Twenty-four hour efficacy with preservative free tafluprost compared with latanoprost in patients with primary open angle glaucoma or ocular hypertension

Anastasios G P Konstas,1 Luciano Quaranta,2 Andreas Katsanos,3 Ivano Riva,2 James C Tsai,4 Theodoros Giannopoulos,1 Irini C Voudouragkaki,1 Eleni Paschalinou,1 Irene Floriani,5 Anna-Bettina Haidich6

ABSTRACT

Aim To compare 24 h intraocular pressure (IOP) control obtained with preservative free (PF) tafluprost 0.0015% versus branded preservative containing latanoprost 0.005% administered as first choice monotherapy in patients with primary open angle glaucoma (POAG) or ocular hypertension (OHT).

Methods This prospective, observer-masked, crossover study included consecutive newly diagnosed patients with POAG or OHT, and baseline IOP between 24 and 33 mm Hg. Qualifying patients underwent baseline untreated 24 h IOP monitoring in habitual positions, with Goldmann tonometry at times 10:00, 14:00, 18:00 and 22:00, and Perkins supine tonometry at times 02:00 and 06:00. They were then randomised to either latanoprost or tafluprost, administered in the evening, for 3 months and then switched to the opposite therapy for another 3 months. 24 h monitoring was repeated at the end of each treatment period.

Results 38 patients completed the study. Mean untreated 24 h IOP (24.9 mm Hg) was significantly reduced with both prostaglandins (<0.001). Tafluprost demonstrated similar mean 24 h efficacy compared with latanoprost (17.8 vs 17.7 mm Hg; P=0.417). Latanoprost demonstrated significantly better 24 h trough IOP (15.9 vs 16.3 mm Hg; P=0.041) whereas tafluprost provided significantly lower 24 h IOP fluctuation (3.2 vs 3.8 mm Hg; P=0.008). No significant difference existed between the two prostaglandins for any adverse event.

Conclusions PF tafluprost achieved similar 24 h IOP reduction to branded latanoprost. The current study highlights the importance of complete assessment of efficacy over 24 h.

Clinical trials registration NCT01162603.

INTRODUCTION

Prostaglandin analogues have become a popular first-line therapeutic option for the decrease in intraocular pressure (IOP) in patients with open angle glaucoma or ocular hypertension (OHT) due to their superior 24 h potency, convenient dosing and favourable systemic safety profile. Until recently, all available prostaglandin analogues were formulated as preservative containing solutions. Preservatives used in ophthalmic solutions, and in particular benzalkonium chloride (BAK), have been associated with ocular tissue toxicity and decreased long term tolerability, thus potentially limiting adherence and undermining the success of chronic medical therapy.1–5 Long term tolerability has emerged as a key issue for the successful management of glaucoma patients. Furthermore, there is growing recognition that preservatives are associated with ocular surface disease, which negatively impacts on quality of life in glaucoma patients.6

Tafaluprost 0.0015% is a relatively new prostaglandin analogue that first became commercially available as a BAK preserved formulation. The first studies indicated that the IOP lowering effect of preserved tafaluprost is comparable, or slightly inferior, to that of latanoprost7–8 and travoprost.9 More recently, a preservative free (PF) formulation of tafaluprost has been made available in several countries worldwide.10–17 The comparative efficacy of PF tafluprost versus other prostaglandins needs to be further elucidated in controlled prospective studies.

To date, the 24 h efficacy of PF tafaluprost has not been determined. In order to select the optimal initial monotherapy, it is important to compare the efficacy of all available prostaglandin analogues over 24 h. Therefore, the present investigation evaluated the 24 h IOP efficacy of PF tafaluprost 0.0015% versus BAK preserved branded latanoprost 0.005% when both were administered as first choice therapy in patients with primary open angle glaucoma (POAG) or OHT.

MATERIALS AND METHODS

The research protocol adhered to the tenets of the Declaration of Helsinki and was approved by the institutional review boards of the participating centres. Written informed consent was obtained from all participants prior to enrolment. The trial was registered at clinicaltrials.gov (NCT01162603).

