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One of the most important alterations that occur in man and experimental animals 

during spaceflight concerns the skeletal system, and entails important bone loss and 

degradation of mechanical properties. In the present work we investigate ex vivo the long-

term effects of weightlessness (simulated microgravity) on bone tissue, by comparing the 

mesoscale structural properties of weight-bearing rat tibial epiphyseal cancellous structures of 

healthy animals (ground controls) with those of identical bone explants maintained ex vivo in 

the Rotary Cell Culture System (RCCS) bioreactor, used to model, on ground, microgravity 

conditions. Bone structures were reconstructed by synchrotron radiation micro-CT, 

morphometric analyses were performed, and the apparent elastic properties were computed by 

means of a numerical model based on the Cell Method. Two novel results were achieved in 

this study. First of all, the skeletal modifications found in bone explants after 3-4 weeks of 

culture in the RCCS bioreactor are in perfect agreement with those observed in vivo after a 

long-term spaceflight (Mice Drawer System mission, 2009), thus confirming the relevance of 

our model in reproducing the effects of microgravity on whole bone tissue. Secondly, but not 

less importantly, our study points out that the degradation in bone structural performance 

(apparent mechanical properties) must be considered in order to achieve an accurate 

representation of trabecular bone modifications not only in osteoporotic bone diseases, but 

also in the microgravity-induced bone alterations. In conclusion, our findings, by proving that 

the association of the RCCS bioreactor-based culture method, used to model microgravity 

conditions, with numerical simulations able to quantify bone quality, represents the first 

ground-based reliable model for investigating, ex vivo, some of the spaceflight effects on bone 

tissue, and open new perspectives to basic research and clinical applications.1 Introduction

Space travels into the terrestrial Orbit imply to be exposed to particular environmental 

conditions, where the gravitational force of the Earth is counterbalanced by centrifugal forces. 

This condition, called microgravity, is similar to free fall, and it is also known as near-
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weightlessness. Experienced for long periods (weeks, months), microgravity induces various 

health problems in living beings (1), including serious skeletal alterations, which entail 

important bone loss and degradation of its mechanical properties. A decrease in gravitational 

loading induces, in effect, major bone changes, which comprise cancellous osteopenia, 

decreased bone formation, aberrant matrix ultrastructure and decreased mineralization (2 - 6), 

with a consequent increased risk of bone fracture. Although several hypotheses have been 

formulated during the past years, the mechanisms of spaceflight-induced bone modifications 

are still mostly unknown and need to be fully investigated, since skeletal fractures and 

increased osteoporosis still represent a serious medical scenario, which takes priority over 

other risks in the design of long-term space missions (e.g. Mars exploration) (7). The main 

problems in investigating the adaptation of the human skeleton to a microgravity environment 

derive, at present, from the limitations imposed by spaceflight on experimental procedures, 

and from the difficulty in having available (and reliable) in vivo experimental models, able to 

reproduce, on the ground, the environmental conditions typical of hypogravity. In addition, 

the current bone standards, mainly based upon osteoporosis diagnostic guidelines, are not 

acceptable for assessing the skeletal integrity of space travellers following prolonged 

spaceflight exposure (NASA Human Research Program, HRP, 2014) (8).

Long-term research studies under “real” microgravity conditions can be performed by 

the use of experimental platforms, such as the International Space Station (ISS), orbital 

capsules or sounding rockets (1). For animal studies, Mice Drawer System (MDS) - a 

particular device developed for the ISS as a facility to study long-time influence of various 

environmental conditions on the biology and behavior of mice during spaceflight (9) - has 

been recently employed for investigating the skeletal alterations occurred in mice after 3 

months’ exposure to microgravity, and the results have been reported by the group of 

Cancedda and co-workers (10). While this study can undoubtedly provide invaluable insights 
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into zero-g physiology, the limited number of experimental mice (n=6) that can be housed 

aboard the ISS, and their low survival rate (50%), still represent critical aspects of this type of 

experiments. At present, spaceflight studies on living organisms have, in addition, major 

limitations: they are very expensive, must overcome enormous technical problems, and are 

extremely limited in size and frequency. Moreover, the results obtained are not uniform, due 

to the variable conditions under which they have been (or can be) undertaken. Therefore, 

various in vivo ground-based models of long-term effects of microgravity on bone tissue have 

been developed (see 11, and references therein). 

