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A Distributed Networked Approach for

Fault Detection of Large-scale Systems
F. Boem, R. M. G. Ferrari, C. Keliris, T. Parisini, and M. M. Polycarpou

Abstract—Networked systems present some key new challenges
in the development of fault diagnosis architectures. This paper
proposes a novel distributed networked fault detection method-
ology for large-scale interconnected systems. The proposed for-
mulation incorporates a synchronization methodology with a
filtering approach in order to reduce the effect of measurement
noise and time delays on the fault detection performance. The
proposed approach allows the monitoring of multi-rate systems,
where asynchronous and delayed measurements are available.
This is achieved through the development of a virtual sensor
scheme with a model-based re-synchronization algorithm and a
delay compensation strategy for distributed fault diagnostic units.
The monitoring architecture exploits an adaptive approximator
with learning capabilities for handling uncertainties in the in-
terconnection dynamics. A consensus-based estimator with time-
varying weights is introduced, for improving fault detectability
in the case of variables shared among more than one subsystem.
Furthermore, time-varying threshold functions are designed to
prevent false-positive alarms. Analytical fault detectability suffi-
cient conditions are derived and extensive simulation results are
presented to illustrate the effectiveness of the distributed fault
detection technique.

I. INTRODUCTION AND STATE OF THE ART

The growing scientific interest for networked and distributed

systems is evident by the large number of works cited in

surveys and books (see, for example, [1], [2]). As complexity

and interconnectedness increase, there is a higher risk of faulty

operation in one or more components/subsystems of the overall

system. In the presence of such faulty scenarios, it is difficult

to detect and isolate the fault, as well as to design methods

for bringing the system back to normal operation. Faults in

a low-level component may have a manageable impact on

system operation; on the other hand, high-level faults can have

significant consequences (for example, human safety, major

economic effects and environmental impact) if not detected

and handled promptly. Therefore, there is a need to develop

fault detection tools in the context of large-scale, distributed

and networked systems, which is the aim of this work.
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Recently there has been a growing interest towards dis-

tributed architectures for the monitoring of large-scale and/or

networked systems (see [3], [4], [5], [6], [7], [8], [9], [10],

[11], [12], [13], [14]. For instance, some recent works on

monitoring and diagnosis of Cyber Physical Systems (CPSs)

deal with the detection of attacks against process control

systems [15] and cyber-physical attacks in power networks

[16], [17], [18], [19]. In [20] and [21] distributed schemes to

detect and isolate the attacks on networked control systems

using observers are developed. In [21], applications to power

networks and robotic formations are presented. All these works

about cyber attacks consider linear system models. Another

research topic that has attracted significant interest recently, is

the design of fault detection methods for multi-agent systems

(see as example [22], [23], [24]).

In this work, the distributed fault diagnosis approach pre-

sented in [4], [5] for nonlinear systems is generalized to

address issues emerging when considering networked diagno-

sis systems. In particular, when dealing with communication

networks, one of the main issues is the presence of delays

and packet dropouts, that degrade performance and could

be a source of instability, mis-detection and false alarms.

Delays and packet losses in the communication networks are

dealt with in this paper. While there is an extensive litera-

ture addressing this issue in the control framework (see, for

example, [25], [26], [27], [28], [29], and the references cited

therein), much less literature is available in the case of fault

diagnosis, especially for large-scale systems. In particular,

only the decentralized fault diagnosis problem is considered

(see, for example, [30], [31], [32] and [33], in which fault

detection and isolation schemes for networked systems are

addressed). An exception is [34] and the references cited

therein, dealing with discrete-event systems. Despite these

results, the design of fault diagnosis schemes specifically for

distributed and large–scale systems is still a challenging task

and the issues deriving from networked architectures are not

taken into account. Some works consider the problem of delays

and packet dropouts induced by the networks between the

actuator-sensor and controller-actuator for a networked control

system monitoring, but using a centralized architecture [35],

[36] . Instead, here we consider distributed fault detection

architectures. Moreover, dealing with a networked architecture,

the possibility to have multi-rate systems and asynchronous

measurements is considered. Also in this case, while the

literature addressing this topic in the control field is increasing

(see [37], [38] as example), in the distributed fault diagnosis

these issues still have not been addressed (see [39] for the

centralized case).
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In the following we provide the main aspects of the problem

formulation, the research objectives and the proposed method-

ology.

A. Problem Formulation

In previous works, a distributed approach to Fault Diagnosis

(FD) for large-scale systems has been developed, both in the

continuous-time [4] and in the discrete-time [5] frameworks.

In the following, a brief summary of this methodology is given

for the readers’ convenience and for the sake of completeness.

Details can be found in [4], [5]. The limitations of the existing

monitoring architectures in networked scenarios in terms of

detectability are illustrated and some solutions are presented.

A nonlinear uncertain large-scale system, composed of N
interconnected subsystems, is considered. Its monolithic model

is described by

ẋ(t) = f(x(t), u(t)) + η(x(t), u(t)) + φ(x(t), u(t), t), (1)

where x ∈ R
nx

and u ∈ R
nu

are the state and the control input

of the system, respectively, f : Rnx

× R
nu

7→ R
nx

models

the nominal dynamics, η : Rnx

× R
nu

7→ R
nx

represents the

modeling uncertainty and φ : Rnx

×Rnu

×R 7→ R
nx

describes

the effects on system dynamics due to any deviation from the

nominal model, which take place for t ≥ T0, where T0 denotes

the unknown fault occurrence time (i.e., φ(x(t), u(t), t) = 0,

for t < T0). The following well-posedness assumption is

needed.

Assumption 1: The state variables x and control variables

u are uniformly bounded before and after the occurrence of a

fault, that is, there exists a compact region R ⊂ R
nx

× R
nu

such that (x(t), u(t)) ∈ R, ∀t ≥ 0. �

The state variables are measured by ny sensors, whose

outputs are described by the following equation:

m(t) = Gx(t) + w(t), (2)

where m ∈ R
ny

is a vector collecting the measurements of

the components of the state vector x, w ∈ R
ny

denotes the

vector of the measurement noise, and G is a full-rank ny×nx

matrix having one single element equal to 1 for each row,

representing the state component measured by each sensor. We

assume that each state component is measured at least by one

sensor, that is, ny ≥ nx. It is worth noting that – under suitable

additional assumptions (see [40], [6]) – the generalization to

the Input/Output case could be carried out, but this is outside

the scope of this paper.

Assumption 2: For each i-th measurement m(i), with i =
1, . . . , ny being the vector component index, the measurement

uncertainty term w(i) is an unstructured and unknown function

of time, but it is bounded by a known positive time-function

w̄(i)(t) such that
∣∣w(i)(t)

∣∣ ≤ w̄(i)(t), i = 1, . . . , ny , t ≥ 0. �

As illustrated in [4], [5], a structural graph can be asso-

ciated with system (1) and a formal (possibly overlapping)

decomposition of the graph can be defined to identify N
subsystems. More specifically, in case that more than one

sensor is available to measure a given state variable x(i), it

might be useful to devise a decomposition with overlapping

subsystems such that the variable x(i) is “shared” among

these subsystems and each sensor measuring x(i) belongs to a

different subsystem (see left side of Fig. 1). In this paper, we

are not dealing with the problem of finding an optimal way of

decomposing the system (see [41]); hence, the decomposition

is assumed to be known a priori. Moreover, we assume that the

existing decomposition implies the allocation of the sensors:

each non-shared variable is measured exactly by one sensor;

shared variables are measured by a number of sensors equal

to the number of sharing subsystems. Each sensor is allocated

to one subsystem.

The I-th subsystem ΣI is modeled as:

ΣI : ẋI(t) = fI(xI(t), uI(t)) + gI(xI(t), zI(t), uI(t))

+ φI(xI(t), zI(t), uI(t), t), (3)

where xI ∈ R
nx
I and uI ∈ R

nu
I are the local state and control

input vectors, and zI ∈ R
qI is the vector of the interconnection

variables, which are state variables of neighboring subsystems

that influence the I-th subsystem. The function gI : Rnx
I ×

R
qI × R

nu
I 7→ R

nx
I represents the uncertain interconnection

between subsystems, considering also the local effects of the

modeling uncertainty function η, fI : R
nx
I × R

nu
I 7→ R

nx
I

models the local nominal healthy behavior. Finally, φI : Rnx
I×

R
qI ×R

nu
I ×R 7→ R

nx
I describes the local fault effects. In this

paper, we consider both process and actuator faults.

