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1. Introduction

The present paper combines three lines of research which have been objects of con-

siderable attention in recent physical and mathematical literatures: (i) asymptotics
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of large graphs, (ii) Bose–Einstein condensation (BEC), (iii) monotone indepen-

dence.

The link between the first two lines was established in the papers by Burioni et

al.,3,4 where it was proved that, in comb lattices, the phenomenon of BEC can also

occur in dimension two, contrary to what happens in the usual Euclidean lattices.

In other words, in analogy with general relativity, the effect of a complex geometry

can be “. . . analogous to the introduction of an external confining potential . . .”.4

We refer to Refs. 3 and 4 for more information on the physical motivations. To this

picture we add the remark that, a particular class of geometries, the comb graphs

which we introduce in this paper as a natural generalization of the comb lattices,

are naturally related to monotone independence in the sense that the adjacency

matrix of such graphs are decomposed into a sum of monotone independent random

variables, and as a consequence of the monotone central limit theorem, its spectral

distribution is asymptotically the arcsine law (Theorem 5.1).

This new concept of independence, introduced by Lu,7,22 and Muraki,24 oc-

curs only beyond the classical (Kolmogorovian) probability theory. The theory of

monotone probability has been developed by Muraki in several papers and paral-

lels exactly to the analogue developments of classical, Bose, Fermi, Boolean, free,

q-deformed, . . . probability theories. Moreover, Muraki recently has proved that, by

dropping the commutativity requirement from Schürmann’s axiomatic characteri-

zation of independence, one arrives at exactly five possible notions of independence:

Boolean, boson (including classical), free, monotone and antimonotone.28

Our results lead not only to some natural physical applications of monotone

independence, the first known one to our knowledge, but also to an effective method

for computing the asymptotic spectral distribution of the adjacency matrix. As a

concrete illustration of our approach, we consider, in the second part of the present

paper, the same comb lattice studied in Refs. 3 and 4 and we compute, using some

general results due to Muraki,27 the exact vacuum distribution of the adjacency

matrix for the infinite lattice. Our method applies directly to the infinite lattice,

and therefore, differs from the method used in Refs. 3 and 4, which is based on

thermodynamic limit with explicit calculation of the spectrum and is constrained

to a specific model.

Our method also gives an explanation of the “hidden spectrum” discussed in

Ref. 4. In fact we prove that the Hilbert space of the comb lattice is naturally

decomposed into four sectors, invariant under the action of the adjacency matrix

A(2): in one of these invariant subspaces the spectral distribution of A(2) is the

arcsine law on the interval |x| < 2
√

2 (Theorem 6.1); in another it is the semicircle

distribution on the interval |x| < 2 (Theorem 6.3); in the remaining two “off-

diagonal” sectors, it is the monotone convolution of an arcsine and a semicircle

laws whose density we determine explicitly (Theorem 6.2). The “hidden spectrum”

of Sec. IV of Ref. 4 corresponds to the off-diagonal sectors and to the interval

[2, 2
√

2].



August 23, 2004 16:51 WSPC/102-IDAQPRT 00164

Monotone Independence, Comb Graphs and Bose–Einstein Condensation 421

The method we use to compute the spectral distribution of the adjacency ma-

trix of a large graph has been developed during the last few years as a significant

application of quantum (or, more generally, algebraic) probability theory. In par-

ticular, a key role is played by the relationship, pointed out by Accardi–Bożejko,2

between orthogonal polynomials and interacting Fock spaces. This new method has

so far been applied to asymptotic spectral analysis of a growing family of graphs.

A general theory is established by Hora–Obata17,18 after a series of explicit com-

putations by Hashimoto,10 Hashimoto–Obata–Tabei,12 Hashimoto–Hora–Obata.11

However, except Hora’s work15 on particular graphs whose vertices are Young dia-

grams, our discussion has been restricted only to regular graphs. The present paper

shows that this new quantum probabilistic technique is very effective also for comb

graphs that are not regular. Moreover, using the techniques developed by Hora,14,16

temperature dependence can be introduced and this will be discussed in a future

paper.

2. Adjacency Matrix

Let G = (V,E) be a (non-oriented simple) graph, that is, V is a non-empty set and

E ⊂ {{x, y};x, y ∈ V, x 6= y}. Elements of V and of E are called a vertex and an

edge, respectively. Two vertices x, y ∈ V are called adjacent if {x, y} ∈ E, and in

that case we also write x ∼ y. The degree of x ∈ V , denoted by κ(x), is by definition

the number of vertices adjacent to x, namely,

κ(x) = |{y ∈ V ; y ∼ x}| ,

where | · | denotes the cardinality. A walk connecting two points x, y ∈ V is a finite

sequence of vertices such that x ∼ x1 ∼ x2 ∼ · · · ∼ xn−1 ∼ y. In this case n is

called the length of the walk. For two distinct vertices x, y ∈ V the distance d(x, y)

is defined to be the shortest length of a walk connecting x and y. By definition

d(x, x) = 0.