Consecutive adults with newly diagnosed POAG or OHT were recruited at two participating centres. Eligible subjects had to exhibit untreated sitting morning IOP, evaluated with Goldmann tonometry, of 24–33 mm Hg in the study eye on two separate baseline IOP measurements performed at time 10:00 (±1 h). Additional eligibility criteria were central corneal thickness between 500 and 600 μm and age 39–85 years. In each case, the diagnosis of POAG or OHT was made by one of two glaucoma specialists (AGPK or IQ) based on the European
Glaucma Society criteria following a comprehensive clinical examination.

Exclusion criteria for ophthalmic conditions were corneal or other anatomical abnormalities preventing reliable applanation tonometry, severe dry eye, use of contact lenses, intolerance or contraindication to latanoprost, talluprost or BAK, history of poor medication adherence, laser treatment or ocular surgery of any type in the study eye, best corrected visual acuity less than Snellen 0.1, mean deviation worse than –12 dB on Humphrey 24–2 SITA standard perimetry, cup to disc ratio >0.8, or the possibility of optic nerve damage and visual function deterioration due to study procedures according to the investigator’s judgment. Exclusion criteria for systemic conditions were pregnancy or lactation, unwillingness to avoid pregnancy and use of corticosteroids within the 2 months before enrolment.

Procedures
The trial was designed as a prospective, randomised, observer masked, active controlled, crossover study. First, eligible participants were admitted at the participating academic centres and underwent baseline untreated 24 h IOP monitoring in habitual positions, with Goldmann sitting tonometry, at times 10:00, 14:00, 18:00 and 22:00, and Perkins supine tonometry at times 02:00 and 06:00 (±1 h). In each centre, the same calibrated Goldmann and Perkins tonometers were used for all measurements. In all cases, the investigator who performed the IOP measurements was blinded to the treatment regimen. Following the untreated 24 h IOP curve, participants were randomised to either 3 months of chronic therapy with preserved latanoprost 0.005% solution (Xalatan; Pfizer) dosed in the evening (20:00), or to 3 months of therapy with PF talluprost 0.0015% solution (Saflutan; MSD) dosed also in the evening (20:00). Both eyes were treated. Instructions regarding correct eyelid instillation and adherence were also provided. At the end of this initial 3 month treatment period, all participants underwent a treated 24 h IOP assessment, as previously described. Patients were then crossed over to the opposite prostaglandin therapy for another 3 months and instructions regarding correct eyelid instillation and adherence were repeated. At the end of this final therapy period, participants underwent a third 24 h IOP curve with identical methodology. A comprehensive clinical examination was performed at all visits. Additionally, patient reported complaints and symptoms, as well as investigator noted adverse events, were recorded at the end of each treatment period.

Statistics
The primary efficacy endpoint for this study was mean 24 h IOP. Individual time points, peak, trough and fluctuations in 24 h IOP were evaluated as secondary endpoints. The study had 80% power to identify a 1.25 mm Hg difference between individual time points and between the mean 24-h IOP, assuming an SD of 2.8 mm Hg between the two prostaglandin monotherapies. One randomly selected eye per participant was analysed. A mixed model was used for the crossover repeated measures design to adjust for period and carryover effects. Additionaly, the model was adjusted for the centre effect. A 95% CI was constructed for the adjusted difference in means. An intention to treat approach was adopted, and subjects were analysed according to their randomised group.

To correct for multiple comparisons at individual time points, a Bonferroni adjustment was used. Thus Bonferroni adjusted p values are reported for individual time point comparisons. All other reported p values are two tailed, with p<0.05 considered significant. Mean 24 h IOP fluctuation was defined as the average of the difference between the highest IOP reading minus the lowest IOP reading within the 24 h curve for each patient. Adverse events were evaluated using a McNemar test. All analyses were conducted using IBM-SPSS 20.0.