Each sensor is associated with exactly one subsystem (see

Fig. 1). The local sensor S
(i)
I associated with the I-th subsys-

tem provides a measurement m
(i)
I of the i-th component of

the local state vector xI according to the output equation

S
(i)
I : m

(i)
I (t) = x

(i)
I (t) + w

(i)
I (t) , i = 1, . . . , nxI , (4)

where w
(i)
I denotes the noise affecting the i-th sensor of the I-

th subsystem. It is worth noting that in the local model output

equation (4), there is a correspondence between sensors and

state variables, while this may be not true in the global model

(2) since more than one sensor may measure the same variable

(see again Fig. 1). We assume that the control input is available

without any error or delay.

Similarly to [5], each subsystem of the above decomposition

is monitored by a specific Local Fault Diagnoser (LFD). Each

LFD receives from its local sensors the noisy state measure-

ments forming the vector mI = col(m
(i)
I , i = 1, . . . , nxI )

(see (4)) and, from the J-th neighboring LFD the noisy

measurements m
(i)
zI , i = 1, . . . , qI of the local state variables

components x
(i)
J that influence the I-th subsystem (i.e., the

variables x
(i)
J belonging to the interconnection vector zI).

Each LFD computes a local state estimate x̂I(t) based on

the local I-th model, by communicating the interconnection

variables (and possibly other information) to neighboring

LFDs. The state estimator takes on a different structure de-

pending on whether the specific i-th component x(i) of the

state is shared among more than one subsystem or not. In the

former case, a deterministic consensus procedure is designed

to take advantage of the availability of more than one sensor

measuring the same variable [4], [5].
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Fig. 1. An example of the proposed multi-layer fault detection architecture.
The system state variables (represented by light blue circles on the left) are
measured by the sensor layer (center). The measurements are represented
by green circles, while the actual sensors by small squares. Each subsystem
(colored dotted boundaries) is described by its local variables and its local
measurements. The sensors communicate their measurements to the LFDs by
means of the first level communication network. The second level communi-
cation network (right) allows the diagnosers to communicate with each other
exchanging information.

The LFD implements a model-based fault detection method:

the local estimation error ǫI(t) = mI(t)− x̂I(t) is compared,

component–by–component, to a time-varying threshold ǭI(t),
suitably computed in order to guarantee the absence of false–

alarms. Moreover, a filtering design [42] is introduced to

reduce the conservativeness of the detection thresholds, which

is here adapted in the current formulation under discrete time.

B. Objectives and Contributions

The existing approaches for distributed fault diagnosis of

nonlinear uncertain large-scale systems that we have previ-

ously described are based on some underlying assumptions

that may restrict their applicability, namely:

1) global synchronization: subsystems, sensors, and LFDs

are assumed to share the same clock and sampling

frequency;

2) perfect information exchange: it is assumed that infor-

mation exchanged between LFDs and communicated

from the system to the LFDs is without any error nor

delay and it is immediately available at any point of the

diagnosis system.

In several realistic contexts, 1) and 2) may not hold, and

as a consequence, i) some faults may become undetectable

due to the fact that LFDs make detection decisions based

on outdated information; ii) delays in information exchange

may cause longer detection times; iii) the lack of accurate and

timely information may cause false-alarms.

In this paper, the distributed fault-diagnosis methodology

presented in [4], [5] is extended to address the above-

mentioned limitations. More specifically:

a) a multi-layer distributed fault diagnosis architecture

is proposed consisting of three layers (the system

layer, the sensor layer and the diagnosis level, see

Fig. 1). This facilitates the investigation of the re-

lationships between the different elements that com-

pose networked systems;

b) a delay compensation strategy is devised to address

delays and packet losses in the communication net-

work between the LFDs (see [43] for some prelimi-

nary results) using Time stamps and a buffer, called

diagnosis buffer(see Fig.2);

c) a model–based re-synchronization algorithm is em-

bedded in the diagnosis procedure. This algorithm is

based on virtual sensors implemented in the LFDs

and on the use of a measurements buffer (see Fig. 2);

d) the filtering-based design recently proposed in [9],

[42] is modified and integrated into the proposed

distributed fault-diagnosis methodology thus enhanc-

ing fault detection robustness and facilitating less

conservative conditions for fault-detectability.

In Fig. 2, an example of a two LFDs architecture is presented

to provide more insight into the structure of the proposed

scheme.

The paper is organized as follows: in Section II, the dis-

tributed fault detection architecture is described: the presence

of a physical system (which is being diagnosed for faults), of

the sensors (which are made of a physical part interacting with

the system to be diagnosed and a computational (cyber) part

able to take process measurements and exchange information

with other sensors of the network to synchronize with each

other) and the local diagnosers (which are computational-

systems as well and able to make model-based estimation

and exchange information with each other). In Section IV, the

distributed fault detection algorithm is presented also detailing

the re-synchronization scheme, the time-varying consensus

mechanism and the delay compensation strategy. In Section V

sufficient conditions for fault detectability are presented that

characterize the class of detectable faults and in Section VI

simulation results illustrating the effectiveness of the fault-

diagnosis scheme are presented. Finally, Section VII reports

some concluding remarks.

II. THE THREE–LAYERS FAULT-DIAGNOSIS

ARCHITECTURE

The proposed distributed fault-detection architecture is

made of three layers: the system layer, the sensor layer and the

diagnosis layer. In Fig. 1, this layout is shown in a pictorial

way. These three layers are briefly described next.

The system layer refers to the large-scale system to be mo-

nitored. It is described by the continuous-time state equation

Eq. (1) and the output equation (2).

The sensor layer consists of the available sensors taking

measurements m
(i)
I (t) in continuous-time (see (4)) and sam-

pling and sending such measurements to the I-th LFD at time-

instants t
(i)
sI that are not necessarily equally-spaced in time.

As we do not assume that the measurements delivered by the

sensors are synchronized with each other, each measurement

is labeled with a Time Stamp (TS) [44] to indicate the time
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Fig. 2. An example of a two LFDs architecture. The internal structure of each LFD is shown, composed of two buffers (the measurements buffer and the
diagnosis buffer) to collect the information received, respectively, by the local sensors and neighboring LFDs, the Virtual Sensor (processing the received
measurements), and the Fault Detection unit, responsible for the monitoring analysis. The communicated information between LFDs is represented.

instant t
(i)
sI at which the measurements are taken by sensor

S
(i)
I in the time-coordinate t.

The communication between the sensors and the LFDs

is achieved through the first level communication network

(see Fig. 1). This network can introduce delays and packet

losses, for instance because of collision between different

sensors trying to communicate at the same time. Therefore,

measurements communicated from the sensors to LFDs may

be received at any time-instant.

The Diagnosis layer consists of the previously introduced

LFDs providing a distributed fault-diagnosis procedure. The

structure of each LFD is shown in Fig. 2. As previously

mentioned, each LFD receives the measurements from specific

sensors with the aim to provide local fault diagnosis decisions.

The LFDs operate in a discrete-time synchronous timeframe

k ∈ Z which turns out to be more convenient for handling any

communications delays, as will be seen in the next sections.

For the sake of simplicity, the sampling time of the discrete

timeframe is assumed to be unitary and the reference time is

common, that is, the origin of the discrete-time axis is the same

as that of the continuous-time axis. Therefore, the operation

of the LFDs is based on the local discrete-time models, which

are the discrete-time version of local models (3):

xI(k + 1) = fI(xI(k), uI(k)) + gI(xI(k), zI(k), uI(k))

+ φI(xI(k), zI(k), uI(k), k) , (5)

where φI describes the local discretized fault effects, occurring

at some discrete-time k0 (that is, φI(xI(k), zI(k), uI(k), k) =
0, k < k0). Each LFD exchanges information with neighboring

LFDs by means of the second level communication network

(see right side of Fig.1 and Fig. 2). As we will see in

the following, the exchanged information consists in the re-

synchronized interconnection variables vJ and a vector that

we denote II,J , collecting some variables needed for fault

detection purposes in the case of shared variables (as will be

explained in Section IV).

In summary, two different and not reliable communication

networks are considered in this paper: the first level commu-

nication network allows each LFD to communicate with its

local sensors and the second level communication network al-

lows the communication between different LFDs for detection

purposes. Both these communication networks may be subject

to delays and packet losses. Given the different nature of the

networks (the first is local, while the second is connecting

different subsystems, which may be geographically apart), in

the next section we provide two different strategies to manage

communication issues: a re-synchronization method for the

first level communication network and a delay compensation

strategy for the second level communication network.

