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ABSTRACT  7 

Cafestol and 16-O-Methylcafestol are diterpenes present in coffee, but while cafestol is found in 8 

both Coffea canephora and Coffea arabica, 16-O-methylcafestol (16-OMC) was reported to be 9 

specific of the only C. canephora. The interactions of such compounds with serum albumins have 10 

been studied.  Three albumins have been considered, namely human serum albumin (HSA), fatty 11 

acid free HSA (ffHSA) and bovine serum albumin (BSA). The proteins interact with the diterpenes 12 

at the interface between Sudlow site I and the fatty acid binding site 6 in a very peculiar way, 13 

leading to a significant change in the secondary structure. The diterpenes do not displace reference 14 

binding drugs of site 2, but rather they enhance the affinity of the site for the drugs. They, therefore, 15 

may alter the pharmacokinetic profile of albumin – bound drugs.  16 

KEYWORDS  17 

Coffee; Human serum albumin; Bovine serum albumin; Fluorescence spectroscopy; diterpenes 18 

                                                

* Corresponding author. Tel. +39 040 5583920; fax +39 0405583903; elena.guercia@illy.com; fberti@units.it. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Trieste

https://core.ac.uk/display/53749472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

 19 

ABBREVIATIONS 20 

HSA, human serum albumin; ffHSA, fatty acid – free HSA, BSA, bovine serum albumin; PBS, 21 

phosphate buffer solution; 16OMC, 16-O-methylcafestol; DMSO, dimethyl sulfoxide; Trp, 22 

tryptophan  23 

1. INTRODUCTION 24 

Coffee is undoubtedly one of the most consumed and appreciated beverage in the world. The two 25 

commercially exploited species of coffee, Coffea arabica (arabica) and Coffea canephora (var. 26 

Robusta), have been extensively studied sofar as chemical composition is concerned particularly 27 

for sensory, traceability and authenticity purposes. However there is still a great attention in 28 

understanding the chemical properties of coffee major constituents and their biological effects as 29 

withessed by the body of  articles appearing in the literature every year. The genome code of Coffea 30 

canephora has just been sequenced giving origin to new frontiers in the comprehension of the 31 

biosynthesis of coffee secondary metabolites (Denoued et al., 2014). The chemical composition of 32 

coffee beans depends on both on the coffee species  (arabica or robusta) and on the geographical 33 

region of the cultivars (Kitzberger et al., 2013), on the roasting process (Eloy Dias, Ferreira,  34 

Zerlotti Mercadante, Bragagnolo & de Toledo Benassi, 2014) and on the method used to prepare 35 

the coffee beverage. All these variables influence the perceived sensory properties of coffee brands 36 

and for this reason industry pays great attention to monitor all these factors.  37 

Among the vast array of compounds present in coffee brew, the biological active classes are 38 

usually considered to be the phenolic compounds (chlorogenic acids), the alkaloids caffeine and 39 

trigonelline, the diterpenes cafestol and kahweol and melanoidins. These compounds have been 40 

shown, at least in vitro, to possess various properties including antioxidant, chemopreventive, 41 
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antihypertensive and hypoglycemic activity. A recent review by Croizer et al. considered the 42 

overall literature regarding the potential impact on health of the phytochemicals present both in 43 

green and roasted coffee beans (Ludwig, Clifford, Lean, Ashihara & Croizer A. 2014). The 44 

diterpene alcohols of the kaurene family, cafestol, kahweol and 16-O-methylcafestol (fig. 1) are 45 

produced only by plants of the Coffea genus, but while cafestol was found in both C. arabica and 46 

