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Abstract. Motivated by the problem of finding a satisfactory quantum generalization of the
classical random walks, we construct a new class of quantum Markov chains which are at the
same time purely generated and uniquely determined by a corresponding classical Markov
chain. We argue that this construction yields as a corollary, a solution to the problem of
constructing quantum analogues of classical random walks which are “entangled” in a sense
specified in the paper.

The formula giving the joint correlations of these quantum chains is obtained from
the corresponding classical formula by replacing the usual matrix multiplication by Schur
multiplication.

The connection between Schur multiplication and entanglement is clarified by showing
that these quantum chains are the limits of vector states whose amplitudes, in a given basis
(e.g. the computational basis of quantum information), are complex square roots of the
joint probabilities of the corresponding classical chains. In particular, when restricted to the
projectors on this basis, the quantum chain reduces to the classical one. In this sense we
speak of entangled lifting, to the quantum case, of a classical Markov chain. Since random
walks are particular Markov chains, our general construction also gives a solution to the
problem that motivated our study.

In view of possible applications to quantum statistical mechanics too, we prove that
the ergodic type of an entangled Markov chain with finite state space (thus excluding
random walks) is completely determined by the corresponding ergodic type of the underlying
classical chain.
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1. Introduction

The impetuous development of quantum information has raised the problem of
finding a satisfactory quantum generalization of the classical random walks. The
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relevance of this problem for quantum information has been emphasized in the past
three years, in a large number of papers. Several different solutions of this problem
have been proposed and studied, see e.g. [7]–[9], [11]–[14], [24]–[34], [38]–[40].
However, these proposals introduce some features which are not quite satisfactory
from the mathematical point of view.

First of all, these constructions are based on special models and a general
mathematical definition of a “quantum random walk” seems to be lacking. Second,
all these constructions are based on a quantum evolution, unitary in some cases,
irreversible in others. Now, random walks are particular cases of Markov processes
and it is well known that, while in the classical case a Markov evolution uniquely
determines the law of the corresponding stochastic process, this is, in general, false
in the quantum case. Finally, a desirable requirement for a quantum extension of
a family of classical processes, is that there should exist a standard procedure to
embed the original classical family into its quantum extension. In a satisfactory
quantum generalization of the classical random walks, all these requirements should
be precisely formulated and fulfilled. In the present paper we concentrate our
attention on this mathematical problem and we refer to the above quoted literature
for the motivations and the potential applications to quantum information.

The problem of a quantum generalization of classical random walks has a long
history. The non-unitary implementability of the symmetric 1-dimensional random
walk was proved in [3]. Recently, this result has been extended to the non-symmetric
case by Meyer ([33]), who proved that a non-symmetric random walk is unitarily
implementable if and only if it is a one-side shift (i.e. shift along a fixed direction),
namely, it is a totally deterministic process.

Another proposal was advanced in the paper [6], whose starting point was the
characterization of the classical random walks as Markov chains with the addi-
tional property that their transition operators are convex combinations of reversible
dynamics and their inverses. The idea was to define a quantum random walk as
a quantum Markov chain whose forward Markov operator has the above mentioned
property. The structure theorem proved in [6] for these quantum random walks,
showed that they are convex combinations of product states. In other words, they
have zero degree of entanglement. This feature makes them unattractive for ap-
plications to quantum information where one deals with pure states with a high
degree of entanglement (i.e. very far from being convex combinations of product
states).

To meet the needs of quantum information, one would like that quantum ran-
dom walks correspond to pure quantum Markov chains. In fact, we will require
a condition which is slightly weaker but much easier to verify, that is the quantum
Markov chain under consideration should be “purely generated” in the sense of
Fannes, Nachtergaele and Werner, see [20]. This implies, in particular, that the
state at each instant is pure, up to a boundary effect that becomes negligible in the
strong clustering case (cf. Theorem 3.4).

In summary, we list requirements that should be fulfilled by any candidate
definition of a quantum random walk:

(1) it should be a quantum Markov chain;
(2) it should be purely generated;
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(3) its restriction on at least one maximal Abelian subalgebra, should be a classical
random walk;

(4) it should be uniquely determined, up to arbitrary phases, by its classical re-
striction.

The 4-th requirement is particularly stringent because we require a quantum
Markov chain to be uniquely determined by a classical transition operator, while
we know that even the quantum transition operator is usually not sufficient to
determine the chain.

In the present paper we propose a construction which satisfies the above criteria,
and is applicable to processes with finite or countable state space. In particular,
our construction is applicable to random walks (in fact to arbitrary, even non-
homogeneous, Markov chains).

Different constructions of purely generated (resp. pure) quantum Markov chains
have been considered in [19], and successively in [10]. However, the following two
questions studied in this paper were not investigated, namely:

(i) how to construct a purely generated (resp. pure) quantum Markov chain
uniquely determined, up to phases, by a pre-assigned classical Markov chain;

(ii) how to include random walks in this construction.

