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Abstract

There is growing evidence that interconnections among molecular pathways governing tissue differentiation are
nodal points for malignant transformation. In this scenario, microRNAs appear as crucial players. This class of non-
coding small regulatory RNA molecules controls developmental programs by modulating gene expression through
post-transcriptional silencing of target mRNAs. During myogenesis, muscle-specific and ubiquitously-expressed
microRNAs tightly control muscle tissue differentiation. In recent years, microRNAs have emerged as prominent
players in cancer as well. Rhabdomyosarcoma is a pediatric skeletal muscle-derived soft-tissue sarcoma that
originates from myogenic precursors arrested at different stages of differentiation and that continue to proliferate
indefinitely. MicroRNAs involved in muscle cell fate determination appear down-regulated in rhabdomyosarcoma
primary tumors and cell lines compared to their normal counterparts. More importantly, they behave as tumor
suppressors in this malignancy, as their re-expression is sufficient to restore the differentiation capability of tumor
cells and to prevent tumor growth in vivo. In addition, up-regulation of pro-oncogenic microRNAs has also been
recently detected in rhabdomyosarcoma.
In this review, we provide an overview of current knowledge on microRNAs de-regulation in rhabdomyosarcoma.
Additionally, we examine the potential of microRNAs as prognostic and diagnostic markers in this soft-tissue
sarcoma, and discuss possible therapeutic applications and challenges of a “microRNA therapy”.

Introduction
Since the discovery of the function of lin-4, the first dis-
covered canonical microRNA (miRNA) in Caenorhabditis
elegans [1-3], more than 1400 miRNAs have been identi-
fied in mammals (miRBASE, http://www.mirbase.org),
most of which with unknown functions.
Mature miRNAs are a class of non-coding ~ 19-25

nucleotide (nt) single-strand RNAs highly conserved
across species. They act by binding complementary
sequences in the 3’-untranslated regions (UTRs) of a
messenger RNA (mRNA) through their “seed” sequence
(nt 2-8 at the 5’ end), with either incomplete or complete
base-pairing. This leads to either translational repression
or transcriptional degradation of target mRNAs [4]. The
end result is post-transcriptional silencing of selected
genes that provides an additional layer of gene expression
control and enhances the flexibility of gene regulation. A
relatively low stringency requirement for base pairing

between a particular miRNA and its target 3’UTR
sequences results in the capacity of each miRNA to
silence several mRNAs [5]. Consequently, small changes
in miRNAs expression can have significant effects on cel-
lular phenotype. Conversely, the same mRNA can be
targeted by several miRNAs.
Genes encoding for miRNAs are evolutionarily con-

served and the majority of these are located in intergenic
regions or in antisense orientation, suggesting that they
behave as independent transcription units. Other miR-
NAs can be present in intronic regions and transcribed
as part of annotated genes. miRNAs can form clusters
transcribed as polycistronic transcripts by RNA polymer-
ase II and/or III [6,7], which undergo sequential steps of
maturation (Figure 1) [4,8]. The first step is catalyzed
within the nucleus by RNase III Drosha that generates
pre-miRNAs molecules of ~ 70 nt. After shuttling to the
cytoplasm, pre-miRNAs are further processed by RNase
III Dicer. The result is a 19 to 25-nt double-strand RNA.
Of the 2 RNA strands the less stable one is the mature
miRNA, which is incorporated into the RNA-induced
silencing complex (RISC). The RISC is necessary for the
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annealing of miRNAs to the 3’UTR regions of target
mRNAs [4,9]. The complementary strand, which is gen-
erally indicated with an asterisk, is released and generally,
though not always, degraded [10]. The expression of
mature miRNAs is subjected to stringent transcriptional
and post-transcriptional regulation.
A connection between miRNAs and differentiative

processes emerged initially from studies on worms and
Drosophila, where miRNAs play fundamental roles in
developmental timing and tissue differentiation [3,11].
Subsequent loss-of-function studies on miRNAs, or on
proteins responsible for miRNA maturation, confirmed
that these small RNAs are crucial regulators of develop-
ment, stem cell fate and maintenance of tissue identity
in vertebrates as well [12-16].
In mammals, miRNAs participate in the organization

of tissue and organ diversity during the embryonal life.
Physiologically, the majority of miRNAs function in a
tissue-specific manner, by preventing the expression of
genes that should not be expressed in a particular tissue
context and the inappropriate expansion of tissue pre-
cursors. To date, miRNAs have been involved in a con-
siderable number of physiologic and pathologic
processes such as aging, cancer, metastasis, angiogenesis
and immune regulation [17-19]. De-regulation of miR-
NAs expression in cancer was first reported for chronic
lymphocytic leukemia [20]. Although some miRNAs can

act as oncogenes, miRNAs identified as de-regulated in
cancer are more commonly tumor suppressors. These
tumor suppressor miRNAs are globally down-regulated
by several mechanisms involving rearrangements of
unstable chromosomal regions, mutations or epigenetic
silencing [21-23]. Several studies have suggested that
normalization of miRNAs expression could be used as a
differentiation therapy in cancer [24-29].
Rhabdomyosarcoma (RMS), the most common soft-

tissue sarcoma of childhood, is an attractive target for
differentiation therapy [30]. RMS is a skeletal muscle-
derived tumor widely thought to be originated from
myogenic precursors unable to differentiate [31]. It con-
sistently expresses muscle-specific transcription factors
such as Myogenic Differentiation (MyoD) and myogenin
but shows no sign of terminal muscle differentiation
[32]. Therefore, strategies aimed at restoring the myo-
genic program reverse RMS cell malignant behavior and
are a conceptually acceptable therapeutic intervention.
RMS accounts for approximately 6-8% of all pediatric

tumors; it includes two major histological subtypes,
namely embryonal and alveolar RMS [33,34]. The for-
mer has a better prognosis, the 5-year overall survival
rate of patients with this histological variant being 70%
or even more. Alveolar RMS accounts for about 25% of
RMS but predicts a poorer outcome. In around 75-80%
of cases, alveolar RMS is characterized by recurrent

