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Let a0, a− and a+ be the preservation, annihilation, and creation operators of a prob-
ability measure µ on Rd, respectively. The operators a0 and [a−, a+] are proven to
uniquely determine the moments of µ. We discuss the question: “What conditions must
two families of operators satisfy, in order to ensure the existence of a probability mea-
sure, having finite moments of any order, so that, its associated preservation operators
and commutators between the annihilation and creation operators are the given families
of operators?” For the case d = 1, a satisfactory answer to this question is obtained as a
simple condition in terms of the Szegö–Jacobi parameters. For the multidimensional
case, we give some necessary conditions for the answer to this question. We also give

a table with the associated preservation and commutator between the annihilation and
creation operators, for some of the classic probability measures on R.
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1. Introduction

In the paper2 we have characterized the polynomially symmetric and polynomially

factorizable probability measures on Rd in terms of their associated operators:
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(1) the preservation operators {a0(i); 1 ≤ i ≤ d},

(2) the annihilation operators {a−(i); 1 ≤ i ≤ d}, and

(3) the creation operators {a+(i); 1 ≤ i ≤ d}.

In Ref. 2, the operator a0 was called the number operator. Since in the centered

Gaussian case a0 = 0 and there exists a well-known nonzero number operator N ,

we will call a0, the preservation (neutral) operator, from now on, in order to avoid

any confusion.

In Theorem 3.1 of Ref. 2, it is shown that a probability measure µ is polynomially

symmetric if and only if the associated preservation operators a0(i), 1 ≤ i ≤ d, are

zero. On the other hand, it follows from Theorem 4.5 of Ref. 2 that a probability

measure µ is polynomially factorizable if and only if for all i 6= j, any opera-

tor from the set {a0(i), a+(i), a−(i)} commutes with any operator from the set

{a0(j), a+(j), a−(j)}. This condition is equivalent to the fact that for all i 6= j, the

operator a0(i) commutes with the operator Xj of multiplication by the coordinate

variable xj .

In this paper we will focus on two types of operators, namely, the preservation

operators {a0(i)}1≤i≤d and the commutators between the annihilation and creation

operators {[a−(j), a+(k)]}1≤j,k≤d. We will show that the information about the

moments of a probability measure on R
d is completely determined by these two

types of operators. Moreover, we will consider the following question:

“Given two families of operators, does there exist a probability measure µ such

that the preservation operators and the commutators between the creation and an-

nihilation operators of µ are the given families of operators?”

We will derive some necessary conditions, in order for the answer of this question

to be “Yes”. Finally, we will give some tables to provide information on these two

types of operators for some well-known probability measures on R.

2. Fundamental Identities

In this section we will briefly review some known facts about the preservation,

annihilation, and creation operators. These operators will be referred to as the

PAC operators.

Let µ be a probability measure on the Borel subsets of Rd having finite moments

of any order, i.e. for all 1 ≤ p < ∞ and 1 ≤ j ≤ d,
∫

Rd

|xj |
pµ(dx) < ∞ ,

where x = (x1, x2, . . . , xd) ∈ Rd.

Let P0 = C. For n ∈ N, let Pn be the complex vector space of all polynomial

functions of x1, x2, . . . , xd, of degree less than or equal to n. Obviously, we have

the inclusions:

C = P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn ⊂ · · · ⊂ L2(Rd, µ) . (2.1)
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To be completely rigorous, for the last inclusion from (2.1) to make sense, if µ has

finite support, then for all n ≥ 0, Pn denotes the space Vn of polynomial functions

of degree at most n, modulo the µ-almost sure equality (which is an equivalence

relation). That means, if µ is a finite convex combination of Dirac delta measures,

then two polynomials that are µ-almost surely equal, are considered to be the same.

Let G0 = C and for n ∈ N, let Gn = Pn 	Pn−1, i.e. the orthogonal complement

of Pn−1 in Pn. We denote by H the orthogonal direct sum of Gn, n ≥ 0:

H =
⊕

n≥0

Gn Hilbert space sense . (2.2)

For each 1 ≤ j ≤ d, let Xj denote the multiplication operator by xj . This

operator is densely defined on H and its domain contains Pn for all n ≥ 0. Moreover,

Xj maps Pn into Pn+1, for any n ≥ 0.

Let Pn denote the orthogonal projection of H onto Gn. The following theorems

are due to Accardi and Nahni,4 see also Ref. 2.

Theorem 2.1. For any j ∈ {1, 2, . . . , d} and n ≥ 0, we have

XjGn ⊥ Gk , ∀ k 6= n − 1, n, n + 1 .

Theorem 2.2. (Recursion relations) For any j ∈ {1, 2, . . . , d} and n ≥ 0, the

following equality holds:

XjPn = Pn+1XjPn + PnXjPn + Pn−1XjPn , (2.3)

where P−1 = 0 by convention.

For each j ∈ {1, 2, . . . , d} and n ≥ 0, we define the operators:

D+
n (j) = Pn+1XjPn : Gn → Gn+1 , (2.4)

D0
n(j) = PnXjPn : Gn → Gn , (2.5)

D−
n (j) = Pn−1XjPn : Gn → Gn−1 , (2.6)

where G−1 = {0} by convention.

Theorem 2.3. For any i, j ∈ {1, 2, . . . , d} and n ≥ 0, the following identities hold:

(a) D+
n+1(i)D

+
n (j) = D+

n+1(j)D
+
n (i) , (2.7)

(b) D0
n+1(i)D

+
n (j) + D+

n (i)D0
n(j)

= D0
n+1(j)D

+
n (i) + D+

n (j)D0
n(i) , (2.8)

(c) D−
n+1(i)D

+
n (j) + D0

n(i)D0
n(j) + D+

n−1(i)D
−
n (j)

= D−
n+1(j)D

+
n (i) + D0

n(j)D0
n(i) + D+

n−1(j)D
−
n (i) . (2.9)
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Theorem 2.4. For any j ∈ {1, 2, . . . , d} and n ≥ 0, the PAC operators D0
n(j),

D−
n (j), D+

n (j) satisfy the identities:

(D0
n(j))∗ = D0

n(j) , (2.10)

(D+
n (j))∗ = D−

n+1(j) . (2.11)

For each j ∈ {1, 2, . . . , d}, we consider the densely defined linear operators a+(j),

a0(j) and a−(j) on H, so that, for any n ≥ 0,

a+(j)|Gn
= D+

n (j) , a0(j)|Gn
= D0

n(j) , a−(j)|Gn
= D−

n (j) .

