Ay,,3, y € Afp41), we have

zen(y) = zen(Y+) = enlzy+) = en(y+2) = enly+ )z = en(y)z.

This means that €,(y) € Z(2,y) = CI. The assertion follows again by the
O-equivariance of &,,.

(iv) It follows from (2.1), (2.2) and Proposition 4.4, by imposing the O-
equivariance of &,,. O

5. Diagonalizable Markov States

In this section we provide a decompostion of a class of Markov state, called diago-
nalizable in the sequel. These Markov states are precisely those for which case (iv)
in Proposition 4.6 never appears. This allows us to give a reconstruction theorem for
diagonalizable Markov states. These results parallel the analogous ones described
in Ref. 4.

We leave the proof of the following to the reader.

Lemma 5.1. Let ¢ be a Markov state on the CAR algebra, and {€;};_<j<;, the
associated sequence of transition expectations. Then for each k, 1 € I with k < I,
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and xy € Ql{k}, Lo, € Q({l},
o(wr - x1) = plep(Trepr1(Thrr - - er-1(T—171) - - +)))
= p(er(@ker+1(Tht1 - er—1(@—181(z1)) -+ +))) -

Let T' C I\{j4} be the set of sites n such that R(e,) = A} +. Define £ as the
trace-preserving conditional expectation of 2 onto Anr V(V,cr Ainy,+)-

Proposition 5.2. Let ¢ be a Markov state. Then ¢ = po&.

Proof. Taking into account (2.1), we get if n € T,

en(y) =Y en(PlayPl)Pl) = en (Z Pﬁﬂfﬂ?@/) = en(E(@)y) .-

k=1 k=1
Hence, by Lemma 5.1 we obtain for every k¥ < [ < j4, and xg,...,x; linear
generators of 2 ),
(@p - - w1) = p(er(@hertr(@hyr - -e@) - -+)))

= p(er(E(zr)ert1(E(zhin) - a(€(m)) ) = p(E(xr) - - E(21)

which leads to the assertion. O

We divide I'\{j} into disjoint intervals each of which consisting of points n such
that R(e,) is trivial (i.e. CI or Ay,y), or R(en) = Aqpny 4. In this way, I’ =0y T

(where CJ stands for disjoint union), and I'y, =]l — 1,7 + 1[.
Define

Q::HQk, Qp = H {1,2}, M::Huk, (5.1)
k k

lpy—1<j<rp+1

where py, is the Markov measure on €2, determined by the distributions 7TZ)J_ at place

j and the transition coefficients 77, given by
. =@(Pl), h—1<j<rg+1, wj=1,2,
o 5.2
7l w(PijP‘Zﬁl) h—1<j<r Wi, w 1,2 )
Ty k= k Lwir =1,2.
Wiwjt1 (,O(Pujj]) ’ 7%+ )

Notice that the range of the trace-preserving conditional expectation £ can be
described by the C*-algebra consisting of all continuous functions w € 2 — z(w) €
2\r. Furthermore, the measure 1 is given by the restriction of the Markov state ¢
to the Abelian C*-subalgebra generated by the projections {ng lj el w; =1,2}.

Starting from the Markov state ¢, consider for w € 2, the product state exten-
sion (product state for short, see Ref. 11)

Yo =[] trw (5.3)

k
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on Apr. Here, ¢y, is the one-step or two-step product state on 2y, ;, [ depending
only on wy,, wy,,,, constructed as follows.®

(i) If g4 is the first element of I' not equal to j_, or R(ey, 4+1) = CI, then

let1
p(zP,
ot o= D),
SO(P""%+1 )
(ii) if ry is the last element of T', or R(ey,,,—1) = Ay, , -1}, then
w5y, @)
Ukw(T) = ——=r~
) p(For, )

(iii) if the interval under consideration has on the left and on the right, elements
of T, that is it has the form [rg 4+ 1,lx4+1 — 1], then

r lkt1
@(Pw,)f ‘rPOJ )
ala) = )
@(Pwrk )@(Pwlk+1)
(iv) for rp < j < lgy1 — 1, the two-step state . (x), € A j41) appears iff
R(EJ) = CI and R(€j+1) = QL{J+1}

Notice that, by Proposition 4.6, the states 1, are even. Finally, it is easy to
show that the map

weEN— P, € S(m[\p) (54)
is measurable in the weak-* topology.