C. canephora, kahweol is present in C. arabica in large amounts, while only traces are found in 47 

C. canephora. On the contrary, 16-O-methylcafestol was found to be specific to C. canephora. 48 

The total diterpene content ranges from 1.3% to 1.9% (w/w) in green coffee beans of Coffea 49 

arabica and from 0.2% to 1.5% in beans of Coffea canephora. In particular, diterpenes have been 50 

extensively studied and show beneficial effects to human health as anti-inflammatory properties, 51 

a prevention on DNA damage from oxidative stress, although a hypercholesterolemic effect 52 

attributed to cafestol was also observed (Bonita, Mandarano, Shuta, & Vinson, 2007). 53 

To better understand the biological impact on human health of these compounds, a study of their 54 

interaction with human serum albumin (HSA) is recommended since albumin is the most abundant 55 

protein in human plasma. It is a monomeric 585-residue protein containing three homologous 56 

helical domains (I-III), each divided into two subdomains (A and B) (He & Carter, 1992). Two 57 

main binding sites for small organic molecules are found, one located in subdomain IIA and one 58 

in IIIA, that are known as Sudlow I and Sudlow II sites, respectively (Sudlow, Birkett & Wade, 59 

1975a). 60 

Bovine serum albumin (BSA) has been extensively studied in kinetic and affinity drug tests as a 61 

replacement for human serum albumins (HSA) because of its easy accessibility, high stability, 62 

ability to bind various ligands and structural similarity to HSA (Shinga Roy, Tripathy  Chatterjee 63 
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&  Dasgupta, 2010; Zhang et al., 2013). The structure of BSA is homologous to HSA and consists 64 

of three linearly arranged domains (I-III) that are composed of two subdomains (A and B).  65 

In our previous study we have determined by fluorescence spectroscopy the dissociation constants 66 

for the complexes of chlorogenic acids and quinides with HSA, which were in the micromolar 67 

range (Sinisi et al., 2015). 68 

In the present work we have considered the diterpenes alcohols cafestol and 16-O-methylcafestol, 69 

isolated from commercial Coffea canephora blends and we have studied their interactions with 70 

albumins by fluorescence and circular dichroism spectroscopies. 71 

 72 

2. MATERIALS AND METHODS 73 

2.1 Materials 74 

HSA (A1653, 96-99%), HSA essentially fatty acid free (A3782, 99%), BSA (A3912, ≥ 96%) were 75 

purchased from Sigma-Aldrich Co. (St Louis, MO, USA) and used without further purification. 76 

Their molecular weight were assumed to be 66.478 Da, 66.478 Da and 66.463 Da respectively. 77 

Stock solutions of albumins were prepared by dissolving it in PBS (pH 7.4). All stock solutions 78 

were kept at 4 °C and then diluted to the required experimental sample concentrations (1.0 x 10-6 79 

M). Cafestol and 16OMC were provided by Illycaffè S.p.A. (AromaLab, TS, Italy). Cafestol and 80 

16OMC stock solutions (1.25 mM, 2.5 mM e 5 mM) were prepared in DMSO. 81 

 82 

2.2 Fluorescence Spectroscopy 83 

All steady-state fluorescence spectra were recorded at 25 °C on a CARY Eclipse (Varian) 84 

spectrofluorimeter equipped with a 0.5 cm path length quartz cuvette. An excitation wavelength 85 



 5 

of 280 nm (λexc) was used in all cases for selective excitation of the Trp residues of albumins, and 86 

emission spectra were recorded from 300 to 400 nm. For synchronous fluorescence spectra (SFS), 87 

Δλ (the constant wavelength interval between the emission and the excitation wavelength) was set 88 

at 60 nm, and the SFS were recorded from 240 to 320 nm. The slit width on the excitation was set 89 

to 10 nm, on the emission to 10 nm. Quenching experiments were performed by keeping the 90 

concentration of albumins fixed at 1 μM in 350 μL of solvent (135 μL of phosphate buffer 10 mM 91 

in Na2HPO4 and 2 mM in KH2PO4 diluted in 215 μL of mQ water, pH 7.4) for all the 92 

measurements; diterpenes concentrations varied from 0 to 500 μM by adding aliquots of their stock 93 