By Eq. (2.3), the multiplication operator Xj can be rewritten as

Xj = a+(j) + a0(j) + a−(j) , 1 ≤ j ≤ d .

Thus, associated with a probability measure µ, having finite moments of any

order, we have an interacting Fock space

{H, 1, a+(j), a0(j), a−(j); 1 ≤ j ≤ d} .

Here the constant function 1 is called the vacuum vector. Notice that a−(j)1 = 0

for any j ∈ {1, 2, . . . , d}.

3. Moment Equal Probability Measures

In this section we will see that a probability measure on Rd is completely charac-

terized, in the sense of moments, by the operators {a0(i)}1≤i≤d and commutators

{[a−(j), a+(k)]}1≤j,k≤d.

Definition 3.1. Two probability measures µ and ν on Rd, having finite moments

of any order, are said to be moment equal if they have the same moments. That

means, for any monomial m(x) = xi1
1 · · ·xid

d , we have:
∫

Rd

m(x)µ(dx) =

∫

Rd

m(x)ν(dx) .

If µ and ν are two probability measures on Rd, having finite moments of any

order, then we say that µ
m
= ν if µ and ν are moment equal. It is clear that

m
= is an

equivalence relation on the set, M(Rd), of all probability measures on Rd, having

finite moments of any order.

For any probability measure µ on R
d, having finite moments of any order, we in-

troduce two matrices A0
µ and A−,+

µ , whose entries are operators defined on the space

P , which is the space V , of all polynomial functions of d variables, factorized by the

µ-almost sure equality. Namely, A0
µ is the column matrix, whose i-entry is a0(i), for

1 ≤ i ≤ d, and A−,+
µ is the d× d matrix, whose (j, k)-entry is [a−(j), a+(k)], where

[a−(j), a+(k)] := a−(j)a+(k) − a+(k)a−(j) is the commutator of the operators

a−(j) and a+(k), for 1 ≤ j, k ≤ d.
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Theorem 3.2. (Fundamental Theorem) Two probability measures µ and ν on Rd,

having finite moments of any order, are moment equal if and only if A0
µ = A0

ν and

A−,+
µ = A−,+

ν .

Proof. (⇒) Let us assume that µ and ν are moment equal. Applying the Gram–

Schmidt orthogonalization procedure to the set of all monomials, listed in a non-

decreasing degree order and arranging the monomials of the same degree in a

lexicographic order, we obtain the same complete orthonormal set for the space

P , with respect to µ and ν. This is true, because the coefficients in the Gram–

Schmidt orthogonalization procedure are moments, which are the same for µ and

ν. Due to this fact, the spaces Gn, n ≥ 0, and their bases obtained by this procedure

are the same for µ and ν. Thus the projections Pn, n ≥ 0, are the same for µ and

ν. It follows that the operators a−(j), a0(j) and a+(j) are the same for µ and ν.

Hence A0
µ = A0

ν and A−,+
µ = A−,+

ν .

(⇐) Let µ and ν be two probability measures on Rd, having finite moments

of any order, such that A0
µ = A0

ν and A−,+
µ = A−,+

ν . Since the equality of two

matrices means the equality of their corresponding entries, it follows that for any

i, j, k ∈ {1, 2, . . . , d}, we have a0
µ(i) = a0

ν(i) and [a−
µ (j), a+

µ (k)] = [a−
ν (j), a+

ν (k)],

where the subscripts µ and ν indicate the probability measure with respect to which

a certain operator is calculated.

We will prove by induction on n, that for all monomials m(x) = xi1
1 · · ·xid

d of

degree less than or equal to 2n, we have Eµ[m(x)] = Eν [m(x)], where Eµ and Eν

denote the expectations with respect to µ and ν, respectively.

For n = 0, there is only one monomial of degree less than or equal to 2n, namely

the constant polynomial 1, and we have: Eµ[1] = Eν [1] = 1.

Let us assume that all monomials of degree less than or equal to 2n have the same

expectation with respect to µ and ν. Applying the Gram–Schmidt orthogonalization

procedure to the set of all monomials of degree less than or equal to n, we obtain

the same orthonormal basis {e0
i0
}i0∈I0 ∪ {e1

i1
}i1∈I1 ∪ · · · ∪ {en

in
}in∈In

for Pn, with

respect to both probability measures µ and ν, where for each 0 ≤ r ≤ n, {er
ir
}ir∈Ir

is an orthonormal basis for Gr. We denote by 〈, 〉µ and 〈, 〉ν the inner product with

respect to µ and ν, respectively.

Let m(x) be a monomial of degree 2n + 1. We have m(x) = xju(x)v(x), for

some j ∈ {1, 2, . . . , d} and u(x) and v(x) monomials of degree equal to n. Since

u(x) ∈ Pn and v(x) ∈ Pn, we can write:

u(x) =
∑

i∈In

αie
n
i +

∑

0≤r≤n−1

∑

s∈Ir

βr,se
r
s

and

v(x) =
∑

i∈In

γie
n
i +

∑

0≤r≤n−1

∑

s∈Ir

δr,se
r
s ,

where for all i ∈ In, 0 ≤ r ≤ n−1, and s ∈ Ir, αi, βr,s, γi, and δr,s are real numbers.
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As a0
µ(j)en

i = a0
ν(j)en

i , we obtain:

∑

l∈In

〈xje
n
i , en

l 〉µen
l =

∑

l∈In

〈xje
n
i , en

l 〉νen
l .

Since the vectors {en
l }l∈In

are linearly independent, we obtain: 〈xje
n
i , en

l 〉µ =

〈xje
n
i , en

l 〉ν , or equivalently:

Eµ[xje
n
i en

l ] = Eν [xje
n
i en

l ] ,

for all i, l ∈ In.

For all i ∈ In, 0 ≤ r ≤ n − 1, and s ∈ Ir , the degree of the polynomial xje
n
i er

s

is less than or equal to 2n. Thus, according to our induction hypothesis, we have:

Eµ[xje
n
i er

s] = Eν [xje
n
i er

s] .

For the same reason, for all 0 ≤ r1 ≤ n − 1, s1 ∈ Ir1
, 0 ≤ r2 ≤ n − 1, and s2 ∈ Ir2

,

we have:

Eµ[xje
r1

s1
er2

s2
] = Eν [xje

r1

s1
er2

s2
] .

