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ABSTRACT. 

 The miniaturization encourages the development of new 
manufacturing processes capable to conform features like 
micro-channels in order to use them for different applications, 
such as in fuel cells, heat exchangers and microfluidic de-
vices. Many studies have been conducted on heat and fluid 
transfer in micro-channels, and they appeared significantly 
deviated from conventional theory, due to measurement er-
rors and fabrication methods. Therefore, the present research 
focused on a set of experiments in micro-milling of alumi-
num, titanium and stainless steel varying parameters such as 
spindle speed (N), depth of cut per pass (ap), channel depth 
(d), feed per tooth (fz) and coolant application. The experi-
mental results were analyzed in terms of dimensional error, 
channel profile shape deviation from rectangular and surface 
quality (burr and roughness). The micro milling process was 
capable of offering quality features required on the mi-
cro-channeled devices. Critical phenomena like run-out, 
ploughing, minimum chip thickness and tool wear was en-
countered as an explanation for the deviations in shape and 
for the surface quality of the micro channels. The application 
of coolant and a low depth of cut per pass were significant to 
obtain a better superficial quality features and a lesser amount 
of the dimensional error.  
Keywords: micro-milling, micro-channels, fuel cells, heat 
exchangers, micro-fluidic devices.  
 

I. INTRODUCTION 

 The demand for miniaturized meso-(100 µm-10 mm)/ mi-
cro-(0.1-100 µm) devices with high aspect ratios and superior 
surfaces has been rapidly increasing in diverse industries. 
There is a growing need for fast, direct, and mass manufac-
turing of meso/micro functional products [1, 2]. The motiva-
tion for small parts manufacturing has been the same since 
manufacturing was established: low-cost, high-accuracy and 
high-quality surface finishing in order to use these devices for 
different applications [3].  

The micro-engineering is responsible for developing and 
manufacturing products with functional characteristics of at 
least one dimension on the order of micrometers [2]. There-
fore micro-machining processes, like micro end milling, are 
in full expansion.  

 The micro end milling process is fast, cost efficient and can 
achieve good accuracy, low surface roughness, and high 
material removal rates (MRR) with feature sizes as small as 
5-10 µm [4]. Appearing then, to be a flexible and the fast way 
to produce micro-forms for diverse applications, such as in 
fuel cells, heat exchangers and microfluidic devices 
 The interest in the use of micro-channel heat exchangers 
has arisen because they play an important part on the field of 
energy conservation, conversion and recovery. Its compacted 
size enabled by micro-channels, is improving the heat transfer 
and savings potential compared to the regular tube heat ex-
changers. The rate of heat transfer depends on the surface area 
to volume ratio, which means the smaller channel dimensions 
provide the better heat transfer coefficient, being this another 
motivation for the encouragement microfabrication technol-
ogies to increase the advantages generated from miniaturiza-
tion of heat exchanger channels [5-14]. 
 Fuel cells have been proposed as a possible power source to 
address issues that involve energy production and the envi-
ronment. In particular, small fuel-cell systems are known to 
be suitable for portable electronic devices. The development 
of micro fuel cell systems can be achieved also by the appli-
cation of microchannel technology, allowing them now to be 
small, efficient, modular, and potentially inexpensive [15].  
 Many researchers are currently developing microchannel 
heat-exchangers, reactors, and separators as components for 
compact hydrogen generators for fuel cells [16]. It has been 
shown that microfabrication technology can be effectively 
applied for the miniaturization of fuel cells. Compact fuel cell 
power systems have potential applications in markets such as 
residential and commercial power, space exploration and 
defense. Automotive power systems are one of the most 
promising applications because of the variety and size of 
potential markets present in this field [15].  
 Moreover, microfluidic devices are now developing several 
applications in areas like medicine and biotechnology for the 
separation of molecules, transportation of DNA and, drug 
delivery systems. A microfluidic device can be identified by 
the fact that it has one or more channels with at least one 
dimension less than 1 mm. The principal function of a mi-
crofluidic device is the release and transportation of fluids. 
The fabrications techniques used to construct microfluidic 
devices are relatively inexpensive but highly elaborate [17]. 
An emerging application area for biochips is clinical 
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pathology, especially the immediate point-of-care diagnosis 
of diseases, market valued in 2010 in $563 Million USD 
(Fig.1) and in general the microfluidic market its predicted to 
exceed the $3 Billion in 2014, accompanied by composed 
growth annual rates of 26% [18]. 
 