Throughout the paper we always assume that a graph is locally finite, i.e. κ(x) <

∞ for all x ∈ V , and is connected, i.e. for any pair of vertices there exists a walk

connecting them.

Given a graph G = (V,E), the adjacency matrix A is defined by

Axy =

{
1 , if x ∼ y ,

0 , otherwise .

The graph structure is uniquely determined by the adjacency matrix. We consider

A as an operator acting on `2(V ) from the left. For x ∈ V let δx be the indicator

function of a singlet {x}. Obviously, {δx;x ∈ V } becomes a complete orthonormal

basis of `2(V ). The action of A is then uniquely determined by

Aδx =
∑

y∼x

δy , x ∈ V .

It is easily checked that A is bounded if and only if supx∈V κ(x) <∞.
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Fig. 1. Comb product.

3. Comb Product

Let G(1) = (V (1), E(1)) and G(2) = (V (2), E(2)) be two graphs. The comb product

(or comb graph) of a backbone G(1) and a finger G(2) with a distinguished vertex

o ∈ V (2) is by definition a graph obtained by grafting a copy of G(2) at the vertex o

into each vertex of G(1), see Fig. 1. This comb product is denoted by G(1) Bo G(2).

By definition, the set of vertices of G(1) Bo G(2) is identified with V1 × V2 and

two vertices (x, y), (x′, y′) are adjacent if and only if

(i) x ∼ x′ and y = y′ = o; or

(ii) x = x′ and y ∼ y′.

Let A(i) be the adjacency matrix of G(i). The adjacency matrix of the comb product

G(1) Bo G(2) is denoted by A(1) Bo A
(2).

Lemma 3.1. The matrix elements of A(1) Bo A
(2) are given by

(A(1) Bo A
(2))(x,y),(x′,y′) = A

(1)
xx′δyoδy′o + δxx′A

(2)
yy′ , (3.1)

where x, x′ ∈ V (1) and y, y′ ∈ V (2).

Proof. A simple computation shows that

A
(1)
xx′δyoδy′o + δxx′A

(2)
yy′ =







1 , if x ∼ x′ and y = y′ = o ,

1 , if x = x′ and y ∼ y′ ,

0 , otherwise .

Then, in view of the conditions (i) and (ii) above, we see that the right-hand side

of (3.1) takes value 1 if and only if (x, y) ∼ (x′, y′). In other words, the right-hand

side of (3.1) coincides with the matrix element of the adjacency matrix of the comb

product G(1) Bo G(2).

Obviously, the comb product is not commutative; still it is associative.

Lemma 3.2. (Associativity) For i = 1, 2, 3 let G(i) be a graph with a distinguished

vertex oi. Then we have

(G(1) Bo2
G(2)) Bo3

G(3) = G(1) B(o2,o3) (G(2) Bo3
G(3)) .



August 23, 2004 16:51 WSPC/102-IDAQPRT 00164

Monotone Independence, Comb Graphs and Bose–Einstein Condensation 423

Proof. Straightforward from (3.1).

Whenever there is no danger of confusion, we omit the suffix o and write G(1) B

G(2) and A(1) B A(2) for simplicity.

The adjacency matrix A(1) B A(2) acts on `2(V1 ×V2) ∼= `2(V1)⊗ `2(V2). Let us

examine this action in detail. We need notation. Let P (2) be the projection from

`2(V2) onto the one-dimensional subspace spanned by δo, i.e. defined by

P (2)ψ(y) = 〈δo, ψ〉δo(y) = δyoψ(o) , ψ ∈ `2(V2) . (3.2)

Lemma 3.3. Notations being as above,

A(1) B A(2) = A(1) ⊗ P (2) + 1 ⊗A(2) . (3.3)

Proof. Let φ ∈ `2(V1) and ψ ∈ `2(V2). Then, in view of (3.1) we have

(A(1) B A(2))(φ ⊗ ψ)(x, y)

=
∑

x′,y′

(A
(1)
xx′δyoδy′o + δxx′A

(2)
yy′)φ(x′)ψ(y′)

=
∑

x′

A
(1)
xx′δyoφ(x′)ψ(o) +

∑

y′

A
(2)
yy′φ(x)ψ(y′)

= (A(1)φ)(x)δyoψ(o) + φ(x)(A(2)ψ)(y) . (3.4)

By (3.2) the first term becomes

(A(1)φ)(x)δyoψ(o) = (A(1)φ)(x)(P (2)ψ)(y) = (A(1)φ⊗ P (2)ψ)(x, y) .