To understand the mechanism(s) of microgravity effects on bone tissue means also clarifying 

the mechanism(s) of cell response to mechanical stimuli (mechanosensitivity of cells and 

mechanotransduction of signals), which, physiologically, regulate the complex homeostasis of 

bone remodeling (1). In vitro and ex vivo systems should then represent essential tools for 

investigating, at single cell level, the biological bases of bone response to spaceflight-

produced weightlessness (12). Despite the great number of studies conducted in the past years 

by using microgravity-based culture systems, the results obtained are still inconclusive, and, 

often, conflicting and controversial (see, for example, 13 and 14). Among all the devices able 

to model microgravity condition on ground, the Rotatory Cell Culture System (RCCSTM) 

bioreactor, fruit of N.A.S.A.’s technological research in U.S.A., presents the best 

characteristics for investigating, in vitro, the effect(s) of weightlessness on mammalian cells 

(1, 15-17), and it has been extensively employed by a number of authors for modeling 

microgravity conditions on a variety of isolated cells (bone cells included) (12, 18, and 

references therein). The RCCSTM apparatus was, for those reasons, chosen for our study. 

Objective of our work was to try to increase the reliability of the RCCS™ bioreactor-

based culture methods, by establishing a protocol that, instead than on single, isolated bone-

derived cells, should have permitted to investigate the long-term effects of modeled 
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microgravity on the complex, multicellular, intact bone tissue, that, by preserving the whole 

original microenvironment and microarchitecture, mirrors more closely the in vivo situation. 

It has been, in effect, extensively shown that tissue-specific cell phenotypes, functions and 

responses are strictly dependent on biochemical signals and cues deriving from their own 

microenvironment (16).

In a previous work (19), we suggested that the exposure of proximal rat tibial bone 

explants to modeled microgravity conditions generated by the RCCSTM bioreactor is 

consistent with the skeletal changes observed in vivo after spaceflight, and that the RCCSTM 

bioreactor-based culture can provide a reliable 3D in vitro method for whole bone tissue 

(organ) culture from adult organisms, suitable for research purposes. A quantitative 

assessment of the changes in mechanical properties of the bone explants was possible thanks 

to a numerical model based on the Cell Method (20), which was used for a comparative 

evaluation of the trabecular bone structures reconstructed by micro-CT. The explants, 1 to 3 

for each experimental point, were harvested after 3 days and after 1, 2, 3 and 4 weeks of 

culture in the RCCS™ bioreactor. At that time, no data points at T0 - neither control points at 

T3-T4 - were available for the study, nor it was possible to perform statistical analyses of the 

results.

In a subsequent work, we compared the elastic properties of the trabecular structures 

of the fragments of rat tibial bone explants examined in (9) with those of samples kept for the 

same periods of time in a traditional, static, tissue culture system (i.e. subjected to Earth’s 

gravity force, but not to the physiological loading, Figure 2) (21, 22). The mechanical 

properties of the structure of the samples (apparent elastic moduli, E) and the values of the 

trabecular bone volume fractions (BV/TV) obtained from this experimental procedure are 

illustrated in Figure 1. While well reflecting the expected difference between the elastic 

properties along the xy plane and those in the orthogonal z-axis (this last physiologically 
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subjected to the higher, gravity-dependent mechanical loading), the bone properties of the 

cultured samples did not exhibit a definite trend that could be related to the particular 

experimental condition, and, after 4 weeks of culture, the structural and mechanical properties 

of the samples were similar to those of the T0 controls, as reflected also by the morphological 

aspects of the samples (21). 