Combining all these equalities we get:

Eµ[m(x)] = Eµ

[

xj





∑

i∈In

αie
n
i +

∑

0≤r≤n−1

∑

s∈Ir

βr,se
r
s





×





∑

i∈In

γie
n
i +

∑

0≤r≤n−1

∑

s∈Ir

δr,se
r
s





]

=
∑

i∈In

∑

l∈In

αiγlEµ[xje
n
i en

l ]

+
∑

i∈In

∑

0≤r≤n−1

∑

s∈Ir

αiδr,sEµ[xje
n
i er

s]

+
∑

i∈In

∑

0≤r≤n−1

∑

s∈Ir

γiβr,sEµ[xje
n
i er

s]

+
∑

0≤r1≤n−1

∑

s1∈Ir1

∑

0≤r2≤n−1

∑

s2∈Ir2

βr1,s1
δr2,s2

Eµ[xje
r1

s1
er2

s2
]

= Eν [m(x)] .

Let m(x) be a monomial of degree 2n + 2. There exist j, k ∈ {1, 2, . . . , d} and

u(x) and v(x) monomials of degree n, such that m(x) = (xju(x))(xkv(x)). Writing,

as before,

u(x) =
∑

i∈In

αie
n
i +

∑

0≤r≤n−1

∑

s∈Ir

βr,se
r
s
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and

v(x) =
∑

i∈In

γie
n
i +

∑

0≤r≤n−1

∑

s∈Ir

δr,se
r
s ,

showing that Eµ[m(x)] = Eν [m(x)] reduces to proving that, for all p, q ∈ In, we

have:

Eµ[(xje
n
p )(xken

q )] = Eν [(xje
n
p )(xken

q )] .

All the other terms are expectations of polynomials of degree less than or equal to

2n + 1, which are equal with respect to µ and ν.

Let p, q ∈ In be fixed. Let {gs}s∈S be an orthonormal basis of the space

Gn+1,µ := Pn+1 	µ Pn and {ht}t∈T an orthonormal basis of the space Gn+1,ν :=

Pn+1 	ν Pn. Here, the probability measures are written as subscripts, to indicate

that the orthogonal complement is taken with respect to them. As

〈[a−
µ (k), a+

µ (j)]en
p , en

q 〉µ = 〈[a−
ν (k), a+

ν (j)]en
p , en

q 〉ν ,

we have:
∑

s∈S

〈xje
n
p , gs〉µ〈gs, xken

q 〉µ −
∑

r∈In−1

〈xken
p , en−1

r 〉µ〈e
n−1
r , xje

n
q 〉µ

=
∑

t∈T

〈xje
n
p , ht〉ν〈ht, xken

q 〉ν −
∑

r∈In−1

〈xken
p , en−1

r 〉ν〈e
n−1
r , xje

n
q 〉ν .

For all r ∈ In−1, we have:

〈xken
p , en−1

r 〉µ〈e
n−1
r , xje

n
q 〉µ = 〈xken

p , en−1
r 〉ν〈e

n−1
r , xje

n
q 〉ν ,

because each factor is an expectation of a polynomial of degree at most 2n. Thus

we obtain:
∑

s∈S

〈xje
n
p , gs〉µ〈gs, xken

q 〉µ =
∑

t∈T

〈xje
n
p , ht〉ν〈ht, xken

q 〉ν . (3.1)

Since xje
n
p and xken

q belong to Gn+1,µ⊕Gn⊕Gn−1 for which {gs}s∈S∪{e
n
l }l∈In

∪

{en−1
r }r∈In−1

is an orthonormal basis, we conclude that:

〈xje
n
p , xken

q 〉µ =
∑

s∈S

〈xje
n
p , gs〉µ〈gs, xken

q 〉µ

+
∑

l∈In

〈xje
n
p , en

l 〉µ〈e
n
l , xken

q 〉µ

+
∑

r∈In−1

〈xje
n
p , en−1

r 〉µ〈e
n−1
r , xken

q 〉µ . (3.2)

Similarly, we have:
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〈xje
n
p , xken

q 〉ν =
∑

t∈T

〈xje
n
p , ht〉ν〈ht, xken

q 〉ν

+
∑

l∈In

〈xje
n
p , en

l 〉ν〈e
n
l , xken

q 〉ν

+
∑

r∈In−1

〈xje
n
p , en−1

r 〉ν〈e
n−1
r , xken

q 〉ν . (3.3)

We also have:
∑

l∈In

〈xje
n
p , en

l 〉µ〈e
n
l , xken

q 〉µ

+
∑

r∈In−1

〈xje
n
p , en−1

r 〉µ〈e
n−1
r , xken

q 〉µ

=
∑

l∈In

〈xje
n
p , en

l 〉ν〈e
n
l , xken

q 〉ν

+
∑

r∈In−1

〈xje
n
p , en−1

r 〉ν〈e
n−1
r , xken

q 〉ν , (3.4)

since these are sums of products of expectations of polynomials of degree less than

or equal to 2n + 1.

From (3.1)–(3.4) we conclude that:

Eµ[(xje
n
p )(xken

q )] = Eν [(xje
n
p )(xken

q )] .

The proof is now complete.

As a corollary of this theorem we obtain the following theorem:

Theorem 3.3. The standard Gaussian probability measure on Rd, i.e. the proba-

bility measure given by the density g(x) = (2π)−n/2e−|x|2/2, is the only probability

measure on Rd for which A−,+
µ = Id, where Id is the d × d operatorial identity

matrix, and A0
µ = 0d, where 0d is the d × 1 operatorial zero matrix.

From the Fundamental Theorem, it follows that if a probability measure ν has

the same preservation operators and commutators between the annihilation and

creation operators as the standard Gaussian probability measure µ, on Rd, then ν

must be moment equal to µ. On the other hand, it is known that a Gaussian is

uniquely determined, as a probability measure on Rd, by its moments and thus,

ν = µ (i.e. ν(B) = µ(B) for any Borel subset of Rd).

The standard Gaussian probability measure on Rd and the d-fold product of the

Poisson probability measure with mean λ = 1, on R, have the same A−,+ matrix (see

the tables at the end of this paper), even though they are not moment-equal. Thus

the matrix A−,+ alone does not determine uniquely the moments of a probability
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measure. On the other hand, all the polynomially symmetric probability measures

have the same A0 = 0 matrix. Thus the matrix A0 alone does not determine

uniquely the moments of a probability measure either. These facts show that we

need both matrices A−,+ and A0, in order to determine uniquely a probability

measure from the point of view of moments.

As the Fundamental Theorem involves the operators a0 and [a−, a+], we call

each theorem, that characterizes a property of a probability measure in terms of the

preservation and commutators between the annihilation and creation operators, a

fundamental theorem. In Ref. 2 it was shown that a probability measure on Rd,

having finite moments of any order, is polynomially symmetric (i.e. all moments of

odd degree vanish) if and only if all the preservation operators a0(j), 1 ≤ j ≤ d,

are 0. This is a fundamental theorem. Another theorem from Ref. 2 says that a

probability measure on R
d, having finite moments of any order, is polynomially

factorizable (i.e.