RESULTS
Patients
Thirty-eight of 40 enrolled participants completed the study. Their flowchart and demographics are presented in figure 1 and table 1. Two study patients (one in each therapy group) were lost to follow-up.

Intraocular pressure
Compared with untreated baseline readings, mean 24 h, peak, trough, fluctuation and IOP at individual time points were all significantly reduced with both prostaglandin monotherapies (p<0.001 for all comparisons) (table 2). When the two prostaglandins were directly compared, PF talluprost demonstrated similar mean 24 h efficacy compared with preserved latanoprost (17.8±2.2 vs 17.7±2.1 mm Hg; p=0.417). Furthermore, there

Table 1 Participant demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td>18/20</td>
</tr>
<tr>
<td>Age (years)</td>
<td>66.7 (9.1)</td>
</tr>
<tr>
<td>CCT (μm)</td>
<td>551 (24.4)</td>
</tr>
<tr>
<td>Snellen BCVA</td>
<td>0.8 (0.2)</td>
</tr>
<tr>
<td>CD</td>
<td>0.6 (0.1)</td>
</tr>
<tr>
<td>MD (dB)</td>
<td>5.41 (3.1)</td>
</tr>
</tbody>
</table>

Values are mean (SD) or number.
BCVA, best corrected visual acuity; CCT, central corneal thickness; CD, cup/disc ratio; MD, mean deviation.
were no statistically significant differences for individual time points (table 2, figure 2).

With regard to other 24 h IOP characteristics, PF tafluprost demonstrated significantly lower 24 h IOP fluctuation (3.2±1.7 vs 3.8±1.8 mm Hg; p=0.041). In contrast, latanoprost provided significantly lower 24 h trough IOP (15.9±2.1 vs 16.3±2.2 mm Hg; p=0.041). There was no significant difference in 24 h peak IOP between the two prostaglandins (19.7 vs 19.5 mm Hg, respectively; p=0.277) (table 2).

Adverse events

No serious adverse events and no adverse event related withdrawal occurred during the study. In addition, there was no significant difference between the two agents for any adverse event (table 3). Overall, the number of adverse events with latanoprost and PF tafluprost treatment were 22 and 14, respectively. The most frequently encountered adverse event was ocular hypoperaemia (n=6 during latanoprost treatment period; n=5 during PF tafluprost treatment period).

DISCUSSION

The present study is the first to evaluate the 24 h efficacy of PF tafluprost compared with branded preserved latanoprost as a first choice monotherapy in newly diagnosed patients with POAG or OHT. The results showed identical mean IOP lowering over 24 h (mean 24 h IOP difference was only 0.1 mm Hg). Greater 24 h trough IOP reduction was observed during latanoprost therapy while significantly lower 24 h IOP fluctuation was documented with PF tafluprost.

Tafluprost, a fluorinated analogue of prostaglandin F_{2alpha}, is a potent and selective agonist of the human prostanoid FP receptor with a reported 12 fold greater affinity for the FP receptor than latanoprost.18 It was first introduced in Japan in 2008 as a BAK containing multidose formulation, and in Germany in 2008 with approval for both a preserved and a PF tafluprost formulation.20, 21 Currently, however, throughout the rest of the world, only the PF formulation is marketed.20, 21 Initial reports in healthy eyes indicated that preserved tafluprost was at least as well tolerated and safe as preserved latanoprost when used over short periods.22–25 Furthermore, it was demonstrated that the efficacy of preserved tafluprost was comparable with that of preserved latanoprost in healthy volunteers.22–26

