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Abstract: Smart parking is a typical IoT application that can benefit from advances in
sensor, actuator and RFID technologies to provide many services to its users and parking
owners of a smart city. This paper considers a smart parking infrastructure where sensors
are laid down on the parking spots to detect car presence and RFID readers are embedded
into parking gates to identify cars and help in the billing of the smart parking. Both types
of devices are endowed with wired and wireless communication capabilities for reporting
to a gateway where the situation recognition is performed. The sensor devices are tasked
to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect
car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect
presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes,
also called “anchor” nodes, located strategically at specific locations in the parking lot to
increase the coverage and connectivity of the wireless sensor network. While slave and
master nodes are placed based on geographic constraints, the optimal placement of the
relay/anchor sensor nodes in smart parking is an important parameter upon which the cost
and efficiency of the parking system depends. We formulate the optimal placement of sensors
in smart parking as an integer linear programming multi-objective problem optimizing the
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sensor network engineering efficiency in terms of coverage and lifetime maximization, as
well as its economic gain in terms of the number of sensors deployed for a specific coverage
and lifetime. We propose an exact solution to the node placement problem using single-step
and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of
libraries. Experimental results reveal the relative efficiency of the single-step compared to
the two-step model on different performance parameters. These results are consolidated by
simulation results, which reveal that our solution outperforms a random placement in terms
of both energy consumption, delay and throughput achieved by a smart parking network.

Keywords: Internet-of-Things; wireless sensor networks; smart parking; radio frequency
identification; optimal sensor placement

1. Introduction

As a typical component of a smart city application, smart parking is a good illustration of how
the Internet-of-Things (IoT) will be pervasively deployed in our daily living environments to provide
different services to different users. It can be used for example to enable a driver to access a smart city
application through a mobile device or the Internet in order to locate and reserve a parking spot in a
city’s airport based on some preferences (e.g., close to the airport international departure/arrival) and
prepay for the parking spot using his credit/debit card. Similarly, a citizen of a smart city may use his
mobile device, a tablet or the Internet to access from home the smart city application to (1) find a free
parking spot in the city center; (2) be advised of the probability for the parking spot to be still available
upon his arrival in the city center and (3) decide on reserving and prepaying for such a parking spot.
When deployed in a parking lot, a smart parking system can provide efficient car parking management
through (1) remote parking spot localization and reservation; (2) fast car retrieval; (3) parking regulation
using gate control and management; (4) car security and protection in the parking lot by associating car
movement to a specific RFID tag; (5) parking gate management and many other services, such as parking
billing and payment by replacing the paper-based ticketing by RFID tags.

Car parking management has been addressed using two models: parking gate monitoring and parking
lot monitoring. Building upon an account of the entries/exits to/from the parking lot, smart parking
management based on gate monitoring may provide important services for drivers, such as the capability
of checking the availability of a free spot, reservation over the Internet, etc. In smart parking management
based on parking lot monitoring, each parking spot is equipped with a sensor (camera or presence sensor)
to detect the presence/absence of vehicles with the objective of building an availability map that can be
used for parking guidance, reservation and the other services described above when combined with RFID
identification devices. While the gate monitoring model results in simple and lower cost parking systems,
the lot management model is more expensive, but provides many more services to the drivers and the
parking lot owner. Smart parking management using lot monitoring can be classified into multi-parking
management used to manage different parking lots in different indoor and outdoor areas or mono-parking
management generally targeting indoor parking lots and focusing on a single parking lot’s management.
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The focus of this work lies on mono-parking management and targets the evaluation of the economic
and engineering efficiencies of a smart parking system using hybrid wired/wireless communication.

1.1. Related Work

The authors of [1–3] propose smart parking managers using RFID technology and embedded systems
with the objective of helping a user check the availability of a parking space over the Internet. The authors
of [4,5] propose a system that uses image detection. In [6–8], a mono-parking wireless sensor network
is described where wireless sensors are deployed in a car parking lot, with each parking spotequipped
with one sensor node. The authors of [9,10] propose a multi-parking system to extend the services to a
scaler larger than a single car parking lot; for instance, outdoor car parking management, e.g., in streets,
guiding towards an appropriate car parking lot within a city. This may require a collaboration between
multiple car parking managers. In [11], the authors propose KATHODIGOS, which is a smart parking
system that use wireless technologies and wireless applications to acquire information about the status
of roadside parking spaces. The obtained information is transmitted to a central information system
through gateways. The solution in [12] proposes a framework of parking management, called iParking,
that monitors incoming/outgoing vehicles using a sensor network. iParking calculates the number of
available parking spaces and disseminates the information to the parking lot’s customers. In [13], the
authors describe a street parking system based on a wireless sensor networks. The system can monitor
the state of every parking space by deploying a magnetic sensor node on the space. A vehicle detection
algorithm is proposed to accurately detect a parking car, and adaptive sampling is used to reduce the
energy consumption. Nawaz et al. [14] present ParkSense, a smartphone-based sensing system that
detects a driver vacating a parking spot. Most of the solutions proposed so far consider the use of either
WSN or RFID and focus on the engineering of the traffic, discounting the engineering of the network
through an efficient placement of sensors in the parking lot.