solutions. The final amount of DMSO was always 10%, and it has been verified that such amounts 94 

of solvent do not affect the fluorescence of albumins. After each addition of the ligand, the 95 

emission spectra, the fluorescence intensity, and the SFS were recorded. All the analyses were 96 

replicated three times. 97 

 98 

2.3 Warfarin displacement studies 99 

The displacement of warfarin was studied with the same spectrofluorimeter and cell, in the same 100 

buffer described above for the binding study. Warfarin was added to the buffer at a 10 μM final 101 

concentration from a 1 mM reference solution in DMSO. HSA was then added at a 1 μM final 102 

concentration and the emission spectrum was recorded upon excitation of bound warfarin at 320 103 

nm. The emission maximum was observed at 380 nm. Cafestol and 16OMC were then added at 104 

increasing concentrations by adding aliquots of its stock solution in the 5-500 μM range, and the 105 

emission spectrum was recorded again at each addition. 106 

 107 

2.4 Circular dichroism 108 
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All titrations were performed at room temperature on a Jasco J-715 Spectropolarimeter equipped 109 

with a 0.1 cm path length quartz cuvette. A wavelength range of 190-380 nm was selected and a 110 

scan speed of 50 nm/min was chosen.  Cafestol and 16OMC were dissolved in 1 mL of methanol 111 

to give a 1.5 mM solution. Titrations were performed by keeping the concentration of albumins 112 

(HSA and ff-HSA) fixed at 5 μM in 500 μL of solvent (135 μL of phosphate buffer 10 mM in 113 

Na2HPO4 and 2 mM in KH2PO4 diluted in 215 μL of mQ water, pH 7.4) for all the measurements; 114 

diterpenes concentrations varied from 0 to 100 μM by adding aliquots of their stock solutions 115 

(0, 1, 5, 10, 20, 40, 60, 80, 100 μM). After each addition of the ligands, a CD spectrum was 116 

recorded. 117 

3. RESULTS AND DISCUSSION 118 

As outlined in the introduction, both HSA and BSA have two main binding sites, the Sudlow site 119 

I in subdomain IIA and the Sudlow site II in subdomain IIIA, which differ in  shape, size and 120 

polarity, and therefore in their binding specificity (Ghuman et al., 2005). A major characteristic of 121 

Sudlow site I is the  presence of a tryptophan residue (Trp214 in HSA, 213 in BSA) within it. BSA 122 

has also another tryptophan at position 134. This second residue is buried inside a small 123 

hydrophobic pocket near the surface of the protein, in the second helix of the first domain, far from 124 

the main binding sites of the protein for small drugs and fatty acids.   Tryptophan is fluorescent 125 

and  if it is excited at around 280 nm, an emission maximum close to  340 nm is often observed; 126 

this maximum may vary from 310 nm to 350 nm, depending on the electronic environment of the 127 

indole system (Adams et al., 2002). A molecule able to bind inside the Sudlow site I of albumins 128 

causes often a change in the emission of Trp214 resulting in either an enhancement or in a 129 

quenching phenomenon depending on the way the environment surrounding the residue is altered 130 

upon binding. Fluorescence  titrations were performed to study the interactions of cafestol and 16-131 
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OMC with BSA, HSA and ffHSA. Commercial source albumins are in fact fatty-acid bound and 132 

almost all the fatty acid binding sites are occupied. ffHSA is used as a reference as it is known that 133 

the occupancy of the fatty acids binding sites may change the affinity of the protein for the drug 134 

binding sites, mostly for the Sudlow site I which is contiguous to the myristic acid site FA6: in this 135 

case tyrosine 210 is turned towards the fatty acid carboxylic head when the FA6 site is occupied, 136 

to establish a hydrogen bond with the carboxylate, while is turned towards the drug site in the 137 

absence of fatty acids (Figure 2A). In all the measurements, the concentration of protein  was  1 138 

