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We introduce the notion of Markov states and chains on the Canonical Anticommutation
Relations algebra over Z, emphasizing some remarkable differences with the infinite
tensor product case. We describe the structure of the Markov states on this algebra
and show that, contrarily to the infinite tensor product case, not all these states are

diagonalizable. A general method to construct nontrivial quantum Markov chains on the
CAR algebra is also proposed and illustrated by some pivotal examples. This analysis
provides a further step for a satisfactory theory of quantum Markov processes.
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1. Introduction

Recently, Araki and Moriya9–12 have developed the statistical mechanics of systems

on the CAR algebra. In particular, they have introduced the notion of “product

state” on those algebras and determined their structure. On the other hand, in the

case of infinite tensor products, it is known that the quantum Markov chains intro-

duced in Refs. 1 and 2 can be realized as local perturbations of product states. It is

therefore natural to investigate the possibility of constructing the CAR analogue of
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the quantum Markov states and chains. In this paper we show how to realize such

an extension.

The paper is organized as follows. In Sec. 2 we propose a definition which unifies

the notions of Markov state and of Markov chain extending a proposal of Ohno,20

and including all the presently known examples. In Sec. 3 we recall some known facts

about the CAR algebra. Section 4 is devoted to investigate some general properties

of quantum Markov states on the CAR algebra. In particular, we classify all the

even Markovian conditional expectations on the CAR algebra. Such conditional

expectations naturally arise in the study and the construction of quantum Markov

states. In Sec. 5 we study the diagonalizable Markov states, a situation which is

similar to what one finds in the case of infinite tensor product.

The main result in this paper is Sec. 6, Subsec. 6.4, where we prove that, con-

trarily to what happens in the tensor product case, on the Fermion algebra there

exist nondiagonalizable Markov states. The structure of these states is explicitly

described.

In Sec. 7 we describe a general method to construct Markov chains on the CAR

algebra. Section 7 also contains concrete examples of Fermi Markov chains.

The theory of quantum Markov chains on infinite tensor products of matrix

algebras (lattice systems) has been greatly enriched by the results of Fannes, Nac-

thergaele, Werner,14,15 Hiai, Petz,18 and Matsui19 where quantum Markov chains

(more precisely, the subclass of these chains constructed in Theorem 4 of Ref. 2)

are often called “C∗-finitely correlated states or algebraic states” (see also Ref. 6

for some connected results). Some of these papers also prove that quantum Markov

chains emerge naturally, in several physically relevant models, as ground states of

certain nearest neighbor Hamiltonians. Recently, quantum Markov states have been

shown to emerge naturally also in quantum information theory.21 Our hope is that

similar extensions and applications can also be found for Markov chains on the

CAR algebra.

2. Quasi Local Algebras and the Markov Propery

By a (Umegaki) conditional expectation E : A 7→ B ⊂ A we mean a norm-one

projection of the C∗-algebra A onto a C∗-subalgebra (with the same identity I) B.

The map E is automatically a completely positive identity-preserving B-bimodule

map. When A is a matrix algebra, the structure of a conditional expectation is well

known. Indeed, let A be a full matrix algebra and consider the (finite) set {Pi} of

minimal central projections of the range B of E, we have

E(x) =
∑

i

E(PixPi)Pi . (2.1)

Then E is uniquely determined by its values on the reduced algebras

APi
:= PiAPi = Ni ⊗ N̄i ,
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where Ni ∼ BPi
:= BPi and N̄i ∼ B′

Pi
:= B′Pi.

a In fact, there exist states φi on

N̄i such that

E(Pi(a⊗ ā)Pi) = φi(ā)Pi(a⊗ I)Pi . (2.2)

Consider a triplet C ⊂ B ⊂ A of unital C∗-algebras. A quasi-conditional expec-

tation w.r.t. the given triplet, is a completely positive, identity-preserving linear

map E : A 7→ B such that

E(ca) = cE(a) , a ∈ A , c ∈ C .

Notice that, as the quasi-conditional expectation E is a real map, we have

E(ac) = E(a)c , a ∈ A , c ∈ C

as well.

If ϕ is a normal faithful state on theW ∗-algebra A, the ϕ-conditional expectation

Eϕ : A 7→ B preserving the restriction of ϕ to the W ∗-subalgebra B, provides an

example of quasi-conditional expectation. Namely, it is enough to choose for C

any unital C∗-subalgebra of B contained in the Eϕ-fixed point algebra. The ϕ-

conditional expectation Eϕ is a Umegaki conditional expectation if and only if the

modular group of ϕ leaves globally stable the subalgebra B, see Ref. 3.

Let X be a fixed set, and I a directed family of subsets of X closed under

difference, equipped with a map d : I → I such that

(i)
⋃

{F |F ∈ I} = X ,

(ii) dF ⊆ F , F ∈ I,

(iii) F ⊆ G =⇒ dF ⊆ dG,

(iv) if {Fα} is any family in I such that Fa ↑ X (i.e.
⋃

α Fα = X), then dFα ↑ X .

This abstract formulation unifies Nelson’s topological Markov property with

Dobrushin’s discrete d-Markov property.

A quasi-local algebra associated with the family I of subsets of X is a C∗-

algebra A equipped with an isotonic family {AF}F∈I of local C∗-algebras such

that
⋃

{AF |F ∈ I} is dense in A.