Due to its short marketing history, there are limited long term efficacy data for preservative containing tafluprost in patients with glaucoma or OHT. Two studies have reported that preserved tafluprost attained a mean diurnal IOP reduction of 28.6% and 29.1%, respectively, from untreated baseline.8, 9 A third short term phase II study7 reported that the mean IOP change from baseline of preserved tafluprost was similar to that of branded latanoprost after 42 days (−9.7 mm Hg for tafluprost and −8.8 mm Hg for latanoprost). In a 24 month, parallel, double blind, multicenter study performed by Uusitalo et al,6 tafluprost lowered daytime IOP by 6–8 mm Hg (27–31%) compared with 7–9 mm Hg (29–35%) with branded latanoprost. In this study, after 24 months of therapy, the mean decrease in IOP from baseline was reported to be somewhat superior with latanoprost (−7.7 mm Hg, 32.2%) than preserved tafluprost.
pharmacokinetic study did not detect a difference in systemic exposures, but exhibits comparable efficacy to preserved timolol. First, a pharmacokinetic study did not detect a difference in systemic bioavailability between the two formulations after 8 days. Second, Hamacher et al evaluated the IOP lowering equivalence between the two formulations and observed an overall efficacy difference of only 0.01 mm Hg (95% CI −0.46 to 0.49; p=0.96) at 4 weeks.

Several open label non-interventional studies have examined the efficacy and tolerability of PF tafluprost in naïve or previously treated patients with open angle glaucoma or OHT, who were either poorly controlled or had tolerability issues with other medications. Overall, these investigations have reported a mean diurnal IOP reduction of 22.9–32.1% from untreated baseline. Although these studies do not provide controlled observations, they indicate that PF tafluprost has almost comparable efficacy to latanoprost and will likely benefit patients facing tolerability problems with other medications. Similar IOP results were reported in a prospective investigator masked study. In a more recent regulatory double masked comparative trial, Chabi et al demonstrated in patients with open angle glaucoma or OHT that PF tafluprost was generally well tolerated and was not inferior to PF timolol administered twice daily.

The current trial investigated for the first time the 24 h IOP efficacy provided by a PF tafluprost versus branded latanoprost, a well established initial therapy of choice. Both agents provided clinically meaningful 24 h IOP reduction from baseline (28.5% for PF tafluprost and 29.3% for latanoprost). These results are comparable with the reported 24 h efficacy of the three previously available prostaglandin analogues, as reported in a meta-analysis by Stewart et al (24–29%). A 24 h IOP curve may better delineate IOP characteristics and facilitate glaucoma management. Thus our study provides evidence to optimise selection between available prostaglandin analogues as initial therapy.

This efficacy profile would not have been detected without a complete 24 h IOP evaluation. Thus the present study highlights the value of a complete efficacy assessment over 24 h in determining the true IOP lowering characteristics of a novel antiglaucoma medication. In a previous 24 h IOP study in 30 healthy Japanese subjects, Mochizuki et al compared the efficacy of tafluprost and branded latanoprost. Apart from the differences in study populations and despite several methodological differences (timing of drug administration, duration of therapy and different time of IOP measurements), it is interesting to note the similarities in findings between the two 24 h studies. The Mochizuki study also observed a mean 24 h difference of 0.1 mm Hg and the two prostaglandins exhibited similar tendencies to preferentially lower IOP during the day (latanoprost) and night (tafluprost). In contrast with the present study, however, these IOP lowering differences reached statistical significance in the Japanese study.

In the present study, PF tafluprost achieved significantly less 24 h IOP fluctuation than branded latanoprost. Twenty-four hour IOP fluctuation and 24 h peak IOP have emerged in some 24 h studies as potential risk factors for glaucoma progression. This has brought attention to the 24 h IOP lowering