M in 350 L of solvent, obtained by diluting 135 L of 10 mM Na2HPO4 and 2 mM KH2PO4 139 

phosphate buffer with 215 L of mQ water; the pH was 7.4. The ligand concentration was 140 

gradually increased during the titration from 5 M to 500 M using ligand standard solutions in 141 

DMSO.  The emission (exc 280 nm, em range 300-400 nm) spectra of the protein alone were 142 

recorded at the beginning of any experiments. After each addition of the ligand, the emission 143 

spectra were monitored. Two examples of the resulting spectra are reported in fig. 3, while the 144 

others are reported in the supplementary data. The emission spectra of the three proteins undergo 145 

major changes upon addition of the two diterpenes, and the general trend is very unusual. With 16-146 

OMC, fluorescence quenching is observed in all the experiments at low concentrations of the 147 

added ligand, and a very large blue shift also occurs at the beginning, where the maximum emission 148 

wavelength is shifted by 15 – 20 nm and over (see the inserts in fig.3). With 16-OMC the shift 149 

occurs up to 40 M final concentration, and after this point the maximum wavelength remains 150 

almost constant. The addition of cafestol leads also to a similar shift, but with human albumins an 151 

increase of emission rather than a quenching occurs (fig. 3B),  while with BSA a large quenching 152 

is again observed.  153 
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We have evaluated the effect of the ligands on the protein emission by plotting the normalized 154 

emission spectrum area versus the concentration of added diterpenes (Fig. 4). The emission of the 155 

proteins undergoes to a rapid change (either quenching or increase) at the beginning, and this 156 

phenomenon ends at the same concentrations of diterpenes at which the maximum emission 157 

wavelength reaches its lower plateau.  After this point the emission undergoes a further, slight and 158 

irregular quenching with 16OMC in all the proteins, and BSA is the most sensitive while HSA and 159 

ffHSA give almost superimposable results. The quenching induced by cafestol on BSA is of the 160 

same extent of that obtained with 16OMC, while the emission of HSA in enhanced more than that 161 

of ffHSA, and in a wider range of ligand concentration. In order to explain the observed behaviour 162 

we have considered first the low concentration region of the plot in fig. 4. We have run first 163 

synchronous spectra at  = 60 nm at the low diterpene concentrations (see supplementary data), 164 

and we have verified that the whole of the observed quenching / enhancement  in the emission 165 

spectra is observed also in the corresponding synchronous ones. As the synchronous spectra allow 166 

to selectively record tryptophan emissions and avoid to collect also emissions from tyrosine, this 167 

experiment confirms that the change in emission is mostly due to tryptophan quenching. We have 168 

then analyzed the low concentration using the Stern-Volmer equation (equation 1) that describes 169 

the quenching process:  170 

𝐹0

𝐹
= 1 + 𝐾𝑞𝜏0[𝑄] = 1 + 𝐾𝑆𝑉[𝑄]     Eq. 1 171 

The variables F0 and F are the emission intensities before and after the addition of the quencher, 172 

respectively, Kq is the bimolecular quenching kinetic constant, i.e. a collisional frequency between 173 

freely diffusing molecules, 0 is the lifetime of the fluorophore - for the tryptophan fluorescence 174 

decay τ0 is about 10-8 s (Valensin, Kushnir & Navon, 1982; Krag-Hansen, 1990)- KSV is the Stern-175 

Volmer quenching constant and [Q] is the quencher concentration in mol/L; the protein 176 
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concentration was fixed to 1 M. The KSV for the two ligands were determined by linear regression 177 

of a plot of F0/F against [Q] (see supplementary data) in the low ligand concentration range, where 178 

all the plots were linear. KSV and Kq (calculated using the equivalence Kq = KSV/0) are reported 179 

in table 1. 180 

The bimolecular quenching kinetic constants (Kq) are  1-2 orders of magnitude higher than the 181 

maximum value for diffusion-limited collisional quenching (2.0 x 1010 L mol-1 s-1) (Eftink, 1991; 182 

