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Abstract. In this paper the behavior and the collapse mechanism of single leaf vaulted structures 

undergoing seismic loads are discussed, and an innovative technique based on the use of lightweight 

ribs is proposed. The efficiency of the solution is verified by means of non linear numerical analyses 

on a strengthened single leaf vaulted structure. The numeric model is validated through comparison 

with the results of experimental tests performed on lightweight ribs subjected to cyclic, 

unsymmetrical load conditions. 
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Introduction 

In the case of a seismic event, the central part of very thin groined, as well as of a single leaf vaults is 

subjected to pronounced differential deflections due to the unconstrained rocking motion of the 

abutments and to the horizontal loads distributed along the vault crown (Fig. 1a). It is worth noting 

that, whether the rocking mechanism can be inhibited or confined, for example by adopting a roof box 

structure constraining the perimeter masonries along the edge (Giuriani and Marini 2008), the 

differential deflection of the thin vault induced by the pertaining seismic actions cannot be avoided 

(Fig. 1b). Depending on the earthquake magnitude and the vault thickness, differential deflection can 

be as remarkable as to cause the structure collapse (Fig. 1c). During the survey and assessment 

campaign following the recent Benaco and Abruzzo earthquakes, this mechanism was identified as 

one of the most frequent collapse mechanism for single leaf vaulted structures.  

In masonry vaults equilibrium is guaranteed by the ideal arch developing within the vault thickness 

(Heyman 1999). The ideal arch is the anti-funicular of the set of applied loads. After cracking, the 

ideal arch must cross the solid part of each cracked sections, both at the vault key and at the springing. 

Single leaf vaults are usually very thin, thus the ideal arch has little possibility to shift and modify 

within the vault thickness to adapt to different unsymmetrical load distributions. As a result, the 

structure is often quite vulnerable with respect to seismic load distributions, requiring pronounced 

deviation of the ideal arch.  

In order to enhance the resistance of vaulted structures, masonry spandrel walls are traditionally 

proposed (Giuriani et al. 1999; Gelfi and Capretti 2001). The structure resistance is increased by 

increasing the thickness of the vaults, thus allowing the ideal resisting arch to adjust within the 

spandrel wall thickness. However, in the case of single leaf thin vaults attention must be paid to avoid 

significant dead load increase, which could in turn result in additional seismic actions.  

In this paper, lightweight ribs are proposed as an innovative solution to upgrade the seismic 

performance of existing single leaf vaults (Fig. 2a). Ribs are simply located overlaying the vault 

extrados profile (Fig. 2b), and designed to provide the existing vault with a passive confinement. No 

shear transfer other than friction is allowed along the vault-to-rib interface in order to prevent or limit 

the vault decompression. This way, in static conditions, the vault dead load is supported by the 

existing masonry vault, which maintains the original compression state provided that its profile is 
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approximately equal to the dead load anti-funicular. In seismic conditions, the lightweight rib 

constrain the vault deformations, thus providing passive confinement. It is worth noting that, should 

the strengthening rib be connected to the vault, then the relaxation of material might cause the 

migration of the loads to the stiffer structure over time, thus reducing the compression stress state in 

the vault. The compressive  stress reduction would result in a major vulnerability of the vault in the 

case of a seismic event, provided that the vibration might cause the detachment of the brick from the 

decompressed vault ring.  

The rib tubular cross section is made of lime mortar reinforced with glass fiber plaster mesh; the 

inner lightweight core is made of polystyrene elements (Fig. 2a).  

The performance of the proposed technique is verified by comparing the behavior of an 

unreinforced single leaf vault subjected to horizontal seismic actions with the structural response of a 

strengthened vault. To this end non linear numerical analyses are performed. The numerical model is 

validated through comparison with the results of experimental tests on lightweight ribs subjected to 

cyclic, unsymmetrical load conditions.  
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Figure 1: Thin leaf vault subjected to differential deflection following: (a) the unconstrained 

abutment rocking motion and (b) the pertaining seismic loads. (c) View of S.Pietro Church main 

nave: total and partial collapse of  barrel vaults of the first and second bay induced by the differential 

deflection of the single leaf groin vaults and by the abutment differential rocking motion 
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Figure 2: Lightweight rib cross section; distribution of the strengthening ribs along the vault 