Starting with a large body of research devoted to the base station (BS) location problem, the optimal
placement of nodes in a mesh network design has evolved towards a wireless sensor network topology
optimization with solutions ranging from dynamic programming [15] to genetic algorithms [16,17] and
Tabu search [18]. Borrowed from the operations research field, the BS location problem is part of the
larger area of facility location, where a set of demand points must be covered by a set of facilities with
the objective of optimizing a given objective, such as the total distance between demand points and their
closest facility, subject to some constraints. This is closely related to the maximal covering location
problem (MCLP) [19,20], also referred to as a location-allocation problem in WSN, where as many
demand points as possible must be covered with p sensors of a fixed radius.

Looking at WSN engineering issues for the emerging IoT, researchers have proposed several
solutions to achieve optimal node placement through topology control. Focusing on sensing coverage
maximization with little or no attention to the communication requirement between sensors, the works
presented in [21–26] are similar to the BS location problem, as they focus on optimizing the location of
the sensors in order to maximize their collective coverage. While [22] used integer programming, the
works in [21,23–25] are built around different greedy heuristic rules to incrementally deploy the sensors.
The technique used in [26] is adapted from virtual force methods for the sensor deployment.
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By revealing optimal ways of connecting sensors through resolution of an optimal placement
problem, layout optimization studies, such as those provided in [27–31], may also reduce energy
consumption. While [27,29] are based on a heuristic solution using multi-objective evolutionary
optimization, the placement problem in [31] is formulated as an non-linear optimization problem solved
using a self-incremental algorithm that adds nodes one-at-a-time into the network in the most efficient
identified way. In [30], the optimal placement of static sensors in a network is used to help an agent
navigate in an area by using range measurements to the sensors to localize itself. Aiming to study
different regular grid positioning methods for sensor networks, [32] deduces in each case (square,
triangular and hexagonal) the minimum number of sensors required to provide full coverage, and the
resulting fault-tolerance is expressed in the minimum number of nodes that have to be shut down in order
to degrade the network coverage. Looking at the positioning of sensors in a terrain from the point of view
of data transmission, the work presented in [33] divides the studied terrain into cells, then analyses how
N sensors should be distributed among the cells, in a way that avoids network bottlenecks and data
loss. Two greedy algorithms selecting the locations for a sensor network with a minimal number of
nodes using a grid model for the terrain and a probabilistic coverage model for the sensors are presented
in [34]. Building upon geospatial constraints, the model allows the inclusion of the effect of obstacles
and terrain height and incorporation of an importance factor giving preference to the coverage of some
part of the terrain.

1.2. Contributions and Outline

While much effort has been invested into smart parking lot management with a specific focus on traffic
engineering of the sensor readings from the parking spots to the gateway, the optimal placement of sensor
devices in a parking lot to increase coverage and connectivity in a cost-effective way is an important
parameter upon which the efficient parking management depends. This paper revisits the problem of
node placement in wireless sensor networks with the objective of maximizing the coverage and lifetime
of the network when planning a mesh sensor network for a smart parking system. We formulate the
optimal node placement as a multi-objective optimization problem and build upon a preemptive topology
control approach to propose and evaluate the performance of an exact solution model to the problem.
Using a mathematical formulation that is based on integer linear programming, we propose single-step
and two-step solutions, both implemented in the Mosel language based on the XPress-MPsuite of
libraries. Using Mosel optimizations, we also propose implementation improvements leading to finding
the best number of nodes optimizing our objective function in the minimum computation time. This
solution is referred to in our paper as the “optimized” solution as compared to a “static” solution that
finds the solution in more computation runs. Experimental results reveal the relative efficiency of the
single-step compared to the two-step model on different performance parameters. In contrast to many
studies that use simplified models, which are based on only the communication range to guide the
optimal placement of sensors in the sensing environment, our model integrates the sensing range as
an important parameter that can impact not only the engineering, but also the economic efficiency of a
smart parking system.
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The remainder of this paper is as follows. Section 2 presents the smart parking system upon which
our model is built and highlights some of the practical requirements and issues associated with such a
parking system model. Section 3 describes our proposed multi-objective optimization model in terms of
its mathematical formulation, including the decision variables, the objective function, the constraints, as
well as a brief overview of the exact solver. Starting by a description of the main performance parameters
used in our experimentation, Section 4 presents the environmental setting, as well as the experimental
results obtained for both the single- and two-step algorithms using the static and the optimized solutions.
Our conclusion and future work are presented in Section 5.

2. The Smart Parking System

The smart parking model considered in this paper builds upon the real parking prototype proposed
in [35], which was tested in an outdoor parking lot at the CERISTresearch center in Algiers, Algeria.

2.1. The Smart Parking Prototype

The smart parking system (SPS) considered in this paper was built around a sensor-based method and
designed based on a multi-layer framework to enable modularity and scalability and to provide different
services to different users of a parking system. The framework depicted by Figure 1 includes four layers:
a sensing, networking, middleware and application layer.

Figure 1. The smart parking system.
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2.1.1. The Sensing Layer

This layer defines a platform where sensor devices are embedded into the parking lot to detect car
presence/absence, and RFID devices located at the parking gates and strategic points of the parking are
used to identify cars based on a unique mapping between RFID tags and cars. Three types of sensor
devices are used: (1) slave devices, also called “receivers”, which are placed on the parking spots to
detect presence/absence; (2) master devices, also called “transmitters”, which are tasked to collect the
sensor readings from their connected slave devices and transmit these readings to a gateway for further
processing; and (3) “anchor” devices used as repeaters to increase the wireless sensor coverage of the
parking for efficient routing of the sensor readings. The slave devices are connected to the master devices
through wired communication using the I2Cprotocol. For sensing purposes, micro-controllers equipped
with ultrasonic sensors were used, and an ARM-based Panda board was used as the gateway.