Ware, 1962) ,  thus the static quenching originating from the association of the fluorophore and 183 

quenchers in a bimolecular complex is the main contribution to the fluorescence quenching 184 

mechanism in the low ligand concentration range.  Ksv can be thus regarded as the association 185 

constant for the formation of the albumin – diterpene complexes. As to the effect of cafestol on 186 

the emission of human albumins, assuming that the enhancement of emission is linearly related to 187 

the fraction of occupied binding sites, we obtain apparent binding constants similar in value to 188 

those obtained with 16-OMC using the Stern – Volmer analysis. The order of magnitude of such 189 

constants, in the 103 – 104 L mol-1 range, places our diterpenes among many other small molecules 190 

that are bound by albumins with similar affinities. However, they are far to being the best binders, 191 

and previous work carried out in our research group have shown that other coffee compounds as 192 

the phenolic family of chlorogenic acids ad their quinide lactones are capable to bind to albumins 193 

with association constants in the order of 107 – 108 L mol-1 (Sinisi et al., 2015). 16-OMC is bound 194 

by human albumins in a more favorable way than cafestol, and BSA appears to offer the best 195 

interaction way to both the diterpenes. 196 

An interaction at the Sudlow site I is suggested by the observed effect on tryptophan fluorescence, 197 

as it is known that in human albumin similar effects are not observed with site II ligands, due to 198 
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the distance from the fluorophore. As to bovine albumin, the very similar amount of quenching 199 

suggests that the interaction occurs at the same site and involves the same tryptophan residue. It is 200 

known that the emission of the second tryptophan in BSA is low and not affected by ligand binding. 201 

In order to gain further information on the binding site area, we have setup a competition 202 

experiment with a reference ligand of Sudlow site I.  We have chosen warfarin as  this drug is the 203 

reference ligand of Sudlow site I; moreover, the intrinsic fluorescence of warfarin, which occurs 204 

at 320 nm excitation and 380 nm emission, is strongly enhanced by the interactions with albumin, 205 

and decreases upon competition with other drugs for the protein. This phenomenon has been 206 

exploited to set up a well-established method to study drug association to HSA (Sudlow,  Birkett, 207 

& Wade, 1975a). The experiment was carried on a 10 M solution of warfarin in phosphate buffer, 208 

containing 1 M HSA. In the initial solution, the warfarin – albumin complex is formed, and this 209 

is confirmed by the fact that after the addition of albumin, the warfarin emission is enhanced by 210 

about 70%. To our surprise, the fluorescence emission of warfarin is further increased upon the 211 

addition of the diterpenes in the low concentration range (see supplementary material). The 212 

dissociation constant for the warfarin – albumin complex is reported to be 4 M, (Sudlow, Birkett 213 

&Wade, 1975b) thus under our initial conditions (albumin 1 M, warfarin 10M) the fraction of 214 

albumin occupied binding sites is  70%. Due to the fact that there is still free albumin available in 215 

the system, we can explain the further enhancement in emission with an increase in the affinity of 216 

the protein for warfarin upon binding of the coffee diterpenes. This happens with both 16-OMC 217 

and cafestol, despite the fact that their different effect on albumin tryptophan emission (fig. 4) 218 

suggests a different mode of binding. 219 

 This behaviour is very unusual, as the Sudlow site I ligands displace warfarin by competition in 220 

the binding site, rather than enhancing the affinity. To our knowledge, an increased affinity is only 221 
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observed for warfarin in the presence of certain fatty acids.(Vorum &  Honoré, 1996;  Ni, Zhang 222 

& Kokot, 2009) We therefore conclude that the binding site for our diterpenes is not exactly 223 

corresponding to the central cavity of site I, but is rather involving also the fatty acid binding site. 224 