In the present work, we evaluate the long-term effects of RCCS™-modeled in vitro 

weightlessness (3 to 4 weeks) on the morphology and on the structural elastic properties of 

tibial cancellous bone explants (proximal epiphyses) from young rats, and compare the results 

obtained with those from living animals of the same age, kept, in parallel, in physiological 1g-

exposed conditions and loading. Eight samples were collected as controls (living animals 

under physiological 1g-exposed condition), and six samples, from different animals, were 

available for the culture in the RCCS™-modeled microgravity environment, allowing for a 

quantitative analysis of the results.

2 Materials and Methods

2.1 Modeled microgravity conditions

Modeled microgravity conditions were attained by the use of the Rotary Cell Culture 

System  (RCCSTM) bioreactor (Synthecon Inc., Houston, TX, U.S.A.), in 55 ml Slow Turning 

Lateral Vessel (STLV) culture chambers. Originally developed by N.A.S.A.’s technological 

research at JSC in U.S.A., RCCSTM is a slow-rotating clinostat, capable to generate, inside the 

culture chamber, a particular condition where the gravitational field is time-averaged to near 

zero over each revolution, thus negating the influence of gravitational sedimentation, and 

reproducing some specific aspects of microgravity (modeled microgravity) (15, 23). Figure 2 

illustrates the working principle of RCCSTM bioreactor. Without going into the details, the 

typical hydrodynamic conditions created inside the culture vessel have been demonstrated, 
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also by our group, to be fundamental to permit the 3D long-term culture of cells/tissues of 

various origin (14, 24-28).

2.2 Samples and culture conditions.

In the present study, the structures of 14 rat tibial epiphyseal bone explants were 

analyzed (8 controls and 6 microgravity-exposed samples). As in our previous study (see 19), 

donor animals were young (7-8 weeks-old male Sprague-Dawley) rats (Harlan-Europe, Milan, 

Italy), from 200 to 225 g of body weight. Until being put to death (by decapitation, a few days 

after their arrival in the animal facility), the experimental animals were housed in a climate-

controlled room (at about 22°C and 5% humidity), with a 12 h light-dark cycle, and they 

received tap water and standard laboratory rat diet ad libitum. All of the experimental 

procedure was authorized by the Italian Ministry of Health and by the University of Brescia’s 

Animal Care Committee, in compliance with the Italian guidelines for experimental animal 

care (DL 04.03.2014 n.26) and with the EU Directive 2010/63/EU; local Prot. 02/08.

Eight control samples (CONTROL) were obtained from healthy, living animals: five 

were from young animals (7-8 weeks of age), and were collected at the beginning of the 

experimental procedure, and three, obtained at the end of the procedure, were from rats 4 

weeks older. We considered all these samples as a homogeneous group of reliable controls, 

since no significant difference was observed by comparing their individual structural and 

mechanical properties (not shown).

Microgravity-exposed samples (RCCS) were six in number, and were obtained after 3 

to 4 weeks of dynamic culture in the RCCSTM bioreactor (modeled microgravity). Again, no 

significant difference was observed by comparing their individual structural and mechanical 

properties (not shown). This result is in agreement with our previous findings (19).
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Epiphyseal bone preparation, culture conditions, and sampling were performed as 

previously described (19). Briefly, with reference to bone culture conditions in the RCCSTM 

bioreactor, the bone samples were kept in hg D-MEM culture medium, supplemented with 

10% fetal bovine serum and 1% antibiotic/antimycotic mix (1000 U/L penicillin G, 1000 µg/L 

streptomycin sulfate, 150 µg/L amphotericin B); the medium was refreshed twice a week. 

After 3 to 4 weeks of culture, the bone samples were harvested for further processing and 

analyses. The experimental plan is depicted in Figure 3.