Theorem 5.3. Let ¢ be a Markov state on the CAR algebra 2.
Then ¢ admits a direct-integral decomposition

D
o= / Bl EC)(@))(dw) (5.5)
Q

where the measure space (, 1) is defined in (5.1), (5.2), £ is the trace-preserving
conditional expectation onto Apr \/ (V,cr Ainy,+), the state b, is given in (5.3)
through (i)-(iv) above, and finally the integral (5.5) is understood as a L'-direct
integral (cf. Sec. IV.8 of Ref. 22).

Proof. The proof proceedes as that of Theorem 3.2 of Ref. 4, by taking into account
the previous computations relative to the states v,,. We leave the details to the
reader. O

We pass to a reconstruction theorem which parallels the analogous one in Ref. 4.

CIf lg41 is the first element of I" not equal to j_, then r, = j_. If ry is the last element of I', then
lk+1 = j+. We are using also intervals without the boundary elements (denoted as |-, -[) in order
to take into account the possibilities j_ = —oco and/or j4+ = +oo.
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We start by choosing a subset I' C I\{j+} together with a classical Markov
process on € given in (5.1) with the Markov measure pg on € determined by

the distributions 7r£,j > 0 at place j and the transition matrices 7/, , = > 0. For
each w, form, according to the prescription (iv) above, an even one-step or two-step
product state 9, on 2\ depending only on the boundaries w;,, wi,,, of the de-
composition of I' into connected intervals (as before, the subscript k& describes such
a decomposition). Such states are well-defined, by taking into account Theorem 1
of Ref. 11. Moreover, the map given in (5.4) is measurable in the weak-* topology.

Define ¢ € S(A) as

vi= [ a0, (5:6)
Consider, for each n € T\{j+} the ©-equivariant conditional expectation
En Ay — R(En) C Ay
uniquely determined by setting for x € 4,1}, zn € Ay, Tnr1 € Agngy,

(a) En(rxnrny) := x(xpxne1) if the two-step state ¢ (x,x,41) appears in the
decomposition of 1, or n = I — 1 (I being the left boundary of some interval
of ') and %, depends on wy, ;

(b) En(xxpnxnt1) = xxy(xn41) if the one-step state 1 (x,+1) appears in the de-
composition of 1, or n = r; + 1 (ry being the right boundary of some interval

of I') and #,, depends on w;., ;
Y(PJ, Tnt1)

() En(zrpnanir) = xZinzl Troq,., (an[}n)WP[}n ifnel.

Theorem 5.4. Let ¢ € S(A) in (5.6) be constructed by the prescriptions listed
above. Then it is a Markov state w.r.t. the sequences {En}j_§n<j+ of the above-
mentioned conditional expectations.

Proof. A straightforward computation, by taking into account all the various pos-
sibilities, see the proof of Theorem 4.1 of Ref. 4. O

We pass to descript the natural connections between the Markov property and
the KMS conditions for states on CAR algebra. This provides natural applications
to quantum statistical mechanics, see Refs. 4, 5, 7-10, for other analogous connec-
tions.

Suppose we have a locally faithful state on the CAR algebra 2, then a potential
ha is canonically defined for each finite subset A of the index set I by

pra, = Tra, (e7"44). (5.7)
Such a set of potentials {hx}acr satisfies normalization conditions

TrQ[A(e*hA) =1,



Markov States and Chains on the CAR Algebra 177

together with compatibility conditions

(Tres, @ idg,)(e "4) = e "2

for finite subsets A C A, whenever 2; = B @ An.

As the structure of diagonalizable Markov states is fully understood, the set
of potentials {hy, ;} related to ¢ by (5.7) can be explicitly written, and satisfies
some nice properties. Namely, it is easy to see that the above-mentioned potentials
associated to a (locally faithful) Markov state have the form, for each k <,

-1 X
hpgg = Hy + ZHj,j+1 +H;.
j=k

Here, {H;}; <j<jis {Hj}j <j<jos {Hjj+1}j <j<j. ave sequences of even self-
adjoint operators localized in % ;y, 5 j4+1], respectively, satisfying the commutation
relations

[Hjj+1,Hjp1] =0,

(Hjj+1, Hjt1,j+2] = 0.