III. RE-SYNCHRONIZATION AT DIAGNOSIS LEVEL

Let us consider a state variable x
(i)
I (t); as mentioned

before, at time t = t
(i)
sI the sensor S

(i)
I takes the mea-

surement m
(i)
I (t

(i)
sI ) and sends it to the I-th LFD with a

time-stamp t
(i)
sI . The I-th diagnoser receives the measurement

sent by S
(i)
I at time t

(i)
aI > t

(i)
sI . Since the LFDs run the

distributed fault-diagnosis algorithm with respect to a discrete-

time framework associated with an integer k (see (5)), an on-

line re-synchronization procedure has to be carried out at the

Diagnosis level. Moreover, the possible time-varying delays

and packet losses introduced by the communication networks

between the local sensors and the corresponding LFDs have to

be addressed since they may affect the fault diagnosis decision.

Note that the classical discrete-time FD architecture assumes

that quantities sampled at exactly time k are used to compute

quantities related to time k+1. Unfortunately, the LFDs may

receive measurements associated with time instants different

from k, because of transmission delays and because of the

arbitrary sampling time instants of the sensors. The availability

of the time-stamp t
(i)
sI enables each LFD to implement a set of

local virtual sensors by which the re-synchronization of the

measurements received at the Diagnosis level is implemented.
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We assume that sensors and diagnosers share the same clock

at local level1.

Specifically, each LFD collects the most recent sensors mea-

surements in a buffer and computes a projection m̂
(i)
I (k|t

(i)
sI ) of

these latest available measurements m
(i)
I (t

(i)
sI ), i = 1, . . . , nx

I ,

to the discrete time instant2 k ≥ t
(i)
aI > t

(i)
sI , by integrating the

local nominal model on the time interval [t
(i)
sI , k].

Remark 1: Let us note that measurements may be related

to and could be received also before time k − 1, without any

assumption on the delay length, thus allowing the presence of

measurements packets losses. Moreover, thanks to the use of

the time stamps and the buffers, ”‘out-of-sequence”’ packets

can be managed. The same measurement could be used by

the virtual sensor more than once to obtain more than one

projections related to different discrete time instants.

The projected measurement m̂
(i)
I (k|t

(i)
sI ) can be computed

by noticing that, under healthy mode of behavior, the local

nominal model (3) for the state component i at any time

t > t
(i)
sI can be rewritten as:

x
(i)
I (t) = x

(i)
I (t

(i)
sI ) +

∫ t

t
(i)
sI

[f
(i)
I (xI(τ), uI(τ))

+ g
(i)
I (xI(τ), zI(τ), uI(τ))]dτ .

Hence, the LFD implements a virtual sensor that generates an

estimate of the measurement at discrete-time k given by

m̂
(i)
I (k|t

(i)
sI ) = m

(i)
I (t

(i)
sI ) +

∫ k

t
(i)
sI

[f
(i)
I (m̂I(τ |t

(i)
sI ), uI(τ))

+ ĝ
(i)
I (m̂I(τ |t

(i)
sI ), m̂zI(τ |t

(i)
sI ), uI(τ))]dτ , (6)

where ĝI characterizes an adaptive approximator designed to

learn the unknown interconnection function gI [45] and m̂zI

are the projections of the measured interconnection variables

mzI . An example enhancing the re-synchronization procedure

for one LFD monitoring a subsystem with three state variables

is illustrated in Fig. 3.

Remark 2: It is worth noting that the discrete-time index

k ∈ Z represents kind of a “virtual Time Stamp” (vTS)

computed by the LFDs after the re-synchronization task and

communicated in the second level communication network

between LFDs. This will be exploited in Section IV.

Remark 3: Although in (6), for analysis purposes, ĝI rep-

resents the output of a continuous-time adaptive approximator,

for implementation reasons, a suitable discrete-time approxi-

mator will be used, designed as explained in Section IV-B.

The above-described projection and re-synchronization pro-

cedure gives rise to an additional source of measurement

uncertainty: the virtual measurement error, which is defined

as

ξ
(i)
I (k) , m̂

(i)
I (k|t

(i)
sI )− x

(i)
I (k).

1As example, this could be obtained in accordance with the IEEE 1588-
2002 standard (“Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems”), where each diagnoser can
be selected as a synchronization master for the sensors that communicate with
it.

2Recall that the sampling time of the diagnosers is supposed to be unitary
for simplicity.

System Layer

Sensor Layer

S
(1)
I

S
(2)
I

S
(3)
I

· · ·

Diagnoser Layer

Synchronization

Fault detection
kk − 1 k + 1

t
(1)
sI

t
(2)
sI

t
(3)
sI

t
(1)
aI

t
(2)
aI

t
(3)
aI

delays
First layer

communication network

Fig. 3. The re-synchronization procedure needed to manage delays and
packet losses in the communication networks between each LFD and its local
sensors. A single LFD is considered whose local model depends on three
variables, which are measured by three different sensors. The clock signals
of each layer involved are shown.

For the sake of analysis, it is worth noting that, due to syn-

chronization and measurement noise, the virtual measurement

error is given by:

ξ
(i)
I (k) = m

(i)
I (t

(i)
sI )− x

(i)
I (t

(i)
sI )

+

∫ k

t
(i)
sI

[∆synchf
(i)
I (τ) + ∆synchg

(i)
I (τ)]dτ

= w
(i)
I (t

(i)
sI ) +

∫ k

t
(i)
sI

[∆synchf
(i)
I (τ) + ∆synchg

(i)
I (τ)]dτ ,

(7)

where

∆synchf
(i)
I (τ) , f

(i)
I (m̂I(τ |t

(i)
sI ), uI(τ))

− f
(i)
I (xI(τ), uI(τ)) ,

and

∆synchg
(i)
I (τ) , ĝ

(i)
I (m̂I(τ |t

(i)
sI ), m̂zI(τ |t

(i)
sI ), uI(τ))

− g
(i)
I (xI(τ), zI(τ), uI(τ)) .

For notational convenience, we now collect the projected

measurements m̂
(i)
I (k|t

(i)
sI ) in a vector, which, in the following,

we denote as yI(k), with k being its vTS:

yI(k) = col
{
m̂

(i)
I (k|t

(i)
sI ), i = 1, . . . , nx

I

}
.

Therefore, it is as if the virtual sensor implemented by the

LFDs takes uncertain local measurements yI of the state xI ,

according to

yI(k) = xI(k) + ξI(k),

where ξI is the unknown virtual measurement error (7).

Moreover, in place of the interconnection variables z, only

the vector

vI(k) = zI(k) + ςI(k)

is available for diagnosis, where ςI is composed by the

components of ξJ affecting the relevant components of yJ (as
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before, J refers to a neighboring subsystem). For simplicity,

we assume here that the control signal uI is available to the

diagnoser without any delays or other uncertainty.

The virtual measuring errors ξI and ςI are unstructured and

unknown. For fault detection, it is not necessary to compute

them but, for each i = 1, . . . , nx
I and h = 1, . . . , qI , it is

possible to compute a bound for their components using Eq.(7)
∣∣∣ξ(i)I (k)

∣∣∣ ≤ ξ̄
(i)
I (k),

∣∣∣ς(h)I (k)
∣∣∣ ≤ ς̄

(h)
I (k),

where

ξ̄
(i)
I (k) = w̄

(i)
I (t

(i)
sI ) +

∫ k

t
(i)
sI

∆̄synchf
(i)
I (τ) + ∆̄synchg

(i)
I (τ)dτ

(8)

is a positive function, w̄
(i)
I is the one defined in Assumption

2,

∆̄synchf
(i)
I (τ)

= max
xI∈RxI

∣∣∣f (i)
I (m̂I(τ), uI(τ)) − f

(i)
I (xI(τ), uI(τ))

∣∣∣ ,

remembering that the set RxI is the domain of the state, and

∆̄synchg
(i)
I (τ) can be computed in an analogous way as in

(31) (see Section IV-D). The bound ς̄I is computed with the

same procedure by the neighboring subsystems. In the next

section, the fault-diagnosis procedure is presented.