Definition 2.1. For F , G ∈ I with F ⊆ G, a linear map EG,F : AG 7→ AF is said

to enjoy the d-Markov property if

EG,F (AG\F ) ⊆ AF\dF .

In the notations of Definition 2.1, consider

(i) an increasing sequence {Fn}n∈N in I such that

Fn−1 ⊆ dFn ⊆ Fn ↑ X ,

aThe commutant B′ is considered in the ambient algebra A.
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(ii) a sequence of d-Markovian quasi-conditional expectations

EFn+1,Fn
: AFn+1 7→ AFn

w.r.t. the triplet AdFn
⊆ AFn

⊆ AFn+1 ,

(iii) a state ϕF0 ∈ S(AF0).

Definition 2.2. A state ϕ ∈ S(A) is called a d-Markov chain for the localization

{AFn
}n∈N, if

ϕ = lim
n
ϕF0 ◦EF1,F0 ◦ · · · ◦EFn,Fn−1

in the ∗-weak topology, for some sequence {EFn+1,Fn
}n∈N of quasi-conditional ex-

pectation as above.

The state ϕ is called a d-Markov state for the localization {AFn
}n∈N, if

ϕdFn
◦EFn+1,Fn

= ϕdFn+1 , n ∈ N

for some sequence {EFn+1,Fn
}n∈N of quasi-conditional expectation as above.

As mentioned in the introduction, this definition of d-Markov chain extends

the notion of “generalized Markov state” introduced by Ohno (cf. Definition 2.1 of

Ref. 20).

A d-Markov state is also a d-Markov chain. It is well known that the converse

is not true in general.

In some interesting situation (cf. Refs. 4, 5, 7, and Proposition 4.2 below), the

following statements are equivalent:

(i) ϕ is a faithful d-Markov state,

(ii) each EG,F can be chosen to be the ϕ-conditional expectation from AG into

AF ,

(iii) there exists a subalgebra RG,F with

AdF ⊆ RG,F ⊆ AF ⊆ AG

and a surjective Umegaki conditional expectation E◦
G,F : AG 7→ RG,F satisfy-

ing

ϕ ◦E◦
G,F = ϕ .

3. The CAR Algebra

In this section we recall some basic notions (cf. Ref. 13) concerning the Canonical

Anticommutation Relations (CAR, for short) algebra.

Let I be a set. The CAR algebra over I is the C∗-algebra A with an identity

IA, generators {aj , a
+
j }j∈I , and relations

(aj)
∗ = a+

j , {a+
j , ak} = δjkIA , {aj , ak} = {a+

j , a
+
k } = 0 , j, k ∈ I ,
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where {x, y} := xy+ yx denotes the anticommutator. The parity automorphism Θ

of A, is characterized by the property

Θ(aj) = −aj , Θ(a+
j ) = −a+

j , j ∈ I ,

and induces on A the Z2-grading A = A+ ⊕ A− where

A+ := {a ∈ A|Θ(a) = a} , A− := {a ∈ A|Θ(a) = −a} .

Elements in A+ (resp. A−) are called even (resp. odd).

For any subset Λ ⊂ I , AΛ denotes the C∗-subalgebra of A generated by

{aj , a
+
j |j ∈ Λ}. Clearly Θ(AΛ) = AΛ, therefore the Z2-grading is extended to each

AΛ, that is in obvious notations, AΛ = AΛ,+ ⊕AΛ,−. This allows to define the map

ΘΛ : A 7→ A which is the the identity on AΛc , and Θ on AΛ. A state ϕ ∈ S(A) is

said to be even if it is Θ-invariant.

If I = Zd, the space translations naturally act on A as automorphisms, and it is

well known that a translation invariant state ϕ ∈ S(A) is automatically even, see

e.g. Ref. 13, Example 5.2.21. Notice that, the CAR algebra is isomorphic to the C∗-

infinite tensor product
⊗

Zd M2(C)
C∗

, but the isomorphism does not preserve the

natural localization. Hence, it does not intertwine with the corresponding Markov

chains, see Sec. 6.

For the convenience of the reader, we report in the case when I is countable,

the Klein–Wigner transformation establishing the mentioned isomorphism between

the CAR algebra and the (infinite) tensor product over I of M2(C). Define Uj :=

aja
+
j − a+

j aj , j = 1, 2, . . ., the last being any enumeration of I . Put V0 := IA,

Vj :=
∏j
n=1 Un,

e11(j) := aja
+
j , e12(j) := Vj−1aj ,

e21(j) := Vj−1a
+
j , e22(j) := a+

j aj .

{ekl(j)|k, l = 1, 2}j∈I provides a system of commuting 2 × 2 matrix-units realizing

the mentioned isomorphism.

4. Markov States on the CAR Algebra

Let the CAR algebra A := AI be on a totally ordered countable set I containing,

possibly a smallest element j− or a greatest element j+. In other words, I is order-

isomorphic to Z, Z− or Z+ and, in this identification, j− (j+) becomes equal to −∞

(+∞).b We deal only with locally faithful even states and Θ-equivariant (i.e. ΘE =

EΘ) quasi-conditional expectations without further mention. This allows us to

deal with examples, just the even Markov states and chains, suitable for physical

applications.