2.1.2. The Networking Layer

Different modes of communication have been proposed in this layer to support communication from
the master and anchor sensors to the sensor gateway and from the gateway to the parking users (parking
drivers, remote users and parking owners). These include (1) the 802.15.4/ZigBee communication for
routing the sensor readings from master sensors to the gateway, (2) TCP/IP over Ethernet for connecting
the gateway to the parking server and database and (3) Internet access for remote access to the smart
parking system from outside.

2.1.3. The Middleware Layer

This layer is the layer where situation recognition is performed using intelligent algorithms and
efficient visualization techniques to present smart services and a user-friendly interface to the users.
This layer hosts different databases and associated servers and manages all of the software intelligence
provided by the smart parking system to provide smart services to users by enabling communication
between the application layer where services are requested and the lower layers where smart devices are
embedded into the parking lot to provide smart services.

2.1.4. The Application Layer

The application layer is the layer where the different services are defined and provided to different
users. Client devices have been connected via the TCP/IP protocol to a parking database. The latter
is updated in real time with the status of the parking lots. Two kinds of client applications have been
considered for parking lot monitoring: (1) a mobile device application for phones and tablets; and (2) a
desktop application for laptops and desktop computers.

2.2. The Smart Parking Services

The different services provided by our smart parking system include:
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• Proactive guidance service: In our current implementation, active RFID technology has been used
to replace the paper-based ticketing system and provide drivers’ guidance by enabling car drivers to
use their RFID tag in order to be guided toward their pre-allocated parking spot. In this case, RFID
readers placed at strategic points of the parking lot are used to get the tag’s ID and to interrogate a
database managed by the parking manager to retrieve the pre-allocated parking spot and guide the
driver. Each vehicle driver is assumed to have been given an active RFID tag.

• Reactive guidance service: When parking spot pre-allocation is not an option, a reactive guidance
model is used where the parking RFID readers are programmed to retrieve the nearest available
(optimal) parking spot from the parking manager. The optimal location is calculated based on the
current location of the car and a map of free spots, which is built based on the car presence/absence
detection system and maintained by one of the parking servers.

• Car retrieval service: This service also uses the tag carried by the driver to interrogate the readers
located in different spots and to transmit the tag’s ID to the parking manager. The latter checks the
occupied parking spots in the database and in the parking lot and returns a response to the parking
guidance node for visualization using a visualization management system (VMS).

• Smart parking regulation: The smart parking regulation takes place when the car drivers have a
specific parking area pre-allocated for their use or when parking spot reservation is implemented.
When a car is detected in a parking spot, a presence event, including the RFID tag’s ID of a car
and its location, is transmitted to the parking manager. This latter uses the information received to
check in its database if the identified car is authorized to access the location.

• Parking security services: The current implementation of the SPS enables a driver to be provided
either a permanent RFID tag in the case of a private parking spot or a temporary one at the parking
entrance in the case of a public parking spot. The tag is used for different purposes, including
security purposes through (1) a one-to-one mapping between the RFID tag identifying a car and
a parking spot and (2) a security check process where the tag is used to detect car theft when the
parking manager software detects a car leaving the parking spot while its corresponding tag is
signaled by the closest reader to be far from the identified parking spot.

While the first version of our prototype includes the services described above, many other services
are planned to be included in our SPS in the near future. These include:

• Parking availability status by integrating into the car detection system sources of light on parking
spots, which are controlled by actuators to inform of the status of a parking spot: e.g., red for
occupied, green for empty, yellow for reserved and blue for out of service.

• Parking payment service to replace the paper-based payment by RFID tags, which are collected at
the parking entrance and used when leaving the parking lot at an RFID-based payment machine to
compute the time spent in the parking lot and subsequently bill the car driver.

• Parking gate management to enable gates to be opened automatically to enable an authorized
driver access to a specific part of the the parking lot. This service is similar to the smart parking
regulation service, as they are both built around an authorization system aimed to constrain access
based on permissions.
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• Remote availability checking using the Internet and/or the GSM network to check in real time the
availability of the smart parking system. By enabling access to a smart parking availability status
“anytime” and “anywhere”, this service can provide substantial time savings for a parking user.

2.3. Implementation Challenges

The design and implementation of the smart parking system described above has raised several
challenges. Some have been addressed during the prototype implementation at CERIST, while others
have been reserved for future research work.

• Sensor selection: The selection of the appropriate sensing technology is a challenging issue upon
which the efficiency of a smart parking deployment depends. Size, reliability, adaptation to
environmental changes, robustness and cost are among the parameters that usually play a key
role when selecting the type of sensors for a smart parking system. Furthermore, intrusive sensors,
which need to be installed directly on the pavement surface, are usually avoided, as they have
a number of challenges, including the need for digging and tunneling under the road surface.
Ultrasonic sensors were considered in our deployment, as they were low cost and required simple
installation by being fixed on the ground.

• I2C protocol issues: One of the main challenges was to alter the I2C for our application, given that
the it has not been designed to operate at long distances. Some changes to some I2C parameters
have been necessary, such as the pull resistance and clock frequency.

• Power supply issues: Another challenge was the power supply connection for all of the sensor
motes with efficient power consumption.

• Potential imperfections: When deployed outdoors, ultrasonic sensors are known to be sensitive to
temperature changes and extreme air turbulence. Potential imperfections associated with indoor
wireless communication, such as interference, reflection, diffraction and wall penetration, are
challenges that will have to be dealt with when deploying the SPS indoor.