IV. THE DISTRIBUTED FAULT DETECTION

METHODOLOGY

For fault detection purposes, each LFD communicates with

neighboring LFDs. It is assumed that the inter-LFD commu-

nication is carried over a packet-switched network, which we

call the second level communication network, possibly subject

to packet delays and losses. In order to manage delays in

this network, the data-packets are Time Stamped, with the

virtual Time Stamp, which contains the time instant the virtual

measurements are referred to. In this layer, we assume to have

perfect clock synchronization between the LFDs. In this way,

all the devices of the monitoring architecture can share the

same clock, that is, they know the reference time, and the use

of Time Stamps can be valid.

Furthermore, we propose to provide each LFD with a buffer

to collect the variables sent by neighbors. In the following,

we denote with the superscript “b” the most recent value

of a variable (or of a communicated function value) in the

corresponding buffer of a given LFD; for example, vbI denotes

the most recent value of the measured interconnection vector

vI contained in the buffer of the I-th LFD, while [fI(·)]
b

denotes the most recent value of the function [fI(·)] in the

buffer.

Each LFD computes a nonlinear adaptive estimate x̃I of the

associated monitored subsystem state xI . The local estimator,

called Fault Detection Approximation Estimator (FDAE), is

based on the local discrete-time nominal model (Eq.(5)). In

this paper, differently from [5], to dampen the effect of

the virtual measurement error ξI(k), each measured variable

y
(i)
I = x

(i)
I + ξ

(i)
I is filtered by H(z), where H(z) is a p-th

order, asymptotically stable filter with proper transfer function

H(z) =
z
(
d1z

−1 + d2z
−2 + . . .+ dpz

−p
)

c0 + c1z−1 + . . .+ cpz−p
. (9)

Generally, each measured variable y
(i)
I (k) can be filtered by a

different filter with the exception of shared variables where

for each shared variable the same filters must be used. In

this paper, without loss of generality, we consider H(z) to

be the same for all the output variables, in order to simplify

notation and presentation. The filter H(z) can be written as

H(z) = zHp(z). The filters H(z) and Hp(z) (with impulse

responses h(k) and hp(k) respectively) are asymptotically

stable and hence BIBO stable. Therefore, for bounded virtual

measurement error ξI(k), the filtered virtual measurement

error3 ΞI(k) , H(z) [ξI(k)] is bounded as follows:
∣∣∣Ξ(i)

I (k)
∣∣∣ ≤ Ξ̄

(i)
I (k) i = 1, . . . , nx

I (10)

where Ξ̄
(i)
I are bounding functions that can be computed as

Ξ̄
(i)
I , H̄(z)[ξ̄

(i)
I ], being H̄(z) a filter with impulse response

h̄(k) = |h(k)| and using Eq. (8). Note that we denote with

capital letters the filtered signals.

A. Fault Detection Estimation and Residual Generation

In this subsection we present a method for computing the

local state estimate x̃I for fault detection purposes. In the case

of a non-shared state component i, the local estimation x̃
(i)
I is

given by

x̃
(i)
I (k + 1) = f

(i)
I (yI(k), uI(k))

+ ĝ
(i)
I (yI(k), v

b
I(k), uI(k), ϑ̂I(k)), (11)

where ĝI is the output of an adaptive approximator designed in

subsection IV-B to learn the unknown interconnection function

gI , ϑ̂I ∈ Θ̂I denotes its adjustable parameters vector and tb is

the virtual time stamp of the most recent information received

vbI in the buffer at time k.

In the case that a state variable x(s) of the global model

(1) is shared among more than one LFD J ∈ Os (being Os

the set of the subsystems sharing x(s)), the estimation can

be computed using a consensus approach (see [5]). We denote

with sJ the local index of the global variable s, that is4 x(s) =

x
(sJ )
J , ∀J ∈ Os. For the I-th subsystem, the local estimation

x̃
(sI )
I is given by:

x̃
(sI )
I (k + 1) =

∑

J∈Os

W (I,J)
s

[
f
(sJ )
J

(
yJ(k), uJ (k)

)

+ ĝ
(sJ )
J

(
yJ(k), v

b
J (k), uJ(k), ϑ̂J (k)

)]b
(12)

with initial condition x̃
(sI )
I (0) = y

(sI)
I (0). Each J-th

LFD communicates to neighboring LFDs sharing variable

3For notational convenience, in the paper we use the shorthand H(z) [ξ(k)]
to denote Z−1 {H(z)Ξ(z)}.

4For example, consider the case shown in Fig. 1: subsystems Σ1 and Σ2

share the state variable x(2) while sub-systems Σ2 and Σ3 share the state

variable x(4) . Thus, x(2) = x
(2)
1 = x

(1)
2 and x(4) = x

(3)
2 = x

(1)
3 .
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s the local value of the function f
(sJ )
J

(
yJ(k), uJ(k)

)
+

ĝ
(sJ )
J

(
yJ(k), v

b
J (k), uJ(k), ϑ̂J (k)

)
(this consists in the first

part of vector II,J , together with some information needed

to compute the thresholds). In this way, it is not necessary

for the local diagnosers to know the other subsystems models.

The terms W
(I,J)
s are the components of a stochastic matrix

Ws (the values of each row add up to 1). In Section IV-E,

the definition of the weight matrix Ws in order to improve

detectability capabilities is given. It is worth noting that the

formulation of (12) includes the case of a non-shared variable

component i (see (11)), since, in this case Oi = {I} and

hence index J is simply equivalent to I , with W
(I,I)
i = 1, by

definition.

We now explain the residual generation: the local estimation

residual error rI(k) is defined as

rI(k) , YI(k)− ŶI(k), (13)

where we obtain the filtered output YI(k) by locally filtering

the measurement output signal yI(k)

YI(k) , H(z) [yI(k)] , (14)

and the output estimates as

ŶI(k) , H(z) [x̃I(k)] . (15)

The residual constitutes the basis of the fault detection scheme.

It can be compared, component by component, to a suitable

adaptive detection threshold r̄I ∈ R
nx
I , thus generating a local

fault decision attesting the status of the subsystem: healthy or

faulty. A fault in the overall system is said to be detected when

|r
(i)
I (k)| > r̄

(i)
I (k), for at least one component i in any I-th

LFD.

We now analyze the filtered measurements and estimates:

YI(k) = H(z) [yI(k)] = H(z) [xI(k) + ξI(k)]

= Hp(z) [z [xI(k)]] + ΞI(k). (16)

In the absence of any faults (i.e., φI

(
xI(k), zI(k), uI(k), k

)
=

0), (16) becomes

YI(k) = Hp(z)
[
xI(k + 1) + z

[
xI(0)δ(k)

]]
+ ΞI(k)

=Hp(z)
[
fI
(
xI(k), uI(k)

)
+ gI

(
xI(k), zI(k), uI(k)

)]

+ h(k)xI(0) + ΞI(k), (17)

where δ(k) denotes the discrete-time unit-impulse sequence.

The filtered output estimation model for YI , denoted by ŶI ,

can be analyzed from the estimate provided by (12) as follows:

Ŷ
(sI )
I (k) =

∑

J∈Os

W (I,J)
s Hp(z)

[(
f
(sJ )
J

(
yJ(k), uJ (k)

)

+ ĝ
(sJ )
J

(
yJ(k), v

b
J (k), uJ(k), ϑ̂J (k)

))b
]
+ h(k)y

(sI )
I (0).

(18)

Therefore, the residual (13) is readily computable from (14)

and (15). The residual is analyzed in subsection IV-D to

obtain a suitable adaptive detection threshold. Now, we design

the adaptive approximator ĝI , needed to compute the state

estimate (12) and hence (15).

B. Adaptive Approximator

Reducing the uncertainty on the interconnection function

enables improved detection thresholds which, in turn, results

in better detection capabilities. In this subsection, we consider

the design of a nonlinear adaptive approximator, exploiting the

variables available in the local buffers in each LFD to manage

communication delays (the details of the delay compensation

strategy are given in subsection IV-C). The structure of the

linear-in-the-parameters nonlinear multivariable approximator

is not dealt with in this paper (nonlinear approximation

schemes like neural networks, fuzzy logic networks, wavelet

networks, spline functions, polynomials, etc. can be used).