The following definition specializes Definition 2.2 to the present situation.

bWe are omitting the simpler case |I| < +∞.
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Definition 4.1. A state ϕ on A is called a Markov state if, for each n < j+, there

exists a quasi-conditional expectation En w.r.t. the triplet An−1] ⊂ An ⊂ An+1]

satisfying

ϕn] ◦En = ϕn+1] ,

En(A[n,n+1]) ⊂ A{n} .

We show that the Markov property defined above can be stated by a sequence

of global quasi-conditional expectations, or equally well by sequences of local or

global conditional expectations. In addition, putting en := EndA[n,n+1]
, it will be

enough to consider the ergodic limits

εn := lim
m

1

m

m−1
∑

h=0

(en)
h ,

which give rise to a sequence of two-step conditional expectations, called transition

expectations in the sequel.

Proposition 4.2. Let ϕ be a state on the CAR algebra. The following assertions

are equivalent.

(i) ϕ is a Markov state;

(ii) the properties listed in Definition 4.1 are satisfied if we replace the quasi-

conditional expectations En with conditional expectations En;

(iii) for each n < j+, there exists a conditional expectation En] : A 7→ R(En]) ⊂ An]

satisfying

ϕ ◦ En] = ϕ ,

En](A[n) ⊂ A{n} ;

(iv) the properties listed in (iii) are satisfied if we replace the conditional expecta-

tions En] with quasi-conditional expectations En].

Proof. It is enough to prove (i)⇒(ii) and (ii)⇒(iii), the remaining implications

being trivial.

(i)⇒(ii) Consider the restriction Ekn := EndA[k,n+1]
which is a completely posi-

tive, identity-preserving map leaving invariant a faithful state. Taking the ergodic

limit

Ekn := lim
m

1

m

m−1
∑

h=0

(Ekn)h ,

we provide a projective sequence of conditional expectation defined on A[k,n+1] (n

fixed) leaving invariant the state ϕdA[k,n+1]
.

The direct limit lim
−→

k↓j−

Ekn

uniquely determines a sequence {En}n<j+ of conditional expectations fulfilling the

required properties.
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(ii)⇒(iii) Let m > n, define

En,m := En ◦ · · · ◦ Em−1 .

As

En,m+kdAm−1]
= En,mdAm−1]

, the direct limit lim
−→

m↑j+

En,m

uniquely determines a sequence {En]}n<j+ of conditional expectations fulfilling the

required properties.

Proposition 4.3. Let εn: A[n,n+1] 7→ R(εn) ⊂ A{n} be a conditional expectation

as above. The formula

En(xy) := xεn(y) , x ∈ An−1] , y ∈ A[n,n+1] (4.1)

uniquely defines a (even) conditional expectation of An+1] into An].

Proof. We start by noticing that, if εn is even, then En given by (4.1) is automat-

ically even, provided that the latter is well-defined.

Let a ∈ An+1]. Then it can be written in a unique way as

a =
∑

c(jn,jn+1)(kn,kn+1)e(n)jnkn
e(n+ 1)jn+1kn+1 , (4.2)

where c(jn,jn+1),(kn,kn+1) ∈ An−1] are uniquely determined, and the products

e(n)jnkn
e(n + 1)jn+1kn+1 given in Sec. 3, provide a system of matrix-units for

A[n,n+1]. We put for a ∈ An+1] written as in (4.2),

En(a) :=
∑

c(jn,jn+1)(kn,kn+1)εn(e(n)jnkn
e(n+ 1)jn+1kn+1) .

It is easy to show that En is a well-defined linear map. After some algebraic ma-

nipulation, one can show also that En is a norm-one projection onto a ∗-subalgebra

of An], that is a conditional expectation. We verify the complete positivity leaving

the remaining details to the reader.

Fix a sequence {bi} ⊂ An+1]. We can write bi =
∑

α c
i
αeα, where α denotes the

generic index (jn, jn+1)(kn, kn+1). We compute

En(bib
∗
j ) ≡ En





∑

α,β

ciαeαe
∗
βc
j
β
∗





= En





∑

α,β

ciα(cjβ
∗
+ + σ(α, β)cjβ

∗
−)eαe

∗
β





=
∑

α,β

ciα(cjβ
∗
+ + σ(α, β)cjβ

∗
−)εn(eαe

∗
β)

=
∑

α,β

ciαεn(eαe
∗
β)c

j
β
∗ .
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Here, σ(α, β) is a sign depending on the parity of eαe
∗
β (the last being always

even or odd), and the last equality follows by Θ-equivariance which implies that

εn(eαe
∗
β) has the same parity as eαe

∗
β. As εn is completely positive, the matrix

[εn(eαe
∗
β)]α,β is positive, which implies that the matrix [En(bib

∗
j )]i,j is positive too,

see e.g. Sec. IV.3 of Ref. 22.

As is stated in Proposition 4.2, the main object is the Θ-equivariant transition

conditional expectation εn. We start by investigating all the Θ-invariant subalgebras

of A{n}. Of course, CI and M2(C) are trivially Θ-invariant. It remains open the

case when the Θ-invariant subalgebra is a maximal abelian subalgebra of M2(C).

Proposition 4.4. We have two posibilities for the Θ-invariant maximal Abelian

subalgebras of the CAR algebra generated by a, a+:

(i) one is generated by the projections aa+ and a+a,

(ii) the other one is generated by the projections Qχ and Q−χ, where

Qχ :=
1

2
(I + χa+ χ̄a+) , χ ∈ T ,

T being the unit circle.