(Hj, Hj j41]
[va Hj]

It is then matter of routine to show that the pointwise norm-limit

:O’
:O’

lim e~k getthikn

i
exists and defines a one-parameter automorphisms group ¢t — o; on the CAR
algebra 2 which admits ¢ as a KMS state. Furthermore, ¢ has a normal faithful
extension on the von Neumann algebra 7, (2)”. In addition, as the CAR algebra is

simple, ¢ is automatically faithful.

6. Some Illustrative Examples of Markov States

In Sec. 4 we have show that there are four possibilities for the range of the transition
expectations €,. Among them, two cases give rise to the same situation of product
state. In this section, we describe, for each of these situations, the stationary Markov
states, or two-step stationary, in the case of two-block factors. The most interesting
case is described in Subsec. 4. It proves that, contrarily to what happens in the
infinite tensor product case, not all Fermi Markov states are diagonalizable in the
sense firstly described in Ref. 17, see also Ref. 16. We denote by a the one-step
right shift on Z, and set 2 := 2.

6.1. Case 1 R(en) = CI or R(en) = Agny

We start by considering the case when the range of the transition expectations €,
n € Z, are always equal to CI or ,;. It is immediate to show (by Theorem 5.3
or by direct computation) that the Markov state o is the one-step product state
given on the generators of %, by

(an - a1) = lag, @) - plagy, (@)
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In this situation, ¢ is translation-invariant iff ¢[a(,,,= ¢la,, ;00

6.2. Case 2 R(en) = A{n},+

Consider the case when the range of the transition expectations €,, are all equal
to 2,3, 4. Then, I' = Z for the set I' introduced in the previous section, and & is
the trace-preserving conditional expectation onto the maximal Abelian subalgebra
D ~ C() generated by P = a,a and Py = aay, n € Z. As explained in Sec. 5,
if x € A, £(x) is represented by a continuous complex-valued function on 2. Hence,

- / £ () (w)pldw) .
Q

Notice that, in this situation, the Markov state under consideration is the diag-
onal lifting to all of 2, of the classical Markov process on @ obtained by ¢[o.

The Markov state is translation invariant iff the underlying Markov measure
pon Q = [[,{1,2} is translation invariant, that is iff the transition coefficients
e(BIF
ﬂT _' ﬂwaw j+1
j € Z, and all the coefficients <p(PJ ) =: 7, at places j coincide with the unique
stationary distribution for the prlmltlve matrix 7 := [, ,]|. Such a Markov state
is the natural generalization of the Ising model to the CAR algebra.

The Hamiltonian for this Ising-like example is easily written taking into account
that it is a diagonal lifting of a classical Markov chain. We report it for the sake of
completeness.

we obtain

> 0 (as @ is supposed to be locally faithful) do not depend on

H;

—Zlnwﬂ H; =0,

L= E J Jj pi+l
HJ,J+1 - (lnﬂ-wJ w3+1)P P(.UJ+1 .

Wj,Wjit1

Proposition 6.1. The locally faithful translation invariant Markov state ¢ in the
situation when R(en) = Afny 4+, n € I is exponentially miving w.r.t. the spatial
translations. Moreover, m,(1)" is a type III\ von Neumann factor for some \ €
(0,1].

Proof. Consider, for ¥ = 1,2,..., the Klein-Wigner transformation (cf. Sec. 3)
obtaining the set {{emn(k)}2, ,—1|k = 1,2,...} of mutually commuting matrix-

units. Put, for j € Z,
. 2j+1, Jj=0,
k(j) = . :
_2] ’ J < 07
and consider the new local structure generated by the algebras

sB{J}’ = Span{em’ﬂ(k(j)”m?n = ]-7 2} .
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Obviously,