Table 3 Adverse events of the study medications

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Latanoprost</th>
<th>PF tafluprost</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ocular hyperaemia</td>
<td>Yes</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>n (%)</td>
<td>Total</td>
<td>5 (13.2)</td>
<td>33 (87.8)</td>
</tr>
<tr>
<td>Stinging</td>
<td>Yes</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>n (%)</td>
<td>Total</td>
<td>4 (10.5)</td>
<td>34 (89.5)</td>
</tr>
<tr>
<td>Foreign body sensation</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>n (%)</td>
<td>Total</td>
<td>2 (5.3)</td>
<td>36 (94.7)</td>
</tr>
<tr>
<td>Blurring of vision</td>
<td>Yes</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>n (%)</td>
<td>Total</td>
<td>1 (2.6)</td>
<td>37 (97.4)</td>
</tr>
<tr>
<td>Watering</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>n (%)</td>
<td>Total</td>
<td>1 (2.6)</td>
<td>37 (97.4)</td>
</tr>
<tr>
<td>Itchiness</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>n (%)</td>
<td>Total</td>
<td>0 (0)</td>
<td>38 (100)</td>
</tr>
<tr>
<td>Burning</td>
<td>Yes</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>n (%)</td>
<td>Total</td>
<td>0 (0)</td>
<td>38 (100)</td>
</tr>
<tr>
<td>Ocular ache</td>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>n (%)</td>
<td>Total</td>
<td>1 (2.6)</td>
<td>37 (97.4)</td>
</tr>
</tbody>
</table>

PF, preservative free.
profiles with topical medications. Based on the notion that increased circadian IOP fluctuation may be harmful for some glaucoma patients, it may be clinically desirable to opt for favourable 24 h IOP characteristics, such as low 24 h IOP fluctuation and low 24 h peak IOP. However, the potential long term clinical benefit of improved 24 h IOP control requires further elucidation.

The current study was a short term monotherapy study and it did not have sufficient power to determine long term safety or tolerability. Both medications were well tolerated without serious adverse events or adverse event related study withdrawals. There was no significant difference in the incidence of individual adverse events. Nevertheless, the adverse events observed in our trial may not accurately portray the true long term tolerability profile of these agents.

Glaucoma requires lifelong treatment and thus long term tolerability is an issue of clinical importance. Cumulative evidence from Alcon and MSD. IR has received travel reimbursement from Alcon and MSD. AK has received travel reimbursement from The Medical School of Aristotle University, Thessaloniki, Greece, and the institutional perspective of improved 24 h IOP control requires further elucidation.

CONFLICTS OF INTEREST

The study was designed by AGPK and LQ. Data collection was performed by IR, A-BH, TG, ICV and EP. Data analysis and interpretation was performed by IF, A-BH, AGPK and LQ. The manuscript was drafted by AGPK, AK and IR. Critical revision of the manuscript was done by AGPK, LQ and JCT. All authors read and approved the final version of the article.

Competing interests

AGPK is a consultant for Alcon, Allergan, MSD and Nicor. AGPK has received honoraria or travel reimbursement from Alcon, Allergan and Pfizer. LQ has received honoraria or travel reimbursement from Alcon, Allergan, MSD, Thea Farmila, and Bausch and Lomb. AK has received travel reimbursement from Alcon and MSD. IR has received travel reimbursement from Alcon and MSD.

Ethics approval

The study was approved by the institutional review board of the Medical School of Aristotle University, Thessaloniki, Greece, and the institutional review board of the Clinica Oculistica, University of Brescia, Brescia, Italy.

Provenance and peer review

Not commissioned; externally peer reviewed.

REFERENCES

8 Uusitalo H, Pihlavae LE, Ropo A. Efficacy and safety of tafluprost 0.0015% versus latanoprost 0.005% eye drops in open-angle glaucoma and ocular hypertension: 24-month results of a randomized, double-masked phase III study. Acta Ophthalmol 2010;88:12–19.

Clinical science

Anastasios G P Konstas, Luciano Quaranta, Andreas Katsanos, et al.

Br J Ophthalmol published online May 16, 2013
doi: 10.1136/bjophthalmol-2012-303026

Updated information and services can be found at:
http://bjo.bmj.com/content/early/2013/05/14/bjophthalmol-2012-303026.full.html

These include:

References

This article cites 41 articles, 2 of which can be accessed free at:
http://bjo.bmj.com/content/early/2013/05/14/bjophthalmol-2012-303026.full.html#ref-list-1

P<P

Published online May 16, 2013 in advance of the print journal.

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/