Figure 1 Schematic representation of biogenesis and function of miRNAs. miRNAs genes, in mono- (as reported in the picture) or
polycistronic structures are transcribed by RNA Polymerases II and III as several kb long transcripts (pri-miRNA) characterized by a hairpin
structure, and then cleaved by the nuclear RNAse III Drosha. These miRNAs precursors (pre-miRNA) are carried by the Exportin 5 to the
cytoplasm where they are subjected to further digestion by the cytoplasmic RNAse III Dicer giving rise to a duplex 19-25 nt microRNA structure.
One strand (guided strand) of the duplex (mature miRNA) is incorporated into the RISC complex and carried to the 3’UTR of target mRNAs. If the
complementarity between the seed sequence of a miRNA and the 3’UTR mRNA sequence is 100% the mRNA is degraded while suppression of
translation is obtained for lower degrees of complementarities.
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chromosomal translocations. The more common are the
t(2;13) or t(1;13) that result in the expression of the
oncogenic fusion proteins PAX3-FKHR or PAX7-FKHR
[35-38]. The remaining 20-25% of alveolar RMS forms
are considered fusion-negative, i.e., they do not express
any known fusion protein. Clinical-pathological risk fac-
tors have been largely used for patient risk stratification
at diagnosis. In particular, alveolar histology and metas-
tasis represent the most important poor-prognosis vari-
ables, predicting a dismal outcome. The detection of
oncogenic fusion proteins, and especially PAX3-FKHR,
in alveolar RMS have a clear prognostic value, as they
characterize a distinctly aggressive subgroup frequently
unresponsive to conventional therapies and with a high
risk of recurrence [36,39]. The correlation between the
presence of oncogenic fusion proteins and poor prog-
nosis has been recently corroborated by gene expression
profiling studies indicating that fusion-positivity is a risk
factor independent from histology [40,41]. Indeed, the
same studies showed that fusion-negative alveolar
tumors have gene expression patterns similar to that of
embryonal RMSs. Previously published studies on gene
expression and immunohistochemical analyses suggested
that alveolar fusion-positive and the majority of embryo-
nal RMS are two distinct groups also according to the
level of expression of two specific sets of genes [37,42].
One of these studies also demonstrated that fusion-
negative alveolar and a small portion of embryonal
tumors were characterized by intermediate expression
levels of specific genes and were difficult to be clearly
distinguished from each other [42]. Since about 50% of
RMSs, including the majority of alveolar fusion-negative
tumors, are intermediate-risk forms, a clearer sub-classi-
fication of these tumors may greatly improve clinical
management [43]. In this regard, atypical chromosomal
translocations have been recently reported in fusion-
negative alveolar tumors. These previously undetected
cytogenetic anomalies could, at least partly, explain the
molecular and clinical heterogeneity found in RMS [44].
Recently, some miRNAs acting as key regulators of

skeletal muscle cell fate determination have been shown
to be de-regulated in both alveolar and embryonal RMS.
Gain-of-function experiments have demonstrated that
re-expression of selected “tumor-suppressor” miRNAs
impairs the tumorigenic behavior of RMS cells. More-
over, miRNA expression profiling appears to be a pro-
mising strategy for discriminating specific variants
among RMS subsets and for providing useful prognostic
information, especially for what concerns fusion-nega-
tive alveolar and embryonal forms [45]. These observa-
tions suggest that miRNA de-regulation may be
involved in the pathogenesis of RMS. Additionally, the
expression of miRNAs with pro-oncogenic properties
has been reported in RMS.

In this article, we review our current knowledge on
de-regulation of miRNAs in RMS. We also examine the
potentiality of these small RNAs as diagnostic and/or
prognostic biomarkers. Finally, we discuss the implica-
tions and challenges of a potential “miRNA therapy” in
RMS.

Regulation and function of miRNAs in skeletal muscle
differentiation
An exhaustive report on the regulation of skeletal mus-
cle differentiation by miRNAs is outside the scope of
this manuscript. However, to understand the complexity
of miRNAs molecular networks correlated to RMS
pathogenesis, we summarize current knowledge on the
physiologic regulation and function of selected miRNAs.
Embryonic mesoderm gives rise to cardiac, skeletal