The mentioned papers [10,19] restrict their attention to finitely correlated states.
Any notion of a quantum random walk satisfying Conditions (1) and (3) of the
four above listed ones, cannot lead, in the most interesting situations, to finitely
correlated states. On the contrary, the theory originally developed in [1] is applicable
to arbitrary (hyperfinite) C∗-algebras, and this fact plays an essential role in our
construction.

In order to give an intuitive idea of the connection of our construction with
entanglement, let us note that the key characteristic of entanglement is the su-
perposition principle and the corresponding interpretation of the amplitudes as
“complex square roots of probabilities”. This suggests a naïve approach in which,
given a classical Markov chain with finite state space S, {(Πij), (πi)}i, j∈S, made of
a stochastic matrix Π and an initial distribution for it described by a row vector π,
one can associate to it the superposition

ψn =
∑

j0,..., jn

√
π j0

n−1∏

α=0

√
Π jα, jα+1 |e j0, . . . , e jn 〉 ,(1.1)

where

|e j0, . . . , e jn 〉 := e j0 ⊗ · · · ⊗ e jn ,

and the square roots in (1.1) are determined up to phases (cf. (2.10)). The matrix
elements 〈Aψn, ψn〉 become asymptotically constant on elements A localized in
finite subsets of N. Hence,

ϕ(A) := lim
n

〈Aψn, ψn〉
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uniquely defines a state on
⊗

N

M|S|(C)
C∗

. The surprising fact is that the quan-

tum Markov chains, defined with this naïve approach can equivalently be defined
abstractly in terms of the Schur multiplication. This gives a more algebraic repre-
sentation of our construction which better illustrates why the above limit produces
a quantum Markov chain.

The connection with entanglement can be intuitively understood by noticing
that, for the identity of the Schur multiplication E,

E =
∑

i, j

eij ≡
∑

i, j

|ei〉〈e j | =
∣∣∣∣
∑

i

ei

〉〈 ∑

j

e j

∣∣∣∣ = d|e〉〈e| ,

where, in bra–ket notation,

|e〉 := 1√
d

∑

j

e j

is precisely the maximally entangled unit vector in the basis {e j}. Namely, the iden-
tity of the Schur multiplication is the projection on the maximally entangled vector
in the chosen basis. The developments in the following sections will substantiate
this intuition.

The present paper is organized as follows. Section 2 is devoted to defining an
entangled lifting of classical Markov chains by the use of the Schur multiplication
(called entangled Markov chains in the following). Then, the basic properties
of this quantum lifting are investigated. As the Schur multiplication extends to
a completely positive normal map of M∞(C) ⊗ M∞(C) onto M∞(C) (cf. [21]),
most of our analysis applies mutatis mutandis to Markov chains with countably
infinite state space.1 It is then to be hoped that our construction includes nontrivial
examples of quantum random walks. Section 3 is devoted to a detailed analysis of
the ergodic properties of the entangled Markov chains. Namely, it is shown that
the ergodic type of an entangled Markov chain with finite state space is completely
determined by the corresponding ergodic type of the underlying classical chain
(cf. Theorems 3.3 and 3.4). The last results are not simple consequences of the
theory of completely ergodic decomposition of quantum Markov chains developed
in [20], whereas the pureness condition for entangled Markov chains follows from
one of the pureness criteria of Theorem 1.5 of [20]. This is explained in some
detail in Section 4, the last including some non-technical comments on entangled
Markov chains. In view of the possible extensions to multi-dimensional examples,
Section 5 is devoted to the non-homogeneous case. The paper is complemented
with an appendix collecting standard properties of stochastic matrices repeatedly
used in the following.

We end the introduction by noticing that the quantum Markov chains treated
in the present paper could also have natural applications in quantum statistical

1 Equivalently, the transition operators of the entangled Markov chains under considera-
tion are generated by isometries, see Lemma 2.2 (i.e. they are purely generated). Hence, the
transition operators also make sense as maps ofM∞(C) ⊗M∞(C) ontoM∞(C).
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mechanics. Indeed, when a translation invariant entangled (lifting of a classical)

Markov chain is considered as a state on
⊗

Z

Md(C)
C∗

, it leads to a convex

combination of pure states which are again entangled Markov chains on regrouped
algebras (Sections 3 and 4). Hence, due to the results in [19,35], entangled Markov
chains lead to explicit examples of states on the one-dimensional spin chain which
are ground states of suitable Hamiltonians.

2. An entangled lifting of classical Markov chains

Let S be a finite set. A classical, not necessarily homogeneous, Markov chain with
state space S is uniquely determined by a pair

{ϕ0, (Pn)} ,(2.1)

where:

(i) ϕ0 is a state on C(S), the algebra of all the complex-valued functions on S;
(ii) for each n, Pn : C(S) 	→ C(S) is a Markov operator.