For micro-CT analyses, all the bone samples were washed with phosphate buffered 

saline solution, fixed for 7 days with 10% buffered formaldehyde solution, left to air-dry, and 

kept at room temperature. Histo-morphological study (Hematoxilin & Eosin staining) was 

performed on the same samples that underwent micro-CT.

Chemicals: culture-related products were purchased from Life technologies (San 

Giuliano Milanese, Italy); all the other chemicals were of analytical grade purity, and were 

purchased from Sigma-Aldrich (Milan, Italy), unless otherwise indicated.

2.3 Structural assessment

2.3.1 Micro-CT and image processing

After being harvested, the bone structures were reconstructed by micro-CT at the 

SYRMEP beamline at Elettra (Elettra proposal 2008164), the synchrotron radiation facility in 

Trieste (Italy), at a 9-micron resolution. Synchrotron light imaging techniques, and 

particularly X-ray micro-tomography (micro-CT), combine the advantages of non-destructive 

techniques with a high spatial resolution. Micro-tomography consists in the acquisition of a 

large number of radiographic projections, captured at different angular positions of the sample 

(which is placed on a rotary table) with respect to the source of X-rays, usually completing a 
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180° rotation. By means of specific algorithms (in this case implementing the back-projection 

method), the different transverse sections (slices) are reconstructed from the angular 

projections, reproducing the sample structure, Figure 4(a). Compared to a conventional 

source, synchrotron light allows for improving image quality by avoiding beam-hardening 

artifacts. Moreover, the high coherence typical of synchrotron X-rays allows the application 

of phase contrast techniques, which enhance the visibility of the edges inside the sample and 

contribute to highlight the internal structure of the bone trabeculae (29).

Since the structural analyses are typically performed on cubic volumes of interest of 

200-pixel side (1.8 mm), a special procedure was defined in order to identify the 

anatomically and structurally homologous portions in samples extracted from different 

individuals. 

1. Each data set was rotated so that all reconstructed tibias were oriented in the same 

way, Figure 4(a):

- z is the rotation axis of the micro-CT;

- y is the axis connecting the tibia section vertex, which has a characteristic 

“heart” shape, with the center of the minimum circumscribed circle (MCC) 

encompassing the tibia section in the first slice of the stack;

2. Homologue z positions were identified, despite the lack of a clear anatomical common 

structure that can be used as a reference, so that the first slice was the first external to 

the cartilage growth line, where the trabecular bone occupies the entire tibia section 

and no other bone structures are detectable, Figure 4(b).

By superimposing a sequence of slices it is then possible to obtain a volumetric 

representation of the examined trabecular samples, Figure 4(c), which can be considered as a 

“virtual biopsy” of the experimental sample.

9



2.3.2 Morphological analyses

The trabecular bone principal anisotropy direction in our samples is z, Figure 4(d), and 

the Quant3D software (30) was used to confirm that all the volumes of interest were aligned 

along this direction. The threshold for the binary segmentation of the trabecular bone fraction 

was computed with the iterative algorithm implemented in the software and described in (31). 

The Mean Intercept Length (MIL) is a well-known method used to assess the anisotropy 

properties of a binary volume (32). The mean distance between two intersections of a linear 

grid with the bone-marrow interfaces (MIL) was computed for 2049 orientations and 1000 

random points in each volume, and the principal directions of the MIL fabric tensors were 

confirmed to be aligned with the z-axis in each volume (Table 1).

TheQuant3D software was also used to compute the percentage trabecular bone 

volume fraction BV/TV, the trabecular number Tb.N and the trabecular thickness Tb.Th 

histograms in the same volumes of interest used for the structural analysis.