and smooth muscle tissues. During skeletal muscle tis-
sue differentiation, cell precursors proliferate, migrate to
specific tissue sites, elongate and fuse to each other
forming multinucleated myotubes. The differentiation of
stem cells into skeletal muscle tissue occurs through a
tightly controlled spatial and temporal molecular cas-
cade that involves miRNAs. The importance of these
non-coding regulatory small RNAs in myogenesis has
been recently highlighted by studies on mice condition-
ally deleted in a Dicer allele in skeletal muscle progeni-
tors. These mice show severe muscle hypoplasia
associated with perinatal death [46]. miRNAs involved
in myogenesis include both muscle-specific miRNAs,
which are selectively expressed in muscle tissues, and
miRNAs that are ubiquitously expressed but play a role
in the myogenic process.
Muscle-specific miRNAs in skeletal muscle differentiation
miRNAs that specifically control cell fate determination
of myogenic precursors and muscle tissue homeostasis
are referred to as “myomiRs” [47]. MyomiRs include the
miR-1/miR-206 family, encoded by 3 bicistronic miRNA
gene clusters on 3 separate chromosomes: miR-1-1/
miR-133a-2, miR-1-2/miR133a-1 and miR-206/miR-
133b (Figure 2). miR-1-1 and miR-1-2 are involved in
both cardiac and skeletal muscle development and have
identical nucleotide sequences, while miR-206 is specifi-
cally expressed in skeletal muscle and differs in 4
nucleotides outside the seed sequence (Table 1) [48-52].
miR-133a-1 and miR-133a-2 are identical in sequence,
differing from miR-133b by a single nucleotide (Table 1)
[49]. Another member of myomiRs is the miR-208, spe-
cifically expressed in heart [53]. It is worth noting that
myomiRs are naturally able to specify and maintain the
muscle identity of a tissue because forced expression of
miR-1 in epithelioid HeLa cells or in embryonic stem
cells represses non-muscle genes, while inducing an
expression profile reminiscent of muscle cells [54,55].
The transcription factor Serum Response Factor (SRF)
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and myogenic regulatory factors (MRFs) such as Myo-
cyte Enhancer Factor 2 (MEF2), MyoD and myogenin
[56] regulate myomiR expression during muscle tissue
differentiation by binding specific promoter and/or
enhancer sites on target miRNAs genes.
SRF and MRFs cooperate during differentiation in car-

diac and striated muscle, by inducing the expression of
miR-1-1/miR-133a-2 and miR-1-2/miR133a-1 (Figure 2)
[57,58]. Instead, the miR-206/miR-133b cluster is
induced by MyoD and myogenin during the early phases
of skeletal myogenic differentiation [50,52,59,60]. Inter-
estingly, miR-1 and miR-133 are transcriptionally
induced by MRFs in cultured myoblasts after the switch
to differentiation conditions, whereas miR-206 is already
present in proliferating myoblasts prior to the onset of
differentiation, when it is further induced by MRFs
[50,59]. Conversely, in post-natal mature myofibers,
miR-1 continues to be present whereas miR-206 expres-
sion appears undetectable suggesting that miR-1, and
not miR-206, could be involved in the homeostasis of

differentiated muscle, as already suggested in flies
[48,50,52,61].
The myogenic role of myomiRs is sustained by a reci-

procal direct and indirect regulation of MRFs expression
(Table 2). miR-1 directly targets MEF2 regulating neuro-
muscular synapse function in worms [62] and, like miR-
206, is able to repress hystone deacetylase 4 (HDAC4)
preventing the down-regulation of MEF2 and the inhibi-
tion of cell differentiation in myoblasts (Table 2)
[49,63-65]. Additionally, both miR-1 and miR-206 pre-
vent the expression of Paired box 7 (Pax7) and Pax3,
both inducers of proliferation in satellite cells and myo-
genic precursors [66-68]. In turn, Pax7 can modulate
miR-206 expression inducing the HLH inhibitor of dif-
ferentiation Id2 that restrains MyoD activity [67].
In addition to these synergistic effects, each specific

miRNA within the miR-1/miR-206 family can function
differently due to their specific seed sequences that
target different mRNAs even in the same tissue and
conditions. For instance, miR-1 can inhibit cardiac

Figure 2 Schematic overview of three myomiR clusters. Three bicistronic myomiR clusters and cis-regulatory elements are shown. Myogenic
regulatory factors SRF, MEF2 and MyoD bind to an upstream enhancer (Up-E) and/or intronic enhancer (In-E) to transactivate miRNA
transcription. miR-1-1/miR-133a-2 and miR-1-2/miR-133a-1 are induced in both cardiac and skeletal muscle while miR-206/miR-133b is skeletal
muscle specifically expressed.

Table 1 Characteristics of de-regulated miRNAs in rhabdomyosarcoma

myomiRs Sequence* Human chromosome Region

miR-1-1 5’-UGGAAUGUAAAGAAGUAUGUA-3’ 20 Intergenic

miR-1-2 5’-UGGAAUGUAAAGAAGUAUGUA-3’ 18 Intronic (Mindbomb)

miR-206 5’-UGGAAUGUAAGGAAGUGUGUGG-3’ 6 Intergenic

miR-133a-2 5’-UUUGGUCCCCUUCAACCAGCUG-3’ 20 Intronic

miR-133a-1 5’-UUUGGUCCCCUUCAACCAGCUG-3’ 18 Intronic (Mindbomb)

miR-133b 5’-UUUGGUCCCCUUCAACCAGCUA-3’ 6 Intronic

Non-muscle miRNAs

miR-29b2 5’-UAGCACCAUUUGAAAUCAGUGUU-3’ 1 Intergenic

miR-29c 5’-UAGCACCAUUUGAAAUCGGGUUA-3’ 1 Intergenic

miR-26a 5’-UUCAAGUAAUCCAGGAUAGGC-3’ 3 Intronic (CTDSPL)

miR-183 5’-UAUGGCACUGGUAGAAUUCACU-3’ 7 Intergenic

miR-17 5’-CAAAGUGCUUACAGUGCAGGUAG-3’ 13 Intronic

*Seed sequences in bold (from TargetScan: www.targetscan.org). Nucleotide differences among myomiRs gene families (grouped) are underlined.
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myocyte growth by targeting the Hand2 transcription
factor mRNA [57,69]. miR-206 down-regulates DNA
pol a favoring cell cycle arrest and follistatin to
amplify pro-myogenic signal [50,52]. Moreover, miR-1
and miR-206 can induce muscle cell differentiation,
while miR-133, when artificially expressed in myo-
blasts, decreases the expression of myogenin and the
late muscle marker myosin-heavy chain (MHC) and
promotes proliferation [49,70]. This effect seems to be
related to miR-133-mediated down-regulation of SRF,
which is a weak activator of muscle-specific genes and
regulates the balance between proliferation and differ-
entiation [49]. Therefore, miR-133 can sustain one or
the other process depending on SRF availability and
activity and SRF downstream cofactors present in a
cell timing and context.
The diversity in myomiRs function and pattern of