• Efficient wireless coverage: For both indoor and outdoor deployment, the efficient wireless
coverage is an important parameter upon which the lifetime of the smart parking system depends.
This is the main issue addressed in this paper.

3. The Optimal Sensor Placement Model

Figure 2 depicts the layout of a smart parking system where sensors are organized into islands
of heterogeneous devices (slave sensors, master sensors and repeater/anchor sensors), which are
interconnected by either wired links using I2C and Ethernet protocols or wireless links operating the
802.15.4/Zigbee protocol. In such a heterogeneous environment, the slave sensor nodes are located on
the parking spots to detect car presence/absence and report to a master sensor node, while the master
sensor nodes are located at the edge of the parking lot and tasked to report the sensor readings to the
gateway where further processing is performed.

The master and slave sensors are located in the parking lot based on geolocation constraints, which
can lead to poor coverage and the inability for the sensor readings to reach the gateway located at the
entrance of the parking lot. Repeater nodes, also referred to as “anchor” nodes, are integrated into the
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smart parking system to mitigate this issue by strategically placing these sensors at optimally-computed
locations to increase the sensor network coverage and connectivity. As deployed in the smart parking
lot, the slave and master nodes form the edge of the wireless sensor network, while the anchor nodes
constitute the backbone of the sensor network.

Figure 2. The smart parking sensor placement.

3.1. A Multi-Objective Optimization Problem

The optimal placement of anchor nodes in the smart parking system may impact not only the system’s
engineering efficiency in terms of efficient data collection and on-time delivery to the gateway, but also
the economic gain expressed in terms of the number of sensors that are required for monitoring the
parking area, as this reflects the financial cost of the deployment. As generally formulated, the optimal
node placement in networks consists of determining the position of nodes that minimizes/maximizes
a pre-defined penalty/reward function subject to a set of specifications and/or constraints for a given
deployment area to be covered. The optimal node placement has been widely applied to both base station
(BS) location in cellular networks and sensor placement in wireless sensor networks. However, sensor
network and BS placement problems differ in many aspects, since, while the BS placement problem does
not require BS connectivity, the optimal sensor placement requires connectivity between sensors to allow
multi-hop dissemination of the readings of all sensors to a unique gateway, where further processing is
performed, as suggested by the traditional one-to-m sensor deployment model.

While many works have resulted in simplifications leading to single objective formulations, the
optimal node placement in a WSN is widely known as a multi-objective optimization problem involving
competing objectives, such as coverage and lifetime maximization, with coverage maximization
degrading lifetime performance, while lifetime maximization reduces WSN coverage. This can be
illustrated by the typical “conference room”, scenario where the more close to each other the participants
are, the less energy they will spend for communication (they are maximizing the lifetime of the meeting),
while being close to each other results in covering less space in the room (minimize coverage). Inversely,
though increasing coverage, scattering the conference participants in a room by having longer average
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distance between them leads to higher energy consumption for communication (reduction of the lifetime
of the meeting). In a mathematical formulation for node placement in WSN, “scattering” translates into
coverage maximization, while “closeness” is mapped to lifetime maximization expressed by distance
minimization or equivalently min used distance maximization. Furthermore, as suggested by [29],
deploying sensors based on a single objective may lead to problems, such as (1) a disconnected network
when the sensing range is of the same order or larger than the communication range, as is the case for
seismic sensors; and (2) a partition of the WSN if the areas to be covered are disjoint.

3.2. Mathematical Formulation

The optimal placement of anchor devices is a network engineering problem that can be solved using
the mixed integer linear formulation proposed in this paper to determine the position of a set of NS

sensors and one sink, such that the sensing coverage and the WSN lifetime are maximized. The area to
be covered (the parking lot) is represented as a square of LxL cells. We assume that any cell is either
completely covered or not covered at all, i.e., partial coverage of a cell is not allowed. Each sensor covers
all of the cells falling within the sensing range S R and communicates with all other sensors (or the sink)
located within the communication range CR. As already mentioned, the WSN lifetime depends on the
distance between sensor nodes and between sensor nodes and the sink: the shorter the distance, the longer
the lifetime, and vice versa. We also assume that the WSN network is connected, i.e., each sensor should
be within the communication range of another sensor, and the sink should be within the communication
range of at least one sensor. The distance between two cells is calculated as the Euclidean distance.

The model’s formulation requires the following definitions of the coordinates of each cell. Let
N = LxL be the number of available cells. The coordinates xc(i) and yc(i) of the i-th cell, i = 1, . . . ,N
are:

xc(i) =

 L if (i MOD L) = 0
i MOD L otherwise

yc(i) =

 i DIV L if (i MOD L) = 0
(i DIV L) + 1 otherwise

Hence, the Euclidean distance between each possible cell is:

di j =
√

[xc(i) − xc( j)]2 + [yc(i) − yc( j)]2

Decision Variables

xi =

 1, if a sensor is located at cell i;
0, otherwise.

si =

 1, if the sink is located at cell i;
0, otherwise.

yi =

 1, if cell i is covered, i.e., it falls within the sensing range of a sensor;
0, otherwise.
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zi j =


1, if a sensor is at cell i and another one (or the sink) is at cell j and

they are within the communication range, i.e., di j ≤ CR;
0, if cells i and j are within the communication range and

at least one cell is empty.

If cells i and j are too far away, i.e., farther than CR, a link between them cannot be established in any
case. Hence, the corresponding decision variables are not created (this action allows one to reduce the
number of decision variables and constraints to be used in the model).