 
Fig. 1 Microfluidic Market Considerations [18]  

 
 The reduction in hardware volume on the latter mentioned 
devices were all possible by a micro-channel based design. 
The evolution of micro-channel-based devices is largely been 
triggered by advances in micro-fabrication technologies. The 
main geometric elements, micro-channels, have a variety of 
manufacturing processes and fabrication techniques docu-
mented in the literature (shown in Fig. 2): lithography, mi-
cro-end milling, a combination of wire electrodischarge ma-
chining (WEDM) & sandblasting, and abrasive water jet cut-
ting [17]. In a previous study the capabilities of lithography, 
which is the conventional process for micro-channels, was 
compared with other processes. The evaluation consisted in a 
comprehensive study of surface quality and topography; also 
economical considerations were taken into account. The mi-
cro-milling process results showed that it can compete with 
lithography, in terms of achieving acceptable levels of prod-
uct quality, surface finish and economics. Although, its ap-
plication in micro-channeled devices is very limited on the 
literature, it can achieve surface roughnesses below 0.1% of 
the channel height [19].  
 

 
Fig.2 Broad categories of Microfabrication processes for Micro-

channels [17].  

 
 The design principles of micro-channels on heat exchang-
ers and microfluidic devices (including fuel cells), perfor-
mance evaluated by heat transfers and fluid flow rates. Stu-
dies showed that the results on both flow rates appeared sig-
nificantly deviated from conventional theory, which appar-
ently are due to measurement errors and fabrication methods, 
including the surface roughness and channel shape [9][20]. 
Although the effect of surface roughness on the flow is well 
studied for over centuries, the exact effect has not been 

completely understood. For instance, at microscale level, it is 
impossible to obtain a completely smooth surface (without 
texture and burr) and it has also been shown that modern 
fluidic devices at micro levels routinely violate the 5% rela-
tive roughness threshold due to the inability to control the 
roughness of surfaces to sufficient levels[8] [21-22]. 
 These are difficulties and challenges from micro machining 
operations that can be attributed to material behavior in the 
micro scale, different cutting mechanisms compared to the 
macro scale, tool dynamics and vibrations, and tool wear and 
fragility. At this scale, the slightest variation in the manu-
facturing process will have a direct impact on the ability to 
produce conforming features of this type with an acceptable 
surface quality. 
Therefore, the present article is intended to conduct a mi-
cro-milling experiment on metallic alloys in order to analyze 
its results in terms of surface quality and dimensional features 
to evaluate its performance as a technology in the prototyping 
of micro-channels. As a result, this work will also contribute 
to the understanding of the relations between process para-
meters and quality of the geometrical final micro-features of 
the channel with micro-milling.  
 

2. EXPERIMENTAL METHODOLOGY 

 The micro-channels were machined in a fived axed CNC 
machining centre with a vertical spindle and a Heidenhain 
iTNC 530 Controller, shown in Fig.3.  

  

 
Fig.3 CNC Machining Centre and Material Clamping 

 
 The experiments were conducted using an aluminum alloy 
with a hardness of 21 HRB, stainless steel 316L (AISI316L) 
and Ti6Al4V (Fig. 4). The materials were cutted into rec-
tangular probes and fixed up in a standard clamp GERARDI 
VISE SERIES. 
 

 
Fig. 4 Workpiece Probes: a) Al Alloy (56 mm x 23 mm) b) 

AISI316L (40 mm x 14 mm) c) Ti6Al4V (42 mm x 14 mm) 

 
A Mitsubishi© MS2SSD0020 200 µm diameter end mill 

was used to machine rectangular profiled microchannels of  
200 µm in width and two depths, 50 and 100 µm (Fig.5). One 
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same end mill was employed to machine 16 channels, there-
fore three identical end mills were used for each material. 
Table 1 shows the geometric characteristics of the tool.  

 

 

Fig. 5 Microchannel Design [23]. 
 