extrados; and view of a construction phase 

Seismic Vulnerability Assessment of Existing Single Leaf Vaulted Structure 

In the following, reference is made to a single leaf barrel vaulted structure, in which the abutment 

rocking motion is inhibited by a roof box structure  (Fig. 2b). Accordingly, focus is made to the vault 

crown only, fixed to the abutment and subjected to the pertaining uniformly distributed seismic 

actions only (Fig. 3a). The dead load is neglected provided that, given the reduced thickness of the 

single leaf vault, the vault profile is usually very close to the ideal natural arch, thus the vertical loads 

are expected to cause axial compression only. Fig. 3b shows the bending moment distribution in the 

elastic field. Plastic hinges in the collapse mechanism are supposed to form where the bending 

moment is maximum or minimum along the vault crown, namely: at the vault imposts (Sections A, B) 

and where the shear internal force is nil (Sections C and D identified by β
∗
 in Fig. 3b). Once the 
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plastic hinges are located, the collapse multiplier (λ) can be evaluated with reference to the limit 

analysis, by applying the principle of virtual work, i.e. by enforcing Le = 0 (Fig. 3c, d). 
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Figure 3: (a) single leaf vault subjected to seismic action; (b) sections of maximum and minimum 

bending moment, corresponding to the location of the plastic hinges in the collapse mechanism; 

(c,d) Collapse mechanism 

Lightweight Rib Design Criteria 

In the likely event that the collapse multiplier (λ) be smaller than a design value (λ<λd), the single leaf 

vault strengthening is necessary. Lightweight ribs are simply supported at the abutments and located 

overlaying the vault extrados. In order to avoid or limit any possible vault decompression, no shear 

transfer is allowed along the vault-to-rib interface. In static condition the dead load bears on the vault 

ring only, inducing compressive internal forces; whereas when seismic actions are considered, the 

lightweight rib provides a passive confinement to the vault. Accordingly, the rib can be designed to 

constraint the uplift deflection of the right side of the single leaf vault (DD’, in Fig. 3d). Besides a 

resistance criterion, the lightweight rib deformation must be also controlled, for the maximum 

deflexion to be compatible with the single leaf vault limit deformation (δu).    

Case Study 

As a case study, San Pietro Church, one of the most severely damaged churches, is analyzed. The 

church is a XIV century single nave building with side chapels. The cross section is shown in Fig. 7a. 

A series of four transverse arches subdivides the nave into 5 bays. Each bay is covered by 50 mm 

single leaf masonry groined vaults. The apse is covered by a single leaf 50 mm barrel vault. Following 

the 2004 Benaco earthquake the collapse of the groined vaults of the first and second bay of the main 

nave were observed (Fig. 1c), whereas less severe crack patterns were surveyed along the other vaults.  

In order to reduce the seismic vulnerability of the church, a roof box structure was organized to 

constraint the perimeter wall rocking motion. As for the single leaf vaults, lightweight ribs were 

placed along the vault extrados along the main nave and the apse as shown in Fig. 4b. The target 

design collapse multiplier was set to λd = 0.16÷0.25 as recommended by a regional standard licensed 

after the Benaco earthquake. Numeric analyses, as well as simplified analytical models were adopted 

to evaluate the efficiency of the retrofit technique. 

As a first simplified estimate, plastic hinges are assumed to develop where the bending moment is 

maximum. By reference to the bending moment distribution in the elastic solution (Fig. 2a), plastic 
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hinges are located at β
∗
 = 25.25° (Fig. 3b), and the PLV yields the collapse multiplier of the 

unreinforced structure: λTH = 0.077 (Fig. 3c). 
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Figure 4: San Pietro Church (Roè Volciano, Brescia): cross section of the apse and distribution 

of the lightweight ribs along the extrados of the leaf vault 

Numerical Analyses 

Non-linear pushover analyses were carried out to assess the vault seismic vulnerability prior and after 

the retrofit in order to verify the efficiency of the proposed technique.  

The heterogeneous and non-linear behavior of the masonry was modeled with reference to a 

simplified micro-modeling approach (Lourenço 1994): mortar was modeled by means of 

zero-thickness Coulomb-friction interface elements; bricks were modeled with plain strain elements. 