E[xi1
1 xi2

2 · · ·xid

d ] = E[xi1
1 ]E[xi2

2 ] · · ·E[xid

d ] ,

for all non-negative integers i1, i2, . . . , id) if and only if, for all j 6= k, any oper-

ator from the set {a−(j), a0(j), a+(j)} commutes with any operator from the set

{a−(k), a0(i), a+(k)}. When we say that these operators commute, their domain is

understood to be P . This theorem is not fundamental, since it involves the com-

mutators [a−(j), a0(k)] (which must be zero, for all j 6= k) and these commutators

do not appear in the Fundamental Theorem. On the other hand, the same theorem

can be restated as: a probability measure is polynomially factorizable if and only

if, for all j 6= k, a0(j)Xk = Xka0(j). Written in this way, the theorem is fundamen-

tal since it involves the preservation operators a0 and the multiplication operators

X . The multiplication operator Xj , by the variable xj , for 1 ≤ j ≤ d, defined on

the space V , of all polynomial functions of d variables, exists independently of the

measure µ, being defined in a pure algebraic way.

We would like to make one more comment. All characterization theorems, that

we get in this theory of interacting Fock spaces, in terms of the creation, preserva-

tion, and annihilation operators have to contain the adverb “polynomially”. Thus,

for example, we can characterize the polynomially symmetric probability measures,

but not the symmetric ones, and we can also characterize the polynomially factoriz-

able probability measures, but not the factorizable (product) probability measures.

In Ref. 2 there is an example of a polynomially symmetric probability measure that

is not symmetric and another example of a polynomially factorizable measure that

is not factorizable. The fact that we always have to use the word “polynomially”

is due to the fact that a−, a0 and a+ are defined in terms of the moments of a

probability measure. From the operators a−, a0 and a+ we can recover only the

moments of a probability measure. For the probability measures µ, that are not

uniquely characterized by their moments, it is not possible to recover the numbers

µ(B), for all Borel sets B.
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Despite this fact, it is worth mentioning the following observations, which were

suggested to us by Prof. B. Hall. Before presenting them we would like to thank

Prof. Hall for his kind advise.

Lemma 3.4. Every polynomially symmetric probability measure is moment equal

to a symmetric probability measure.

Proof. Let µ be a polynomially symmetric probability measure. This means

E[xi1
1 · · ·xid

d ] = 0, for any monomial xi1
1 · · ·xid

d of odd degree (i.e. i1 + · · · + id
is odd). Let ν be the symmetrization of µ. That means for any Borel subset B of

Rd, we define:

ν(B) :=
1

2
µ(B) +

1

2
µ(−B) ,

where −B := {−x |x ∈ B}. Then ν is a symmetric probability measure

(i.e. ν(−B) = ν(B), for any Borel subset B of Rd) and it is very easy to see

that ν has the same moments as µ.

Before presenting the next lemma, we would like to recall the following theorem

regarding the classical problem of moments.

Theorem 3.5. Let {mi1,i2,...,id
}(i1,i2,...,id)∈(N∪{0})d be a sequence of real numbers.

There exists a measure µ on Rd such that, for all (i1, i2, . . . , id) ∈ (N ∪ {0})d,
∫

Rd xi1
1 xi2

2 · · ·xid

d µ(dx1dx2 · · · dxd) = mi1,i2,...,id
if and only if for all polynomial

functions with real coefficients,

P (x1, x2, . . . , xd) =
∑

k1,k2,...,kd

ak1,k2,...,kd
xk1

1 xk2

2 · · ·xkd

d ,

such that, for all (x1, x2, . . . , xd) ∈ Rd, P (x1, x2, . . . , xd) ≥ 0, we have P (m) ≥ 0,

where

P (m) =
∑

k1,k2,...,kd

ak1,k2,...,kd
mk1,k2,...,kd

.

See Ref. 9 for a proof. The measure from this theorem is a probability measure

if and only if
∫

Rd 1µ(dx) = 1 which means m0,0,...,0 = 1.

Lemma 3.6. Every polynomially factorizable probability measure is moment equal

to a product probability measure.

Proof. Let µ be a polynomially factorizable probability measure on Rd. This

means, for any monomial xi1
1 xi2

2 · · ·xid

d , we have:

Eµ[xi1
1 xi2

2 · · ·xid

d ] = Eµ[xi1
1 ]Eµ[xi2

2 ] · · ·Eµ[xid

d ] ,

where Eµ[·] denotes the expectation with respect to µ. For any non-negative integers

i1, i2, . . . , id, we define the numbers:

mi1,i2,...,id
:= Eµ[xi1

1 xi2
2 · · ·xid

d ] .
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Using the direct implication of Theorem 3.5, we conclude that, for any polyno-

mial P (x1, x2, . . . , xd), of d variables, such that P (x1, x2, . . . , xd) ≥ 0, for all (x1,

x2, . . . , xd) ∈ Rd, we have P (m) ≥ 0, where P (m) is defined as in the text of that

theorem.

For any i ∈ {1, 2, . . . , d} and any non-negative integer α, we define

m(i)
α := m0,...,0,α,0,...,0 ,

where α is placed on the ith position of the subscript vector (0, . . . , 0, α, 0, . . . , 0).

Here “(i)” denotes a superscript and not a power. For any polynomial P (x), of only

one variable x, such that P (x) ≥ 0, for all x ∈ R, we may define the polynomial

Pi(x1, . . . , xd), of d variables, by the formula:

Pi(x1, . . . , xd) := P (xi) .

Since P (x) ≥ 0, for all x ∈ R, we have Pi(x1, . . . , xd) ≥ 0, for all (x1, . . . , xd) ∈

Rd. This implies that P (m(i)) = Pi(m) ≥ 0, where m(i) denotes the sequence of

real numbers m
(i)
0 , m

(i)
1 , m

(i)
2 , . . .. Thus, according to the converse implication of

Theorem 3.5, in the particular case d = 1, there exists a measure µi on R, such

that for all non-negative integers α, we have:
∫

R

xαµ(dx) = m(i)
α .

Since m0,...,0 = 1, it follows that m
(i)
0 = 1, and thus µi is a probability measure

on R.