 The toolpaths were generated with parametric program-
ming in Gcode, as the channels were a linear design in an 
arrangement of 1 mm between each channel (Fig.5).  

 

Table 1: Tool Specifications 

 
 

 The design of experiments was defined as a two level half 
fractioned factorial with five variable factors; consequently a 
V resolution study (2V

4) with three replicas was applied, to-
talizing 48 micro-channels per material. The same order of 
runs was used on the replicas, in order to have comparable 
results and to control tool wear. The variable factors of in-
terest in the study are shown in Table 2.  
 
Table 2 Variable factors and levels of micro milling in Aluminum, 

Steel 316, Ti6Al4V 

Aluminum Titanium/Steel 

Variable Factor L1 L2 L1 L2 

F1. Spindle Speed  [N],min-1 

 
10,000 12,000 10,000 12,000 

F2. Depth of Cut per pass 
[ap] µm 

2 10 2 10 

F3. Channel Depth [d], µm 
 

50 100 50 100 

F4. Feed per tooth [fz ],       
µm/fz 

1.25 1.90 0.625 1.25 

F5. Coolant 
 

Dry Wet Dry Wet 

 

The metrology was executed in order to measure the re-
sponse variables shown in Table 3.The burr measurement was 
made in a qualitative evaluation from images acquired with a 
non-contact Vision Measuring Machine; Mitutoyo Quick 
Scope QS200Z along with a QSPAK software for the com-
pilation of images (Fig. 6). 

 
Table 3 Metrology Response Variables 

 

Fig. 6 Mitutoyo Quick Scope QS200Z and QUICKSOPE Software 

 

 Three images were taken from every channel varying the 
position of the channel for the image acquisition, taking 
snapshots at 0.5 mm, 4.0 mm and 7.5 mm, of the 8 mm 
channels. Consequently, a complete map of the top burr can 
be formed (shown in Fig. 7) and evaluated in a qualitative 
form by a given scale from 1-5 (5- No burr and 1-Excessive 
Burr). 
 

 
Fig. 7 Channel Burr Formation Map  

 
 Before the profile measurement, a polishing process was 
made by metallographic means to assure the correct gathering 
of information, without the noise effects of burr and chip 
building on the entrance of the tool. As the workpieces were 
ready, the channel profile was measured through image cap-
turing (Fig. 8). The profile analysis was performed in a qua-
litative way trying to categorize the final shapes derived by 
the process in each material. 
 

 
Fig. 8 Profile Picture a) Ti6Al4V b) AISI316L c) Al Alloy 
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 The dimensional measurements were performed 
image acquisition. The measurements of the channel size 
were carried out in three different levels as in Fig. 
to help in the form analysis and to record the deviation co
formed to the nominal width channel size.  
 The measurements of surface roughness (Ra) on the floor 
surface of the micro-channel were conducted with a prof
lometer ZEISS SURFCOM 1500SD2 (Fig. 
of λc= 0.8 mm and a sampling ls= 4.0 mm, in accordance with 
ISO/DIS4287/1E using a Gaussian profile filter and no tilt
correction. 
 

Fig. 9 SURFCOM 1500SD2 Profilometer

 
The accuracy of the roughness measurements was defined by 
a perfect alignment of the channel path 
movement of the stylus of the profilometer. 
of the microchannels was a challenge for 
measurements; as if the alignment was not carefully done it 
will create trembling movements due to the friction of the 
stylus with the microchannel walls. Consequently, the 
alignment was possible by a CELESTRON 44302
held digital microscope that permitted to observe the prof
lometer stylus inside the center of the microchannel and a
lowed to capture video and magnified images (shown in 
Fig.10). 
 