Moreover we have to assume that in the terpene-warfarin-albumin ternary complex, tyrosine 150 225 

is turned away from the site I core as it happens with fatty acids, and site I shifts to a more 226 

favourable shape to interact with warfarin.  An interaction occurring mostly at the very 227 

hydrophobic fatty acid site 6 is on the other side in agreement with the lipid character of our 228 

molecules, and with the more favourable interaction of 16-OMC in comparison with the more 229 

polar headed cafestol. A preliminary model was built by docking 16-OMC cafestol inside binding 230 

site 6 and the minor hydrophobic pocket of site I in the presence of warfarin. Two favourable 231 

docking poses were found by AutoDock Vina (Trott & Olson, 2010) and are reported in fig. 2B. 232 

In both the poses the “polar head” of the terpene is interacting with the polar aminoacids at the 233 

border between site 6 and site I. 234 

The shift in the maximum emission wavelength reach at the end of the low ligand concentration 235 

range, and the subsequent lack of a further quenching / enhancement upon further additions of the 236 

diterpenes is almost unprecedented in the literature as to the binding of small molecules to 237 

albumins, while the only comparable result has been obtained, to our knowledge, with ionic 238 

surfactants (Gelamo & Tabak, 2000).  The large blue shift has been explained with a major 239 

conformational change in the protein, involving also a change in the solvent exposition of the 240 

fluorophore. In this hypothesis the addition of coffee diterpenes would lead to a change in the 241 

secondary structure of the proteins. To study the potential structural change, we have recorded the 242 

CD spectra of HSA and ffHSA in the presence of increasing amounts of diterpenes (an example is 243 

reported in fig. 5). Although the spectra show an overall conservation of the secondary structure, 244 
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a significant decrease of the -helix content can be observed by the increase of molar ellipticity at 245 

222 nm (see supplementary data). The average decrease of -helix content upon addition of 246 

diterpenes up to 100 M can be estimated at 10%. This decrease has to be compared with -helix 247 

content of native serum albumins in solution, which is 57%.  A similar result was observed by 248 

Gelamo and Tabak with surfactants as sodium dodecyl sulphate at concentrations exceeding 1 249 

mM. The result seems to suggest that a partial change in the secondary structure of albumins occurs 250 

upon interaction with our diterpenes.  It is known that in albumins the helical loops forming the 251 

domains, can associate to form a globular structure or separate reversibly, mostly by changing the 252 

environment pH, or the temperature. Changing the pH, five different conformational forms of HSA 253 

have been recognized: F, or Fast, at pH 4; E, or Expanded, below pH 3; N, or Normal, at neutral 254 

pH; B, or Basic, near pH 8 and A, or Aged, near pH 10. (Sugio et al., 1999) The Expanded form 255 

is the most elongated and disordered isomer; it is considered, in different works, as a reference of 256 

a completely unfolded albumin state, even if Muzammil et al. suggest that at pH 2.0, HSA 257 

resembles the molten globule state.(Muzammil, Kumar & Tayyab, 1999) More recently, a small 258 

angle X-Ray scattering study has allowed to clarify that the E form conserves a significant amount 259 

of domain folding, although its shape is expanded to a cigar-like one.(Leggio, Galantini & Pavel, 260 

2008). The CD spectrum of the E form as recorded by Muzammil with ours shows that the amount 261 

of lost -helical content in the E form is by far more than what occurs in our case, and we can 262 

possibly envisage our terpene-albumin complexes as an intermediate structure between form N 263 

and E, with the domains still folded but with a considerable exposition to the solvent of several of 264 

the inner aminoacids.  265 

4. CONCLUSIONS 266 
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In summary, we have demonstrated that HSA and BSA are able to bind the coffee diterpenes in a 267 

very peculiar way, almost unprecedented in the recognition of small molecules by these proteins. 268 