On the other hand, the second term in (3.4) becomes

φ(x)(A(2)ψ)(y) = (φ ⊗A(2)ψ)(x, y) .

Then the assertion follows immediately.

Theorem 3.1. For i = 1, 2, . . . , n let G(i) = (V (i), E(i)) be a graph with a

distinguished vertex oi ∈ V (i). Then the adjacency matrix of the comb graph

G(1) Bo2
G(2) Bo3

· · · Bon
G(n) admits a decomposition of the form:

A(1) B A(2) B · · · B A(n) =

n∑

i=1

(i−1) times
︷ ︸︸ ︷

1 ⊗ · · · ⊗ 1⊗A(i) ⊗

(n−i) times
︷ ︸︸ ︷

P (i+1) ⊗ · · · ⊗ P (n) , (3.5)

where P (i) is the projection from `2(V (i)) onto the one-dimensional subspace

spanned by δoi
.

Proof. By induction from Lemmata 3.2 and 3.3.
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4. Monotone Independence

Definition 4.1. (Muraki26) Let (A, ϕ) be an algebraic probability space. A family

{Xj ; j ∈ T} of elements of A, where T is a totally ordered set, is called monotone

independent (with respect to ϕ) if

(i) for any choice of i〈j〉k, XiX
p
jXk = ϕ(Xp

j )XiXk;

(ii) for any m ≥ 0, n ≥ 0 and for any im > · · · > i1 > i < j1 < · · · < jn,

ϕ(Xpm

im
· · ·Xp1

i1
Xr

i X
q1

j1
· · ·Xqn

jn
)

= ϕ(Xpm

im
) · · ·ϕ(Xp1

i1
)ϕ(Xr

i )ϕ(Xq1

j1
) · · ·ϕ(Xqn

jn
) ,

where p, p1, . . . , pm, q1, . . . , qn, r runs over the positive integers. Here i〈j〉k is a

short hand notation of “i < j and j > k”. Similar convention is adopted also in

condition (ii).

A concrete example of monotone independent random variables is given in the

following

Proposition 4.1. For i = 1, 2, . . . , n let H(i) be a Hilbert space equipped with a unit

vector Φ(i). Let P (i) ∈ B(H(i)) be the projection onto the one-dimensional subspace

spanned by Φ(i). Then a sequence {Xi} defined by

Xi =

(i−1) times
︷ ︸︸ ︷

1 ⊗ · · · ⊗ 1⊗Bi ⊗

(n−i) times
︷ ︸︸ ︷

P (i+1) ⊗ · · · ⊗ P (n) ,

where Bi ∈ B(H(i)), forms a monotone independent random variables with respect

to the product state Φ(1) ⊗ · · · ⊗ Φ(n).

The proof is straightforward. This representation of monotone independent ran-

dom variables was used by Liebscher in Ref. 20 and also in Franz’s extension to

monotone independence9 of Lenczewski’s unification theorem19 see also Muraki27

for a more general form of monotone independent random variables.

A significant consequence of monotone independence is the monotone central

limit theorem, which was proved by Lu22 and Muraki24 with different motivations.

Theorem 4.1. (Monotone central limit theorem) Let X1, X2, . . . ∈ A be a sequence

of random variables of an algebraic probability space (A, ϕ) satisfying

(i) real, i.e. Xn = X∗
n;

(ii) monotone independent;

(iii) identically distributed, i.e. the moment sequence {ϕ(Xm
n )}∞m=0 does not depend

on the choice of n;

(iv) normalized as ϕ(Xn) = 0 and ϕ(X2
n) = 1.



August 23, 2004 16:51 WSPC/102-IDAQPRT 00164

Monotone Independence, Comb Graphs and Bose–Einstein Condensation 425

Then, it holds that

lim
n→∞

ϕ

((

1√
n

n∑

k=1

Xk

)m)

=
1

π

∫ +
√

2

−
√

2

xm

√
2 − x2

dx , m = 0, 1, 2, . . . . (4.1)

The probability distribution on the right-hand side of (4.1) is called the arcsine

law normalized so as to have mean 0 and variance 1.

5. Asymptotic Spectrum of Comb Graphs

For i = 1, 2, . . . , n let G(i) = (V (i), E(i)) be a graph with a distinguished vertex

oi ∈ V (i). Consider the Hilbert space

`2(V1 × · · · × Vn) ∼= `2(V1) ⊗ · · · ⊗ `2(Vn) (5.1)

equipped with a unit vector

Ωn = δo1
⊗ δo2

⊗ · · · ⊗ δon
.