Fig. 10 Alignment and Celestron Portable Microscope  

 
A gage R&R test was carried out to the profilometer to val
date the data. The results show sufficient different categories 
to distinguish adequately between parts and a low study va
iation on repeatability, 7.09% which according to the AIAG 
guidelines the measurement device is acceptable

 

 

 

performed also by 
image acquisition. The measurements of the channel size 
were carried out in three different levels as in Fig. 5; in order 
to help in the form analysis and to record the deviation con-

 
oughness (Ra) on the floor 

channel were conducted with a profi-
lometer ZEISS SURFCOM 1500SD2 (Fig. 9), with a cut off 

c= 0.8 mm and a sampling ls= 4.0 mm, in accordance with 
ISO/DIS4287/1E using a Gaussian profile filter and no tilt 

 
SURFCOM 1500SD2 Profilometer 

The accuracy of the roughness measurements was defined by 
of the channel path with the x-axis 

 The reduced size 
for the roughness 

measurements; as if the alignment was not carefully done it 
movements due to the friction of the 

stylus with the microchannel walls. Consequently, the 
possible by a CELESTRON 44302-A hand-

held digital microscope that permitted to observe the profi-
lometer stylus inside the center of the microchannel and al-

magnified images (shown in 

 

Alignment and Celestron Portable Microscope   

R test was carried out to the profilometer to vali-
date the data. The results show sufficient different categories 
to distinguish adequately between parts and a low study var-
iation on repeatability, 7.09% which according to the AIAG 

nt device is acceptable. 

3. RESULTS 

A total number of a hundred and forty
have been machined with micro-milling by following the 
experimental plan discussed in section
from the measurements were analyzed by 
serving the following: 

• The mean average roughness and the range of roughness 
results 
• The mean burr formation evaluation and burr evaluation 
by tool.  
• The channel size mean and size by level, analyzing its 
percentage error deviation relative to the nominal size. 
• The channel depth, analyzing its percentage error dev
ation relative to the nominal size (50 or 100 µm)
• The predominant profile shape resulted from the process 
by material. 

 

A. ALUMINUM ALLOY 

• The roughness ranged from 0.095 to 2.5 
• The mean burr evaluation was 3.10 out of 5 (being 5 the 
ideal).  
• The depth of cut per pass and coolant application are the 
most important factors to consider in order to minimize the 
top burr formation of the micro channels (Fig. 
in the 2-way interactions of the depth of cut per pass versus all 
other factors, in all cases with the lowest level, 2 
burr formation is lower. In the interaction of the coolant with 
all other factors, in all cases in wet conditions, the top burr 
formation decreases. 
 

Fig. 11 DOC per pass and Coolant influence in burr 

AL Alloy 
 
• The minimal burr formation was with a 2 
per pass and in wet conditions.   
• The use of coolant is the most important factor to consider 
in order to minimize the roughness (Fig. 
strong coolant influence, as in all cases in wet level of coolant 
the roughness is at the minimal. 
 

Fig. 12 Coolant application for minimizing roughness

 

 

RESULTS  

A total number of a hundred and forty-four micro channels 
milling by following the 

section 2. The results gathered 
analyzed by material and ob-

The mean average roughness and the range of roughness 

The mean burr formation evaluation and burr evaluation 

The channel size mean and size by level, analyzing its 
ative to the nominal size.  

The channel depth, analyzing its percentage error devi-
ation relative to the nominal size (50 or 100 µm) 

The predominant profile shape resulted from the process 

The roughness ranged from 0.095 to 2.5 µm. 
The mean burr evaluation was 3.10 out of 5 (being 5 the 

The depth of cut per pass and coolant application are the 
most important factors to consider in order to minimize the 

micro channels (Fig. 11). Observing 
way interactions of the depth of cut per pass versus all 

other factors, in all cases with the lowest level, 2 µm, the top 
burr formation is lower. In the interaction of the coolant with 

cases in wet conditions, the top burr 

 
DOC per pass and Coolant influence in burr formation of 

 

The minimal burr formation was with a 2 µm depth of cut 

most important factor to consider 
in order to minimize the roughness (Fig. 12). It’s evident the 
strong coolant influence, as in all cases in wet level of coolant 

Coolant application for minimizing roughness 
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• It was found a tendency of larger dimension on the top of 
the channel compared to mid and bottom. Performing a tra-
pezoidal shape regularly (shown in Fig. 13), which it was 
proved statistically. Performing the ANOVA analysis inde-
pendently, it resulted that at all levels of the channel was af-
fected by the depth of cut per pass may caused the deflection 
of the tool, producing irregular micro channels. 
 

 
Fig. 13 Common Categorized Profiles in Al Alloy 

 

• The dimensional error in depth was 8.34% and 11.89% in 
width. 
 