(1) Agjy.4 C Byjy, J € Z,

(11) [%{31}7%{j2}] =0, J1 7é J2, g1, J2 € Z,

ey v O

(iii) VjeZ By =2
Namely, 2 with the new filtration, is isomorphic to the standard spin alge-
_  _*

bra @, M2(C) , and ¢ is a diagonal lifting of a classical Markov process with

two-point state-space with primitive transition matrix. This means that ¢ is expo-

nentially mixing. In addition, m,(2)" is a type III, factor for some X € (0, 1], see
e.g. Sec. 5 of Ref. 16. O

Remark 6.2. Notice that ¢ is a Markov state also for the tensor product localiza-
tion. This is due to the fact that ¢ is a lifting on 2 of a classical Markov chain on
the Abelian algebra

5

V &4~ ®Q‘{j},+v ;

jez JET

and Ql{j},+ C %{j} as well.

6.3. Case 3 two-block factor

Other interesting examples are the two-block factors. These (two) examples arise
when the ranges of the transition expectations e, are alternatively CI and 2y,
say, R(e2,) = CI and R(e2n41) = Af2n+13- In the last situation, we get

P(TorTort1 -+ Taa41) = Pl onrn (T2kT2k41) - Ol 000 (T2T2141)

i.e. it is a two-point product state extension. It is two-step translation invariant iff

_ 2
gp[mm[Qn,Qn%—l] = Pl 2,205 007
The other (isomorphic) case is obtained by shifting of one-step the previous one.

6.4. Case 4 R(en) =CQy ®CQ™

We discuss the most interesting example of Fermi Markov state associated to the
transition expectations satisfying the properties in (iv) of Proposition 4.6. To sim-
plify, we restrict ourselves to the translation invariant situation.

For the 7} in (4.4), set 1y := 772 oa~ ™. Let {&, }nen be the sequence of Umegaki
conditional expectations constructed by (4.4), according to Proposition 4.2. Let

v =n(QLPQY).
Consider the invariant distribution for & o afe,, Whose density w € ;o) can

be easily computed as

w = yagagd + (1 —7)agao .
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With py, := Tra(,, (w-), the sequence of states

Yni=pwo&o---o0 (gn[mlovn])

defines a strongly clustering quantum Markov chain on 2 (see below) which is
actually a quantum Markov state as it is invariant w.r.t. the ©-equivariant transition
expectation given, for x € 2y,), y € ™Ag,413, by

En(zy) = en(rEn11(Y)) ,

with &, given in (4.4).

The last Markov state is quite different from those previously considered. For
example, it is expected that the local Hamiltonians Ay ;) defined by (5.7) does not
arise from a commuting nearest neighbor interaction, and in addition, the state ¢
is not diagonalizable in the language of Refs. 16 and 17.4

7. Markov Chains on the CAR Algebra

In this section we exhibit a general method to construct interesting classes of
Markov chains on the CAR algebra.

Let {F,}nen be a collection of completely positive identity-preserving maps
with F, : %[0 nt1] = Uo,n) satisfying for each n € N,

Fn+1 [Q[[Ovn] = idQl[g_ﬁ] )

(7.1)
Fpi10 a[m[o,n+1] = a[ﬂ[o,n] ofy,
where « is the one-step right shift. Let p € S(R;0y) satisfy
p:poFooafgl{o}. (7.2)

It is immediate to show that the sequence of states {¢, }nen, where

Pn ;:pOFoo-"O(Fn[Ql[o,n])7

is a directed sequence. Thus, it defines a state ¢ on the CAR algebra 2y which is
a quantum Markov chain, according to Definition 2.2. Thanks to (7.1), (7.2), such
a ¢ € S(Un) is shift-invariant, that is it uniquely extends to a shift-invariant state
(called again ) on A := Az. We call such a shift-invariant state on 2 the quantum
Markov chain generated by the pair ({F, }nen, p). See also Ref. 20 for quite similar
considerations.

dIn order to see that the last object is highly nontrivial, we compute o(zy), for x € A0y, y € Apay-
Let V' € g 1] be the partial isometry such that V*V = ng, VV* = Q?(' Put § := 779( (V(xa1 +
)’(af)Qg)). We have in bra-ket notation,

e(zy) = (xolz+|x0) (xaly+Ix1) + 6(xolz—|xg ) (x1ly—Ix1),

where |xo), |xg) are the (unique up to a phase) normalized eigenvectors of Qg)(, Q(lx = Q())(J-
respectively, considered as operators in 2y = Mo (C) (notice that ¢ depends on the even part
Z4+y++x_y—_ of zy). Namely, nondiagonal terms involving the odd parts of z, y, naturally appear.
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For A C Z, denote &Y the conditional expectation onto 25 preserving the nor-
malized trace 7 of ™. Let K € 2o 1) 4 satisfy