Objective function

Relying on the above notation and definitions, the objective function can be expressed as the sum of
the covered cells minus the total distance among all sensors and sinks:

max

 N∑
i=1

yi −

N∑
i=1

N∑
j=1

di j · zi j


Note that:

• As expressed above, the optimization objective is a mixed function combining a reward for
covering the given area (the sum of the covered cells) and a penalty for scattering the sensor
nodes and, thus, reducing the WSN lifetime (the min used total distance).

• Though the two objectives might be weighted differently, they have been assigned equal weight
in our mixed objective function to express an equal importance allocated by the WSN designer to
coverage and lifetime.

Constraints

The model’s constraint set is as follows:∑
i∈N

xi = NS (1)∑
i∈N

si = 1 (2)

xi + si ≤ 1 ∀i ∈ N (3)

xi ≤ y j ∀i, j ∈ N | di j ≤ S R (4)

yi ≤
∑

j∈N|di j≤S R

x j ∀i ∈ N (5)

(6)
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xi + si ≤
∑

j∈N|di j≤CR

x j ∀i ∈ N (7)

zi j ≤ xi ∀i, j ∈ N | j > i AND di j ≤ CR (8)

zi j ≤ x j + s j ∀i, j ∈ N | j > i AND di j ≤ CR (9)

zi j ≥ xi + x j + s j − 1 ∀i, j ∈ N | j > i AND di j ≤ CR (10)

xi ≤
∑
j∈N

zi j ∀i ∈ N (11)

si ≤
∑
j∈N

z ji ∀i ∈ N (12)

Constraints (1) and (2) ensure that all available sensors and the sink are placed in the area under
consideration. Constraint (3) imposes that in each cell, at most one sensor or one sink can be placed.
The cell coverage is implemented through Constraints (4) and (5). In fact, if there is a sensor in cell i,
then all cells at a distance lower or equal to S R are covered (constraint 4). On the other hand, if a cell
is covered, then there must exist a sensor within distance S R (Constraint (5)). The following constraints
build the network. In particular, if a sensor or a sink is in cell i, there must be a sensor within distance
CR (Constraint (7)). Constraints (8)–(10) implement the AND function that, in the case that the distance
is lower or equal to CR, establishes a link (i.e., zi j = 1) if and only if there is a sensor in i and a sensor
or the sink in j. We may notice that Constraints (8)–(10) are defined only for j > i, i.e., if there is a
sensor in both cells i and j, only the link from cell i to cell j is created, if di j ≤ CR, and not from j to i.
Thus, this formulation naturally induces an orientation to all arcs, such that a sensor in cell i passes its
information only to sensors located at cells j higher than i. In this way, the number of decision variables
is dramatically reduced without loss of generality of the optimal solution. It also follows that in the
sink, at least one link has to arrive, and no links must depart from it (Constraint (12)). Thus, among all
cells occupied either by a sensor or the sink, the sink is located in the highest position. Since the sink
does not have sensing capabilities, the optimal coverage does not depends on the sink position, and thus,
this formulation allows one to eliminate equivalent solutions with respect to the sink position. Finally,
Constraint (12), together with Constraint (11) (at least one link departs from each sensor), ensures the
connectivity of the network.

3.3. An Adaptive Optimization Model

While the model presented above uses a static approach that consists of finding a fixed number of
sensors Ns as expressed by Constraint (1): ∑

i∈N

x(i) = NS

which places exactly NS nodes in the grid, an adaptive model can be obtained by changing this constraint
into the constraint: ∑

i∈N

x(i) ≤ NS
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which requires the number of nodes NS to be large enough to meet the sensor placement constraint.
Such a change will lead to a model that will adaptively/automatically find the best number of sensors
that maximize our objective function. It is expected that this will lead to finding the best configuration
in fewer runs of the algorithm.

3.4. The Exact Model Solver

As expressed above, the mathematical model is an integer linear programming problem that can be
solved using either exact methods or approximative methods based on heuristics, such as those borrowed
from the evolutionary computation field [36].

Building on the Mosel language widely used to solve linear, integer and quadratic programming
problems based on the the Xpress-Optimizer library [37], we propose two different solution models for
the multi-objective optimization problem: (1) a single-step solution that considers a multi-constrained
single objective optimization problem that integrates the coverage and lifetime objectives into one
objective subject to the constraints as expressed by the mathematical formulation above; and (2) a
two-step or lexicographic solution, where one of the objectives (maximum coverage) is solved first to
find a solution space that is searched for a solution that solves the second objective (minimum distance
or maximum lifetime). As currently implemented, the Xpress suite includes extension modules that
provide access to the other solvers, such as (1) a nonlinear programming solver named “Xpress-SLP”;
(2) a stochastic modeling engine referred to as “Xpress-SP” and (3) a constraint programming solver
called “Xpress-Kalis”.

4. Performance Evaluation

We conducted a set of experiments to analyze the case of a squared shape area of 10 × 10 cells to be
optimally covered by a variable number of sensors with the objective of maximizing coverage and WSN
lifetime as expressed by the model formulation in Section 2. Our expectation was to find an optimal
number of anchor/repeater sensors in a parking lot that could increase the coverage and connectivity
of a smart parking system where slave and master sensors have been placed based on application and
geographic constraints. We set the sensing range S R equal to two in terms of Euclidean distance. Thus,
each sensor can cover at maximum 13 cells. This is illustrated by Figure 3, where we can see that the
green cells are those covered if there is a sensor located in the pink cell. It is also assumed that a sensor
covers its cell. The communication range CR is set equal to four in terms of Euclidean distance.