Let Bn be the ∗-algebra of bounded operators on the Hilbert space (5.1). Then the

pair (Bn,Ωn) becomes an algebraic probability space.

Thus the adjacency matrix A(1) Bo2
A(2) Bo3

· · · Bon
A(n) is regarded as a real

algebraic random variable of (Bn,Ωn). Moreover, it follows from Theorem 3.1 and

Proposition 4.1 that the adjacency matrix is decomposed into a sum of monotone

independent real random variables of (Bn,Ωn):

A(1) B A(2) B · · · B A(n) =

n∑

i=1

(i−1) times
︷ ︸︸ ︷

1 ⊗ · · · ⊗ 1⊗A(i) ⊗

(n−i) times
︷ ︸︸ ︷

P (i+1) ⊗ · · · ⊗ P (n) , (5.2)

where P (i) is the projection from `2(V (i)) onto the one-dimensional subspace

spanned by δoi
.

Finally we come to the main assertion.

Theorem 5.1. Let G = (V,E) be a graph with a distinguished vertex o ∈ V .

Consider a “homogenuous” comb product

GBn = G Bo G Bo · · · Bo G (n times) ,

whose adjacency matrix is given by ABn = A Bo A Bo · · · Bo A (n times). Then it

holds that

lim
n→∞

〈

Ωn,

(

ABn

√

nκ(o)

)m

Ωn

〉

=
1

π

∫ +
√

2

−
√

2

xm

√
2 − x2

dx , m = 0, 1, 2, . . . ,

where Ωn = δo⊗· · ·⊗δo (n times) and κ(o) is the degree of the distinguished vertex

o ∈ V .
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Proof. Applying the decomposition (5.2) to the present case of homogeneous comb

product, we have

ABn =

n∑

i=1

(i−1) times
︷ ︸︸ ︷

1 ⊗ · · · ⊗ 1⊗A⊗
(n−i) times
︷ ︸︸ ︷

P ⊗ · · · ⊗ P ≡
n∑

i=1

Xi ,

where P is the projection from `2(V ) onto the one-dimensional subspace spanned

by δo. Obviously, {Xi} satisfies conditions (i)–(iii) in Theorem 4.1. Moreover, since

〈δo, Aδo〉 = 0,

〈Ωn, XiΩn〉 =

i−1∏

j=1

〈δo, δo〉 × 〈δo, Aδo〉 ×
n∏

j=i+1

〈δo, P δo〉 = 0 .

Similarly,

〈Ωn, X
2
i Ωn〉 =

i−1∏

j=1

〈δo, δo〉 × 〈δo, A2δo〉 ×
n∏

j=i+1

〈δo, P 2δo〉

= 〈δo, A2δo〉 = 〈Aδo, Aδo〉 =
∑

x∼o

∑

y∼o

〈δx, δy〉 = κ(o) .

Hence {Xi/
√

κ(o)} satisfies all the conditions in Theorem 4.1 and our assertion is

a direct consequence of it.

6. Comb Lattice

6.1. One-dimensional integer lattice

We recall some elementary and noticeable facts on one-dimensional integer lattice

Z. By definition two points i, j ∈ Z are adjacent if and only if |i− j| = 1. We take

0 as a distinguished vertex. The adjacency matrix of Z is denoted by A. The one

dimensional integer lattice Z admits a natural stratification:

Z =

∞⋃

m=0

Vm , V0 = {0} , Vm = {±m} , m ≥ 1 . (6.1)

Accordingly we define

Φ0 = δ0 , Φm =
1√
2
(δm + δ−m) , m ≥ 1 .

Then {Φm}∞m=0 is an orthonormal set in `2(Z) and we set

Γ(Z) =

∞∑

m=0

⊕CΦm ,

which is the closed subspace of `2(Z) generated by {Φm}∞m=0.

Proposition 6.1. Γ(Z) is invariant under the action of A and Φ0 is cyclic in Γ(Z)

under this action.
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Proof. By a direct computation we have






AΦ0 =
√

2Φ1 ,

AΦ1 = Φ2 +
√

2Φ0 ,

AΦm = Φm+1 + Φm−1 , m = 2, 3, . . . ,

(6.2)

from which the invariance of Γ(Z) under the action of A is clear. To prove the

cyclicity of Φ0 under the action of A, let R(A) denote the closed linear span of

{AmΦ0;m = 0, 1, 2, . . .}. It is sufficient to show that Φm ∈ R(A) for all m ≥ 0.