Material properties were defined with reference to some preliminary compression tests performed on 

thin leaf masonry specimens (Giuriani et al. 2007) and to the values proposed by Lofti & Shing 1994 

and Lourenço 1994. Material properties are summarized in Fig. 5a. As for the lightweight ribs, 

smeared crack elements were adopted to model the thin lime mortar shell, and reinforcement elements 

were added to model the strengthening contribution of glass fiber mesh. The lightweight rib 

numerical model was validated through comparison with the experimental test on a full scale rib 

subjected to unsymmetrical load conditions (see Fig. 7b).  
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Figure 5: (a) Material properties; (b) Numerical responses of existing vs strengthened leaf vaults 

The pushover curves and the deformed shapes of the existing and reinforced structures at the 

failure mechanism onset are plotted in Fig. 5 and Fig. 6, respectively. The pushover curves were 

obtained by increasing the seismic load multiplier (λ) up to structure collapse and by monitoring the 
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uplift and downward displacements of the vault at section C and D (CC’-DD’). The increased 

performance of the reinforced structure both in terms of stiffness and strength can be observed (Fig. 

5). The unrealistic plateau of the curves at the mechanism onset follows the assumption of perfectly 

plastic behavior of the material in compression. Conversely, in the actual structure a softening 

behavior is expected. Note that no plastic deformation is observed in the reinforced structure 

uplift-displacement curve, provided the vault is entirely confined by the lightweight rib along the 

extrados profile. On the other hand the downward displacement increases significantly as the vault 

detaches from the rib upon triggering the collapse mechanism.  

As shown in Fig. 6a, the collapse multiplier of the unreinforced structure, as well as the crack 

position are well predicted by the analytical procedure illustrated above. The structure vulnerability 

prior and after seismic retrofit can be assessed by comparing the collapse multiplier obtained for the 

unreinforced  (λΑ, Fig. 6a) and the reinforced structure (λΒ, Fig. 6b). Further details of the numeric 

study are given in Ferrario et al. 2010. 

 

 

 
λΑ = 0.079 ≅ λTH = 0.077         (a) 

  
λΒ = 0.335 >  λd = 0.25         (b) 

Figure 6: (a) Existing leaf vault collapse mechanism and comparison with the theoretical 

prediction of the collapse multiplier; (b) strengthened leaf vault collapse mechanism and 

comparison with the design target collapse multiplier 

Experimental Behavior of Lightweight Rib Subjected to Cyclic Loads 

In order assess the efficiency of the proposed technique and to validate the proposed numeric model, 

an experimental study on full scale lightweight rib segments undergoing cyclic symmetrical and 

unsymmetrical loads were carried out (Giuriani et al. 2007). Straight and curved full scale lightweight 

ribs were tested and good results were obtained both in terms of stiffness and strength.  

As an example, Fig. 7b shows the envelope curve of the structure response of a lightweight rib 

segment subjected to symmetrical load conditions, in which the curves recorded during the load 

cycles are purged. The experimental response is plotted in terms of bending moment versus mid span 

deflection. A brittle failure occurred for overcoming the shear resistance at the support. However, the 

ultimate bending moment was approximately 7 times larger than the design value. In the same figure, 

the numerical response is plotted. The numerical prediction is consistent with the actual structural 

response (see dashed line in Fig. 7b). Details of the experimental and numerical studies, including 

different geometries and load conditions, are given in Giuriani et al. 2007 and Ferrario et al 2010, 

respectively. 

Concluding Remarks 

In the case of a seismic event, pronounced differential deflection can be expected along the central 

part of thin leaf vaults, which can be so remarkable as to cause the structure collapse. In order to 
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upgrade the leaf vault performance against this failure mechanism, lightweight ribs are proposed in 

this paper. Lightweight ribs are placed over the vault extrados profile and no connection other than 

friction is allowed between the masonry leaf vault and the strengthening element. This special 

precautions is paid to avoid the vault decompression in static condition. Ribs have a tubular cross 

section with a lightweight core made of polystyrene elements, covered by a thin layer of lime mortar 

reinforced with glass fiber plaster mesh. Lightweight ribs are designed to confine the deformation of 

the existing vaults with respect to the seismic action, by providing the vault with a passive 

confinement. The efficiency of the proposed technique is verified by means of non linear numerical 

analyses. Numerical models are validated through comparison with some experimental results.  
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Figure 7: (a) Experimental test on curved lightweight rib; (b) envelope experimental vs 

numerical response curves 
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