B. AISI 316L 

• The roughness ranged from 0.022-0.5840 µm. The 
AISI316L recorded the minimal roughness measurements of 
all three materials. 
• The mean burr evaluation was 3.31 out of 5 (being 5 the 
ideal). Out of all the three materials the steel was the material 
with less burr formation on the channel edges.  
• The depth of cut per pass was most influencing factor to 
minimize the top burr formation of the micro channels (Fig. 
14). The minimal burr formation was with a 2 µm depth of cut 
per pass. 
 

 

 
Fig. 14 Depth of cut per pass influence in burr formation of 

AISI316L 

 

• The use of coolant is the most important factor to consider 
in order to minimize the roughness (Fig.15). It’s evident the 
strong coolant influence, as in all cases in wet level of coolant 
the roughness is at the minimal. 

 

Fig. 15 Coolant application for minimizing roughness in 

AISI316L 

• The dimension at three different levels on the channel (top, 
middle and bottom) can give a basic explanation of the shape 
of the profile of the channel. It was found a tendency of larger 
dimension on the top of the channel compared to mid and 
bottom. Performing a trapezoidal shape regularly, as shown in 
Fig. 16. 
 

 
Fig. 16 Common Categorized Profiles in AlSI316L  

• The dimensional error in depth was 4.98% and in width 
11.80%. The steel give the most accurate dimensional depth 
measurements above all and an influence of more deviated 
measurements were found on less depth channels.  
• The dimension of the channel also affected the middle level 
width, which it can be said that in smaller channels (50 µm) 
the problem of deflection it’s more visible. This is validated 
by the images in which it can be seen a greater deformation of 
the material on small channels.  
• The channels width measurements where is always less 
than the nominal radius of the tool. It can be inferred that the 
tool real diameter was smaller than 200 µm. 
 
C. TI6AL4V 

• The roughness ranged from 0.043-0.574 µm.  
• The mean burr evaluation was 3.125 out of 5 (being 5 the 
ideal).  
• The depth of cut per pass was most influencing factor to 
minimize the top burr formation of the micro channels 
(Fig.17). The minimal burr formation was with a 2 µm depth 
of cut per pass. 
 

Fig. 17 Depth of cut per pass influence in burr formation of 

Ti6Al4V 
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• The burr formation was also described by the tool wear, as 
it can be seen on the time series graphs where the trend is 
negative as the use of the tool increases.  
• A low of depth of cut per pass accompanied by a high feed 
per tooth can minimize the roughness (Fig. 18). 
 

 

Fig. 18 Depth of cut per pass and Feed influence in surface 

roughness of Ti6Al4V 
 

• In the evaluation of the Titanium workpiece, a statistical 
difference was founded only on the bottom level on the 
channel; in the upper and middle level of the channel statis-
tically satisfied the nominal measurement of 200 µm, being 
the always the lower level of the channel the smallest di-
mension. Being Titanium the material with the most regular 
profiled shape channel (See Fig. 19).  

 

Fig. 19 Common Categorized Profiles in Ti6Al4V 

• The dimensional error in depth was 11.62% and in width 
5.33%. The titanium reversed the error percentages giving the 
most accurate width measurement above all. 

 

4. DISCUSSION  

• All the materials top burr formation were affected by the 
depth of cut. Lekkala et. Al [24], realized a similar experi-
ment on Al alloy and stainless steel in which the ANOVA 
analysis also showed the same trend on significant influence 
of DOC on the burr formation, proposing vibrations as the 
possible explanation. But on the contrary, in its study stain-
less steel burr appeared in larger than in the aluminum.  
• In the case of Ti6Al4V, the burr formation was minimized 
by a lower DOC (2µm), contrasting in a study of Schueler 
[25] applying the same DOC massive burrs formations oc-
curred. Literature assures that as the depth of cut increases, 
the tool is pushed further beneath the surface of the work 
material; this would in turn impress the grooves on the surface 
being machine because of the increased cutting load.  
• Bisacco et al. [2], highlighted the ploughing phenomenon, 
that could explain the behavior of Ti versus burr formation 
where it ocurred a plastical deformation when the depth of cut 
was lower than a critical chip thickness. Kim et al. [26]  