2.3.2 Cell Method model

The development of methods for the numerical modeling and the prediction of 

behavior is of a great interest for a wide class of materials with complex structures, which 

ranges from materials of industrial interest, such as short fiber reinforced composites or 

sintered alloys, to biological tissues (i.e. bone tissue) and novel bioengineered tissue 

structures. Cell Method numerical models have been developed for several applications, and 

often allow a significant reduction in computation requirements compared to conventional 

FEM analyses. The main characteristics of the method, originally proposed by Tonti (33), are:

- it allows a direct discrete formulation of physical laws, since no differential 

formulation is used to write the fundamental equations;

- Cell Method results are comparable with Finite Element Method ones;
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- the method is applicable when discontinuities are present;

- the same characteristic length can be used for heterogeneities and mesh.

The details of the Cell Method formulation for elastostatics are discussed in detail in 

(33-35). A wide range of applications and works by several Authors is described in the 

publications listed at the website: http://discretephysics.dic.units.it.

Micro-mechanical numerical models based on the Cell Method have been developed 

for the quantitative assessment of the apparent elastic properties of porous materials (36-38), 

sintered alloys (39) and short fibre reinforced polyamide composites (40, 41). Models have 

also been developed for the analysis of the trabecular bone microstructures from planar 

radiographic images (42-44) and micro-CT reconstructions. In particular, the model, 

developed for the analysis of the trabecular bone microstructure, and described in detail by 

Cosmi and co-workers (19, 20), has been applied for the simulation of compression tests on 

the cubic volumes of interest in this work.

The principal steps can be summarized as follows:

1. each volume of interest is discretized using the same mesh (812,905 tetrahedral cells, 

141,982 nodes);

2. an elastic, homogeneous and isotropic law was assumed in each cell;

3. the elastic modulus of each cell was determined by a scaling procedure based on the 

grey level in the tetrahedra vertexes and barycenter, having assumed for the trabecular 

structure an elastic modulus E=1 GPa, ν=0.3.

The apparent elastic modulus of the bone structures in the volumes of interest was then 

computed along the three coordinate axes. Computation time on an ordinary PC was about 2.5 

hours for the complete analysis of a sample, including model creation, meshing, and solution 

in the three axes.
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3 Results

Although the number of specimens available for each experimental point is limited, it 

is, nevertheless, sufficient to obtain comparative statistical values. 

The results of the morphological analyses are summarized in Figure 5, where the 

values of the percentage trabecular bone volume fraction (BV/TV), the trabecular number 

(Tb.N), and the trabecular thickness - computed as the mean minimum measured length in all 

directions through a random point placed within bone (30) - (Tb.Th), studied in the micro-CT 

volumes of interest, are shown.

The percentage trabecular bone volume fraction BV/TV of the explants kept in the 

RCCSTM bioreactor (RCCS) (average 0.13±0.01, n= 6) presents a significant decrease 

(statistical t-test with p <0.01) with respect to the controls (CONTROL) (average 0.17±0.02, 

n= 8). The average BV/TV loss is 22%.

The trabecular number (Tb.N) parameter confirmed the tendency observed for the 

BV/TV values. The CONTROL samples present a mean trabecular number Tb.N (average 

7.4±1.2 mm-1, n= 8) significantly higher (statistical t-test with p < 0.01) than the RCCSTM 

ones (average 4.3±0.7 mm-1, n= 6). The average loss in Tb.N is more pronounced, 42%, than 

the trabecular bone volume loss. The correlation coefficient between the trabecular bone 

fraction and the trabecular number was high, R² = 0.8838.

However, no significant  differences  were observed in the mean trabecular thickness 

(Tb.Th) of the control explants (average 25.3±1.3 µm, n= 8) and of those kept in the RCCSTM 

bioreactor (average 28.0±3.3 µm, n= 6). These results are in complete agreement with those 

reported by Tavella et al. (10), and obtained, in vivo, by the analysis of weight-bearing bones 

of mice after a long-term exposure to near-zero gravity during spaceflight (9). Our findings, 

therefore, confirm that the RCCSTM culture method used to model microgravity conditions can 
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represent a reliable model for  investigating, on ground,  spaceflight  effects on whole bone 

tissue.