The pair (2.1) uniquely determines the correlators

ϕ0( f0 · P1( f1 · P2( f2 · · · Pn( fn) · · · ))) ,(2.2)

of the Markov chain, where fk ∈ C(S), k = 0, . . . , n, and the dot denotes the
pointwise multiplication in C(S),

( f · g)( j) = f( j)g( j) , j ∈ S .(2.3)

It is known that there exists a unique state ϕcl on the algebra

C

( ∏

N

S

)
≡

⊗

N

C(S)
C∗

such that the expectation value ϕcl( f0 ⊗ f1 ⊗· · ·⊗ fn ⊗ 1 ⊗· · · ) is given by (2.2).
The main difference between classical and quantum Markov chains is due to the
fact that the naïve generalization of Formula (2.2) to the case in which C(S) is
replaced by the matrix algebraMd(C), d := |S| = cardinality of S, does not define
a state because, contrarily to (2.3), the matrix multiplication

A ⊗ B ∈Md(C) ⊗Md(C) 	→ AB ∈Md(C)(2.4)

is not positive. To recover positivity, it was proposed in [1] to replace the maps
A ⊗ B 	→ APn(B) by arbitrary completely positive, identity preserving maps

En :Md(C) ⊗Md(C) 	→Md(C),

called transition expectations. This leads, for {A0, . . . , An} ⊂ Md(C), to the cor-
relators

ϕ0(E0(A0 ⊗ E1(A1 ⊗ · · · ⊗ En(An ⊗ 1) · · · )))
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which are positive and projective, and hence define a unique state ϕon
⊗

N

Md(C)
C∗

.

Such a state is called a (generalized) quantum Markov chain.
Fixing a system e ≡ {eij}d

i, j=1 of matrix units inMd(C),

eijehk = δ jheik ,
∑

i

eii = 1 , i, j = 1, . . . , d ,

one obtains a natural embedding of C(S) intoMd(C) given by

f ∈ C(S) 	→
d∑

j=1

f( j)e jj .(2.5)

Therefore, for any quantum Markov chain on
⊗

N

Md(C)
C∗

, and for any system

of matrix units e inMd(C), one obtains a classical probability measure on
∏

N

S. The

family of all classical probability measures on
∏

N

S obtained in this way is strictly

larger than the family of classical Markov chains and it was fully characterized by
Fannes, Nachtergaele and Slegers ([18]).

The natural generalization of the diagonal embedding (2.5), combined with
a simple construction (see [2, Section 4]) leads to a class of Markov chains whose
restriction to the e-diagonal algebra reproduces exactly all the classical Markov
chains. However, the states obtained in this way are very near to classical states
because they are defined by sequences of commuting density matrices, hence
they have very poor “entanglement properties”. In the present paper we propose
another construction by replacing the diagonal embedding (2.5) by an “entangled
embedding”. The new ingredient which allows our construction to work, is to
generalize the classical formula (2.2) by replacing the usual matrix multiplication
by the Schur multiplication among matrices for which the map (2.4) is positive by
Schur’s lemma.

Consider a copy M j of the algebra M := Md(C) of all d × d matrices with
complex entries, with d kept fixed during the analysis. For each finite subset F ⊂ Z,
we put

MF :=
⊗

j∈F

M j ,

and, if F ⊂ G, we consider the natural embedding aF 	→ aF ⊗ 1G\F . The local
algebra

M :=
⊗

j∈Z
M j

C∗

is the C∗-inductive limit associated to the directed system {MF}F⊂Z, that is the
UHF algebra.
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Let {eij}d
i, j=1 be the canonical system of matrix units inM. DenoteD := Cd ⊂

Md(C) ≡M the corresponding diagonal algebra, where

(a1, . . . , ad) 	→ diag(a1, . . . , ad) =
d∑

j=1

a je jj .

In the following, we will denote with the same symbol an element in Cd and
its image in D. We denote by E : M 	→ D the canonical Umegaki conditional
expectation onto the diagonal algebra.

For our purpose, it is also of interest to consider the Abelian algebra

D :=
⊗

j∈Z
D j

C∗
,

where D j is for each j ∈ Z, a copy of the diagonal algebraD. We haveD ∼ C(Ω),

the space of all continuous functions on the compact space Ω :=
∏

j∈Z
Ω j and Ω j =

{1, . . . , d} for all j ∈ Z. Thus, D is an Abelian subalgebra ofM in a canonical
way. We denote by E : M 	→ D the canonical Umegaki conditional expectation
of M onto D arising from the infinite tensor product of E. We denote by τ the
one-step shift on the chain.2 Finally, for general C∗-algebras A, B, a completely
positive identity-preserving linear map E : A⊗B 	→ B sometimes will be called
transition expectation.

To define the Schur multiplication, we choose an orthonormal basis {e j} j=1,...,d

in a d-dimensional Hilbert space Hd which is kept fixed during the analysis. In
such a way, we have the natural identification Hd ∼ Cd . The corresponding system
of matrix units eij = |ei〉〈e j | = ei ⊗ e∗

j identifies B(Hd) with Md(C). Then, for

A = ∑d
i, j=1 aijeij , B = ∑d

i, j=1 bijeij elements of B(Hd), we define the Schur
multiplication in B(Hd) as usual,

A 
 B =
d∑

i, j=1

aijbijeij ,

that is, componentwise,

(A 
 B)ij := aijbij .