Obviously, by (6.2) Φ1 ∈ R(A) and Φ2 = AΦ1 −
√

2Φ0 ∈ R(A). Suppose m ≥ 2 and

Φ1, Φ2, . . . ,Φm ∈ R(A). Then, from (6.2) we see that Φm+1 = AΦm−Φm−1 ∈ R(A).

Hence the desired assertion follows by induction.

It is clear that (6.2) is a Jacobi type recurrence relation with Jacobi sequence

ω1 = 2, ω2 = ω3 = · · · = 1 . (6.3)

Therefore there exists a unique interacting Fock structure in Γ(Z) with creation

and annihilation operators given by
{
B−Φ0 = 0 , B−Φm =

√
ωmΦm−1 , m ≥ 1 ,

B+Φm =
√
ωm+1Φm+1 , m ≥ 0 .

(6.4)

Proposition 6.2. It holds that

A �Γ(Z) = B+ +B− , (6.5)

‖B±‖ ≤
√

2 , ‖A‖ ≤ 2
√

2 , (6.6)

where ‖ · ‖ is the operator norm on Γ(Z). Moreover, the probability distribution of

A in the vacuum state Φ0 is the arcsine law defined by

dx

π
√

4 − x2
, |x| < 2 . (6.7)

In other words,

〈Φ0, A
mΦ0〉 =

1

π

∫ +2

−2

xm

√
4 − x2

dx , m = 0, 1, 2, . . . . (6.8)

Proof. (6.5) follows immediately by comparing (6.2) and (6.4). (6.6) follows from

simple calculation: for ξ =
∑∞

m=0 λmΦm we have

‖B−ξ‖2 =

∥
∥
∥
∥
∥

∞∑

m=0

λmB
−Φm

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

∞∑

m=1

λm

√
ωmΦm−1

∥
∥
∥
∥
∥

2

=

∞∑

m=1

|λm|2ωm ≤
(

sup
n
ωn

)

‖ξ‖2 ,
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from which ‖B−‖ ≤
√

2 follows. Similarly, we have ‖B+‖ ≤
√

2 and then ‖A‖ ≤ 2
√

2

is obvious.

We shall prove the second assertion. Let ν be the vacuum distribution of A.

Since Φ0 is cyclic for A, it follows from the spectral theorem that Γ(Z) is identified

with L2(R, ν), where A corresponds to the position operator (Af(x) = xf(x)).

From the Accardi–Bożejko theorem2 we see that {ωn} in (6.4) are precisely the

Jacobi parameters of ν. But it is known (and easy to prove directly) that the

Jacobi sequence (6.3) uniquely characterizes the arcsine law as in (6.8).

Below we give a direct proof of the above fact not only as a nice application of

the Cauchy–Stieltjes transform, but also beacuse this technique can be applied to

more general cases when explicit formulaes are not available.

For (6.8) it is sufficient to compute 〈Φ0, (B
++B−)mΦ0〉. Let ν be the probability

distribution determined by

〈Φ0, (B
+ +B−)mΦ0〉 =

∫ +∞

−∞
xmν(dx) , m = 0, 1, 2, . . . .

(Since B± are bounded operators, the support of ν is compact. Hence the moment

problem is determinate and ν is uniquely determined.) Since B± is characterized

by the Jacobi parameters {ωn}, so is ν. In fact, the Cauchy–Stieltjes transform

Gν(z) admits a continued fraction expansion in terms of {ωn}. In our case (ω1 = 2,

ω2 = ω3 = . . . = 1), we have

∫ +∞

−∞

ν(dx)

z − x
= Gν(z) =

1

z
− ω1

z
− ω2

z
− ω3

z
− ω4

z
− ω5

z
− · · · =

1√
z2 − 4

.

Expanding both sides, we come to the following

∞∑

n=0

1

zn+1

∫ +∞

−∞
xnν(dx) =

1

z

∞∑

n=0

(
−1/2

n

)(

− 4

z2

)n

=
∞∑

n=0

(
−1/2

n

)

(−1)n 4n

z2n+1
.

Comparing the coefficients we get the moment sequence of ν as follows:

∫ +∞

−∞
x2n+1ν(dx) = 0 ,

∫ +∞

−∞
x2nν(dx) =

(
−1/2

n

)

(−1)n4n =
(2n)!

n!n!
, n = 0, 1, 2, . . . .

Then we can conclude that ν coincides with the arcsine law (6.7). (Instead of

calculating the moment sequence one may apply Stieltjes’ inversion formula to

Gν(z) to obtain an explicit form of ν.)
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Since Γ(Z) is invariant under A, so is the orthogonal complement Γ(Z)⊥. We

set

Ψm =
1√
2
(δm+1 − δ−m−1) , m = 0, 1, 2, . . . .