A general degradation in the mechanical properties of bone samples is observable after 

3-4 weeks of culture in the RCCSTM bioreactor under modeled microgravity conditions. 

The apparent elastic modulus results indicate a higher stiffness along the z-axis, as 

anticipated, and lower elastic properties in the orthogonal xy plane, where the expected 

transversely isotropic behavior of the bone trabecular structure can be appreciated (Figure 6).

If we compare the mechanical properties of the RCCSTM bone explants with those of 

the normal cancellous bones of the controls, the apparent elastic moduli along the z-axis of the 

explants kept in the RCCSTM bioreactor (average 46.3±6.3 MPa, n= 6) presents a significant 

decrease (statistical t-test with p < 0.05) with respect to the controls (average 78.1±28.7 MPa, 

n= 8), with an average percentage loss of 41 % .The change in the xy-plane between 

CONTROL (average 27.7±11.6 MPa, n= 8) and RCCSTM bone explants (average 13.2±2.2 

MPa, n= 6) is also significant (statistical t-test with p < 0.05), and amounts to 52%. It can be 

noted that the alterations in the apparent elastic moduli Ez, Ex, Ey are markedly more 

pronounced than those found in BV/TV and that the differences in the average transverse 

moduli are more marked than those in the principal modulus.

The modifications of BV/TV between the pooled CONTROL and the pooled RCCSTM 

samples were related to the respective differences in apparent elastic moduli with R2=0.4498 

(linear fit) for the in-vivo gravitational load direction z. A similar value was found the 

transverse xy direction, with R2= 0.4441 (linear fit).

The histo-morphological analyses performed on the same samples, demonstrate 

microgravity-induced alterations, and are suggestive of an active bone remodeling; moreover, 

as illustrated in Figure 7, they show that in the RCCSTM-based culture system the viability of 
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bone cells, as well as the gross native tissue architecture, were preserved up to the end of the 

experimental procedure. 

4 Discussion and Conclusions

Bone preservation and repair are critically linked to the mechanical forces acting on 

the bone itself. Adaptive changes in bone tissue caused by changing loads have been already 

connected to structural and mechanical properties of bone tissue (45), while, more recently, a 

high correlation coefficient (80-90%) between structural and mechanical properties of 

samples of from normal and pathologic (osteoporotic, osteoarthrosic) cancellous human bone 

tissue was proved (46). Mechanical properties and internal structure are then important 

parameters that define bone quality and, based also on a progressively better understanding of 

the pathogenetic mechanisms of altered bone conditions, should enable diagnostics and 

adequate therapy of bone diseases.

Even if cell mechanics has been an active area of research for many years, the 

biological bases of cell response to mechanical stimuli are, in reality, largely unknown. New 

integrated approaches, as well as new experimental models, are, in consequence, needed in 

order to attain better understanding of bone physiopathology to this concern. This is 

particularly true for spaceflight-induced bone modifications, occurring in near-weightless 

conditions (microgravity) (47), where the biochemical data of astronauts and the histo-

morphometric analysis of rat bones show that the change in bone mass could be a result of 

decreased bone formation in association with normal (or increased) bone resorption. Vico and 

co-workers already reported spaceflight data obtained on isolated bone cells (from rodents 

and humans), and demonstrated that cytoskeleton organization and mechanical stress should 

be involved in bone mass changes (48). More recently, Tavella and co-workers reported data 

obtained in vivo, on mice exposed for a long period to microgravity conditions on the 
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International Space Station, suggesting that space-related morphological alterations in weight-

bearing bones may be due to both an increased bone resorption and a decreased bone 

deposition (10).

Other studies, conducted at the macroscale, considered the changes in the bone 

mineral density by means of well-established procedures, such as Dual Energy X-ray 

Absorptiometry or Quantitative Ultrasound. In (49), the substantial loss of both trabecular and 

cortical bone was demonstrated to be site-specific, also by measuring changes in the 

geometrical parameters describing distinct anatomical segments (i.e. femoral neck and 

vertebrae).