Taking into account that

(A ⊗ B)(i, j)(k,l) = aikb jl ,

we can extend the Schur multiplication to a map m :M⊗M 	→M by putting

m(X)ij := x(i,i)( j, j) .(2.6)

It is a matter of routine to show that (2.6) defines a completely positive identity-
preserving map fromM⊗M ontoM.

2 Equally well we could have taken N as the index-set without affecting most of the
forthcoming analysis.
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Definition 1. A linear map P : M 	→M is said to be Schur identity-preserving if
its diagonal projection is the identity, i.e. if

E(P(I )) = I .

It is called an entangled Markov operator if, in addition,

P(I ) �= I .

If P : M 	→ M is Schur identity-preserving, then the map E : M⊗M 	→ M

given by

E = m ◦ (id ⊗P)(2.7)

is completely positive and identity-preserving, that is a transition expectation.
The expectation E is called entangled if the corresponding Markov operator P is
entangled.

Starting from any transition expectation E :M⊗M 	→M, a quantum Markov
chain was constructed first in [1]. If one puts EA(B) := E(A ⊗ B) and consider an
“initial distribution” ρ ∈ S(M) satisfying ρ = ρ◦EI , a state ω ∈ S(M) is uniquely
determined by all “finite-dimensional distributions” as

ω(A1 ⊗ · · · ⊗ An) := ρ(EA1 ◦ · · · ◦ EAn (I )) .

Such a state is translation-invariant by construction, and is called C∗-finite
correlated in [19], where transition expectations E :M⊗B 	→ B, forB another (in
general different) finite-dimensional C∗-algebra are considered, generalizing the
previous construction in [1]. We refer to the state on the UHF algebra generated
by the triplet (B,E , ρ) in the way explained above, as a quantum Markov chain.
For further details, we refer to [1] and [10,19,20,36], and the references cited
therein.

For the convenience of the reader, we report the following lemma which is
useful in the following (see Lemma 2.5 of [20]).

Lemma 2.1. Let sρ be the support of ρ as above, and p ≥ sρ any projection. Then

ρ ◦ EA1 ◦ · · · ◦ EAn = ρ ◦ EA1 ◦ · · · ◦ EAn (p · p) .

Proof. Let q ≤ s⊥
ρ be a projection, and A1, · · · , An positive elements of M. We

have, by the positivity of E and the invariance of ρ,

ρ ◦ EA1 ◦ · · · ◦ EAn (q) ≤
( n∏

j=1

‖A j‖
)

ρ(q) = 0 .

Namely, by polarization, all functionals ρ ◦ EA1 ◦ · · · ◦ EAn are dominated by ρ

and we are done. ��
Definition 2. A quantum Markov chain is called entangled if the transition expec-
tation E has the form (2.7), where P is an entangled Markov operator.
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Notice that the present construction is a non-trivial generalization of the clas-
sical case where E( f ⊗ g) = f · P(g), P being a ordinary Markov operator, and
the product in the r.h.s. is the usual pointwise product between functions.

The backward operator EI of an entangled transition expectation has the prop-
erty that

EI (M) ⊂ D .(2.8)

Conversely, we get for the forward operator E I := E( · ⊗ I ),

E I(M) � D

in the entangled case.
Let a classical Markov chain be described by a stochastic matrix Π ∈Md(C),

together with a stationary distribution π ∈ Cd . For Ω j ≡ {1, . . . , d} as in the

previous section, construct the Markovian measure µΠ,π on the space Ω =
∏

j∈Z
Ω j

of all trajectories, see e.g. [22]. To this classical Markov chain we can associate
a quantum Markov chain, that is a state ϕ onM, by setting

ϕ(A) :=
∫

Ω

E(A)(ω)µΠ,π(d ω),

where E is the Umegaki conditional expectation ofM onto the Abelian algebraD.
Such a diagonal lifting is quasi-classical, as it arises from a classical process in
a trivial way. In the last situation, the involved Markov operator is an ordinary one.

Now, starting from a stochastic matrix, and a stationary distribution as above,
we define a non-trivial quantum lifting we call entangled.

A large class of examples of entangled Markov operators can be produced
following the scheme described below.

Definition 3. The entangled Markov operator associated to a stochastic matrix Π

and to the canonical systems of matrix units {eij}d
i, j=1 ofM is defined as

P(A)ij :=
d∑

k,l=1

√
ΠikΠ jlakl .(2.9)

We can immediately verify that P is a well-defined entangled Markov operator.
Notice that one can use in (2.9) any “complex square root” instead of the positive
one. Namely, if χ ∈Md(T), T being the unit circle, then the map Pχ defined as

Pχ(A)ij :=
d∑

k,l=1

χikχ jl
√

ΠikΠ jlakl(2.10)

gives rise to an entangled Markov operator as well.
We list some useful results relative to the transition expectation for the cases

under considerations.
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Lemma 2.2. The transition expectation E = m ◦ (id ⊗P), with P as in (2.9), is
generated by the isometry V : Cd 	→ C

d ⊗ Cd given by

Vei =
d∑

j=1

√
Πij ei ⊗ e j ,(2.11)

{ei}d
i=1 being the canonical basis of Cd.