Then {Ψm} forms an orthonormal basis of Γ(Z)⊥, i.e.

Γ(Z)⊥ =

∞∑

m=0

⊕CΨm .

By a direct computation we have

AΨ0 = Ψ1 , AΨm = Ψm+1 + Ψm−1 , m = 1, 2, . . . . (6.9)

Repeating, for Γ(Z)⊥, the same argument used for Γ(Z) we arrive at the following:

Proposition 6.3. Γ(Z)⊥ is invariant under A and Ψ0 is a cyclic vector. Moreover,

Γ(Z)⊥ is identified with the one mode free Fock space equipped with the annihilation

and creation operators defined by
{

C−Ψ0 = 0 , C−Ψm = Ψm−1 , m = 1, 2, . . . ,

C+Ψm = Ψm+1 , m = 0, 1, 2, . . . .
(6.10)

In this identification it holds that

A �Γ(Z)⊥= C+ + C− . (6.11)

Hence

〈Ψ0, A
mΨ0〉 =

1

2π

∫ +2

−2

xm
√

4 − x2dx , m = 0, 1, 2, . . . , (6.12)

where the probability distribution on the right-hand side is Wigner’s semicircle law.

Proof. (6.11) is immediate by comparing (6.9) and (6.10). Then (6.12) follows

from the well-known fact that the Jacobi sequence of the semicircle law is {ωn =

1}. (To obtain this result one may apply explicit computation as in the proof of

Proposition 6.2.)

By general theory we know that the spectrum of A �Γ(Z) coincides with the sup-

port of the arcsine law (6.7) since A admits a cyclic vector Φ0. A similar statement

holds for A �Γ(Z)⊥ . Thus,

Spec(A �Γ(Z)) = Spec(A �Γ(Z)⊥) = Spec(A) = [−2,+2] .

In fact, taking Propositions 6.2 and 6.3 into account, we have a canonical isomor-

phism:

`2(Z) = Γ(Z) ⊕ Γ(Z)⊥

∼= L2

(

[−2, 2],
dx

π
√

4 − x2

)

⊕ L2

(

[−2, 2],
1

2π

√

4 − x2dx

)

,
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according to which the adjacency matrix A is represented as Mx ⊕Mx, where Mx

is multiplication operator by x.

Remark 6.1. For α, β ∈ C with |α|2 + |β|2 = 1, we consider a superposition of

two states:

ω = ω(α, β) = αΦ0 + βΨ0 = αδ0 +
β√
2
(δ+1 − δ−1) .

Then

〈ω,Amω〉`2(Z) =

∫ +2

−2

xmρα,β(x)dx , m = 0, 1, 2, . . . ,

where

ρα,β(x) =
|α|2

π
√

4 − x2
+

|β|2
2π

√

4 − x2 .

Thus we obtain a one-parameter family of probability densities connecting the arc-

sine law and Wigner’s semicircle law. This should be compared with the family of

probability densities, constructed by Lu–Ruggieri,23 which also realize an interpo-

lation between the arcsine and the semicircle law.

Remark 6.2. Let A = A+ +A− be the quantum decomposition of the adjacency

matrix A according to the stratification (6.1), see Refs. 10 and 11 for generalities.

Then both Γ(Z) and Γ(Z)⊥ are also invariant under the actions of A± and

A± �Γ(Z)= B± , A± �Γ(Z)⊥= C± .

Fig. 2. Comb lattice Z B Z.
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6.2. Comb lattice

The comb product Z B0 Z is called the two-dimensional comb lattice, see Fig. 2.

The adjacency matrix is denoted by A(2) = A B0 A for simplicity. The vertices are

given by Z × Z. Then, A(2) acts on `2(Z × Z) ∼= `2(Z) ⊗ `2(Z) and, as is already

shown in Sec. 3, we have

A(2) = A⊗ P + 1 ⊗A , (6.13)

where P is the projection from `2(Z) onto the one-dimensional subspace spanned

by δ0 = Φ0.

Theorem 6.1. The distribution of the adjacency matrix A(2) in the vacuum state

Φ0 ⊗ Φ0 is an arcsine law given by

dx

π
√

8 − x2
, |x| < 2

√
2 .

Namely,

〈Φ0 ⊗ Φ0, (A
(2))mΦ0 ⊗ Φ0〉 =

1

π

∫ +2
√

2

−2
√

2

xm

√
8 − x2

dx , m = 0, 1, 2, . . . .