expression in muscle tissues can be also explained by
the fact that they can be differentially and independently
induced through their own muscle-specific promoters
and enhancers (Figure 2) [71]. Therefore, the availability
of each specific muscle regulatory factor and the accessi-
bility of gene regulatory sites drive strictly controlled tis-
sue specific miRNA expression.
Taken together, these observations are consistent with

differential global gene expression profiles induced by
each type of myomiR in a context-dependent fashion.
This variety of similar, different or even opposite effects
of specific myomiRs provides molecular support for
proper muscle tissue development highlighting the com-
plexity of miRNAs function.

Non-muscle-specific miRNAs in skeletal muscle
differentiation
Some miRNAs that are also expressed in other tissues
have been shown to play a role in vertebrate muscles
[72-77]. All these miRNAs promote myogenesis by
impairing the proliferation of muscle cell precursors
through the down-regulation of genes that repress mus-
cle differentiation. Among these miRNAs, miR-181,
miR-27, miR-26a and miR-29b2/miR-29c have been
shown to be deregulated in RMS. During myogenesis,
the expression of the miR-181a/miR181b cluster is
strongly up-regulated and positively acts in tissue deter-
mination by inhibiting the expression of homeobox gene
HoxA11, which is an inhibitor of terminal muscle differ-
entiation [75]. At the onset of myogenesis, the Pax3
3’UTR is targeted by both miR-27a and miR-27b,
encoded by genes on different chromosomes. This
induces a shift of Pax3-positive cells to Myogenin-posi-
tive cells [73]. Recently, several lines of evidence indicate
a role for miRNAs as regulators of epigenetic processes
during tissue differentiation. miR-26a promotes myogen-
esis by targeting the mRNA of histone methyltransferase
Enhancer of zeste homolog 2 (Ezh2) [77,78]. EZH2 is a
Polycomb group (PcG) protein that catalyzes the tri-
methylation of lysine 27 on histone H3 of target gene
promoters. Acting as a part of the Polycomb Repressive
Complex 2 (PRC2), EZH2 contributes in maintaining
repressive chromatin structures that inhibit the tran-
scription of key developmental genes [79,80]. In satellite
cells and myoblasts undergoing differentiation, EZH2
inhibits myogenesis by directly repressing the transcrip-
tion of late-stage muscle-specific genes such as MHC
and muscle creatine kinase (MCK) [81]. Interestingly, in
murine satellite cells that are in specific differentiation
stages, inflammatory conditions induce isoform-specific
p38-dependent EZH2 phosphorylation that results in
the repression of Pax7 promoter, impairing the expan-
sion of muscle progenitors [82].
EZH2 may be a key target gene of other non-muscle-

restricted miRNAs induced by MRFs [83] but not inves-
tigated in the RMS context, such as miR-214, which is
maintained in a repressive state by EZH2 as a part of a
regulatory feedback loop prior to the onset of differen-
tiation [78]. It is noteworthy that the timing of expres-
sion of miR-26a and miR-214 differs during myogenesis.
miR-214 is up-regulated early, preceding p21Cip1 and
myogenin expression [78,83], whereas miR-26a expres-
sion increases more gradually during the course of myo-
genesis [77]. Although ectopic over-expression of miR-
26a is sufficient to trigger myoblast differentiation in
parallel with EZH2 down-regulation, it is possible that,
during physiological development, miR-26a could act by
reinforcing, rather than triggering, myogenesis.

Table 2 miRNAs and their target genes validated in
myoblasts and/or in rhabdomyosarcoma cells

myomiRs Target gene Refs

miR-1 cMet
HDAC4
PAX3
PAX7
Hand2
Mef2

[77,78]
[41,55,58]

[61]
[59]

[50,62]
[55]

miR-133a-1/133a-2 SRF
Cyclin D2

[42]; [63]

miR-206 cMet
HDAC4
DNA-pola
PAX3
PAX7

Connexin43
Fst1

[77,78]
[41,80,57]

[42]
[61]

[59,60]
[45,42]
[44]

Non-muscle miRNAs

miR-29b2/miR29c YY1
HDAC4

[67]
[80]

miR-26a Ezh2 [66]

miR-183 EGR1 [86]

In bold are target genes identified in rhabdomyosarcoma cells.
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Recently, the group of Guttridge has shown that the
miR-29b2/miR-29c cluster is a target of the PcG tran-
scription factor Yin Yang 1 (YY1), which is induced in
an NF-kB-dependent manner in the absence of a myo-
genic cue [76]. Authors showed that, besides myofibril-
lar genes [81,84], YY1 represses miR-29b2/miR-29c
transcription by recruiting EZH2 and HDAC1 on its
promoter (Figure 3). This process results in the expan-
sion of undifferentiated muscle precursors. Consistent
with a model of miRNA-dependent suppression of the
epigenetic control during myogenesis, in response to
myogenic program activation, miR-29b2/miR-29c begins
to be expressed and inhibits the expression of YY1, thus
accelerating skeletal muscle differentiation [76]. Interest-
ingly, although no direct targeting of miR-29b2/miR-29c
on the 3’UTR of EZH2 was detected, EZH2 levels
decrease after forced re-expression of miR-29b2/miR-
29c. This suggests indirect mechanisms induced by this
miRNA, and possibly other miRNAs acting on epige-
netic mediators, to regulate epigenetic pathways as a
whole. Moreover, NF-kB loss-of-function experiments in
myoblasts demonstrate that both YY1 and EZH2 are
unable to bind the enhancers on miR-29b2/miR-29c
promoters in the absence of an activated NF-kB signal.
This observation supports the hypothesis that the NF-
kB pathway regulates this YY1-EZH2/miR-29b2/miR-
29c network. Therefore, epigenetic molecular networks
involving feedback regulatory loops with miRNAs may
play a key role in myogenesis.