Observations conducted at the microscale, carried out by detecting the activity and the 

interactions between bone cells, as deduced from histo-morphometric, biochemical and 

molecular analyses (see, for example, 50 and 51), demonstrated significant microgravity 

effects on bone cell shape, nuclear shape and architecture, and specific gene expression, 

proving that gravity per se may play a pivotal role in the regulation of 

osteoclasts/osteoblasts/bone marrow cells proliferation/function and differentiation processes.

In a novel approach, our work was aimed at investigating, at the meso-scale level, the 

structural effects of cancellous bone alterations due to long-term exposure of whole bone 

explants to simulated weightlessness. While the RCCSTM bioreactor has been efficiently used 

for cell and tissue culture for over twenty years now, its use for the dynamic, 3D culture of 

whole bone tissue from adult organisms had not been previously established, and represents 

an innovation, first described in 2009 by our group (rat bone explants) (19). 

We have also recently demonstrated the relevance of our RCCSTM bioreactor-based 

tissue culture model in closely reproducing the in vivo situation in humans, in the case of 

long-term culture of Multiple Myeloma samples, derived from pathological human whole 

bone/bone marrow explants (28).
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If compared to the previous results obtained by our group (19), the main original 

aspect of the present work consists of the fact that the former was a pure methodological 

study (which demonstrates the reliability of the experimental methods adopted and the 

feasibility of their integration), while this latter is a direct application of those methods. 

Unlike the first one, the current study gave rise to a statistically significant number of 

experimental results, includes morphometric analyses, and proves, at a time: i) the value of 

our ex vivo culture method that, strictly mirroring the in vivo situation (see 10), can be 

successfully applied for on ground studies of microgravity effects on whole bone tissue 

(which could be also of human origin; see (28)), and ii) the importance of our original 

integrated experimental approach that, coupling an innovative bone tissue culturing technique 

with a numerical method for computing the effect of environmental changes on adult bone 

metabolism, open novel perspectives for adding new knowledge to bone cells’ physiology 

(response to loading) and for investigating, at deeper levels (e.g. biomechanical and 

biomolecular), the specific mechanism(s) of the decrease of bone quality during spaceflight, 

necessary prerequisite for the development of effective preventive/therapeutic 

countermeasures.

 Furthermore, even if based on the use of whole bone explants, our ex vivo 

experimental method, which has been demonstrated by our group to be suitable also for 

normal/pathological samples of human origin (28), fully complies with the 3R’s strategy, 

which - based on the principle of Russel & Burch (52) for the needs of “alternative” methods 

to animal use in biomedical research and testing - is aimed at improving ethical standards and 

animal welfare in in vivo experimental procedures.

The work here described also points out that an accurate representation of trabecular 

bone modifications cannot be achieved without considering the degradation of the mechanical 

characteristics of the trabecular bone structure, apart from the modifications in the trabecular 
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morphology and the decrease in the bone volume fraction. While, in this study, the trabecular 

bone fraction BV/TV and the trabecular number Tb.N appear to be somehow related, the 

changes in the apparent elastic moduli Ez, Ex, Ey are completely unrelated to the 

modifications found in BV/TV and in the trabecular number Tb.N. This result is quite 

interesting, since it confirms that the microstructural changes in the bone elastic properties 

cannot be ascribed to bone volume loss alone, but are indicative of structural modifications 

taking place, simultaneously, in the bone micro-architecture.

Even if, as with most in vitro systems, our experimental conditions neglect the 

influence of systemic factors (such as, for example, hormones), the tissue-culture strategy we 

propose, that preserves the original structural, cellular, and biochemical microenvironment of 

bone tissue (cell/matrix components and, likely, also the local network of growth factors’ and 

cytokines’ signaling), may really open new perspectives for adding new knowledge to bone 

cells physiology (and response to loading).