Proof. Immediately, take into account that

V ∗ei ⊗ e j = √
Πijei . ��

Notice that

Π = p0Πp0 +
∑

λ∈Λ

(p0Πpλ + pλΠpλ)(2.12)

=: p0 R0 p0 +
∑

λ∈Λ

(
p0Sλ pλ + pλΠλ pλ

)
,

and for each Πλ,

Πλ =
mλ∑

jλ=1

pλ, jλΠλ pλ, jλ+1 =:
mλ∑

jλ=1

pλ, jλΠ jλ, jλ+1 pλ, jλ+1(2.13)

(with the convention that mλ + 1 = 1) according to (6.1) and (6.2), respectively. If

p :=
∑

λ∈Λ

pλ ,(2.14)

define Ẽ :M⊗Mp 	→Mp given by

Ẽ := pE�Mp( · )p .(2.15)

Lemma 2.3. We have with the notations as above,

Ẽ
(
M⊗Mpλ, jλ+1

) ⊂Mpλ, jλ
.

As a consequence,

Ẽ
(
M⊗Mpλ

) ⊂Mpλ
.

Proof. A straighforward computation, taking into account the definition of Ẽ and
the canonical form of a stochastic matrix given in (6.1) and (6.2). ��

Let π be a positive unit vector in Cd , and construct the matrix Q(π) ∈Md(C)

given by

Q(π)ij :=
d∑

k=1

πk
√

ΠkiΠk j .(2.16)

The matrix Q(π) is positive by construction. Further, as Π is stochastic, Q(π)

has unit trace, that is it defines a state onMd(C). The map Q defines a correspon-
dence of the state space of Cd into the state space ofMd(C).
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Proposition 2.4. The map Q given in (2.16) defines a one-to-one correspondence
between the stationary distributions for Π and stationary distributions for

EI ≡ I 
 P( · ),
with P as given in (2.9).

Proof. We start by proving that Q(π) is stationary if π is.

Q(π)(EI (A)) ≡
∑

k,l,i, j

πkΠkl
√

ΠliΠl j aij

=
∑

l,i, j

πl

√
ΠliΠl jaij ≡ Q(π)(A) .

It is also injective as, if A = diag(a1, . . . , ad), we get

Q(π)(A) ≡
∑

k,l

πkΠklal =
∑

l

πlal ≡ π(A) .

Finally, the stationarity condition ρ(EI (eij)) = ρ(eij) ≡ ρij on the matrix units
reads

ρij =
∑

k

ρkk
√

ΠkiΠk j i, j = 1, . . . , d .(2.17)

Namely, ρ is stationary iff it satisfies (2.17) which can be written as ρ =
Q(E(ρ)). Namely, Q is onto as E(ρ) is stationary on the diagonal algebra. ��

Notice that the map Qχ associated to the entangled Markov operator in (2.10)
is given by

Qχ(π)ij =
d∑

k=1

πkχkiχk j
√

ΠkiΠk j .

We are now ready to define an entangled lifting of a classical Markov chain de-
termined by the stochastic matrix Π, and the stationary distribution π for it. Indeed,
it is the quantum Markov chain ω ∈ S(M) generated by the triplet (M,E , Q(π)),
where E : M ⊗M 	→ M is the transition expectation (2.7) constructed by the
entangled Markov operator given in (2.9), and Q(π) is the (unique) quantum sta-
tionary distribution associated to π via (2.16). We refer to such a quantum Markov
chain as an entangled Markov chain.

3. Ergodic properties of entangled Markov chains

Let ω ∈ S(M) be the entangled Markov chain generated by the triplet (M,E , Q(π))

constucted in the previous section. We start by showing that ω has zero entropy
density. In order to prove this, we begin with the following:
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Lemma 3.1. Let M be a von Neumann algebra, ϕ a normal state on it with
projection-support p, and T : M 	→ M a completely positive identity-preserving
normal map satisfying ϕ ◦ T = ϕ. Then,

pT(p)p = p .

Proof. cf. [17], Theorem 2.16. ��
Let sQ(π) be the projection-support of Q(π).3 Define Ê :M⊗MsQ(π)

	→MsQ(π)

given by

Ê := sQ(π)E�MsQ(π)
( · )sQ(π) .(3.1)

Proposition 3.2. The entangled Markov chain ω constucted as above has zero
entropy density.