Muscle-specific miRNAs in RMS
Most studies on the involvement of miRNAs in RMS
pathogenesis and their potential therapeutic uses in
RMS have been conducted on the myomiR family miR-
1/miR-206. We and others have shown that the expres-
sion of miR-1 and miR-133a is strikingly decreased in
alveolar and embryonal RMS cell lines compared to dif-
ferentiated myoblasts and skeletal muscle tissues
[85-88]. In particular, two pre-clinical studies reported
that forced re-expression of miR-206 leads to cell cycle
arrest and myogenic differentiation of RMS cells, pre-
venting xenografts growth in vivo by targeting the
mRNA of the oncogenic c-Met receptor [86,87]. The
Ponzetto group demonstrated that miR-1 and miR-206
are down-regulated in both alveolar and embryonal
RMS compared to non-neoplastic skeletal muscle tis-
sues, and that they fail to increase in RMS cell lines in
response to differentiation-inducing treatment [86].
Moreover, re-expression of miR-1 or miR-206 through
lentiviral vectors promotes cell differentiation also in
alveolar cell lines that are quite resistant to differentia-
tive cues, and blocks anchorage-independent growth
and invasiveness in vitro. Elegant studies with inducible
lentiviral vectors expressing miR-206 at different times
after RMS xenografts implantation in vivo, clearly
demonstrated that re-expression of miR-206 prevents
tumor growth [86]. Finally, clusters of hundreds of
genes up- (muscle lineage) or down-regulated (cell
cycle) by miR-206 in RMS were identified, among which

Figure 3 Model for circuits involving Polycomb Group (PcG) proteins and miRNAs during muscle cell differentiation. In blue: in
differentiating myoblasts, miR-29b2/miR-29c, miR-214 and miR-26a are induced by muscle-specific transcription factors, such as MyoD and MEF2,
and post-transcriptionally block the expression of YY1 and EZH2 PcG proteins. Together with the inhibition of HDAC4 expression by miR-1, these
phenomena lead to differentiation of myogenic precursor cells. In red: in the absence of a differentiative stimulus, YY1 and EZH2 are highly
expressed and foster the proliferation (i.e., expansion) of progenitor cells by repressing the expression of miR-29 and miR-214 and down-
regulating muscle-specific genes.
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c-Met was shown to be a miR-206 direct target. The
miR-206-dependent post-transcriptional inhibition of c-
Met expression markedly contributes to the anti-tumor
effects of this miRNA.
Similar results are reported in a manuscript published

almost simultaneously to that of Taulli et al. [86] on an
embryonal RMS cell line [87]. This study too showed a
down-regulation of miR-1 and miR-206 in RMS primary
samples compared to normal muscles, and reported that
forced expression of either miR-1 or miR-206 in the
embryonal RMS cell line RD in vitro and in vivo blocks
its tumorigenic potential. Consistent with data from
Ponzetto’s group, these phenomena occur through miR-
206 direct targeting of c-Met mRNA.
More recently, Rao et al. [88] showed that miR-1

forced expression in the RD cell line promotes muscle
gene expression and cell cycle arrest, while miR-133a
leads to a decrease of muscle markers expression. This
is consistent with different roles of miR-1 and miR-133
in normal muscle differentiation. However, in contrast
to what occurs in healthy myoblasts, both miRNAs inhi-
bit cell growth in RMS cell lines. This finding highlights,
once more, the importance of cell context in determin-
ing the response to miRNAs modulation.
The clinical potential of re-expression of miR-1/miR-

206 clusters in RMS is further supported by the obser-
vation that these miRNAs directly regulate HDAC4

during differentiation. This is of great importance
because, among other effects, HDAC4 is responsible for
preventing the expression of cyclin-dependent kinase
inhibitor p21Cip1 that is essential for muscle differentia-
tion [89,90]. To date, HDAC inhibitors appear as pro-
mising agents for targeted treatment of metastatic RMS
[91]. However, re-expression of miR-1/miR-206 clusters
is likely to have more complex effects than HDAC4
silencing and may be therapeutically more effective [28].