We consider the case where the optimal placement has been designed for (1) a hybrid wired-wireless
backbone for smart parking and (2) a wireless backbone for smart parking. In the hybrid deployment,
a set of hybrid sensor/RFID nodes are placed in a smart parking lot to serve as a backbone for a wired
sensor network, which uses I2C to link ultra-sonic sensors as slaves of the hybrid nodes. In the wireless
deployment, a set of hybrid nodes are placed in the smart parking lot to serve as a backbone for sensor
motes located on the parking spots.
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Figure 3. The sensor placement model.

4.1. Network Engineering Performance: Backbone Design

The main performance parameters considered in our experiments consisted of:

• MaxCov: the theoretical maximum coverage, i.e., NS ∗ 13. If this number is higher than 100, it
should be set to 100 to express maximal coverage. The higher MaxCovis, the better the solution
is. Higher MaxCov is an indication of efficiency, while lower values of this parameter reveal
poor performance.

• CovCells: the number of covered cells by the optimal solution. This is an expression of the
coverage that looks at the number of cells rather than the surface covered. An algorithm that
covers more cells (higher CovCells) will be considered as more efficient than one that covers a
lower number of cells (lower CovCells).

• Dist: the total distance between sensors (and sink) in the optimal solution. It is an expression of the
WSN lifetime that reveals the energy consumption, since communication over a longer distance
leads to much higher energy depletion than over a shorter distance. A WSN operating over a
shorter total distance will have a longer lifetime than one operating over a longer total distance.
Therefore, lower Dist values are an indication of performance improvement.

• OBJ: CovCells-Dist: the optimal solution that needs to be maximized. Note that Dist is min used
in this expression to express a penalty for communicating over a longer distance, while CovCells
is plusedto express a reward for covering much more cells. In terms of network efficiency, higher
values of CovCells-Dist will be preferred to lower values.

• UB: the best upper bound for the solution OBJ. By providing an upper bound, UB allows the
placement of the real optimal solution between OBJ and UB.

• GAP: the gap expressing the maximum error you can have in taking OBJ as the optimal solution.
It is given by (UB/OBJ − 1) ∗ 100.

• TIME: the time needed to reach this gap. It expresses the efficiency of the solution in
terms of processing overhead. A solution that computes faster is more efficient than one that
computes longer.

These performance metrics are evaluated based on two main parameters: (1) N expressing the number
of cells to be covered; and (2) NS , which is the number of sensors to be placed. All experiments were
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performed using Xpress Mosel 64-bit v3.2.0 and Xpress optimizer Version 20.00.11 on a Intel XEON
with 16 CPUs at 2.27 GHz and with 16.00Gb of RAM.

4.1.1. The Static Solution

Table 1 depicts the results obtained from a set of 15 experiments conducted using the single-step
algorithm of the static solution. As implemented in the Xpress suite, the optimizer stops either when the
gap is 1% or the computational time reaches 3600 s, whichever comes first. The same stopping criterion
applies also in the following experiments. The table also reveals that we could reach the minimum gap
only four times within the available time. These gaps are obtained for a 5-, 6-, 7- and 9-sensor topology.

Table 1. Static solution: single-step algorithm.

N NS MaxCov CovCells1 Dist1 OBJ1 UB1 GAP1 TIME1

100 5 65 63 14.979 48.021 48.501 1.0% 98
100 6 78 74 18.584 55.416 55.595 0.3% 310
100 7 91 81 21.821 59.179 59.771 1.0% 1297
100 8 104 86 23.821 62.179 66.024 6.2% 3600
100 9 117 90 23.708 66.292 66.954 1.0% 3595
100 10 130 93 24.964 68.036 70.211 3.2% 3600
100 11 143 96 27.579 68.421 69.431 1.5% 3600
100 12 156 98 28.889 69.111 71.643 3.7% 3600
100 13 169 98 30.436 67.564 70.464 4.3% 3600
100 14 182 98 32.537 65.463 70.113 7.1% 3600
100 15 195 99 35.481 63.519 67.356 6.0% 3600
100 16 208 99 39.378 59.622 67.977 14.0% 3600
100 17 221 98 41.477 56.523 65.778 16.4% 3600
100 18 234 99 45.663 53.337 64.624 21.2% 3600
100 19 247 95 48.144 46.856 63.737 36.0% 3600

The table also reveals that, as already mentioned, the optimal solution for a given instance of the
problem lies between OBJ1 and UB1. We can see that from NS ≥ 15, UB1 is lower than an OBJ1 in
some previous rows. As an example, when NS = 15, UB1 = 67.356, while when NS = 12, the value of
OBJ1 is 69.111. Then, the optimal value for NS = 15 is certainly lower than the optimal value obtained
in an earlier experiment with a lower number of sensors. This also applies for all cases with 16, . . . , 19
sensors. These results have two important implications:

• Technological implications: the number of sensors does not necessarily translate into performance
gain, since placing more sensors in the area to be covered does not necessarily lead to a better
solution. In our case, placing 12 sensors results in the optimal solution.

• Economic implications: as there exists a minimum number of placed sensors that lead to the
optimal solution, designing an algorithm that finds such a minimal number in a minimum number
of steps would result in a gain from an economic perspective, as the number of sensors used
reflects the financial cost of the deployment and efficiency in terms of computation time used to
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find the optimal placement of sensors. This implication has resulted in the “adaptive” version of
the algorithm previously described in Section 3.3 and discussed later in this section.