Proof. Put q := sQ(π). By Lemma 2.1, the triplet (Mq, Ê, Q(π)�Mq ) is stan-
dard (using the terminology of [20]) and generates ω. Further, Lemma 3.1 reads
qV ∗(I ⊗q)Vq = q when applied to the map EI , V being the isometry generating E
according to Lemma 2.2. We then conclude that (I ⊗ q)Vq�qCd is an isometry
as well. Namely, ω is purely generated, according to Definition 1.1 of [20]. The
assertion directly follows by [20, Theorem 1.4]. ��

Let η be the action of the completely reducible part pΠp on the set of projec-
tions

{{pλ, j1, . . . , pλ, jmλ
}}

λ∈Λ
, p being given in (2.14).4 Such an action leaves each

ergodic component {pλ, jλ}mλ
λ=1 globally invariant, acting cyclically on it. Choose

any projection, say p̄λ := p
λ, j̄ , in each ergodic class λ ∈ Λπ , where Λπ la-

bels the ergodic components present in the stationary distribution π. Define for
{A1, . . . , An} ⊂M,

ϕλ(A1 ⊗ · · · ⊗ An) := π( p̄λ)
−1 Q(π)

(
EA1 ◦ · · · ◦ EAn

(
η−n p̄λ

))
,

ωλ(A1 ⊗ · · · ⊗ An) := π(pλ)
−1 Q(π)(EA1 ◦ · · · ◦ EAn (pλ)) .(3.2)

It can immediately be verified that

ωλ = 1

mλ

mλ∑

k=1

ϕλ ◦ τk,

where τ is the one-step shift on the chain.
The state ϕλ describes the decomposition of ω into completely ergodic compo-

nents, see e.g. [36] for the last definition.5

3 The projection-support of Q(π) is in general smaller than that of π as it is easily seen

by considering the stochastic matrix

(
1
2

1
2

1
2

1
2

)
.

4 Such an action is called in [20], the (classical) flow associated to pΠp.
5 The state ϕλ is only mλ-step translation invariant, mλ being the period of the component

λ, and keeps track of the localization (modulo a period), see Section 5 for the precise way
to define ϕλ onM.
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Theorem 3.3. Let (Π, π) consist of a stochastic matrix and a stationary distribu-
tion for it, and Λπ label the ergodic decomposition of π. Consider the entangled
Markov chain ω onM generated by the triplet (M,E , Q(π)) as above. Then

ω =
∑

λ∈Λπ

π(pλ)

mλ

mλ∑

k=1

ϕλ ◦ τk(3.3)

describes the decomposition of ω into completely ergodic components.

Proof. It can immediately be verified that ω is given by (3.3). Further, the states
appearing in the r.h.s. of (3.3) give rise to the decomposition into completely
ergodic components of ω, when restricted to the Abelian subalgebra D of M.
So, they are mutually different. It is then enough to show that the ωλ are ergodic
w.r.t. the one-step shift, and the ϕλ are strongly clustering w.r.t. the mλ-step shift,
respectively.

Let A = A1⊗· · ·⊗Ar , B = B1⊗· · ·⊗Bs, we compute by applying Lemma 2.1,

1

n

n∑

k=1

ωλ(Aτk(B)) = π(pλ)
−1

× Q(π)

(
EA1 ◦ · · · ◦ EAr ◦

(
1

n

n−1∑

k=0

E k
I

)(
EI ◦ ẼB1 ◦ · · · ◦ ẼBs (pλ)

))
,

where Ẽ is given by (2.15). Put D := EI ◦ ẼB1 ◦ · · · ◦ ẼBs (pλ). By Lemma 2.3 and
(2.8), we argue that D ∈ Dpλ

. As a consequence, we have, by (6.5),

lim
n

1

n

n−1∑

k=0

E k
I (D) = lim

n

1

n

n−1∑

k=0

Πk
λD = Q(π)(EB1 ◦ · · · ◦ EBs (pλ))pλ .

Collecting these together, we get

lim
n

1

n

n∑

k=1

ωλ(Aτk(B)) = Q(π)(EA1 ◦ · · · ◦ EAr (pλ))

× Q(π)(EB1 ◦ · · · ◦ EBs (pλ)) ≡ ωλ(A)ωλ(B) .

Namely, ωλ is ergodic (see e.g. [23, Theorem 2.1]). The mixing property w.r.t.
the mλ-step shift for the ϕλ is proven in the same way, taking into account (6.3),
(6.4) and the proof follows. ��

As an immediate consequence, we get:

Theorem 3.4. The following assertions hold true under the assumptions of Theo-
rem 3.3:

(i) the state ω is ergodic w.r.t the spatial translation iff the set Λπ is a singleton;
(ii) the state ω is strongly clustering w.r.t the spatial translation iff the set Λπ is

a singleton, and the corresponding block in the decomposition (2.12) of Π is
primitive.

Further, if (ii) is satisfied, then the state ω is pure.
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Proof. (i) and (ii) immediately follow from the previous theorem. Further, (ii)
means that ω is strongly clustering. By Proposition 3.2, ω has vanishing mean
entropy. The proof follows by (ii) of Theorem 1.5 of [20]. ��

4. Some remarks

We start by discussing the structure of the support of the stationary distribution
π and the corresponding quantum lifting Q(π) which are in general different, see
footnote 3.