Proof. Let ν1 and ν2 be the distribution of A⊗ P and 1⊗A in the vacuum state

Φ0 ⊗Φ0, respectively. As is easy to see, ν1 and ν2 coincide with the distribution of

A in Φ0, which is by Proposition 6.2 the arcsine law:

ν1(dx) = ν2(dx) =
dx

π
√

4 − x2
, |x| < 2 .

Since A(2) = A ⊗ P + 1 ⊗ A is a sum of random variables which are monotone

independent with respect to Φ0 ⊗ Φ0, see Sec. 5, the distribution µ of A(2) in

Φ0 ⊗ Φ0 can be computed by Muraki’s formula.27 Let Gµ be the Cauchy–Stieltjes

transform of µ and put Hµ(z) = Gµ(z)−1. Then Muraki’s formula reads

Hµ(z) = Hν1
(Hν2

(z)) =
√

Hν2
(z)2 − 4 =

√

z2 − 8 .

Hence

Gµ(z) =
1√

z2 − 8
.

By a similar computation as in the proof of Proposition 6.2 we obtain

∞∑

n=0

1

zn+1

∫ +∞

−∞
xnµ(dx) =

1

z

∞∑

n=0

(
−1/2

n

)(

− 8

z2

)n

=

∞∑

n=0

(
−1/2

n

)

(−1)n 8n

z2n+1
.
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Hence,
∫ +∞

−∞
x2n+1ν(dx) = 0 ,

∫ +∞

−∞
x2nν(dx) =

(
−1/2

n

)

(−1)n8n =
2n(2n)!

n!n!
, n = 0, 1, 2, . . . .

On the other hand, we know that

∫ 2
√

2

−2
√

2

x2n

π
√

8 − x2
dx =

2n(2n)!

n!n!
, n = 0, 1, 2, . . . .

The assertion is then obvious.

Recall that in the orthogonal decomposition `2(Z) = Γ(Z) ⊕ Γ(Z)⊥ both sub-

spaces are invariant under A and P . Therefore the four subspaces obtaind from

`2(Z) ⊗ `2(Z) = (Γ(Z) ⊕ Γ(Z)⊥) ⊗ (Γ(Z) ⊕ Γ(Z)⊥)

= (Γ(Z) ⊗ Γ(Z)) ⊕ (Γ(Z)⊥ ⊗ Γ(Z))

⊕(Γ(Z) ⊗ Γ(Z)⊥) ⊕ (Γ(Z)⊥ ⊗ Γ(Z)⊥)

are all invariant under A(2). In these spaces Φ0 ⊗ Φ0, Ψ0 ⊗ Φ0, Φ0 ⊗ Ψ0, Ψ0 ⊗ Ψ0

are regarded as vacuum vectors, respectively. In Theorem 6.1 the arcsine law with

variance 2 is obtained from Φ0 ⊗ Φ0.

Theorem 6.2. The distribution of A(2) in Ψ0 ⊗ Φ0 is

1

2π
(
√

8 − x2 −
√

4 − x2χ[−2,+2](x)) , |x| ≤ 2
√

2 .

Proof. Let µ denote the distribution of A(2) in Ψ0 ⊗Φ0. From Proposition 4.1 we

see that

A(2) = A⊗ P + 1 ⊗A

is also a sum of random variables which are monotone independent with respect to

Ψ0 ⊗ Φ0. Let ν1 and ν2 denote the distributions of A ⊗ P and 1 ⊗ A in Ψ0 ⊗ Φ0,

respectively. We already know that ν1 is Wigner’s semicircle law and ν2 is the

arcsine law with variance 2. Hence, their reciprocal Cauchy–Stieltjes transforms

are

Hν1
(z) =

2

z −
√
z2 − 4

, Hν2
(z) =

√

z2 − 4 .

Let µ denote the distribution of A(2) in Ψ0 ⊗ Φ0. Applying Muraki’s formula, we

obtain

Hµ(z) = Hν1
(Hν2

(z)) =
2√

z2 − 4 −
√
z2 − 8

.
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Hence the Cauchy–Stieltjes transform of µ is given by

Gµ(z) =
1

Hµ(z)
=

√
z2 − 4 −

√
z2 − 8

2
.

By virtue of Stieltjes’ inversion formula we obtain the density function

− 1

π
lim
y↓0

ImGµ(x+ iy) =
1

2π
(
√

8 − x2 −
√

4 − x2χ[−2,+2](x)),

as desired.

Theorem 6.3. The distributions of A(2) in Φ0 ⊗ Ψ0 and Ψ0 ⊗ Ψ0 are Wigner’s

semicircle law:
1

2π

√

4 − x2dx , |x| ≤ 2 .