In the two-step case, we first maximize the coverage, and for this coverage, we minimize the distance.
Table 2 shows the results (Table 2 has the same columns of Table 1).

Table 2. Static solution: two-step algorithm.

N NS MaxCov CovCells2 Dist2 OBJ2 UB2 GAP2 TIME2

100 5 65 64 16.215 47.785 47.785 0 3
100 6 78 74 18.584 55.416 55.416 0 10
100 7 91 82 30.190 51.810 51.810 0 21
100 8 104 89 36.673 52.327 52.327 0 11
100 9 117 94 47.169 46.831 46.831 0 14
100 10 130 98 42.664 55.336 55.336 0 22
100 11 143 100 52.470 47.530 47.530 0 13
100 12 156 100 35.894 64.106 64.433 1% 80
100 13 169 100 33.806 66.194 66.523 1% 143
100 14 182 100 34.595 65.405 65.751 1% 633
100 15 195 100 35.643 64.357 64.710 1% 252
100 16 208 100 38.057 61.943 62.322 1% 345
100 17 221 100 43.899 56.101 56.540 1% 1224
100 18 234 100 48.921 51.079 54.322 7% 3600
100 19 247 100 57.094 42.906 51.985 19% 3600

If we compare the values of the objective functions and the time needed to reach them
under the two optimization algorithms (single-step, two-steps), we have Table 3, where
DiffSol(in %) = ((OBJ1/OBJ2) − 1) ∗ 100 and DiffTime(in %) = ((T IME1/T IME2) − 1) ∗ 100.

Table 3 reveals that for the static solution, the single-step algorithm reaches much better solutions
(up to 44% higher), but is more computationally expensive. We also notice that in two cases (15- and
16-sensor placement), the two-step algorithm reaches a better solution than the one provided by the
single-step algorithm. In both cases, as expected, the OBJ2 value lies between OBJ1 and UB1.
Furthermore, when the number of sensors increases, the differences become smaller. However, as already
mentioned, also in this case, it is useless to compute solutions for NS ≥ 15, as we see that better solutions
can be reached with a lower number of sensors placement: UB2(NS ≥ 15) ≤ OBJ2(NS = 13). Overall,
the single-step algorithm finds the best solution with a 12-sensor placement, whereas the two-step
algorithm finds its best solution with a 13-sensor placement.
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Table 3. Comparing static algorithms.

NS DiffSol (in %) DiffTime (in %)

5 0.5% 2844%
6 0.0% 2856%
7 14.2% 6140%
8 18.8% 32,328%
9 41.6% 25,181%

10 23.0% 15,612%
11 44.0% 28,370%
12 7.8% 4375%
13 2.1% 2424%
14 0.1% 469%
15 –1.3% 1326%
16 –3.7% 943%
17 0.8% 194%
18 4.4% 0%
19 9.2% 0%

4.1.2. The Adaptive Model

We conducted another set of experiments using the two algorithms (single-step and two-step) by fixing
a bound to the number of nodes (a large number equal to 20 in our case) to find opportunistically the
optimal configurations in terms of number of nodes found by the two algorithms. Thus, our formulation
allows one to identify the best configuration both in terms of (1) the number of sensors and (2) the
position of sensors with the objective of maximizing the trade-off between sensing coverage and lifetime
expressed by the total distance.

Our experimental results presented in Table 4 revealed that in both cases, the best configurations
result in 12 sensors in the single-step case and 13 sensors in the two-step case when using the same
objective function value in both cases. These results are in agreement with the static solution, but with
the advantage of a faster implementation requiring just one run per case.

The results depicted in Table 4 above reveal that using the two-step approach, we reach the optimal
solution in much less time than the maximum allowed time (3600 s). On the other hand, the single-step
algorithm provides better value of CovCells-Dist with 12 sensors. This appeals to a trade-off between the
quality of the solution and computation time, which depends on the algorithm’s use: while computational
complexity is not a concern in the preemptive algorithms used during the planning phase of a WSN, it is
a great concern in proactive algorithms that aim to repair a WSN configuration after planning. The study
of such a tradeoff is beyond the scope of this paper.

Figure 4 depicts the two topologies generated by the optimized solution when using the single-step
and two-steps algorithms. The figure reveals a difference not only in the sink (red dot) and normal
node (blue dot) placement, but also a difference in the zones of possible interference depicted by the
shaded areas.
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Table 4. Comparing adaptive algorithms.

Parameters Single-Step Two-Steps

NS 12 13
CovCells 98 100
Dist 28.889 33.806
OBJ 69.111 66.194
Upper Bound 70.988 66.532
Gap 2.7% 1%
Time 3600 s 1635 s

(a) (b)

Figure 4. Optimized Topologies Comparison. (a) Single-step Generated Topology;
(b) Two-steps Generated Topology.