Let π be a stationary distribution with support sπ . Then, taking into account
the structure of the stochastic matrix Π (see Section 6), we have

sπ =
∑

λ∈Λπ

pλ ,

where pλ is the projection corresponding to the ergodic component λ, and Λπ is
the set of the ergodic classes associated to the stationary distribution π. Looking at
each ergodic component λ, we obtain for the corresponding projection pλ,

pλ =
mλ∑

j=1

pλ, j,

where mλ is the period of the ergodic component λ, and the pλ, j describe the
decomposition of the mλ-th power (pλΠpλ)

mλ of the irreducible component pλΠpλ

into primitive pieces, see (2.12) and (2.13).
Taking into account (2.17), together with the structure of a completely reducible

stochastic matrix, we conclude that there are nontrivial subprojections qλ, jλ with
0 < qλ, jλ ≤ pλ, jλ , such that

sQ(π) =
∑

λ∈Λπ

( mλ∑

jλ=1

qλ, jλ

)
.(4.1)

In the previous section we have shown that the structure of the peripheral
part of the spectrum of Π completely describes the ergodic properties of the
corresponding entangled chain (see Theorem 3.3 and Theorem 3.4). It could be of
interest to understand the structure of the peripheral part of the spectrum of the
quantum counterpart ÊI given by (3.1).

According to [20], we consider Z1, Z which are the eigenspaces corresponding
to the eigenvalue 1, and the span of the eigenvectors corresponding to the periph-
eral spectrum of ÊI , respectively. The corresponding classical algebras Z1,cl , Zcl

are spanned by the minimal projections {pλ}λ∈Λπ and
{{pλ, j1, . . . , pλ, jmλ

}}
λ∈Λπ

,
respectively.

By using the standard properties of completely positive maps between matrix
algebras ([15,16]), it is straightforward to show that Z1,cl , Zcl are naturally embed-
ded in the corresponding quantum Abelian algebras Z1, Z, where the embedding
is given by

Zcl −→ (Zcl)sQ(π)
⊂ Z .
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We conjecture that the above embedding is indeed an isomorphism.
Another connected question concerns the minimal generating triplet for ω

(see [20, Definition 1.2]).
Define

B :=
⊕

λ∈Λπ

( mλ⊕

jλ=1

Mqλ, jλ

)
, F := Ê�B , ρ := Q(π)�B .

It is easily shown that the entangled Markov chain ω under consideration is
generated by the standard triplet (B,F , ρ) as well. We also conjecture that the
triplet (B,F , ρ) is minimal.

We are not able to prove or disprove the above conjectures in general.6 However,
they are both true in the case when sπ = sQ(π). We verify the second assertion, the
first one being trivial by (2.8).

In the last situation, there exists, after reordering the indices, a power
(
sπΠsπ

)m

made of diagonal blocks of primitive matrices, m being a common multiple of all
periods {mλ}λ∈Λπ . Taking into account the definition of a primitive matrix, there

exists an integer l such that
(
sπΠsπ

)ml
is made of diagonal blocks (the same as the

previous ones) of strictly positive matrices. Notice that the projections relative to
such diagonal blocks are precisely the identities of the corresponding summands
of B. Put n = ml. It is then enough to show that for each fixed pair i, j in the
set of indices for which general elements of B have non-zero entries, there exist
A1, . . . , An ∈M such that

EA1 ◦ · · · ◦ EAn (I )kl = aδk,iδl, j ,

for some a > 0. We choose A1 = eij , A2 = · · · = An = E, where E, the
matrix with all entries consisting of 1, is the unity for the Schur multiplication. The
assertion follows as for the set of involved indices,

Eeij ◦ EE ◦ · · · ◦ EE(I )ij ≥
√∑

k

Πn
ikΠ

n
jk > 0 .

Finally, we remark that the disintegraton (3.3) of the entangled lifting of
a Markov chain leads to a convex combination of pure states which are again
entangled Markov chains. Namely, let ϕλ given in (3.2) be fixed. Then, on the
regrouped algebra

⊗

Z

(M⊗ · · · ⊗M︸ ︷︷ ︸
mλ–times

)
C∗

,

the state ϕλ is generated by the isometry

W := (I ⊗ · · · ⊗ I ⊗ V ) · · · (I ⊗ I ⊗ V )(I ⊗ V )

(V as in (2.11)), and has support qλ, j̄ . Here, qλ, j̄ is the projection appearing in (4.1)
such that qλ, j̄ ≤ pλ, j̄ , for pλ, j̄ ≡ p̄λ given in (3.2). The assertion follows again by
Theorem 1.5 of [20].

6 As the ergodic properties of the entangled Markov chains are determined by the structure
of the underlying stochastic matrices, this does not affect our analysis.
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5. On non-homogeneous entangled Markov chains

In view of applications to the multi-dimensional case (see [4, Section 2], [5]),
we study in the non-homogeneous case, the basic properties emerging from the
construction in Section 2. In this situation,

M :=
⊗

j∈Z
Md j (C)

C∗
,

where d j depends possibly on the place j .
Consider a sequence {E j} j∈Z of transition expectations

E j :Md j (C) ⊗Md j+1 	→Md j (C)

(i.e. completely positive, identity-preserving maps). Consider also a suitable se-
quence of states ρ( j) onMd j (C) satisfying the compatibility conditions

ρ( j) ◦ E
j

I = ρ( j + 1) , j ∈ Z .(5.1)

The sequences {E j} j∈Z, {ρ( j)} j∈Z generate a state ω onM called non-homo-
geneous quantum Markov chain, and characterized by the property that on elements
A j ⊗ · · · ⊗ Al , localized in the regionM{ j,...,l}, it has the form

ω(A j ⊗ · · · ⊗ Al) := ρ( j)
(
E j

A j
◦ · · · ◦ E l

Al
(I )

)
.