Proof. Let P be one of the minimal projection generating the algebra under con-

sideration. Notice that [P,Θ(P )] = 0. Let P = P+ +P− the splitting of P into even

and odd parts. If Θ(P ) is different from P , then Θ(P ) = I −P , which is equivalent

to P = Qχ for some χ ∈ T. The remaining possibility is Θ(P ) = P , which means

P = aa+, or P = a+a.

In the notations of Proposition 4.2, denote

εn := EndA[n,n+1]
, n ∈ I\{j+} .

Lemma 4.5. If R(εn) = A{n}, then εn(A{n+1},−) = 0.

Proof. If xn+1 ∈ A{n+1} is odd, then xn+1 anticommutes with an, a
+
n . Hence,

εn(xn+1) anticommutes with an, a
+
n as well. As by Θ-equivariance,

εn(xn+1) = αa+
n + βan ,

we have

anεn(xn+1) = αana
+
n , εn(xn+1)an = αa+

n an .

Using the above anticomutation properties, we infer that

α(ana
+
n + a+

n an) = 0 ,

which implies α = 0. By the similar argument applied to a+
n , we get β = 0.

We pass to exhibit all the Θ-equivariant transition expectations. By Proposi-

tion 4.3, they allow us to construct all the even Markovian conditional expectations

on the CAR algebra.
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Put

Pn1 := ana
+
n , Pn2 := a+

n an ;

Qnχ :=
1

2
(I + χan + χ̄a+

n ) .

(4.3)

Proposition 4.6. Under the above assumptions, the following assertions hold true.

(i) If R(εn) = CI, then there exists an even state Φn on A[n,n+1] such that εn(x) =

Φn(x)I.

(ii) If R(εn) = A{n},+, then there exist even states Φn1 , Φn2 on A{n+1} such that,

for x ∈ A{n}, y ∈ A{n+1},

εn(xy) = Tr(xP n1 )Φn1 (y)Pn1 + Tr(xPn2 )Φn2 (y)Pn2 .

(iii) R(εn) = A{n} then there exists an even state Ψn on A{n+1} such that, for

x ∈ A{n}, y ∈ A{n+1}, εn(xy) = xΨn(y).

(iv) If R(εn) is generated by Qnχ, Q
n
−χ, there exists a state ηnχ on the reduced algebra

QnχA[n,n+1]Q
n
χ such that

εn(x) = ηnχ(QnχxQ
n
χ)Qnχ + ηnχ(QnχΘ(x)Qnχ)Qn−χ . (4.4)

Proof. (i) and (ii) easily follow by (2.1), (2.2), by taking into account

A{n},+

∨

A{n+1} ∼ A{n},+ ⊗ A{n+1} ,

and the Θ-equivariance of εn.

(iii) By Lemma 4.5, if x ∈ A{n}, y ∈ A{n+1}, we have

xεn(y) = xεn(y+) = εn(xy+) = εn(y+x) = εn(y+)x = εn(y)x .

This means that εn(y) ∈ Z(A{n}) ≡ CI . The assertion follows again by the

Θ-equivariance of εn.

(iv) It follows from (2.1), (2.2) and Proposition 4.4, by imposing the Θ-

equivariance of εn.

5. Diagonalizable Markov States

In this section we provide a decompostion of a class of Markov state, called diago-

nalizable in the sequel. These Markov states are precisely those for which case (iv)

in Proposition 4.6 never appears. This allows us to give a reconstruction theorem for

diagonalizable Markov states. These results parallel the analogous ones described

in Ref. 4.

We leave the proof of the following to the reader.

Lemma 5.1. Let ϕ be a Markov state on the CAR algebra, and {εj}j−≤j<j+ the

associated sequence of transition expectations. Then for each k, l ∈ I with k < l,
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and xk ∈ A{k}, . . . , xl ∈ A{l},

ϕ(xk · · ·xl) = ϕ(εk(xkεk+1(xk+1 · · · εl−1(xl−1xl) · · ·)))

= ϕ(εk(xkεk+1(xk+1 · · · εl−1(xl−1εl(xl)) · · ·))) .

Let Γ ⊂ I\{j+} be the set of sites n such that R(εn) = A{n},+. Define E as the

trace-preserving conditional expectation of A onto AI\Γ

∨

(
∨

n∈Γ A{n},+).

Proposition 5.2. Let ϕ be a Markov state. Then ϕ = ϕ ◦ E.

Proof. Taking into account (2.1), we get if n ∈ Γ,

εn(xy) =

2
∑

k=1

εn(P
n
k xyP

n
k )Pnk ) = εn

(

2
∑

k=1

Pnk xP
n
k y

)

= εn(E(x)y) .

Hence, by Lemma 5.1 we obtain for every k < l < j+, and xk, . . . , xl linear

generators of A[k,l],

ϕ(xk · · ·xl) = ϕ(εk(xkεk+1(xk+1 · · · εl(xl) · · ·)))

= ϕ(εk(E(xk)εk+1(E(xk+1) · · · εl(E(xl)) · · ·))) = ϕ(E(xk) · · · E(xl))

which leads to the assertion.

We divide I\{j+} into disjoint intervals each of which consisting of points n such

that R(εn) is trivial (i.e. CI or A{n}), or R(εn) = A{n},+. In this way, Γ =
◦
∪k Γk

(where
◦
∪ stands for disjoint union), and Γk =]lk − 1, rk + 1[.