classified the deformation in two types, the forced deflection 
of the tool and the elasto-plastic deformation of the 
work-piece material  
• The burr formation in all materials can also be explained by 
the tool wear which is one of the most important aspects of 
machining. As in Lee et al. and Schmidt [27-28], the burr size 
in stainless steel was related to the amount of tool wear. If 
built-up edge is encountered on the tool, the tool can continue 
to cut for a long time without wear, but affecting the dimen-
sions. 
• In Ti6Al4V, the roughness was minimized by a lower depth 
of cut per pass (2µm) and high feed rates (25 & 30 mm/min); 
which can be explained that with a cutting depth so small and 
high load, the material cutting does not exist any longer, only 
deforming the material plastically, making ploughing of the 
material.  
• These results are supported by studies conducted by Yang 
and Chen [29], which encountered that an increase of the 
depth of cut worsens the surface roughness, these were also 
similar to Ginta et al. [30] as varying cutting conditions in the 
same Ti alloy (Ti6Al4V). Korkut and Donertas [31], even 
stated a linear model where the increase on depth of cut, in-
creased the surface roughness.  
• Run out it’s another issue with greater impact in micro 
machining. Due to the lower strength in the micro tool, 
causing less stiffness and vibrations, generating higher 
roughness or deflection of the tool.  The deviation of the de-
sired shape of the profiles can be due to this phenomenon 
creating a tool deflection, greatly affecting the chip formation 
and accuracy. 
• According to Dornfeld [3], a typical flood of coolant is 
generally not suitable for micro machining. First, because the 
flow pressure may influence the cutting tool behavior and the 
removal of excess working fluid after micro machining is 
challenging. However, in the present experiments the pres-
ence of coolant was strongly proposed to minimize the 
roughness, clearly seen in all three materials.  
• Muthukrishnan et al. [32], shows the influence of coolant in 
micro milling of Ti6Al4V. Their results validated the present 
results showing better roughness in wet machining as, with 
coolant prevents the formation of built up edge which dam-
aged the surface.  

 

5. CONCLUSIONS 

In the present study, dimensional features and surface fi-
nishing in burr and roughness were evaluated as a result of 
micromilling materials as Aluminum, Steel 316L and 
Ti6Al4V. Results suggest that micro milling offers a process 
capable of offering quality features required on the micro-
fluidic devices (all three applications). The conclusion re-
marks from the present research study can be summarized as 
follows: 
� The surface roughness determines the microchannel flow 
capability because it helps to describe its effect in the friction 
and pressure behavior of the fluid. The literature focuses on 
the heat transfer evaluation by roughness; however the 
present contributes with the manufacturing sight of the pa-
rameters needed in micro-milling to obtain the desired 
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roughness, dimensions, profile shape and an appropriate 
surface by the burr formation analysis. 
� In general, the better surface quality in terms of burr for-
mation and roughness was obtained with AISI316L, although 
Ti6Al4V had the best behavior for the formation of the 
geometric rectangular shape profile. 
� There is a general affinity in the machining process of 
developing v-shaped microchannels non-conforming with the 
appropriate rectangular profile desired. A further research is 
needed to better understand the behavior of the tool with the 
material, since this deviation affects the heat and fluid flow.  
� In all three workpieces, the burr formation can be con-
trolled by a low depth of cut per pass.  
� Titanium, surface quality is entirely defined by using lower 
depths of cut per pass. 
� The application of coolant was critical to get a better qual-
ity superficial features which avoided the built up edge for-
mation and heating of the material. 
� A low depth of cut per pass (2µm) will minimize the burr 
formation in all materials, and it influence also the accuracy 
on the dimensional measurements.  
� The dimensional measurements give us the idea of the 
profile formed. The deviated shapes, encountered there tra-
pezoidal, regular and deflected. These profiles can be explain 
by the possible run out of the tool, tool wear and built up edge.  
� The milling centre showed an adequate performance for 
prototyping microfluidic devices, even accomplishing the 
industrial requirements.  
� Critical phenomena encountered like run-out, ploughing, 
minimum chip thickness and tool wear explained the devia-
tions in the form, dimensions and diminishing of surface 
quality on the micro channels. 
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