As shown later on in this subsection, adaptation of the

parameters ϑ̂I of the approximator is achieved through the

design of a dynamic state estimator which, in the general case

of shared variables, takes on the form:

x̂
(sI )
I (k + 1) = λ(x̂

(sI )
I (k)− y

(sI)
I (k))

+ λ
∑

J∈Os

W (I,J)
s

[
x̂
b(sJ )
J (k)− x̂

(sI )
I (k)

]

+
∑

J∈Os

W (I,J)
s

[
f
(sJ )
J (yJ , uJ) + ĝ

(sJ )
J (yJ , v

b
J , uJ , ϑ̂J)

]b
,

(19)

where 0 < λ < 1 is a design parameter. Let us introduce the

estimation error

ǫI(k) , yI(k)− x̂I(k)

and let us analyze ǫI under healthy mode of behavior. By

assumption,
∑

J∈Os
W

(I,J)
s = 1 and the following holds for

shared variables, ∀J ∈ Os (see the model decomposition

procedure outlined in [5]):

f (s)(x, u) + η(s)(x, u, k) = f
(sJ )
J (xJ , uJ) + g

(sJ )
J (xJ , zJ , uJ)

=
∑

J∈Os

W (I,J)
s [f

(sJ )
J (xJ , uJ) + g

(sJ )
J (xJ , zJ , uJ)] .

Moreover, we can write

∑

J∈Os

W (I,J)
s [f

(sJ )
J (xJ , uJ) + g

(sJ )
J (xJ , zJ , uJ)]

=
∑

J∈Os

W (I,J)
s [f

(sJ )
J (xJ , uJ) + g

(sJ )
J (xJ , zJ , uJ)]

b ,

thanks to the fact that only up-to-date information is used in

the consensus mechanism by using the time-varying consensus

matrix (see Subsections IV-C and IV-E): in the case of delays,

only the updated information is used.

Owing to these considerations, we compute the sI -th state

estimation error component, for the general form of (19), as

follows:

ǫ
(sI)
I (k + 1) = y

(sI )
I (k + 1)− x̂

(sI )
I (k + 1)

=
∑

J∈Os

W (I,J)
s

[
λǫ

(sJ )
J +∆f

(sJ )
J +∆g

(sJ )
J − λξ

(sJ )
J

]b

+ λξ
(sI )
I (k) + ξ

(sI )
I (k + 1) , (20)
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where

∆f
(sJ )
J , f

(sJ )
J (xJ , uJ)− f

(sJ )
J (yJ , uJ)

and

∆g
(sJ )
J , g

(sJ )
J (xJ , zJ , uJ)− ĝ

(sJ )
J (yJ , v

b
J , uJ , ϑ̂J) .

Let us introduce a compact formulation in vectorial form of the

state error equation (20) for the sake of analysis. Specifically,

we define for every s-th state component the extended estima-

tion error vector ǫs,E , which is a column vector collecting the

estimation error vectors of the N sub-systems sharing the s-th

state component: ǫs,E , col(ǫ
(sJ )
J : J ∈ Os). Notice that, if

the s-th state component is not shared, the set is just made of

a single component. The dynamics of ǫs,E can be described

as:

ǫs,E(k + 1) = Ws [λǫs,E +∆fs,E +∆gs,E − λξs,E ]
b

+ λξs,E(k) + ξs,E(k + 1), (21)

where ∆fs,E is a column vector, collecting the values ∆f
(sJ )
J ,

for each J ∈ Os; ∆gs,E(k) and ξs,E are defined in an

analogous way as ∆fs,E(k). From this equation, the following

learning law can be derived using Lyapunov stability methods

(see [46]) for every I ∈ 1, . . . , N :

ϑ̂I(k + 1) = PΘ̂I

[
ϑ̂I(k) + γIL

⊤
I [ǫI(k + 1)− λǫI(k)

]
,

(22)

where L⊤
I = ∂ĝI/∂ϑ̂I is the gradient matrix of the online

approximator with respect to its adjustable parameters and

γI = µI/εI +
∥∥L⊤

I

∥∥2

F
, with PΘ̂I

being a projection operator

restricting ϑ̂I within Θ̂I [47], ‖ · ‖F denotes the Frobenius

norm and εI > 0, 0 < µI < 2 are design constants that

guarantee the stability of the learning law [47].

C. Delay Compensation Strategy

Next, we analyze the properties of the Fault Detection esti-

mator introduced in (IV-A), where the filtered measurements

are used; in particular, we explain how the estimator manages

delays and packet losses in the second level communication

network between diagnosers.

In order to compute (12) and (19), the generic J-th di-

agnoser communicates to the neighboring LFDs the current

values of the terms x̂
(sJ )
J , f

(sJ )
J + ĝ

(sJ )
J and vI . It is worth

noting that this information exchange between diagnosers can

be affected by time-varying delays and packet losses and hence

a compensation strategy has to be devised5. It is important to

note that a re-synchronization strategy like the one used in

the first level communication networks cannot be used in this

case, since here we consider data exchanged between different

LFDs, and each LFDs, of course, does not know the model of

neighboring subsystems.

5The delay compensation strategy is derived without any assumption on
the delay length, thus eventually dealing with the problem of packet losses
and “out-of-sequence” packets. We assume that the communication network
between diagnosers is designed so to avoid pathological scenarios, such as,
for example, a situation in which the communication delay is always larger
than the sampling time.

As in [43], thanks to the use of the virtual Time Stamps,

the most recent measurements and information are considered.

When a data packet arrives, its virtual Time Stamp vTS is

compared to tb, which is the virtual Time Stamp of the

information already in the buffer. If vTS > tb, then the novel

data packet takes its placed in the buffer and tb ← vTS. At

time tc, with k < tc < k+1, each LFD computes the estimates

for the time instant k + 1 using information referred to time

k. A variable in the buffer is up-to-date if tb = k. Should a

delay or a packet loss occur in the second level communication

network, we proceed as follows:

• If some of the interconnection variables are not up-to-

date, that is tb < k, then the learning of the interconnec-

tion function gI (22) is temporarily paused. Anyway, not

up-to-date interconnection variables are used to compute

the local value of the interconnection function in the

state estimators (12) and (19), but this error is taken into

account in the computation of the detection threshold, as

will be seen in the following subsection.

• The summations in (12) and (19) are carried on only

using up-to-date terms.

In order to allow the implementation of this second strategy,

we adopt a time-varying weighting matrix Ws, able to exclude

from the summations in (12) and (19) the terms that are

outdated (see subsection IV-E).

D. Detection Threshold

In order to define an appropriate threshold for the detection

of faults, we now analyze the dynamics of the output estima-

tion error when the system is under healthy mode of behavior.

Since, from (17) we have

Y
(sI )
I (k) =

∑

J∈Os

W (I,J)
s

[
Hp(z)

[
f
(sJ )
J

(
xJ (k), uJ(k)

)

+ g
(sJ )
J

(
xJ (k), zJ(k), uJ(k)

)]]
+ h(k)x

(sI )
I (0) + Ξ

(sI )
I (k),

(23)

we are able to compute the residual defined in (13) by using

(18) and (23):

r
(sI )
I (k) =

∑

J∈Os

W (I,J)
s

[
χ
(sJ )
J (k)

]b
− ξ

(sI)
I (0)h(k)

+ Ξ
(sI )
I (k) , (24)

where the total uncertainty term χ
(sJ )
J (k) is defined as:

χ
(sJ )
J (k) , Hp(z)

[
∆f

(sJ )
J (k) + ∆g

(sJ )
J (k)

]
. (25)

The interconnection function error ∆gI can be computed as

the sum of four different terms:

∆gI = LI ϑ̃I + νI +∆ĝI +∆gτI . (26)

The first term takes into account the error due to the parame-

ters’ estimation. This error can be characterized by introducing

an optimal weight vector [48] ϑ̂∗
I as follows:

ϑ̂∗
I , argmin

ϑ̂I

sup
xI ,zI ,uI

∥∥∥gI(xI , zI , uI)− ĝI(xI , zI , uI , ϑ̂I

∥∥∥ ,
(27)
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with ϑ̂I , xI , zI , uI taking values in their respective domains,

and by defining the parameter estimation error

ϑ̃I , ϑ̂∗
I − ϑ̂I .

The second term in (26) is the so-called Minimum Functional

Approximation Error νI , which describes the least possible

approximation error that can be obtained at time k if ϑ̂I were

optimally chosen:

νI(k) , gI(xI , zI , uI)− ĝI(xI , zI , uI , ϑ̂
∗
I) .

Then, a term representing the error caused by the use of the

uncertain measurements instead of the actual values of the

state variables is defined:

∆ĝI , ĝI(xI , zI , uI , ϑ̂I)− ĝI(yI , vI , uI , ϑ̂I) .