Define

Ω :=
∏

k

Ωk , Ωk :=
∏

lk−1<j<rk+1

{1, 2} , µ :=
∏

k

µk , (5.1)

where µk is the Markov measure on Ωk determined by the distributions πjωj
at place

j and the transition coefficients πjωjωj+1
given by

πjωj
= ϕ(P jωj

) , lk − 1 < j < rk + 1 , ωj = 1, 2 ,

πjωjωj+1
=
ϕ(P jωj

P j+1
ωj+1

)

ϕ(P jωj )
, lk − 1 < j < rk , ωj , ωj+1 = 1, 2 .

(5.2)

Notice that the range of the trace-preserving conditional expectation E can be

described by the C∗-algebra consisting of all continuous functions ω ∈ Ω 7→ x(ω) ∈

AI\Γ. Furthermore, the measure µ is given by the restriction of the Markov state ϕ

to the Abelian C∗-subalgebra generated by the projections {P jωj
|j ∈ Γ, ωj = 1, 2}.

Starting from the Markov state ϕ, consider for ω ∈ Ω, the product state exten-

sion (product state for short, see Ref. 11)

ψω =
∏

k

ψk,ω , (5.3)
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on AI\Γ. Here, ψk,ω is the one-step or two-step product state on A]rk,lk+1[ depending

only on ωrk
, ωlk+1

, constructed as follows.c

(i) If lk+1 is the first element of Γ not equal to j−, or R(εrk+1) = CI , then

ψk,ω(x) :=
ϕ(xP

lk+1
ωlk+1

)

ϕ(P
lk+1
ωlk+1

)
;

(ii) if rk is the last element of Γ, or R(εlk+1−1) = A{lk+1−1}, then

ψk,ω(x) :=
ϕ(P rk

ωrk
x)

ϕ(P rk
ωrk

)
;

(iii) if the interval under consideration has on the left and on the right, elements

of Γ, that is it has the form [rk + 1, lk+1 − 1], then

ψk,ω(x) :=
ϕ(P rk

ωrk
xP

lk+1
ωlk+1

)

ϕ(P rk
ωrk

)ϕ(P
lk+1
ωlk+1

)
;

(iv) for rk < j < lk+1 − 1, the two-step state ψk,ω(x), x ∈ A[j,j+1] appears iff

R(εj) = CI and R(εj+1) = A{j+1}.

Notice that, by Proposition 4.6, the states ψω are even. Finally, it is easy to

show that the map

ω ∈ Ω 7→ ψω ∈ S(AI\Γ) (5.4)

is measurable in the weak-∗ topology.

Theorem 5.3. Let ϕ be a Markov state on the CAR algebra A.

Then ϕ admits a direct-integral decomposition

ϕ =

∫ ⊕

Ω

ψω(E(·)(ω))µ(dω) , (5.5)

where the measure space (Ω, µ) is defined in (5.1), (5.2), E is the trace-preserving

conditional expectation onto AI\Γ

∨

(
∨

n∈Γ A{n},+), the state ψω is given in (5.3)

through (i)–(iv) above, and finally the integral (5.5) is understood as a L1-direct

integral (cf. Sec. IV.8 of Ref. 22).

Proof. The proof proceedes as that of Theorem 3.2 of Ref. 4, by taking into account

the previous computations relative to the states ψω. We leave the details to the

reader.

We pass to a reconstruction theorem which parallels the analogous one in Ref. 4.

cIf lk+1 is the first element of Γ not equal to j−, then rk = j−. If rk is the last element of Γ, then
lk+1 = j+. We are using also intervals without the boundary elements (denoted as ]·, ·[) in order
to take into account the possibilities j− = −∞ and/or j+ = +∞.
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We start by choosing a subset Γ ⊂ I\{j+} together with a classical Markov

process on Ω given in (5.1) with the Markov measure µk on Ωk determined by

the distributions πjωj
> 0 at place j and the transition matrices πjωjωj+1

> 0. For

each ω, form, according to the prescription (iv) above, an even one-step or two-step

product state ψω on AI\Γ depending only on the boundaries ωrk
, ωlk+1

, of the de-

composition of Γ into connected intervals (as before, the subscript k describes such

a decomposition). Such states are well-defined, by taking into account Theorem 1

of Ref. 11. Moreover, the map given in (5.4) is measurable in the weak-∗ topology.

Define ψ ∈ S(A) as

ψ :=

∫ ⊕

Ω

ψω(E(·)(ω))µ(dω) . (5.6)

Consider, for each n ∈ I\{j+} the Θ-equivariant conditional expectation

En : An+1] 7→ R(En) ⊂ An]

uniquely determined by setting for x ∈ An−1], xn ∈ A{n}, xn+1 ∈ A{n+1},

(a) En(xxnxn+1) := xψ(xnxn+1) if the two-step state ψ(xnxn+1) appears in the

decomposition of ψ, or n = lk − 1 (lk being the left boundary of some interval

of Γ) and ψω depends on ωlk ;

(b) En(xxnxn+1) := xxnψ(xn+1) if the one-step state ψ(xn+1) appears in the de-

composition of ψ, or n = rk + 1 (rk being the right boundary of some interval

of Γ) and ψω depends on ωrk
;

(c) En(xxnxn+1) := x
∑2

ωn=1 TrA{n}
(xnP

n
ωn

)
ψ(Pn

ωn
xn+1)

ψ(Pn
ωn

) Pnωn
if n ∈ Γ.