Let ν = µ1 ⊗ µ2 ⊗ · · · ⊗ µd be the product measure of µ1, µ2, . . . , µd. Since µ is

polynomially factorizable, for any monomial xi1
1 xi2

2 · · ·xid

d , we have:

Eµ[xi1
1 xi2

2 · · ·xid

d ] = Eµ[xi1
1 ]Eµ[xi2

2 ] · · ·Eµ[xid

d ]

= m
(1)
i1

m
(2)
i2

· · ·m
(d)
id

= Eµ1
[xi1

1 ]Eµ2
[xi2

2 ] · · ·Eµd
[xid

d ]

= Eµ1⊗µ2⊗···⊗µd
[xi1

1 xi2
2 · · ·xid

d ]

= Eν [xi1
1 xi2

2 · · ·xid

d ] .

Thus µ is moment equal to ν which is a product measure, even though µ is not

necessary of a product measure.

The above two lemmas show that, modulo the equivalence relation
m
=, the no-

tions of “polynomially symmetry” and “polynomially factorizability” are the same

as the notions of “symmetry” and “factorizability”, respectively.

4. Existence Problem

In this section we will discuss the following problem. Let {ai,j}1≤i,j≤d and

{bk}1≤k≤d be two families of linear maps defined on the vector space V of all
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polynomial functions, in d variables, with values in the same space V . What con-

ditions must these two families of operators satisfy to ensure the existence of a

probability measure µ on Rd, having finite moments of any order, such that for all

i, j, k ∈ {1, 2, . . . , d}, [a−
µ (i), a+

µ (j)] = ai,j and a0
µ(k) = bk?

We will find some necessary conditions.

For all n ≥ 0, let Vn be the vector space of all polynomial functions, in d

variables, of degree less than or equal to n. It is clear that, if such a probability

measure µ exists, then for all n ≥ 0, Vn is invariant under the action of all the

operators ai,j and bk. That means, for all n ≥ 0 and i, j, k ∈ {1, 2, . . . , d}, ai,jVn ⊂

Vn and bkVn ⊂ Vn.

4.1. The one-dimensional case (d = 1)

We will now present some known results for the case d = 1. If d = 1 and µ is a

probability measure on the Borel subsets of R, having finite moments of any order,

then we have only one variable x1 denoted by x and we can simply write a−
µ , a0

µ, and

a+
µ instead of a−

µ (1), a0
µ(1) and a+

µ (1), respectively. Since the algebraic codimension

of Vn−1 into Vn is 1, the dimension of the space Gn is less than or equal to 1, for

all n ≥ 0.

If µ is a probability measure on R having finite moments of any order such that

the dimension of Gn is 1, for all n ≥ 0, then we denote by en a polynomial of norm

1 in Gn. Thus, {en} is an orthonormal basis of Gn. Since Gn has dimension 1, there

is only one polynomial in Gn having the leading coefficient (i.e. the coefficient of

xn) equal to 1. We denote this polynomial by Pn, for all n ≥ 0. We would like

to warn the reader, to distinguish between the polynomial Pn and the projection

operator of the Hilbert space H onto its closed subspace Gn, which was also denoted

before by Pn, for all n ≥ 0. It would have been better to use another notation for

the polynomials Pn, but we have not changed it because this notation appears

in many other papers. Of course, P0 = 1 (i.e. the constant polynomial 1). Since

xPn ∈ Gn+1 ⊕ Gn ⊕ Gn−1 and xPn is a polynomial of degree n + 1 having the

leading coefficient 1, there exist two real numbers αn and ωn, such that:

xPn = Pn+1 + αnPn + ωnPn−1 , ∀ n ≥ 0 . (4.1)

In the above relation P−1 = 0 and ω0 = 0 by convention. The sequences of numbers

{αn}n≥0 and {ωn}n≥1 are called the Szegö–Jacobi parameters of µ.

If the dimension of the space Gn is zero, for some positive integer n, then

denoting by n0, the smallest of all such positive integers, we get, Gn = {0} (the

null space), for all n ≥ n0. In this case, we can define, for all n ≥ n0, αn := 0,

ωn := 0, and Pn := 0. Then, for n = n0 − 1, the equality (4.1) must be understood

in the µ-almost surely sense.

We denote by λn the square of the norm of Pn in the space L2(R, µ). It is known

that λn = ω1ω2 · · ·ωn, for all n ≥ 1. From this relation it follows easily that ωn ≥ 0,

for all n ≥ 1. Actually it is easy to see that the condition ωn ≥ 0, for all n ≥ 1, is

not only necessary, but also almost sufficient because of the following results.
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Theorem 4.1. Let {αn}n≥0 and {ωn}n≥1 be two sequences of real numbers. Then

there exists a probability measure µ on R, having finite support of cardinality m,

such that the Szegö–Jacobi parameters of µ are {αn}n≥0 and {ωn}n≥1 if and only

if, for all k ∈ {1, 2, . . . , m − 1}, ωk > 0, for all k ≥ m, ωk = 0, and for all k ≥ m,

αk = 0.

Theorem 4.2. Let {αn}n≥0 and {ωn}n≥1 be two sequences of real numbers. Then

there exists a probability measure µ on R, of infinite support, having finite moments

of any order, such that the Szegö–Jacobi parameters of µ are {αn}n≥0 and {ωn}n≥1

if and only if, for all k ≥ 1, ωk > 0.

The probability measures with compact support can also be characterized in

terms of the Szegö–Jacobi parameters, by the following theorem:

Theorem 4.3. Let µ be a probability measure on R, having finite moments of any

order. Let {αn}n≥0 and {ωn}n≥1 be the Szegö–Jacobi parameters of µ. Then µ has

compact support if and only if both sequences {αn}n≥0 and {ωn}n≥1 are bounded.

If E is a finite-dimensional vector space, without any topology, and T is a linear

map from E into E, then we can define the trace of T , Tr(T ), by fixing an algebraic

basis {ei}1≤i≤n of E. If A = (aij)1≤i,j≤n is the matrix associated to T with respect

to the basis {ei}1≤i≤n, for both domain and codomain E, of T , then we define:

Tr(T ) =

n
∑

i=1

aii .

This definition is known to be independent of the choice of the basis of E.

If µ is a probability measure on R, having finite moments of any order, and

{αn}n≥0 and {ωn}n≥1 are its Szegö–Jacobi parameters, then from the recurrence

relation (4.1), we can see that a−
µ Pn = ωnPn−1 and a+

µ Pn = Pn+1. Thus, we obtain:

[a−
µ , a+

µ ]Pn = a−
µ a+

µ Pn − a+
µ a−

µ Pn

= a−
µ Pn+1 − a+

µ (ωnPn−1)

= ωn+1Pn − ωnPn

= (ωn+1 − ωn)Pn .