Finally, the estimation error due to the use of delayed mea-

surements is taken into account by

∆gτI , ĝI(yI , vI , uI , ϑ̂I)− ĝI(yI , v
b
I , uI , ϑ̂I)

where vI is the current measured variable and vbI is the value

in the buffer, which is “old” in the presence of delays. Clearly,

∆gτI = 0 when up-to-date measurements are used (in this case,

vbI = vI ).

Using (26), the total uncertainty term χ
(sJ )
J (k) in (25) can

be rewritten as

χ
(sJ )
J (k) , Hp(z)

[
∆f

(sJ )
J (k) + L

(sJ )
J ϑ̃J(k) + ν

(sJ )
J (k)

+ ∆ĝ
(sJ )
J (k) + ∆g

τ(sJ )
J (k)

]
, (28)

where L
(sJ )
J indicates the sJ -th line of the matrix LJ . Using

the triangle inequality, (24) satisfies:

∣∣∣r(sI )I (k)
∣∣∣

≤

∣∣∣∣∣
∑

J∈Os

W (I,J)
s

[
χ
(sJ )
J (k)

]b∣∣∣∣∣+
∣∣∣ξ(sI)I (0)h(k)

∣∣∣+
∣∣∣Ξ(sI )

I (k)
∣∣∣

≤
∑

J∈Os

W (I,J)
s

[ ∣∣∣χ(sJ )
J (k)

∣∣∣
]b

+ ξ̄
(sI)
I (0) |h(k)|+ Ξ̄

(sI )
I (k).

(29)

From (28) and using again the triangle inequality, we obtain:

∣∣∣χ(sJ )
J (k)

∣∣∣ ≤
∣∣∣Hp(z)

[
∆f

(sJ )
J (k) + ∆g

(sJ )
J (k)

]∣∣∣

≤
k∑

n=0

|hp(k − n)|
∣∣∣∆f

(sJ )
J (n) + L

(sJ )
J ϑ̃J(n) + ν

(sJ )
J (n)

+∆ĝ
(sJ )
J (n) + ∆g

τ(sJ)
J (n)

∣∣∣

≤ χ̄
(sJ )
J (k) , H̄p(z)

[
∆̄f

(sJ )
J (k) + ∆̄g

(sJ )
J (k)

]
, (30)

where H̄p(z) is the transfer function with impulse response

h̄p(k) = |hp(k)|,

∆̄f
(sJ )
J (k) , max

∣

∣

∣
ξ
(sJ )

J

∣

∣

∣
≤ξ̄

(sJ )

J

{∣∣∣∆f
(sJ )
J (k)

∣∣∣
}

and

∆̄g
(sJ )
I (k) ,

∥∥∥L(sJ )
I

∥∥∥κI(ϑ̂I) + ν̄
(sJ )
I (k)

+ max
|ξI |≤ξ̄I(k)

max
|ςI |≤ς̄I(k)

∣∣∣∆ĝ
(sJ )
I (k)

∣∣∣

+ max
vI∈Rv

∣∣∣ĝ(sJ )I (yI , vI , uI , ϑ̂I)− ĝ
(sJ )
I (yI , v

b
I(tb), uI , ϑ̂I)

∣∣∣ ,
(31)

with ν̄I denoting a bound to the minimum functional approx-

imation error, the function κI being such that κI(ϑ̂I) ≥
∥∥∥ϑ̃I

∥∥∥
and RvI ⊂ R

qI , where this last term represents a local

domain of the interconnection variable and is communicated

by the neighboring LFDs at k = 0. It is important to remark

that RvI coincides with the domain RxJ for subsystem J
(Assumption 1). Thanks to the way the threshold is designed

from (29), it is straightforward that it guarantees the absence

of false-alarms, since the residual prior to the fault occurrence

always satisfies

∣∣∣r(sI )I (k)
∣∣∣ ≤ r̄

(sI )
I (k) ,

where the detection threshold r̄
(sI )
I is defined as

r̄
(sI )
I (k) ,

∑

J∈Os

W (I,J)
s

[
χ̄
(sJ )
J (k)

]b
+ ξ̄

(sI )
I (0) |h(k)|

+ Ξ̄
(sI )
I (k). (32)

The threshold term χ̄
(sJ )
J is computed at node J , collected

in the information vector IJ,I and sent to neighboring LFD I .

Remark 4: Notice that, even in the case of a conservative

bound ξ̄
(sI )
I , the second term ξ̄

(sI )
I |h(k)| affects the detection

threshold only during the initial portion of the transient (the

impulse response h(k) of the filter H(z) decays exponen-

tially). Moreover, the term Ξ̄
(sI )
I in (31) takes into account the

uncertainty due to the delays in the communication network

between LFDs. This term is instrumental to ensure the absence

of false alarms caused by these communication delays.

Remark 5: The terms ξ̄I(k) and ς̄I(k) are computed by the

LFDs at each time-step after the re-synchronization task (see

(8)) and are available to compute the fault detection threshold.

Remark 6: Admittedly, the bounds used in (30) and (31)

give rise to conservative thresholds but have the advantage

of guaranteeing the absence of false-positive alarms and of

being easily computable requiring a small amount of data to

be exchanged between the LFDs. In the presence of a-priori

knowledge on the process to be monitored, tighter bound could

be devised (for example, Lipschitz conditions on the local

models could be easily exploited to devise tighter detection

thresholds.

E. Time-varying Consensus Mechanism

In this subsection, the consensus methodology concerning

shared state variables is modified in order to address the con-

servativeness of the detection threshold (32). More specifically,
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the consensus-weighting matrix Ws takes on the following

time-varying form:

W (I,J)
s =





1 if J = arg min
J∈Ob

s

[
χ̄
(sJ )
J (k)

]b

0 otherwise,

(33)

where Ob
s is the time-varying set of subsystems sharing s at

time k for which the I-th LFD has up-to-date information in

the buffer. In intuitive terms, the time behavior (33) ensures

that a larger weight is assigned to the subsystem characterized

by the lowest threshold (hence, in rough terms, lowest uncer-

tainty in its measurements and in the local model and with the

smallest level of delays and packet losses).

It is important to remark that the consensus protocol uses

only up-to-date information. This means that at each step

each LFD uses only the information received from one LFD

sharing the considered variable and this choice can change

at each step. It is possible that neighboring LFDs sharing the

same variable x(s) use different information for their threshold,

since the threshold term χ̄
(s)
J (k) depends on the reliability of

the communication links, in conjunction with the confidence

that each LFD has in its own measurements and estimates. In

this way, moreover, we can manage time delays and packet

losses: in fact, if the FDAE does not receive some consensus

terms from some neighboring LFDs, it simply considers and

weights only the up-to-date values. It is worth noting that this

approach can be used in any case, with or without delays, and

in Section V we demonstrate that it improves detectability.

In the following simple results, the boundedness of the

estimation error is addressed when the time-varying consensus

matrix (33) is used.

Proposition 4.1: The error dynamics (21), where the con-

sensus matrix is updated according to (33), is BIBO stable.

Proof: Since Ws is a stochastic matrix, its norm is iden-

tically equal to 1. Therefore, since 0 < λ < 1, ‖λWs(k)‖ ≤
γ < 1, with 0 < γ < 1. Let us define:

Us,E(k) = Ws [∆fs,E +∆gs,E − λξs,E ]
b + λξs,E(k)

+ ξs,E(k + 1). (34)

We have:

‖ǫs,E(k + 1)‖ ≤ ‖λW s(k)ǫs,E(k)‖+ ‖Us,E(k)‖

≤ ‖λW s(k)‖ ‖λW s(k − 1)‖ . . . ‖λW s(0)‖ ‖ǫs,E(0)‖

+
k∑

j=1

‖λW s(k)‖ ‖λW s(k − 1)‖ . . . ‖λW s(j)‖ ‖Us,E(j)‖

≤ γk ‖ǫs,E(0)‖+

k∑

j=1

γk−j ‖Us,E(j)‖

≤
1

1− γ
sup
j≥1
‖Us,E(j)‖

For k → ∞, the unforced system converges to zero

and the series converges to a bounded value (see re-

sults in [49]). Moreover, using results in [50] for un-

forced systems, we can state that a system x(k + 1) =
A(k)x(k), with A(k) ∈ conv(A1, . . . , AN ), is exponen-

tially stable iff ∃ a sufficiently large integer q such that

∥∥Ai1 Ai2 . . . Aiq

∥∥ ≤ γ < 1, ∀(i1, . . . , iq) ∈ {1, . . . , N}
q
. In

our case, therefore, we only need to analyze matrix W s(k).
Since each row of W s(k) has all null elements except one

equal to 1, the product W s(k)W s(k − 1) . . .W s(0) is a

stochastic matrix. Hence, since 0 < λ < 1, we have

‖λt(W s(k)W s(k − 1) . . .W s(0))‖ < 1 and the hypothesis

is satisfied. Finally, since all the uncertain terms are bounded,

then the discrete-time system (21) is BIBO stable.