Theorem 5.4. Let ψ ∈ S(A) in (5.6) be constructed by the prescriptions listed

above. Then it is a Markov state w.r.t. the sequences {En}j−≤n<j+ of the above-

mentioned conditional expectations.

Proof. A straightforward computation, by taking into account all the various pos-

sibilities, see the proof of Theorem 4.1 of Ref. 4.

We pass to descript the natural connections between the Markov property and

the KMS conditions for states on CAR algebra. This provides natural applications

to quantum statistical mechanics, see Refs. 4, 5, 7–10, for other analogous connec-

tions.

Suppose we have a locally faithful state on the CAR algebra A, then a potential

hΛ is canonically defined for each finite subset Λ of the index set I by

ϕdAΛ
= TrAΛ(e−hΛ ·) . (5.7)

Such a set of potentials {hΛ}Λ⊂I satisfies normalization conditions

TrAΛ(e−hΛ) = 1 ,
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together with compatibility conditions

(TrBΛ ⊗ idAΛ)(e−hΛ̂) = e−hΛ

for finite subsets Λ ⊂ Λ̂, whenever AΛ̂
∼= BΛ ⊗ AΛ.

As the structure of diagonalizable Markov states is fully understood, the set

of potentials {h[k,l]} related to ϕ by (5.7) can be explicitly written, and satisfies

some nice properties. Namely, it is easy to see that the above-mentioned potentials

associated to a (locally faithful) Markov state have the form, for each k ≤ l,

h[k,l] = Hk +
l−1
∑

j=k

Hj,j+1 + Ĥl .

Here, {Hj}j−≤j≤j+ , {Ĥj}j−≤j≤j+ , {Hj,j+1}j−≤j<j+ are sequences of even self-

adjoint operators localized in A{j}, A[j,j+1], respectively, satisfying the commutation

relations

[Hj , Hj,j+1] = 0 , [Hj,j+1, Ĥj+1] = 0 ,

[Hj , Ĥj ] = 0 , [Hj,j+1, Hj+1,j+2] = 0 .

It is then matter of routine to show that the pointwise norm-limit

lim
k→j−
l→j+

e−ith[k,l]aeith[k,l]

exists and defines a one-parameter automorphisms group t 7→ σt on the CAR

algebra A which admits ϕ as a KMS state. Furthermore, ϕ has a normal faithful

extension on the von Neumann algebra πϕ(A)′′. In addition, as the CAR algebra is

simple, ϕ is automatically faithful.

6. Some Illustrative Examples of Markov States

In Sec. 4 we have show that there are four possibilities for the range of the transition

expectations εn. Among them, two cases give rise to the same situation of product

state. In this section, we describe, for each of these situations, the stationary Markov

states, or two-step stationary, in the case of two-block factors. The most interesting

case is described in Subsec. 4. It proves that, contrarily to what happens in the

infinite tensor product case, not all Fermi Markov states are diagonalizable in the

sense firstly described in Ref. 17, see also Ref. 16. We denote by α the one-step

right shift on Z, and set A := AZ.

6.1. Case 1 R(εn) = CI or R(εn) = A{n}

We start by considering the case when the range of the transition expectations εn,

n ∈ Z, are always equal to CI or A{n}. It is immediate to show (by Theorem 5.3

or by direct computation) that the Markov state ϕ is the one-step product state

given on the generators of A, by

ϕ(xk · · ·xl) = ϕdA{k}
(xk) · · ·ϕdA{l}

(xl) .
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In this situation, ϕ is translation-invariant iff ϕdA{n}
= ϕdA{n+1}

◦α.

6.2. Case 2 R(εn) = A{n},+

Consider the case when the range of the transition expectations εn are all equal

to A{n},+. Then, Γ = Z for the set Γ introduced in the previous section, and E is

the trace-preserving conditional expectation onto the maximal Abelian subalgebra

D ∼ C(Ω) generated by P n1 ≡ ana
+
n and Pn2 ≡ a+

n an, n ∈ Z. As explained in Sec. 5,

if x ∈ A, E(x) is represented by a continuous complex-valued function on Ω. Hence,

we obtain

ϕ(x) =

∫

Ω

E(x)(ω)µ(dω) .

Notice that, in this situation, the Markov state under consideration is the diag-

onal lifting to all of A, of the classical Markov process on D obtained by ϕdD.

The Markov state is translation invariant iff the underlying Markov measure

µ on Ω ≡
∏

Z
{1, 2} is translation invariant, that is iff the transition coefficients

ϕ(P j

k
P

j+1
l

)

ϕ(P j

k
)

=: πjωjωj+1
> 0 (as ϕ is supposed to be locally faithful) do not depend on

j ∈ Z, and all the coefficients ϕ(P jωj
) =: πωj

at places j coincide with the unique

stationary distribution for the primitive matrix π := [πωjωj+1 ]. Such a Markov state

is the natural generalization of the Ising model to the CAR algebra.

The Hamiltonian for this Ising-like example is easily written taking into account

that it is a diagonal lifting of a classical Markov chain. We report it for the sake of

completeness.