Using the algebraic (in fact orthogonal, but not necessary orthonormal) basis

{P0, P1, . . . , Pn} of Vn, and denoting by [a−
µ , a+

µ ]|Vn
the restriction of [a−

µ , a+
µ ] to

its invariant subspace Vn, we have:

Tr([a−
µ , a+

µ ]|Vn
) =

n
∑

k=0

(ωk+1 − ωk)

= ωn+1 .
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Using the same algebraic basis of Vn, as before, we can easily see that

Tr(a0
µ|Vn

) =

n
∑

k=0

αk

and thus

αn = Tr(a0
µ|Vn

) − Tr(a0
µ|Vn−1

) ,

for all n ≥ 0, where by convention V−1 := {0} is the null space.

We can rewrite Theorems 4.1–4.3 as follows:

Theorem 4.4. Let m be a fixed natural number and a0 and a−,+ two linear maps

on the space V of all polynomial functions of one variable x. We assume that, for

all n ≥ 0, the subspace Vn, of polynomial functions of degree at most n, is invariant

under the action of both a0 and a−,+. There exists a probability measure µ on R, of

finite support of cardinality m, such that, for all n ≥ 0, Tr(a0|Vn
) = Tr(a0

µ|Vn
) and

Tr(a−,+|Vn
) = Tr([a−

µ , a+
µ ]|Vn

) if and only if, for all k ≤ m − 2, Tr(a−,+|Vk
) > 0,

for all k ≥ m−1, Tr(a−,+|Vk
) = 0, and for all k ≥ m−1, Tr(a0|Vk

) = Tr(a0|Vm−1
).

Theorem 4.5. Let a0 and a−,+ be two linear maps on the space V of all polynomial

functions of one variable x. We assume that, for all n ≥ 0, the subspace Vn, of

polynomial functions of degree at most n, is invariant under the action of both a0

and a−,+. There exists a probability measure µ on R, of infinite support, having

finite moments of any order, such that, for all n ≥ 0, Tr(a0|Vn
) = Tr(a0

µ|Vn
) and

Tr(a−,+|Vn
) = Tr([a−

µ , a+
µ ]|Vn

) if and only if, for all k ≥ 0, Tr(a−,+|Vk
) > 0.

Theorem 4.6. A probability measure µ on R, has compact support, if and only if

it has finite moments of any order and both sequences of real numbers {Tr(a0
µ|Vn

)−

Tr(a0
µ|Vn−1

)}n≥1 and {Tr([a−
µ , a+

µ ]|Vn
)}n≥0 are bounded, where Vn denotes the space

of all polynomial functions, of one variable x, of degree at most n.

Theorems 4.1 and 4.2, or their equivalent Theorems 4.4 and 4.5, respectively,

give us a “satisfactory” answer to the existence problem in the dimension d = 1

case. The answer is only satisfactory because it does not tell us anything about the

non-diagonal entries of the matrices associated to a0|Vn
and a−,+|Vn

with respect to

various bases of Vn, for n ≥ 0. They give us information only about the eigenvalues

of these matrices, which are {αk}
n
k=0 and {ωk+1−ωk}

n
k=0, respectively, for all n ≥ 0,

or, equivalently, about their traces. Since this information is enough to recover

all the moments of the probability measure µ, perhaps, the existence problem is

not well posed and should be reformulated by requiring, not to find all the linear

operators which are the preservation and commutators between the annihilation and

creation operators of a probability measure, having finite moments of any order,

but to find only those characteristics of these operators that are enough to ensure

the existence of such a probability measure.
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4.2. The multidimensional case (d ≥ 2)

Let us remember the problem that we are trying to solve. Let {ai,j}1≤i,j≤d and

{bk}1≤k≤d be two families of linear maps defined on the vector space V of all poly-

nomial functions, in d variables, with values in the same space V . What conditions

must these two families of operators satisfy to ensure the existence of a probabil-

ity measure µ on Rd, having finite moments of any order, such that for all i, j,

k ∈ {1, 2, . . . , d}, [a−
µ (i), a+

µ (j)] = ai,j and a0
µ(k) = bk?

At this moment there is no inner product given on V since the probability

measure µ has not been constructed yet. Thus V has only an algebraic structure,

being a vector space. It has an increasing sequence of well-defined vector subspaces:

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V ,

where Vn denotes the space of all polynomial functions, of d variables: x1, x2, . . . , xd,

of degree at most n. All the conditions that we formulate should have a pure

algebraic meaning. One of the necessary conditions is that all the spaces Vn, n ≥ 0,

be invariant under the action of each of the operators ai,j , 1 ≤ i, j ≤ d, and bk,

1 ≤ k ≤ d.

Let us assume that there exists a probability measure µ on the Borel subsets

of Rd, having finite moments of any order, such that for all i, j, k ∈ {1, 2, . . . , d},

[a−
µ (i), a+

µ (j)] = ai,j and a0
µ(k) = bk. Let us also recall the relation (2.9):

D−
n+1(i)D

+
n (j) + D0

n(i)D0
n(j) + D+

n−1(i)D
−
n (j)

= D−
n+1(j)D

+
n (i) + D0

n(j)D0
n(i) + D+

n−1(j)D
−
n (i) ,

for all i, j ∈ {1, 2, . . . , d} and all n ≥ 0. This relation is equivalent to

(D−
n+1(i)D

+
n (j) − D+

n−1(j)D
−
n (i))

− (D−
n+1(j)D

+
n (i) − D+

n−1(i)D
−
n (j))

= D0
n(j)D0

n(i) − D0
n(i)D0

n(j) ,

which means that:

[a−
µ (i), a+

µ (j)] − [a−
µ (j), a+

µ (i)] = [a0
µ(j), a0

µ(i)] , (4.2)

for all i, j ∈ {1, 2, . . . , d}.
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Thus, we obtain the necessary condition:

ai,j − aj,i = [bj , bi] , (4.3)

for all i, j ∈ {1, 2, . . . , d}.