F. The Local Fault Detection Algorithm

Now, all the elements needed to implement the proposed

fault detection scheme are available. For the sake of clarity,

the implementation of the local fault detection methodology

is sketched in the following Algorithm 1.

Algorithm 1 Fault detection algorithm for the I-th LFD

Learning = ON

Initialize the estimate x̂I(0) = yI(0)
Initialize the estimate x̃I(0) = yI(0)
Compute the estimate x̂I(1) (Eq. (19))

Compute the estimate x̃I(1) (Eq. (12))

Set k = 1
while A fault is not detected do

Measurements yI(k) are acquired

Compute ǫI(k) = yI(k)− x̂I(k) (for learning)

Compute YI(k) (Eq. (14)), ŶI(k) (Eq. (15))

Compute the residual rI(k) = YI(k)− ŶI(k)
Information from neighbors is acquired

Update consensus weights (Eq. (33))

Compute the threshold r̄I(k) (Eq. (32))

Compare |rI(k)| with r̄I(k)
if |rI(k)| > r̄I(k) then

A fault is detected

Learning = OFF

end if

if Some components i of vI(k) are not received then

Learning = OFF

else

Learning = ON

v
b(i)
I (k) = v

(i)
I (k)

end if

if Learning = ON then

Update ϑ̂I(k) (Eq. (22))

else

ϑ̂I(k) = ϑ̂I(k − 1)
end if

Compute the novel estimate x̂I(k + 1) (Eq. (19))

Compute the novel estimate x̃I(k + 1) (Eq. (12))

k = k + 1
end while

V. DETECTABILITY CONDITIONS

In this section, we address some sufficient conditions for

detectability of faults by the proposed distributed networked

fault detection scheme, thus considering the behavior of the
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fault detection algorithm in the case of a faulty system.

We assume that at an unknown time k0 a fault φ occurs.

Let’s consider the general case of a variable shared among

more than one subsystem. The fault detectability analysis

constitutes a theoretical result that characterizes quantitatively

(and implicitly) the class of faults detectable by the proposed

scheme.

Theorem 5.1 (Fault Detectability): A fault in the I-th sub-

system occurring at time k = k0 is detectable at a certain time

k = kd if the fault function φ
(sI )
I (xI , zI , uI , kd) satisfies the

following inequality for some sI = 1, . . . , nx
I :

∣∣∣∣∣

kd∑

n=k0

hp(k − n)φ
(sI )
I

(
xI , zI , uI , n

)
∣∣∣∣∣ > 2r̄

(sI )
I (kd). (35)

Proof: After fault occurrence, that is for k > k0, equation

(24) becomes:

r
(sI )
I (k) =

∑

J∈Os

W (I,J)
s

[
χ
(sJ )
J (k)b

+Hp(z)
[
φ
(sJ )
J

(
xJ , zJ , uJ , k

)]]
− ξ

(sI)
I (0)h(k) + Ξ

(sI )
I (k)

=
∑

J∈Os

W (I,J)
s

[
χ
(sJ )
J (k)

]b
− ξ

(sI )
I (0)h(k) + Ξ

(sI )
I (k)

+Hp(z)
[
φ
(sI )
I

(
xI , zI , uI , k

)]
.

(36)

Using the triangle inequality, from (36) we can write

∣∣∣r(sI )I (k)
∣∣∣ ≥ −

∣∣∣∣∣
∑

J∈Os

W (I,J)
s

[
χ
(sJ )
J (k)

]b∣∣∣∣∣−
∣∣∣ξ(sI)I (0)h(k)

∣∣∣

−
∣∣∣Ξ(sI )

I (k)
∣∣∣+

∣∣∣Hp(z)
[
φ
(sI )
I

(
xI , zI , uI , k

)]∣∣∣
(37)

and by using a similar procedure as in the derivation of (32),

(37) becomes
∣∣∣r(sI )I (k)

∣∣∣ ≥ −r̄(sI )I (k) +
∣∣∣Hp(z)

[
φ
(sI )
I

(
xI , zI , uI , k

)]∣∣∣ .
(38)

For fault detection at time k = kd, the inequality |r
(sI )
I (kd)| >

r̄
(sI )
I (kd) must hold for some i = 1, . . . , nx

I , so the final fault

detectability condition is obtained:
∣∣∣Hp(z)

[
φ
(sI )
I (xI , zI , uI , kd)

]∣∣∣ > 2r̄
(sI )
I (kd).

This can be rewritten in the summation form (35) of the

Theorem.

This theorem provides a sufficient condition for the implicit

characterization of a class of faults that can be detected by the

proposed fault detection scheme. Based on this result, in (35)

it is easy to see that the lower the threshold is, the sooner the

fault will be detected. Therefore the use of filtering along with

the proposed time-varying consensus weighting matrix, able to

choose the lowest threshold components in the case of shared

variables, improves detectability. It is worth noting that this is

true in general, also in the case without delays. Besides, let us

note that the detectability condition represents the minimum

cumulative magnitude of the fault that can be detected under a

specific trajectory of the system. It is possible to study off-line

this condition for representative trajectories of the system.

Remark 7: The use of filtering is of crucial importance in

order to derive tight detection thresholds that guarantee no

false alarms. As it can be seen in the detectability condition

given in (35), the detection of the fault depends on the filtered

fault function φI . As a result, the selection of the filter plays a

crucial role to the proposed scheme. A rigorous investigation

of the filtering impact (according to the poles’ location and

filters’ order) on the detection time under continuous time is

presented in [42].

VI. SIMULATION RESULTS

In this section, we present some simulation results in order

to illustrate the effectiveness of the proposed methods.

1 2 3 4 5

A A A AA

S 1 S 2u1 u2

x
(1)
1 x

(2)
1 x

(3)
1 x

(1)
2 x

(2)
2 x

(3)
2

Fig. 4. Structure of the five-tanks system.

A. The simulation system

We consider a five-tank system [51], monitored by two

LFDs (see Fig. 4). The two LFDs monitor three tanks each

and share the third tank. The local nominal functions f1
and f2 describe the flows through the pipes linking tanks

assigned to the same LFD, while the interconnection terms

g1 and g2 are due to the flow between tanks 3 and 4 and

between tanks 2 and 3, respectively. The monolithic system

(see Fig. 4) is decomposed into two overlapping subsystems.

By using the formalism presented in [5], the decomposition

is D = {Σ1,Σ2}, with index sets I1 = [1 2 3]⊤ and

I2 = [3 4 5]⊤, representing the state variables indices

belonging to each subsystem. The third tank is shared, and

therefore the corresponding overlap index set is O3 = {1, 2}.

The tank levels are denoted by x
(i)
I , with I = {1, 2} and

i = {1, 2, 3}, and are limited between 0 and 10 m. Two

pumps are present, feeding the first and the fifth tank with

the following flows: u1 = 1.25+0.25 · sin (0.25 · k) and u2 =
1.75+ 0.4 · cos (0.05 · k). The nominal tank sections are A =
[ 1 1 1 1 1 ] m2, while the interconnecting pipe cross-sections

are nominally equal to Ap = [ 0.1 0.1 0.1 0.1 0.1 ] m2. For

each tank, there are connected drain pipes whose nominal

cross-section are Ad = [ 0.05 0.05 0.05 0.05 0.05 ] m2 . All

the pipes outflow coefficients are unitary. By using balance

equations and Torricelli’s rule, we obtain the state equations

(for details about the dynamical equations of a multi-tank

system see as example [46]). The actual cross-sections used
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are affected by random uncertainties no larger than 7.5%

and 10% of the nominal values, respectively for the tanks

and for the pipes. The tank initial levels and the outflow

coefficients are affected by uncertainties no larger than 15%.