Proof. Taking (6.13) into account, we have

(A(2))m =

m∑

k=0

Ak ⊗X(m− k, k) ,

where X(m− k, k) is the sum of Am−kP k and its all possible permutations. Then,

〈Φ0 ⊗ Ψ0, (A
(2))mΦ0 ⊗ Ψ0〉 =

m∑

k=0

〈Φ0, A
kΦ0〉〈Ψ0, X(m− k, k)Ψ0〉 . (6.14)

Since Ψ0 ∈ Γ(Z)⊥ and Γ(Z)⊥ is invariant under A and P , X(m− k, k)Ψ0 ∈ Γ(Z)⊥.

Moreover, since P acts on Γ(Z)⊥ as zero operator, if X(m− k, k) contains P , that

is, if 1 ≤ k ≤ m, we have X(m− k, k)Ψ0 = 0. Thus, (6.14) becomes

〈Φ0 ⊗ Ψ0, (A
(2))mΦ0 ⊗ Ψ0〉 = 〈Ψ0, X(m, 0)Ψ0〉 = 〈Ψ0, A

mΨ0〉 .
Namely, the distribution of A(2) in Φ0 ⊗Ψ0 is the same as that of A in Ψ0, which is

Wigner’s semicircle law as is shown in Proposition 6.3. A similar argument yields

the result for the distribution of A(2) in Ψ0 ⊗ Ψ0.

The distributions of A(2) in relevant states are summurized in the following table

and the density functions are shown in Fig. 3.

state density function support

Φ0 ⊗ Φ0
1

π
√

8 − x2
(arcsine law) [−2

√
2,+2

√
2]

Φ0 ⊗ Ψ0
1

2π

√
4 − x2 (semicircle law) [−2,+2]

Ψ0 ⊗ Φ0
1

2π
(
√

8 − x2 −
√

4 − x2χ[−2,+2](x)) [−2
√

2,+2
√

2]

Ψ0 ⊗ Ψ0
1

2π

√
4 − x2 (semicircle law) [−2,+2]
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Fig. 3. Three distributions obtained from comb lattice Z B Z.
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preprint, Università di Bari, February (1995).

7. M. de Giosa and Y. G. Lu, From quantum Bernoulli process to creation and annihi-
lation operators on interacting q-Fock space, Jpn. J. Math. 24 (1998) 149–167.

8. P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Ap-

proach, Courant Lect. Notes, Vol. 3 (Amer. Math. Soc., 1998).
9. U. Franz, Muraki’s monotone independence is associative, Infin. Dim. Anal. Quantum

Probab. Rel. Topics 4 (2001) 401–407.
10. Y. Hashimoto, Quantum decomposition in discrete groups and interacting Fock

spaces, Infin. Dim. Anal. Quantum Probab. Rel. Topics 4 (2001) 277–287.
11. Y. Hashimoto, A. Hora and N. Obata, Central limit theorems for large graphs: Method

of quantum decomposition, J. Math. Phys. 44 (2003) 71–88.
12. Y. Hashimoto, N. Obata and N. Tabei, A quantum aspect of asymptotic spectral

analysis of large Hamming graphs, in Quantum Information III, eds. T. Hida and K.
Saitô (World Scientific, 2001), pp. 45–57.

13. A. Hora, Central limit theorems and asymptotic spectral analysis on large graphs,
Infin. Dim. Anal. Quantum Probab. Rel. Topics 1 (1998) 221–246.



August 23, 2004 16:51 WSPC/102-IDAQPRT 00164

Monotone Independence, Comb Graphs and Bose–Einstein Condensation 435

14. A. Hora, Gibbs state on a distance-regular graph and its application to a scaling limit
of the spectral distributions of discrete Laplacians, Probab. Theory Rel. Fields 118

(2000) 115–130.
15. A. Hora, A noncommutative version of Kerov’s Gaussian limit for the Plancherel

measure of the symmetric group, in Asymptotic Combinatorics with Applications to

Mathematical Physics, ed. A. M. Vershik Lect. Notes in Math. Vol. 1815 (Springer–
Verlag, 2003), pp. 77–88.

16. A. Hora, Scaling limit for Gibbs states for Johnson graphs and resulting Meixner
classes, Inf. Dim. Anal. Quantum Probab. Rel. Topics. 6 (2003) 139–143.

17. A. Hora and N. Obata, Quantum decomposition and quantum central limit theorem,
in Fundamental Problems in Quantum Physics, eds. L. Accardi and S. Tasaki (World
Scientific, 2003), pp. 284–305.

18. A. Hora and N. Obata, An interacting Fock space with periodic Jacobi parameter
obtained from regular graphs in large scale limit, to appear in Quantum Information

V, eds. T. Hida and K. Saitô (World Scientific).
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