In conclusion, this interdisciplinary and integrated experimental approach, that, to our 

knowledge, has never been reported before, proved that our RCCSTM bioreactor-based culture 

method may be considered as the first reliable ex vivo model capable of reproducing, on 

ground, and, potentially, also in human tissue, the typical bone alterations that take place, in 

vivo, during long-term spaceflight. 

Furthermore, this work points out that the degradation in bone structural performance 

(apparent mechanical properties, evaluated by numerical simulations able to quantify 

trabecular bone modifications) must be considered and that an accurate representation of bone 

quality requires an estimate of the mechanical response and cannot be limited to the 

morphological characterization.

Looking forwards, the exploitation of this innovative methodology within a human 
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context may also constitute a very promising research tool in order to properly investigate the 

long-term effect/s of environmental agents/conditions on bone physiology, to clarify the 

pathogenetic mechanisms of bone disorders, to test bone response to preventive and 

interventional therapeutic strategies for predicting clinical outcomes (to be applied, for 

example, to a wide range of primary/secondary osteoporotic diseases), and, finally, also to 

estimate the clinical relevance of novel bioengineered implantable tissue structures.
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Tables

Table 1. Properties of the eigenvectors of the major principal axis of the MIL fabric tensor

CONTR

OL

RCCS

cosα cosβ cosγ cosα cosβ cosγ

Average -0.04 -0.09 0.99 0.04 -0.08 0.99

Standard deviation 0.10 0.10 0.01 0.04 0.09 0.01
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Legends to figures:

Figure 1. A: Average values of apparent elastic moduli (E) of the trabecular structure of bone 

samples kept in static culture conditions for 1 to 4 weeks: Ez (along z-axis, principal direction, 

in vivo gravitational load direction), Ex and Ey (orthogonal transversal directions). B: Average 

values of trabecular bone volume fraction, BV/TV, of the same samples as in A. E and BV/TV 

were calculated in the micro-CT volumes of interest. *: control value (T0).

Figure 2. Experimental culture conditions and forces acting on bone explants. In the RCCSTM 

bioreactor samples are maintained in a three-dimensional (3D) and dynamic 

microenvironment (orbital revolution, ω); in these conditions the force acting on the samples, 

resulting from gravitational field (Fg), centrifugation (Fc), and fluid drag (Fd), is time-

averaged to near zero over each revolution, thus negating the influence of gravitational 

sedimentation, and mimicking some aspects of microgravity (modeled microgravity). In 

traditional static culture, on the contrary, bone explants are kept in a static and “bi-

dimensional” (2D) microenvironment (plastic surface), where they are mainly (and almost 

only) exposed to the Earth’s gravitational force.

Figure 3. Experimental plan.

Figure 4. Identification of the volumes of interest: in (a) the xy plane, (b) the plane in the z 

direction, (c) 3D representation of the trabecular structure of one sample.
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Figure 5. Percentage trabecular bone volume fraction BV/TV, trabecular number Tb.N (1/mm) 

and trabecular thickness Tb.Th (micron, computed as the mean minimum measured length in 

all directions through a random point placed within bone) in the micro-CT volumes of 

interest.

Figure 6. Average values of apparent elastic moduli of the trabecular structure (MPa) in the 

micro-CT volumes of interest: Ez (along z-axis, principal direction, in vivo gravitational load 

direction), Ex and Ey (transversal directions).

Figure 7. Representative histological features of experimental bone samples (after µCT 

analysis). Photo-micrographs of Control_T0 and RCCS_4wks bone samples, stained with 

Hematoxilin & Eosin solution (4X magnification). Yellow circles indicate analogous areas of 

the samples, and show how, in vitro, modeled microgravity condition induces typical 

alterations of tissue microstructure, while preserving cell viability. Bm = bone marrow; Tb = 

trabecular bone; Gp = growth plate.
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