For a general non-homogeneous Markov chain, the first step is to exhibit
a sequence of states satisfying (5.1).

Proposition 5.1. The set of non-homogeneous entangled Markov chains onM is
non-void.

Proof. We have to prove the existence of a map ρ : Z 	→ ∏
j∈Z S(Md j (C)) with

ρ( j) ∈ S(Md j (C)) satisfying (5.1). We start by choosing a sequence of maps
{ρk}k∈Z− such that each ρk satisfies (5.1) for all j > k. By compactness there exists
a pointwise convergent subsequence ρ. For each fixed j ∈ Z, we get

ρ( j) ◦ E j
I = lim

n
ρkn ( j) ◦ E j

I = lim
n

ρkn ( j + 1) = ρ( j + 1) ,

which is the assertion. ��
In order to obtain non-homogeneous examples of entangled Markov chains, we

can start with a sequence {Pj} j∈Z of entangled Markov operators Pj :Md j+1(C) 	→
Md j (C) and construct the sequence {E j} j∈Z of transition operators by putting

E j := m j ◦ (id ⊗Pj) ,

m j being the Schur multiplication onMd j (C).
In order to obtain quantum liftings of non-homogeneous classical Markov

chains, we follow Section 2. The case relative to
⊗

j∈N
Md j (C)

C∗
presents no further

complications. Proposition 5.1 assures that one can construct non-trivial examples

of entangled liftings on
⊗

j∈Z
Md j (C)

C∗
of classical Markov chains as well.
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6. Appendix

We collect some standard properties of stochastic matrices repeatedly used in the
sequel. The reader is referred to Section I.9 of [37] for further details.

A stochastic matrix Π ∈ Md(C) is said to be irreducible if there exists no
permutation P such that

PΠP−1 =
(

A B
0 C

)
.

A stochastic matrix Π is said to be primitive if there exists l ≥ 1 such that
(Πl)ij > 0 for all indices i, j .

Let the stochastic matrix Π be given. It can be written, after a possible reordering
of indices, as

Π =





R0 S1 · · · S|Λ|
0 Π1 · · · 0
· · · · · ·
0 0 · · · Π|Λ|



 ,(6.1)

where the Sλ are not all zero and the Πλ irreducible and stochastic.
Here, Λ := (1, . . . , |Λ|) labels the ergodic classes corresponding to the stochas-

tic submatrices {Πλ}λ∈Λ. The zero row in (6.1) can be empty (this happens if and
only if there is no transient “states” for the classical chain), in which case the matrix
Π is said to be completely reducible.

Each irreducible submatrix Πλ has a unique stationary distribution described
by a row vector xλ. Further, each stationary distribution x for a stochastic matrix Π

given by (6.1), is a convex combination of the stationary distributions of its ergodic
components,

x = (0, α1x1, . . . , α|Λ|x|Λ|) ;
|Λ|∑

λ=1

αλ = 1 ; αλ ≥ 0 , λ = 1, . . . , |Λ| .

Consider a primitive stochastic matrix Π. Then its k-th powers Πk converge to
a rank-one stochastic projection, that is

lim
k

Πk = ( · , x)e,

where x is the unique stationary distribution for Π, and e ≡



1
...

1



 is the identity of

C
d (or equivalently the common identity I of D ⊂M).

Now let the stochastic matrix Π be irreducible but not primitive. It can be
written, after a possible reordering of indices, as

Π =





0 Π1,2 0 · · · 0
0 0 Π2,3 · · · 0
· · · · · · ·
0 0 0 · · · Πm−1,m

Πm,1 0 0 · · · 0




,(6.2)

where m > 1 is the index of imprimitivity (or the period) of Π.
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It is well known that

Πm =





Π
(m)
1 0 · · · 0
0 Π

(m)
2 · · · 0

· · · · · ·
0 0 · · · Π(m)

m



 ,

where the Π
(m)
j are primitive. Further, we have for the k-th powers Πkm of Πm ,

lim
k

Πkm =




Q(m)
1 0 · · · 0
0 Q(m)

2 · · · 0
· · · · · ·
0 0 · · · Q(m)

m


 .(6.3)

Here, the Qm
j are stochastic rank-one projections given by

Q(m)
j = ( · , x(m)

j )p j,(6.4)

where x(m)
j is the vector describing the unique stationary distribution for Π

(m)
j and

p j is its support as a projection of Cd . It follows that the ergodic limit of the
irreducible matrix Π exists and is a rank-one stochastic projection,

lim
n

1

n

n−1∑

k=0

Πk = ( · , x)e,(6.5)

where x is the unique stationary distribution for Π, and e is as above.
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