EQKK") =1. (7.3)

Such an operator is said to be a conditional amplitude. Define
Fy 1= €2 (a" (K) - " (K*)) (7.4)
Proposition 7.1. The sequence {Fy,}nen, with the Fy, as in (7.4), defines a quan-

tum Markov chain on the CAR algebra associated to the pair ({Fy}nen, p), provided
that p € S(Aoy) fulfils (7.2).

Proof. Immediate by (7.3), and the fact that K is even. m|
We pass to exhibit some pivotal examples of Markov chains on the CAR algebra.
Define
U= alaa’ + aoa;r .

Put V' = exp(kU/2), where x € R. It is clear that each V is positive and even.
We have by (4.3), U? = P)P! + PY)P}. This means that U?" = U?, U?"+! = U.
After considering the power series defining exp(kU), a simple computation leads to

exp(kU) = I + (sinh k)U + (coshk — 1)U?.
In order to check (7.3), we use Theorem 4.7 of Ref. 10. We compute
E(V?) = &5 (exp(rU))

. 1.
= ldm{o} ® TI—Ql{l},+ (i(ldm[o,l] + 9{1} |—91[0,1] (exp(nU))))

= I + (coshx — 1)ida,, ®T|—Q[{1}7+(U2)

I COSh;_l(Plo—i—on): 1+0208h/<51_

/ 2
Ki=y/—V 7.5
1+ coshk (7.5)

fulfills (7.3). Now, consider the linear map 88] (Ka(-)K) of 20y into itself. Such a

map has a matricial representation w.r.t. the canonical basis {ao, aa’, aoaa' , aa' ap}

This means that

of 2oy, which can be computed after some calculations, as

2sinh k/2

0 0 0
1+ coshk
2sinh /2
A= 0 1+ coshk 0 0 (7.6)
0 0 /2 1/2

0 0 /2 1/2
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Summarizing, we have the following;:

Proposition 7.2. The pair ({Fy}nen, T2y, ), with the Fy, constructed by (7.4),
(7.5), defines a Markov chain on the CAR algebra over the index set Z which is
exponentially mixing.

Proof. By taking into account the previous considerations and Proposition 7.1, it
is enough to compute the peripheral spectrum and the invariant distributions for the
completely positive identity-preserving map 58] (Ka(-)K) whose matrix representa-
tion is given in (7.6). It is almost immediate to show that the peripheral spectrum
of the symmetric matrix A consists of 1 alone. By quite a standard argument, we
infer that the chain is exponentially mixing, see e.g. Refs. 2 and 14. Moreover, in
order to determine the unique invariant distribution, it is enough to compute the
left eigenspace corresponding to the eigenvalue 1 of the matrix SAY. ~!, where

0 1 0 O
1 0 0 O
%= 0 0 1 0
0 0 0 1

The one-dimensional left eigenspace for YAX ™! is generated by the left eigen-
vector (0, 0, 1/2, 1/2), that is the unique invariant distribution is the canonical
trace on RAyg;.° O

Along the same line, it is easy to see that the conditional amplitude R :=
expitU, t € R leads to a Markov chain on 2. Namely, (7.3) is automatically satisfied
by unitarity. Furthermore, the matrix representation of 58](Ra(~)R*) has the form

0 O 0 0
0 O 0 0
B=1|o o 1+sin?t cos?t
2 2
0 0 cos?t 1+ sin®t
2 2

This means that, provided t # 7/2 + k7, k € Z, and starting with the unique
stationary distribution for 58] (Ra(-)R*) given again by the canonical normalized
trace on RA(gy, we exhibit another class of exponentially mixing Markov chains.

¢The appearance of 3 is explained as follows. Under our convention, to each € M2(C) we define
a column-vector X € C*, given by

Then Tr(zy) = X!2Y.
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