Non-muscle-specific miRNAs in RMS
Recently, de-regulation of miR-29 has been reported in a
small cohort of alveolar RMS [92]. A role of the miR-
29b2/miR-29c cluster in RMS pathogenesis has been
confirmed by the recent study of Wang et al. [76]. Pre-
viously, these authors showed that an NF-kB-dependent
pathway necessary for the expansion of undifferentiated
myogenic precursors, is aberrantly activated in RMS
cells [84]. In their latest study, they showed that NF-kB
activation in RMS leads to over-expression of YY1
which interacts with EZH2, causing sustained down-reg-
ulation of miR-29b2/miR-29c and repression of myogen-
esis (Figure 4). Consistent with an anti-myogenic role of
these two PcG proteins, their levels were found up-regu-
lated in tumor tissues from RMS patients compared to
normal adjacent muscle tissues [76]. Interestingly, to
repress miR-29b2/miR-29c expression in RMS cells,

Figure 4 Dysregulation of miR-29/YY1 circuit in rhabdomyosarcoma cells. Upper panel, During muscle tissue formation, in normal
myogenic precursor cells miR-29b2/miR-29c targets the 3’UTR of YY1 mRNA inhibiting its expression. Lower panel, Conversely, in
rhabdomyosarcoma (RMS) cells NF-kB is up-regulated and YY1 over-produced. The high amount of YY1 in RMS cells is able to recruit EZH2 and
HDAC1 on the promoter of miR-29 gene blocking its transcription thus resulting in uncontrolled cell proliferation.
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YY1 recruits EZH2 to a different site of the miR-29b2/
miR-29c promoter than the one used during the expan-
sion of normal myoblasts. Ectopic expression of exogen-
ous miR-29b2/miR-29c leads to cell cycle arrest and
differentiation of RMS cell lines, and inhibits RMS xeno-
graft growth. Consistent with this observation, miR-
29b2/miR-29c levels have been shown to be reduced in
tumor samples compared to control muscle tissues. This
study was the first to suggest a potential “differentiation
therapy” of RMS through re-expression of a pro-myo-
genic miRNA that is involved in the epigenetic control
of differentiation. Along the same lines, our group
showed that EZH2 expression is increased in tumor tis-
sues from RMS patients independently of histological
subtype, and correlates with markers of poor prognosis
(Abstract # 10-A-4051 AACR 2010). Studies on a larger
cohort are underway to determine whether the level of
EZH2 expression correlates with the presence of fusion
proteins.
In addition, we showed concomitant abnormal expres-

sion of miR-26a and EZH2, the former being highly
down-regulated and the latter abnormally expressed in
RMS tumor samples and cell lines compared to controls
[85]. However, the role of miR-26a in restoring epige-
netic processes in RMS needs to be fully elucidated.
Interestingly, miR-29b has recently been shown to

directly target HDAC4 during osteoblast differentiation
suggesting that this aspect of miR-29b-dependent regu-
lation could be also involved in muscle tissue differen-
tiation and possibly in RMS pathogenesis [93]. A further
role of miR-29 in epigenetic regulation has been high-
lighted by studies on lung cancer showing that this
miRNA targets DNA methyltransferases, leading to a
global down-regulation of DNA methylation when re-
expressed in tumor cells [94]. Notably, an interconnec-
tion among miR-29 and miR-206 has been unveiled in
liver [95]. These authors showed that miR-206 is
repressed by a YY1/AP1 complex on its promoter, and
YY1 down-regulation leads to miR-206 de-repression.
This suggests a rationale for future investigations of this
process in muscle tissues and RMS [95].
A recent publication describes high levels of miR-183

in RMS cell lines and primary tumors [96]. This miRNA
behaves as an onco-miR in several cancers and it has
not been previously associated with muscle. The miR-
183 pro-tumorigenic role in RMS is supported by the
evidence that tumor cells in which this miRNA is
knocked-down show reduced cell migration in vitro
[96]. This phenomenon is due to the release of the
direct repression of Early growth response 1 (EGR1), a
regulator of cell migration, by miR-183. Anti-miR-183
treatment stimulates the expression of the tumor sup-
pressor gene Phosphatase and tensin homolog (PTEN)

as well that, in turn, fosters EGR1 expression reinforcing
the inhibition of cell migration.
Finally, our group has shown that miR-27a is signifi-

cantly down-regulated in RMS tissues and cell lines,
especially in the alveolar subtype [85]. This is consistent
with its pro-myogenic role in normal development [73]
Taken together, these data underscore the complexity

of miRNA function and regulation in RMS and their
central role in modulating the transition between a dif-
ferentiative versus an activated cell state. Moreover, the
data we reviewed point to the fact that apparently
minor changes in gene expression, even only in one
miRNA, could affect the delicate balance between phy-
siologic and pathologic cell fate programs.

miRNAs as diagnostic and prognostic tools in RMS
One of the first studies on miRNAs expression in the
clinical context of RMS focused on amplification of the
13q31-32 chromosomal region, which is amplified in a
fraction of alveolar RMS patients [97] and includes the
C13orf25 gene [98]. This gene contains the miR-17-92
cluster (miR-17, miR-19a, miR-19b, miR-20a, and miR-
92), which is considered an onco-miR cluster in some
tumor types and cross-talks with MYC, an oncogene
amplified in about 20% of fusion-positive alveolar RMS.
This study shows that miR-17-92 expression did not
correlate with C13orf25 gene amplification in all RMS
samples, irrespective of their alveolar or embryonal ori-
gin, suggesting that mechanisms other than amplifica-
tion could be responsible for miRNA over-expression.
More recently, the Barr group [99] investigated a

minimal common region of the 13q31 amplicon that
contains the miR-17-92 cluster gene in alveolar RMS.
These authors showed that the 13q31 amplification was
present in about 23% of alveolar RMS, preferentially in
PAX7-FKHR-positive cases compared to PAX3-FKHR-
positive and fusion-negative tumors. The majority of
alveolar RMS amplified for 13q31 expressed high levels
of five out of six miRNAs within the miR-17-92 cluster,
except for miR-18a. Unexpectedly, also a group of
tumors that lack 13q31 amplification showed high
expression of all six miRNAs in the miR-17-92 cluster,
although the level of expression was lower than in
amplified cases. This finding supports the idea that mul-
tiple mechanisms in addition to gene amplification regu-
late miR-17-92 expression in RMS, as previously
reported in primary tumors and cell lines [98,100].
Moreover, it suggests that the expression of the entire
miRNA cluster can be controlled by a common regula-
tory mechanism. Notably, high levels of the five miRNAs
in the 13q31 amplified group of patients, most of whom
were PAX7-FKHR-positive, were directly and indepen-
dently correlated to a worse outcome when compared
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to non-amplified cases. Interestingly, expression levels of
these miRNAs were inversely correlated with outcome
within the amplified RMS group. Therefore, although
further studies are needed to identify the molecular
basis for these correlations, collectively these results
associate amplification and expression of the miR-17-92
cluster with specific subsets of alveolar RMS and could
be useful as prognostic biomarker in these tumor forms.
The clinical relevance of the dysregulation of the miR-