Hj = −
∑

ωj

(lnπjωj
)P jωj

, Ĥj = 0 ,

Hj,j+1 = −
∑

ωj ,ωj+1

(lnπjωj ,ωj+1
)P jωj

P j+1
ωj+1

.

Proposition 6.1. The locally faithful translation invariant Markov state ϕ in the

situation when R(εn) = A{n},+, n ∈ I is exponentially mixing w.r.t. the spatial

translations. Moreover, πϕ(A)′′ is a type IIIλ von Neumann factor for some λ ∈

(0, 1].

Proof. Consider, for k = 1, 2, . . ., the Klein–Wigner transformation (cf. Sec. 3)

obtaining the set {{emn(k)}
2
m,n=1|k = 1, 2, . . .} of mutually commuting matrix-

units. Put, for j ∈ Z,

k(j) :=

{

2j + 1 , j ≥ 0 ,

−2j , j < 0 ,

and consider the new local structure generated by the algebras

B{j} := span{emn(k(j))|m,n = 1, 2} .
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Obviously,

(i) A{j},+ ⊂ B{j}, j ∈ Z,

(ii) [B{j1},B{j2}] = 0, j1 6= j2, j1, j2 ∈ Z,

(iii)
∨

j∈Z
B{j}

C∗

= A.

Namely, A with the new filtration, is isomorphic to the standard spin alge-

bra
⊗

Z
M2(C)

C∗

, and ϕ is a diagonal lifting of a classical Markov process with

two-point state-space with primitive transition matrix. This means that ϕ is expo-

nentially mixing. In addition, πϕ(A)′′ is a type IIIλ factor for some λ ∈ (0, 1], see

e.g. Sec. 5 of Ref. 16.

Remark 6.2. Notice that ϕ is a Markov state also for the tensor product localiza-

tion. This is due to the fact that ϕ is a lifting on A of a classical Markov chain on

the Abelian algebra

∨

j∈Z

A{j},+ ∼
⊗

j∈Z

A{j},+

C∗

,

and A{j},+ ⊂ B{j} as well.

6.3. Case 3 two-block factor

Other interesting examples are the two-block factors. These (two) examples arise

when the ranges of the transition expectations εn are alternatively CI and A{·},

say, R(ε2n) = CI and R(ε2n+1) = A{2n+1}. In the last situation, we get

ϕ(x2kx2k+1 · · ·x2lx2l+1) = ϕdA[2k,2k+1]
(x2kx2k+1) · · ·ϕdA[2l,2l+1]

(x2lx2l+1) ,

i.e. it is a two-point product state extension. It is two-step translation invariant iff

ϕdAA[2n,2n+1]
= ϕdA[2n+2,2n+3]

◦α2.

The other (isomorphic) case is obtained by shifting of one-step the previous one.

6.4. Case 4 R(εn) = CQn

χ
⊕ CQn

−χ

We discuss the most interesting example of Fermi Markov state associated to the

transition expectations satisfying the properties in (iv) of Proposition 4.6. To sim-

plify, we restrict ourselves to the translation invariant situation.

For the ηnχ in (4.4), set ηnχ := η0
χ ◦α

−n. Let {En}n∈N be the sequence of Umegaki

conditional expectations constructed by (4.4), according to Proposition 4.2. Let

γ := η0
χ(Q0

χP
1
1Q

0
χ) .

Consider the invariant distribution for E0 ◦ αdA{0}
whose density w ∈ A{0} can

be easily computed as

w = γa0a
+
0 + (1 − γ)a+

0 a0 .
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With ρw := TrA{0}
(w·), the sequence of states

ϕn := ρw ◦ E0 ◦ · · · ◦ (EndA[0,n]
)

defines a strongly clustering quantum Markov chain on A (see below) which is

actually a quantum Markov state as it is invariant w.r.t. the Θ-equivariant transition

expectation given, for x ∈ A{n}, y ∈ A{n+1}, by

ε̃n(xy) := εn(xεn+1(y)) ,

with εn given in (4.4).

The last Markov state is quite different from those previously considered. For

example, it is expected that the local Hamiltonians h[k,l] defined by (5.7) does not

arise from a commuting nearest neighbor interaction, and in addition, the state ϕ

is not diagonalizable in the language of Refs. 16 and 17.d

7. Markov Chains on the CAR Algebra

In this section we exhibit a general method to construct interesting classes of

Markov chains on the CAR algebra.

Let {Fn}n∈N be a collection of completely positive identity-preserving maps

with Fn : A[0,n+1] 7→ A[0,n] satisfying for each n ∈ N,

Fn+1dA[0,n]
= idA[0,n]

,

Fn+1 ◦ αdA[0,n+1]
= αdA[0,n]

◦Fn ,
(7.1)

where α is the one-step right shift. Let ρ ∈ S(A{0}) satisfy

ρ = ρ ◦ F0 ◦ αdA{0}
. (7.2)

It is immediate to show that the sequence of states {ϕn}n∈N, where

ϕn := ρ ◦ F0 ◦ · · · ◦ (FndA[0,n]
) ,

is a directed sequence. Thus, it defines a state ϕ on the CAR algebra AN which is

a quantum Markov chain, according to Definition 2.2. Thanks to (7.1), (7.2), such

a ϕ ∈ S(AN) is shift-invariant, that is it uniquely extends to a shift-invariant state

(called again ϕ) on A := AZ. We call such a shift-invariant state on A the quantum