The binding event is likely to occur at the interplay between the Sudlow drug site I and one of the 269 

fatty acid binding sites of the protein, which undergoes to a significant conformational change 270 

upon recognition of the diterpenes. This leads to a remarkable  increase of the affinity of human 271 

albumin for a reference drug as warfarinf, rather than to a competition for the drug. Dietary 272 

assumption of coffee diterpenes could therefore alter the pharmacokinetic profile of drugs binding 273 

to albumin. 274 

 275 

 276 
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6. SUPPLEMENTARY DATA 280 

Emission spectra of ffHSA and BSA upon addition of 16-OMC and cafestol; synchronous spectra 281 

of HSA upon addition of 16-OMC, decrease of the emission spectra normalized intergals; Stern-282 

Volmer plots for all the fluorescence experiments; increase of warfarin emission in the presence 283 

of HSA and of increasing concentrations of diterpenes.  284 

7. FIGURE CAPTIONS 285 

Fig. 1: structures of the ent-kaurene systems, of cafestol and 16-O-Methylcafestol. 286 

Fig. 2A: outline of Sudlow site I and of fatty acid binding site 6 in human albumin. The reference 287 

ligand of site I, warfarin, is located inside the main hydrophobic pocket and shows also a phenyl 288 
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ring pointing towards the fluorescent side chain of tryptophan 214 in the front hydrophobic pocket. 289 

The three polar aminoacids Y150, R257 and H288 at the borderline between site I and site 6 are 290 

shown. Tyrosine 150 is turned towards the carboxylic head of a molecule of myristic acid. From 291 

pdb id 1H9Z. 2B: AutoDock Vina calculated poses for 16-OMC in the binding areas of site I and 292 

6, in the presence of warfarin. In the green solution the terpene is fully placed inside the fatty acid 293 

binding site, while in the red one the ligand is placed in the minor hydrophobic pocket of site I, 294 

but the hydroxyl group and its neighbours lie in site 6 close to the polar aminoacids.  295 

Fig. 3A: emission spectra of 1 M HSA (1) upon addition of increasing amounts  (2 – 20) of 16-296 

OMC. The final concentrations of 16-OMC were  5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 297 

200, 250, 300, 350, 400, 450 and 500 M in spectra 2 – 20 respectively. Insert: drift of the 298 

maximum emission wavelength upon increasing the concentration of 16-OMC. 3B: emission 299 

spectra of 1 M HSA (1) upon addition of increasing amounts  (2 – 14) of cafestol. The final 300 

concentrations of cafestol were  5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 M in 301 

spectra 2 – 18 respectively. Insert: drift of the maximum emission wavelength upon increasing 302 

the concentration of cafestol. 303 

Fig. 4. normalized emission spectrum integrals (average of five repeated titrations) vs. the 304 

concentration of added terpene. 305 

Fig. 5. Far UV circular dichroism spectra of ffHSA in the presence of increasing concentrations 306 

of 16-OMC at 0, 5, 10, 20, 40, 60, 80, 100 M in spectra 1-8 respectively. 307 

 308 
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9. TABLES 398 

Complex KSV ± SD (L mol-1) Kq  (L mol-1 s-1) 
16-OMC - HSA 8100 ± 250  8.1x1011 

16-OMC - ffHSA 10200 ± 320  1.02x1012 
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16-OMC - BSA 14300 ± 400 1.43x1012 
Cafestol - HSA 5000 ± 110  

Cafestol - ffHSA 2460 ± 90   
Cafestol - BSA 16000 ± 430  1.60x1012  

Table 1 Quenching constants according to Stern-Volmer analysis: Stern-Volmer quenching 399 

constant (KSV) and bimolecular quenching kinetic constant (Kq). The binding constant for 400 

cafestol and human albumins reported in italics have been calculated in a similar way and they 401 

are the opposite of the slopes obtained in the Stern-Volmer analysis, assuming that the emission 402 

enhancement is linearly dependent from the cafestol concentration in this range. They should 403 

be regarded as an indication of a binding event rather than a Stern – Volmer constant. 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

FIGURES 413 
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