1/miR-206 family has been recently highlighted by a
study on a large cohort of 163 RMS patients [101].
Besides confirming that all these miRNAs are down-
regulated in RMS samples compared to muscle controls,
the study of Missiaglia et al. [101] shows that alveolar
RMS specimens positive for fusion proteins PAX3- and/
or PAX7-FKHR have higher miR-1 levels compared to
fusion gene-negative samples. This is an interesting find-
ing, considering that alveolar RMS cells usually express
higher amounts of myogenic factors than embryonal
ones and that high level of myogenin expression has
been recognized as a biomarker of adverse prognosis in
RMS [102,103]. Important from a clinical/translational
standpoint, these authors identified an inverse correla-
tion between the expression of miR-206 and overall sur-
vival within both the whole RMS group and the gene
fusion-negative subgroup of patients, while no correla-
tion was observed for gene fusion-positive samples.
Additionally, miR-206 was shown to be lower in patients
with advanced stage-disease and metastasis at diagnosis,
even though significant correlations were detected only
for fusion gene-negative patients. These findings high-
light the potential of miR-206 expression as a marker of
prognosis and disease progression, especially in embryo-
nal tumors that lack specific biomarkers of aggressive-
ness. Consistently with the role of miR-206 in muscle
determination, gene expression analysis showed that
markers of differentiation are positively correlated with
miR-206 expression in RMS samples. Interestingly, the
expression of inflammatory molecules was inversely cor-
related with that of miR-206 suggesting that miR-206
could be down-regulated by inflammatory networks in
RMS, as already shown for miR-29b2/miR-29c [76,101].
In contrast, miR1 and miR-133 do not show any corre-
lation with the survival probability in patients.
Recently, the expression levels of a specific miRNA

signature were reported to classify RMS patients into 4
subgroups, i.e., PAX3-FKHR, PAX7-FKHR and fusion-
negative alveolar RMS and embryonal RMS [45].
Although the cohort of patients was small, this result is
of particular interest since it suggests that miRNAs
expression could be helpful in classifying RMS discrimi-
nating between alveolar fusion-negative and embryonal
RMS that are often molecularly indistinguishable with
current techniques.

The evidence that miRNAs can be released, via differ-
ent mechanisms, in human peripheral blood and their
relative stability and consistent levels in circulation has
suggested that they can be used as non-invasive biomar-
kers [104-107]. Among the myomiRs, miR-206 is the
most tissue-representative, as it is expressed almost
exclusively by skeletal muscle during development and
regeneration and is almost undetectable in adult normal
skeletal muscle. On this basis, miR-206 circulating levels
have been investigated in sera of RMS patients and
found to be higher as compared with sera from healthy
donors or from pediatric patients with other tumors
[108]. Considering that miR-206 levels are inversely cor-
related with good prognosis, the possibility to detect its
presence in serum of patients could help in the follow-
up of highly aggressive neoplasms. This might open the
way to a non-invasive approach to the diagnosis and fol-
low-up of RMS, which could facilitate the rapid imple-
mentation of aggressive treatment protocols and
improve prognosis [109,110]. A possible drawback may
be related to the expression of muscle-specific miRNAs
in extremely rare cases of myogenic tumors of child-
hood such as leiomyosarcoma and rhabdomyoma. Con-
cerning the use of miRNA markers in clinical practice,
it must be considered that miRNAs quantification meth-
ods in body fluids are still under development, due in
part to the small amounts of circulating miRNAs, espe-
cially in serum vs plasma [111,112]. In addition, the
choice of an endogenous control remains critical since
no housekeeping miRNAs have been identified so far
[104,113,114]. Despite the need for more studies to
standardize the measurement methods [113], results
reported by Miyachi and co-workers appear promising
[108].
Finally, miRNAs have been recently hypothesized to

regulate drug responsiveness [115,116]. A direct link
between miRNAs and drug responsiveness of RMS cells
has been recently unveiled by a study demonstrating
that down-regulation of miR-485-3p is responsible for
the Nuclear Factor- (NF)-YB-dependent decrease in
DNA Topoisomerase II (Top2) in the etoposide-resis-
tant RH30/v1 RMS cell line [117]. The transcription fac-
tor NF-YB binds the Top2 gene promoter, inhibiting its
transcription and thus reducing the effect of Top2 inhi-
bitors. Re-expression of miR-485-3p in RH30/v1 cells
reduces NF-YB levels and restores Top2 expression.
These effects are associated with an increase in sensitiv-
ity of RMS cells to Top2 inhibitors in vitro. This discov-
ery could shed light on one of the mechanisms of drug
resistance to Top2 inhibitors in this soft-tissue sarcoma
and suggest new therapeutic opportunities and pharma-
codynamic biomarkers. However, several technical pro-
blems such as the choice of a good control miRNA for
normalization and standardization of procedures
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[114,118], will need to be solved before miRNAs detec-
tion in clinical in samples can have practical
applications.