4.2. Traffic Engineering Performance: Wireless Communication

Another set of experiments was conducted to evaluate the traffic engineering performance of the
wireless backbone design using two types of network configurations: (1) a random network configuration
designed using the K-connectivity algorithm to place the sensors in the network to achieve coverage and
one-connectivity; and (2) an optimized network configuration designed using the single-step algorithm
to generate a backbone network of anchor nodes for a set of pre-established slave and master nodes, as
proposed in this paper. Following the modeling and performance analysis approach used in [38,39], we
evaluated the performance of the two network configurations when using different routing algorithms
to move the sensor readings from nodes to the sink node of the smart parking sensor network. These
algorithms include (1) the energy-constrained multipath (ECMP) and the multi-constrained multipath
(MCMP) routing algorithms; (2) the ad hoc on-demand (AODV) single-path algorithm and (3) the
link-disjoint multipath routing (LDPR) algorithm.
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4.2.1. Performance Parameters

We considered three main performance parameters: (1) the average energy consumption for different
delay requirements; (2) the average playback delay for different delay requirements; and (3) the
average packet delivery for different delay requirements. The packet delivery is defined by the ratio
of packets successfully delivered to the destination over the total number of transmitted packets. The
path delayD(p), that is the delay between a node and the sink, is given by the sum of link delays:

D(p) =
∑
`∈p

d` (13)

where d` is the delay of data over the link `. The playback delay is the delay taken to deliver the packets
from one source to the sink (destination) in a multipath setting. It is the time taken to deliver the packets
from the first one to the last one. It is mathematically defined by:

D(P(s, d)) = max
p∈P(s,d)

D(p) (14)

where P(s, d) is the set of parallel paths between source s and destination d. Similarly, the path energy
is expressed by the sum of the energies expanded over the links of the path. It is expressed by:

W`(p) =
∑
`∈p

w` (15)

where w` is the energy expanded on link ` expressed by:

w` = f` · w(si, si+1) (16)

where f` is the data rate on link ` and w(si, si+1) is the power required by the source node si on link `
to receive a bit of data and then transmit it to the destination node si+1. As defined by the energy model
in [39], w(si, si+1) is expressed by:

w(si, si+1) = α1 + α2|| xsi − xsi+1 ||
n (17)

where α1 = α11 + α12 with α11 being the energy per bit consumed by si as the transmitter, α12 the
energy per bit consumed as the receiver and α2 accounting for the energy dissipated (link loss) during
transmission. Typical values for α1 and α2 are, respectively, α11 = 180 nJ/bit and α2 = 10 pJ/bit/m2 for
the link loss experienced by a radio transmission when n = 2 or α2 = 0.001 pJ/bit/m4 for the link loss
experienced by a radio transmission when n = 4. xsi and xsi+1 are the locations of the sensor nodes si and
si+1, respectively, while || xsi − xsi+1 || is the Euclidean distance between the two sensor nodes.

4.2.2. Average Energy Consumption

Figure 6 reveals the energy consumption for both network configurations under different delay
requirements. It reveals an energy consumption patterns with a steep increase followed by a plateau
for all of the algorithms. The steep increase reveals a network operation zone where loosening the
delay requirements leads to higher energy consumption, while the plateau reveals a delay threshold
where further increases do not translate into equivalent energy consumption. The steep increase is in
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agreement with the findings in [38], where it was shown that the loosening of the delay constraints
leads the multipath routing algorithms to find more paths for the traffic carried from nodes to the sink
of the wireless sensor network. The results reveal that, in general, the optimally-generated network
configuration results in lesser average energy consumption and, thus, longer sensor network lifetime.

(a) (b)

Figure 6. Average Energy Consumption. (a) Randomly Generated Configuration;
(b) Optimally Generated Configuration.

4.2.3. Average Playback Delay

Figure 7 reveals the playback delay for both network configurations under different delay
requirements. It reveals again the relative efficiency of the optimally-generated network configuration
compared to the randomly generated one, as it leads to lower playback delays. Similarly to the energy
performance, Figure 7 reveals a steep increase, where the playback delay increases with the delay
requirements (loosening the delay requirements results in higher playback delay) followed by a plateau
zone revealing a delay requirement threshold where further increases do not result in equivalent playback
delay increases. This is in agreement with the results achieved in energy consumption, as in both cases,
the loosening of the delay constraints leads to opening more and potentially longer paths for carrying the
sensor readings; thus consuming more energy and potentially on longer paths with longer delays.

4.2.4. Average Packet Delivery

As depicted by Figure 8, the average packet delivery is a measure of the throughput achieved
by the two network topologies under different delay requirements. This figure shows that (1) the
optimally-generated configuration leads to slightly better throughput and (2) the throughputs achieved
by the different algorithms are similar.
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(a) (b)

Figure 7. Average Playback Delay. (a) Randomly Generated Configuration; (b) Optimally
Generated Configuration.

(a) (b)

Figure 8. Average Packet Delivery. (a) Randomly Generated Configuration; (b) Optimally
Generated Configuration.

5. Conclusions and Future Work

Building upon preemptive topology control, this paper presents and evaluates the performance of
a multi-objective optimization model for optimal node placement in wireless sensor networks. Two
algorithms implemented in the Mosel language based on the XPress-suite are presented and compared.
The results reveal the relative efficiency of modeling the multi-objective optimization problem using a
single-step algorithm, but raise trade-off issues that need further investigations in future work. They
also reveal the relevance of using optimal sensor placement in smart parking compared to random
topology generation. With the emergence of hybrid networks using unmanned aerial vehicles (UAVs)
as communication backbones or communication relays for ground-based sensor networks, a 3D version
of our model can be used as the first step towards modeling coverage in hybrid UAV/sensor networks.
It can be used, for example, in disaster relief by having emergency spots with priority environmental
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data to be preferentially relayed by the UAVs or for relieving congested spots or zones of interference
in ground-based sensor networks by relaying these spots’ data preferentially. This has been reserved for
future work. The study of the scalability of the optimized solution when placing a higher number of
nodes in a bigger-sized area is another avenue for future research work.
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