Let us recall now the commutation relation (2.7):

D+
n+1(i)D

+
n (j) = D+

n+1(j)D
+
n (i) ,

for all i, j ∈ {1, 2, . . . , d} and all n ≥ 0. This is equivalent to

a+
µ (i)a+

µ (j) = a+
µ (j)a+

µ (i) , (4.4)

for all i, j ∈ {1, 2, . . . , d}. Taking the adjoint on both sides of this equality, we

obtain:

a−
µ (j)a−

µ (i) = a−
µ (i)a−

µ (j) , (4.5)

for all i, j ∈ {1, 2, . . . , d}. Using now the relations Xi = a−
µ (i) + a0

µ(i) + a+
µ (i),

Xj = a−
µ (j) + a0

µ(j) + a+
µ (j), (4.2), (4.4) and (4.5), and the commutativity between

the multiplication operators Xi and Xj , we obtain:

[a0
µ(i), a0

µ(j)] = [a−
µ (j), a+

µ (i)] − [a−
µ (i), a+

µ (j)]

= [a−
µ (j), a+

µ (i)] + [a+
µ (j), a−

µ (i)]

= [a−
µ (j) + a+

µ (j), a−
µ (i) + a+

µ (i)]

= [Xj − a0
µ(j), Xi − a0

µ(i)]

= [Xj , Xi] − [Xj , a
0
µ(i)] − [a0

µ(j), Xi] + [a0
µ(j), a0

µ(i)]

= [a0
µ(i), Xj ] − [a0

µ(j), Xi] − [a0
µ(i), a0

µ(j)] ,

for all i, j ∈ {1, 2, . . . , d}. This implies:

[a0
µ(i), Xj ] − [a0

µ(j), Xi] = 2[a0
µ(i), a0

µ(j)] , (4.6)

for all i, j ∈ {1, 2, . . . , d}.

Therefore, we have obtained another necessary condition:

[bi, Xj ] − [bj , Xi] = 2[bi, bj ] , (4.7)

for all i, j ∈ {1, 2, . . . , d}.

We would like to mention again that (4.7) is a well-defined algebraic relation

since the multiplication operators Xi and Xj , defined on the space of all polynomial

functions V with values in V , have a clear algebraic meaning and they do not depend

on the existence of any probability measure µ. The domain of all operators: Xi, Xj ,

bi and bj , involved in (4.7), is considered to be V .

We present now a necessary condition that extends the requirement that ωn ≥ 0,

for all n ≥ 1, from the one-dimensional case d = 1 to the multidimensional case

d ≥ 2.
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Lemma 4.7. Let µ be a probability measure on Rd, having finite moments of any

order. Then, for all n ≥ 0, (Tr([a−
µ (i), a+

µ (j)]|Vn
))1≤i,j≤d is a d×d positive semidef-

inite matrix.

Proof. For each n ≥ 0, let {en
i }1≤i≤tn

be an orthonormal basis of the space Gn.

Then for any k ≥ 0 and z1, z2, . . . , zd ∈ C, we have:
∑

1≤i,j≤d

ziz̄j

∑

1≤u≤tk

〈[a−
µ (i), a+

µ (j)]ek
u, ek

u〉

=
∑

1≤i,j≤d

ziz̄j

∑

1≤u≤tk

∑

1≤v≤tk+1

〈Xje
k
u, ek+1

v 〉〈Xie
k
u, ek+1

v 〉

−
∑

1≤i,j≤d

ziz̄j

∑

1≤u≤tk

∑

1≤w≤tk−1

〈Xje
k−1
w , ek

u〉〈Xie
k−1
w , ek

u〉 .

Summing up from k = 0 to k = n, we obtain:
∑

1≤i,j≤d

ziz̄jTr([a−
µ (i), a+

µ (j)]|Vn
)

=
∑

1≤i,j≤d

ziz̄j

∑

1≤u≤tn

∑

1≤v≤tn+1

〈Xje
n
u, en+1

v 〉〈Xie
n
u, en+1

v 〉

=
∑

1≤i,j≤d

∑

1≤u≤tn

∑

1≤v≤tn+1

〈ziXie
n
u, en+1

v 〉〈en+1
v , zjXje

n
u〉

=
∑

1≤i,j≤d

∑

1≤u≤tn

〈ziD
+
n (i)en

u, zjD
+
n (j)en

u〉

=
∑

1≤u≤tn

∥

∥

∥

∥

∥

∥

∑

1≤i≤d

ziD
+
n (i)en

u

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∑

1≤i≤d

ziD
+
n (i)

∥

∥

∥

∥

∥

∥

2

HS

≥ 0 ,

where ‖ · ‖HS denotes the Hilbert–Schmidt norm.

Thus we obtain the following necessary condition: for all n ≥ 0, the matrix

(Tr(ai,j |Vn
))1≤i,j≤d must be positive semidefinite.

We summarize now all the necessary conditions that we have found so far.

Theorem 4.8. Let {ai,j}1≤i,j≤d and {bk}1≤k≤d be two families of linear maps from

the vector space V, of all polynomial functions of d variables: x1, x2, . . . , xd, into

itself. If there exists a probability measure µ on Rd, having finite moments of any
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order, such that for all i, j, k ∈ {1, 2, . . . , d}, [a−
µ (i), a+

µ (j)] = ai,j and a0
µ(k) = bk,

then the following conditions hold:

(1) For all n ≥ 0 and all i, j, k ∈ {1, 2, . . . , d}, ai,jVn ⊂ Vn and bkVn ⊂ Vn, where

Vn denotes the space of all polynomial functions of d variables, of degree at

most n.

(2) For all i, j ∈ {1, 2, . . . , d}, ai,j − aj,i = [bj , bi].

(3) For all i, j ∈ {1, 2, . . . , d}, [bi, Xj ] − [bj , Xi] = 2[bi, bj ].

(4) For all n ≥ 0, the matrix (Tr(ai,j |Vn
))1≤i,j≤d is positive semidefinite.

Comment. In the one-dimensional case d = 1 we saw that knowing the Szegö–

Jacobi parameters {αn}n≥0 and {ωn}n≥1, or equivalently knowing all the traces

{Tr(a0|Vn
)}n≥0 and {Tr([a−, a+]|Vn

)}n≥0, is the same as knowing all the moments

of the probability measure µ. In fact the numbers {αn}n≥0 and {ωn+1−ωn}n≥0 are

the eigenvalues of the operators a0 and [a−, a+], respectively, whose domain is con-

sidered to be V . These eigenvalues are the roots of the characteristic polynomials of

the two operators restricted to the spaces Vn, n ≥ 0. The characteristic polynomials

can be defined purely algebraically, without introducing any inner product on the

spaces Vn, n ≥ 0. The existence theorems are easy to prove for d = 1, because the

codimension of Vn−1 into Vn is 1, and we have just one variable x. Due to this fact,

the eigenvalues of a0 can be recovered as Tr(a0|Vn
) − Tr(a0|Vn−1

), for n ≥ 0.