Perspectives and conclusions
In summary, recent studies on miRNAs have shown that
miRNA expression underlies a complex layer of gene
regulation events guiding biological processes that are
fundamental for tissue-specificity and homeostasis [28].
Some miRNAs that participate in skeletal/cardiac mus-
cle tissue determination have been identified. It is con-
ceivable that, in the future, more miRNAs will be
discovered that are potentially able to re-establish cor-
rect differentiation in RMS through the modulation of
diverse molecular pathways.
Although the re-expression of selected miRNAs is a

possible strategy for targeted therapy in RMS, it must be
noted that miRNA-based therapy presents several chal-
lenges. Selectively targeted, efficient re-expression of
miRNAs is the primary need for an effective therapy. To
date, viral and non-viral vectors have been used in pre-
clinical studies to deliver miRNAs. However, viral vec-
tors, though efficient in the expression of cDNAs, can
be limited in their practical applications by immuno-
genicity and lack of specificity. Non-viral cationic lipo-
some-mediated gene transfer approach could be
attractive for miRNA therapy; however, cationic lipo-
somes developed so far suffer from low efficiency of cell
transduction. Moreover, the instability of miRNAs in
vivo and the potential immunostimulatory effects of
double-stranded RNAs are serious obstacles to therapy
based on direct delivery of miRNAs. Recently, several
types of nanoparticles have been proposed as an alter-
nate, highly efficient vehicle to deliver DNA particles to
cancer cells [119] and they have been used in preclinical
studies for an RNA-interference therapy [120]. More
recently, two studies have shown that anti-miRNAs
molecules stabilized in complexes with either lysine-
containing or vessel-targeted nanoparticles are capable
to decrease the expression of a liver-specific miRNA or
that of a pro-angiogenic miRNA when systemically
delivered in vivo [121,122].
Recently, locked nucleic acid (LNA) oligos anti-

miRNA were evaluated in non-human primates with
unexpectedly positive results [123,124]. Altogether, these
results appear encouraging for a possible inhibitory
approach using anti-miRNAs against onco-miRs.
In recent years, “epigenetic” therapies aiming at mod-

ulating gene expression at the transcriptional level have
attracted increasing attention. Such treatments have
given promising results in clinical trials for some types
of tumors [125-127]. In addition to well-known epige-
netic drugs acting as either DNA-demethylating agents
or HDAC inhibitors, researchers are working on a class

of agents that inhibit histone methyltransferases such as
EZH2, and do not require cell division to target cancer
cells [128,129]. Interestingly, histone methyltransferase
inhibitors have been shown to synergize with other epi-
genetic agents in preclinical studies [130-132].
Since EZH2 negatively regulates the expression of pro-

myogenic miRNAs, such as miR-214 and miR-29b2/
miR-29c, histone methyltransferase inhibitors may be
able to restore physiological levels of expression for
these miRNAs in RMS. Thus, the use of more tradi-
tional pharmacological agents could overcome the deliv-
ery problems associated with “gene therapy” approaches.
On the other hand, “epigenetic” drugs can affect a vari-
ety of molecular networks and their in vivo mechanism
of action remains controversial.
It is noteworthy that miRNA expression can be regu-

lated by epigenetic modifications per se such as DNA
methylation or histone acethylation [23]. Indeed,
approximately 50% of miRNA genomic sequences are
associated with DNA regions subjected to methylation,
such as CpG islands, and thus are often methylated in
cancers resulting in silencing of tumor suppressor miR-
NAs [133]. Conversely, hypomethylation of miRNA
genes that can lead to over-expression of oncogenic
miRNAs can contribute to tumorigenesis [134,135].
Moreover, the same onco-miR can be hypomethylated
or hypermethylated depending of the specific tumor
context, suggesting a tissue type-dependent epigenetic
regulation [135,136]. Therefore, an epigenetic therapy
would have to be carefully studied, since it could induce
the re-expression of oncogenic molecules. This has been
the case with some HDACs and DNA methylation inhi-
bitors that have been recently reported to increase the
metastatic capability of xenografted tumor cells in an
animal model of RMS through the de-repression of the
pro-metastatic Ezrin gene [137]. Interestingly, the Subra-
manian group [96] reports that miR-183 silencing in
RMS cells is associated with a lowering of Ezrin levels.
This report suggests that, besides the re-expression of
pro-differentiative miRNAs, a concomitant inhibition of
onco-miRs may be valuable in combination with an epi-
genetic therapy.
The high number of mRNAs targeted by a single

miRNA may represent an advantage compared to speci-
fic gene silencing (e.g., siRNA). However, this also
means that each miRNA can modulate several mole-
cules/pathways with potentially unpredictable side
effects. Therefore, miRNA expression should be con-
trolled with the aim to achieve physiological levels
rather than overexpressing miRNAs. A more detailed
understanding of molecular events governing myogen-
esis is needed for the identification of myogenic func-
tional steps and networks in which these small RNAs
participate. Nonetheless, the potential of a therapy based
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on re-expression of tumor suppressor miRNAs in RMS
is high, considering that miRNA re-expression has been
shown to overcome drug resistance in several types of
tumor cells and in RMS cells in vitro [117,138-140]. A
“miRNA therapy” may be used in the future in combina-
tion with conventional therapy in high-risk RMS
patients with metastatic disease, often refractory to con-
ventional therapy. Moreover, miRNA expression profil-
ing in tumors, and possibly, their detection in peripheral
blood during treatment, could predict the response to
chemo- and/or radiotherapy and be useful as a prognos-
tic signature for the development of treatment
resistance.
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