Markov chain generated by the pair ({Fn}n∈N, ρ). See also Ref. 20 for quite similar

considerations.

dIn order to see that the last object is highly nontrivial, we compute ϕ(xy), for x ∈ A{0}, y ∈ A{1}.
Let V ∈ A[0,1] be the partial isometry such that V ∗V = Q0

−χ, V V ∗ = Q0
χ. Put δ := η0

χ(V (χa1 +

χ̄a+
1 )Q0

χ)). We have in bra-ket notation,

ϕ(xy) = 〈χ0|x+|χ0〉〈χ1|y+|χ1〉 + δ〈χ0 |x−|χ⊥
0 〉〈χ1|y−|χ1〉 ,

where |χ0〉, |χ⊥
0 〉 are the (unique up to a phase) normalized eigenvectors of Q0

χ, Q0
−χ = Q0⊥

χ

respectively, considered as operators in A{0}
∼= M2(C) (notice that ϕ depends on the even part

x+y++x−y− of xy). Namely, nondiagonal terms involving the odd parts of x, y, naturally appear.
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For Λ ⊂ Z, denote E0
Λ the conditional expectation onto AΛ preserving the nor-

malized trace τ of A. Let K ∈ A[0,1],+ satisfy

E0
0](KK

∗) = I . (7.3)

Such an operator is said to be a conditional amplitude. Define

Fn := E0
n](α

n(K) · αn(K∗)) (7.4)

Proposition 7.1. The sequence {Fn}n∈N, with the Fn as in (7.4), defines a quan-

tum Markov chain on the CAR algebra associated to the pair ({Fn}n∈N, ρ), provided

that ρ ∈ S(A{0}) fulfils (7.2).

Proof. Immediate by (7.3), and the fact that K is even.

We pass to exhibit some pivotal examples of Markov chains on the CAR algebra.

Define

U = a1a
+
0 + a0a

+
1 .

Put V = exp(κU/2), where κ ∈ R. It is clear that each V is positive and even.

We have by (4.3), U2 = P 0
2 P

1
1 + P 0

1 P
1
2 . This means that U2n = U2, U2n+1 = U .

After considering the power series defining exp(κU), a simple computation leads to

exp(κU) = I + (sinh κ)U + (coshκ− 1)U 2 .

In order to check (7.3), we use Theorem 4.7 of Ref. 10. We compute

E0
0](V

2) ≡ E0
0](exp(κU))

= idA{0}
⊗ τdA{1},+

(

1

2
(idA[0,1]

+ Θ{1}dA[0,1]
(exp(κU)))

)

= I + (coshκ− 1)idA{0}
⊗ τdA{1},+

(U2)

= I +
coshκ− 1

2
(P 0

1 + P 0
2 ) =

1 + coshκ

2
I .

This means that

K :=

√

2

1 + coshκ
V (7.5)

fulfills (7.3). Now, consider the linear map E0
0](Kα(·)K) of A{0} into itself. Such a

map has a matricial representation w.r.t. the canonical basis {a0, a
+
0 , a0a

+
0 , a

+
0 a0}

of A{0}, which can be computed after some calculations, as

A =



















2 sinhκ/2

1 + coshκ
0 0 0

0
2 sinhκ/2

1 + coshκ
0 0

0 0 1/2 1/2

0 0 1/2 1/2



















. (7.6)
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Summarizing, we have the following:

Proposition 7.2. The pair ({Fn}n∈N, τdA{0}
), with the Fn constructed by (7.4),

(7.5), defines a Markov chain on the CAR algebra over the index set Z which is

exponentially mixing.

Proof. By taking into account the previous considerations and Proposition 7.1, it

is enough to compute the peripheral spectrum and the invariant distributions for the

completely positive identity-preserving map E0
0](Kα(·)K) whose matrix representa-

tion is given in (7.6). It is almost immediate to show that the peripheral spectrum

of the symmetric matrix A consists of 1 alone. By quite a standard argument, we

infer that the chain is exponentially mixing, see e.g. Refs. 2 and 14. Moreover, in

order to determine the unique invariant distribution, it is enough to compute the

left eigenspace corresponding to the eigenvalue 1 of the matrix ΣAΣ−1, where

Σ :=









0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1









.

The one-dimensional left eigenspace for ΣAΣ−1 is generated by the left eigen-

vector (0, 0, 1/2, 1/2), that is the unique invariant distribution is the canonical

trace on A{0}.
e

Along the same line, it is easy to see that the conditional amplitude R :=

exp itU , t ∈ R leads to a Markov chain on A. Namely, (7.3) is automatically satisfied

by unitarity. Furthermore, the matrix representation of E0
0](Rα(·)R∗) has the form

B =





















0 0 0 0

0 0 0 0

0 0
1 + sin2 t

2

cos2 t

2

0 0
cos2 t

2

1 + sin2 t

2





















.

This means that, provided t 6= π/2 + kπ, k ∈ Z, and starting with the unique

stationary distribution for E0
0](Rα(·)R∗) given again by the canonical normalized

trace on A{0}, we exhibit another class of exponentially mixing Markov chains.

eThe appearance of Σ is explained as follows. Under our convention, to each x ∈ M2(C) we define

a column-vector X ∈ C4, given by

X :=









x12

x21

x11

x22









.

Then Tr(xy) = XtΣY .
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