The existence problem for d ≥ 2, which we were not able to solve, is much

more difficult perhaps because the codimension of Vn−1 into Vn is
(

n+d−1
d−1

)

. We

have formulated a necessary condition involving the traces. The trace is only the

second coefficient (after the dominant coefficient which is 1) of the characteristic

polynomial of a matrix, and there may be some necessary conditions about the other

coefficients of the characteristic polynomial of the operators [a−, a+]|Vn
, n ≥ 0, or

equivalently about the eigenvalues of these operators. Knowing only the traces is

not enough to find all the eigenvalues.

Another very important difference between the case d = 1 and d ≥ 2, is given by

the commutativity conditions (4.3) and (4.7) which appear only in the case d ≥ 2.

If the condition about the matrix of traces being positive semidefinite refers to the

eigenvalues of the operators [a−(i), a+(j)], for 1 ≤ i, j ≤ d, the commutativity

conditions (4.3) and (4.7) may refer to the eigenvectors of some matrices. For ex-

ample, it is known that two self-adjoint matrices commute if and only if they can

be diagonalized in the same basis.

In conclusion, even though our results, in the case d ≥ 2, are incomplete, they

open some small doors, into the unknown, which may lead not only to a complete

solution of the existence problem, but also to a good definition of the Szegö–Jacobi

parameters, in the multidimensional case, that naturally extends the one from the

d = 1 case.
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5. The Operators a0 and [a−, a+] for Some Classical

One-Dimensional Distributions

We present below the formulas of the Szegö–Jacobi parameters and the commutator

[a−, a+] for some classic one-dimensional distributions. See also Refs. 6–8.

Table 1.

Measure Polynomial Pn

Gaussian
N(0, σ2)

Hermite

Hn(x;σ2) = (−σ2)nex2/2σ2

∂n
x e−x2/2σ2

Poisson
Poi(a)

Charlier

Cn(x; a) = (−1)na−xΓ(x + 1)∆n
x+

[

ax

Γ(x − n + 1)

]

,

∆x+f(x) = f(x + 1) − f(x)

Gamma Γ(α) , (α > 0)

1

Γ(α)
xα−1e−x , x > 0

Laguerre

L(α−1)
n (x) = (−1)nx−α+1ex∂n

x [xn+α−1e−x]

Uniform on [−1, 1]
Legendre

L̃n(x) =
1

2n(2n − 1)!!
∂n

x [(x2 − 1)n]

Arcsine
1

π
√

1 − x2
, |x| < 1

Chebyshev (first kind)

T̃0(x) = 1

T̃n(x) =
1

2n−1
cos(n cos−1 x), n ≥ 1

Semicircle

2

π

√

1 − x2, |x| < 1

Chebyshev (second kind)

Ũn(x) =
1

2n

sin[(n + 1) cos−1 x]

sin(cos−1 x)

1√
π

Γ(β + 1)

Γ(β + 1
2
)
(1 − x2)β− 1

2 , |x| < 1

β > −1

2
, β 6= 0, 1

Gegenbauer

G̃
(β)
n = C

(β)
n (1 − x2)

1
2
−βu(x),

u(x) = ∂n
x [(1 − x2)n+β− 1

2 ]

C
(β)
n =

(−1)n2nΓ(2β + n)

Γ(2β + 2n)

Negative binomial

r > 0, 0 < p < 1

P (X = x) = pr
(

−r
x

)

(−1)x(1 − p)x,

x ∈ N ∪ {0}

Meixner

M
(r,p)
n (x) = (−1)n 1

pn

Γ(x + 1)

Γ(x + r)
u(x),

u(x) = (1 − p)−x∆n
x+

[

Γ(x + r)

Γ(x − n + 1)
(1 − p)x

]
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Table 2.

Measure Szegö–Jacobi parameters

Gaussian
N(0, σ2)

αn = 0

ωn = σ2n

(λn = σ2nn!)

Poisson
Poi(a)

αn = n + a

ωn = an

(λn = ann!)

Gamma Γ(α) , (α > 0)

1

Γ(α)
xα−1e−x , x > 0

αn = 2n + α

ωn = n(n + α − 1)

(λn = n!(n + α − 1) · · ·α)

Uniform on [−1, 1]

αn = 0

ωn =
n2

(2n + 1)(2n − 1)


λn =
(n!)2

[(2n − 1)!!]2(2n + 1)





Arcsine
1

π
√

1 − x2
, |x| < 1

αn = 0

ωn =















1

2
, n = 1

1

4
, n ≥ 2



λn =
1

22n−1





Semicircle

2

π

√

1 − x2, |x| < 1

αn = 0

ωn =
1

4


λn =
1

4n





1√
π

Γ(β + 1)

Γ(β + 1
2
)
(1 − x2)β− 1

2 , |x| < 1

β > −1

2
, β 6= 0, 1

αn = 0

ωn =
n(n + 2β − 1)

4(n + β)(n + β − 1)

Negative binomial

r > 0, 0 < p < 1

P (X = x) = pr
(

−r
x

)

(−1)x(1 − p)x,

x ∈ N ∪ {0}

αn =
(2 − p)n + r(1 − p)

p

ωn =
n(n + r − 1)(1 − p)

p2



λn =
n!(1 − p)n(n + r − 1) · · · r

p2n




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Table 3.

Measure [a−, a+]Pn

Gaussian
N(0, σ2)

σ2Pn

Poisson
Poi(a)

aPn

Gamma Γ(α) , (α > 0)

1

Γ(α)
xα−1e−x , x > 0

(2n + α)Pn

Uniform on [−1, 1] − 1

(2n + 3)(2n + 1)(2n − 1)
Pn

Arcsine

1

π
√

1 − x2
, |x| < 1























1

2
P0 , n = 0

−1

4
P1 , n = 1

0 , n ≥ 2

Semicircle

2

π

√

1 − x2 , |x| < 1







1

4
P0 , n = 0

0 , n ≥ 1

1√
π

Γ(β + 1)

Γ(β + 1
2
)
(1 − x2)β− 1

2 , |x| < 1

β > −1

2
, β 6= 0, 1

β2 − β

2(n + 1 + β)(n + β)(n − 1 + β)
Pn

Negative binomial

r > 0, 0 < p < 1

P (X = x) = pr
(

−r
x

)

(−1)x(1 − p)x,

x ∈ N ∪ {0}

(2n + r)(1 − p)

p2
Pn

From relation (4.1) we can see that the operator a0 is determined by the param-

eters {αn}n≥0, while the commutator operator [a−, a+] is derived from the numbers

{ωn}n≥1.
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11. M. Szegö, Orthogonal Polynomials, Coll. Publ., Vol. 23 (Amer. Math. Soc., 1975).