Furthermore the tank levels measurements mI are affected by

measurement noise wI whose components are upper bounded

by w̄1 = [ 0.05 0.05 0.05 ] m and w̄2 = [ 0.05 0.05 0.05 ]
m. The virtual measurement errors are computed on-line

basing on the re-synchronization process. In order to learn the

interconnection functions of each subsystem, which consist

on the flows through pipes crossing a subsystem boundary,

each LFD is provided with adaptive approximators ĝI , im-

plemented by RBF neural networks having 3 and 2 neurons

respectively along the range of each input dimension. Since

the interconnection variables are z1 = x
(2)
2 and z2 = x

(2)
1 ,

the interconnection functions g1(x1, z1, u1) and g2(x2, z2, u2)
should be 5-inputs, 3-outputs functions. On the other hand,

because of the topology of the specific system, both g1 and

g2 have only one non-zero output component and depend

only on (x
(2)
2 , x

(3)
1 ) and (x

(2)
1 , x

(1)
2 ) respectively. Therefore,

the adaptive approximators ĝ1 and ĝ2 were realized with two

2-inputs, 1-output radial basis neural networks. The networks

to learn ĝ1 and ĝ2 are implemented with 9 basis functions.

After suitable offline simulations, the parameter domains ΘI

were chosen to be hyperspheres with radii equal to [4 4] · Ts,

with Ts = 0.1 s being the sampling period. The learning

rate auxiliary coefficients for the interconnection adaptive

approximators were set to µ1,0 = 0.005, ε1,0 = 10−3,

µ2,0 = 0.005, ε2,0 = 10−3, while the learning filter constants

were all set to λ = 0.85. On the other hand, the detection

filter is designed having transfer function (1−λ)/(1−λz−1).
The different sensor networks, each one measuring a single

variable, have different sampling rates. The measurement sam-

pling periods are [ 10 15 0.5 0.35 0.21 0.45 0.7 ], where the

first two variables are the inputs, while the offsets with respect

to the diagnosers clock are [ 0 0 0.1 0.25 0.13 0.15 0.07 ]. The

measurements signals are shown in Fig. 5, where the real

signals, the sampled measurements and the projected signals

are illustrated.

It is worth noting that the considered case includes a

scenario in which also the input signals are subject to noise

and sampling issues. The communication delays between

diagnosers are random and time-varying: the effects of the

delay are shown in Fig. 6 for the case of two sinusoidal

signals as example. In the first plot, the received time stamp

is illustrated, while the second figure shows the sinusoidal

signals as they are received by the other diagnosers.

B. The simulation scenarios and results

We present three different simulation scenarios. In the first

scenario, the considered fault function represents a leakage (a

circular hole with cross section equal to 0.15 times the nominal

tank section) in the third tank occurring at time k = 200 s.

The simulation results are shown in Fig. 7, where the detection

residuals and the time-varying thresholds are represented. It is
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Fig. 5. The measured and the projected signals.
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Fig. 6. The effect of the time-varying communication delays on transmitted
signals and time stamps.

possible to see that both the first and the second local fault

diagnosers are able to detect the fault occurring on the third

tank.

In particular, the fault is detected at time k = 200.5 s by

LFD 1 and at k = 201.2 s by the second diagnoser. We
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Fig. 7. Scenario no.1: detection residuals and thresholds. The saw-tooth like behaviour of the thresholds r̄
(1)
1 and r̄

(3)
2 is the effect of the virtual measurement

error bound growing between one actual measurement of the pump inflows and the following one. As they are quite scarce, happening only every 10 and 15
seconds, this effect is noticeable.

compared the obtained results to the case in which all the mea-

surements are synchronized and no communication delays are

present, which is an ideal case. The model and fault parameters

are the same used in the case with multi-rate measurements

and delayed communication. As it is possible to see in Table I,

in this ideal scenario, the first local fault diagnoser can detect

the fault at time k = 200.8 s, while the detection time of the

second LFD is k = 201.0. In Table I, another performance

index is reported, that is the Maximum POst-detection Residual

to Threshold ratio (MPORT). The reason for computing the

MPORT ratio is that it gives a quantitative indication on how

much the thresholds could increase, for instance for coping

with larger uncertainty sources, continuing to detect anyway

the fault. It could be defined, in other words, as an indicator of

the robustness of the threshold with respect to the uncertainties

sources. If it is high, the threshold should be able to detect

the fault even in presence of a larger uncertainty.

In this example, simulation results show that the intro-

duction of the re-synchronization scheme and of the delay

compensation strategy allows to obtain fault detection even

when the measurements are non synchronized and the com-

munication network is not reliable. Moreover, the detection

time is comparable to the ideal case without delays.

In the second scenario, we consider the same system and the

same kind of fault, thus a leakage, but with varying hole radii.

The radii are chosen in order to correspond to hole sections

between 0.15 and 0.5 times the tank nominal section. The

differences with previous scenario are: the sampling time has

been lowered to 0.025 s in order to better appreciate the effect

of the fault magnitude on the detection time; the fault time has

been set equal to Tf = 15.1 s and the fault time evolution is

incipient instead of abrupt, with a time profile described by

β(k−k0) = 1−b−(k−k0), with b = 250 (see [5] for a definition

of fault time profile). It is possible to see in Fig. 8, how the

detection time and the MPORT ratios change depending on the

different magnitude of the fault. This figure has been generated

by averaging the results of 30 simulations run for each hole

radius, with different random delays, packet losses and model

uncertainties. The two LFDs are not always able to both detect

the fault, as for low values of the hole radius the fault is hidden

by the uncertainties due to measurement asynchronicity, delays

and noise. In particular, the fault magnitude influences the

detectability, with the detection time decreasing for larger

fault magnitudes. Instead, the MPORT ratio shows a clear

and almost linear, in this example, dependence on the fault

magnitude. The results obtained considering this scenario

show thus the importance of the detectability analysis. The

magnitude of the fault is related to the possibility to detect

the fault and to the robustness of the detection.

Finally, in the third scenario, we consider the same 5 tanks
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case Td, LFD 1 Td, LFD 2 MPORT, LFD 1 MPORT, LFD 2

ideal 200.8 201.0 1.798 1.44

real 200.5 201.2 1.346 1.200

TABLE I
DETECTION ANALYSIS FOR SCENARIO NO.1.
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Fig. 8. Scenario no.2: detection time and MPORT (Maximum POst-detection Residual to Threshold) ratio vs. leakage holes sections.

system and parameters as in the first scenario, but a different

fault, that is an actuator fault. At time k = 150 s, a fault on

pump number 2 occurs, causing a reduction of the 35% of the

flow. We assume that the fault function has again an incipient

time profile β(k − k0) = 1 − b−(k−k0), with b = 100. Its

development is thus quite smooth, and only tank 5 is affected

by the fault. We can see the results in Fig. 9 for the component

affected by the fault in LFD 2. For all the other components,

the residuals are lower than the corresponding thresholds. Also

in this scenario, the proposed fault detection architecture is

able to detect the fault even in the worst conditions (delayed

and asynchronous measurements). Due to the smoothness of

the fault time profile, with respect to the leakage case, now

the difference in the detection time between real and ideal

conditions is larger. In the ideal case, we detect the fault at

k = 186.8 s, 36 s after fault occurrence, with MPORT= 1.21,

while in the real case we have detection at 191.7 s, 41 s after

fault time, with MPORT= 1.16.

VII. CONCLUDING REMARKS

In this paper, a comprehensive architecture for the dis-

tributed fault diagnosis of large-scale nonlinear uncertain sys-

tems in a networked context has been presented. The proposed

approach considers all the parts of the networked system: the

physical environment, the sensor level, the local diagnosers

layer and the communication networks. The general distributed

diagnosis approach presented in [5] is generalized in order

to address some of the issues emerging when designing dis-

tributed networked monitoring architectures. More specifically,

multi-rate variable sampling systems have been considered

and a model-based re-synchronization mechanism has been

proposed to be implemented by each local fault diagnosis unit.

Moreover, a delay compensation strategy is derived to face the

problem of delays and packet dropouts in the communication

networks. Finally, a general class of filters has been embedded
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Fig. 9. Scenario no.3: detection residuals and thresholds.

into the design of the residual and threshold signals in order to

filter measurement noise and derive less conservative detection

thresholds.

As a future work, we will investigate the multiple faults

case and the sensors faults scenario (see for example [52],

[53], [54]).
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