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Abstract. Motivated by the formation of brine channels, this paper is de-
voted to a continuum model for salt separation and phase transition in saline
water. The mass density and the concentrations of salt and ice are the perti-
nent variables describing saline water. Hence the balance of mass is considered
for the single constituents (salt, water, ice). To keep the model as simple as
possible, the balance of momentum and energy are considered for the mixture
as a whole. However, due to the internal structure of the mixture, an extra-
energy flux is allowed to occur in addition to the heat flux. Also, the mixture
is allowed to be viscous. The constitutive equations involve the dependence on
the temperature, the mass density of the mixture, the salt concentration and
the ice concentration, in addition to the stretching tensor, and the gradient
of temperature and concentrations. The balance of mass for the single con-
stituents eventually result in the evolution equations for the concentrations. A
whole set of constitutive equations compatible with thermodynamics are es-
tablished. A free energy function is given which allows for capturing the main
feature which occurs during the freezing of the salted water. That is, the salt
entrapment in small regions (brine channels) where the cryoscopic effect forbids
complete ice formation.

1. Introduction. Saline water exhibits interesting phenomena which call for an
appropriate modelling within continuum mechanics. The presence of salt (solute)
in water (solvent) results in the freezing point depression or cryoscopic effect: by
adding a solute to a solvent (as salt in water) produces a decrease in the freez-
ing point of the solvent. In addition, the extent of freezing point depression de-
pends only on the solute concentration and can be estimated by a simple linear
relationship. Approximately, in a uniform water-salt (NaCl) solution the freezing
temperature θT linearly decreases with salt concentration,

θT (c) = θτ − α0c, α0 > 0, (1.1)
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where θτ is the solidification temperature of pure water (≈ 273◦K) and α0 is a
positive constant that will be specified later.

In saline water at room temperature the spatial variability of salinity is not so
important because of the solubility. However, as water reaches the temperature
where it begins to crystallize and form ice (phase transition), salt ions are rejected
from the lattices within the ice: they are either forced out into the surrounding
water, or trapped among the ice crystals in pockets called brine cells, where the
high concentration of salt and the cryoscopic effect prevent complete ice formation.

1.1. Brine rejection process. During the freezing of saline water, the dissolved
salts are not incorporated into the ice crystals, but increases the salinity of the
liquid phase. When the salinity c is over ξb = 0.05, the solution is named brine,
and the process creating saltier, denser brine within the sea ice is a separation pro-
cess referred to as brine rejection [14]. At the end of the freezing process, the salt
concentration of the remaining liquid solution never reaches the unit value. Indeed,
it has an upper limit which depends on temperature and is referred to as solubility
limit of salt relative to the water. At room temperature (θr ≈ 291◦K), its value is
ξs ≈ 0.27. When c overcome this limit, then salt begins to crystallize and precip-
itates. In the phase diagram of a salt-water mixture there exists a characteristic
point, named eutectic point, at which ice, salt and the water solution are in equi-
librium. The specific concentration and temperature at which this equilibrium is
found are called eutectic concentration, ξℓ (≈ 0.23), and eutectic temperature, θσ
(≈ 252◦K), respectively (see Fig. 1).
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Figure 1. Phase diagram of a water-salt (NaCl) solution.

Since the eutectic temperature equals the freezing temperature at the eutectic con-
centration, θσ = θT (ξℓ), from the freeze-line equation (1.1) it follows

α0 = (θτ − θσ)/ξℓ ≈ 91, 3◦K.

At temperatures below the eutectic point, the solution becomes a mixture involving
ice and salt crystals separately (see, for instance, [12]). This phenomenon is referred
to as eutectic freeze crystallization (EFC).



SOLIDIFICATION AND SEPARATION IN SALINE WATER 141

1.2. Brine channels formation. The formation of brine channels in sea ice is a
typical outcome of the spatial variability of salinity and the brine separation process.
This phenomenon occurs in frozen sea water that forms in the Arctic Ocean, and
in the Southern Ocean surrounding Antarctica. During the brine rejection process,
salt ions are trapped among the ice crystals in pockets called brine cells. The
faster that this freezing process occurs, the more brine cells are left in the sea ice.
They create a porous (mushy) layer in which concentrated liquid surrounds nearly
pure solid ice crystals. Once this layer reaches a critical thickness (≈ 15 cm), the
concentration of salt ions in the liquid around the ice begins to increase, as leftover
liquid begins to leave the brine cells. This increase is associated with the appearance
of strong convective plumes, which flow from channels within the ice and carry a
significant salt flux. The brine that drains from the mushy layer is replaced by a
weak flow of relatively fresh water, from the liquid region below it. The new water
partially freezes within the pores of the mushy layer, increasing the solidity of the
ice, and partially remains between the crystals to form brine channels with average
diameters of 100 µm that may increase to millimeter sized tubes.

1.3. A new theoretical approach. Useful references to the subject are given in a
paper by Kutschan et al [13] where experimental observations are commented upon
and a theoretical approach is set up. In [13] the pertinent variables are taken to
be the water salinity and an order parameter (tetrahedricity) which accounts for
the ice microstructure. The temperature is regarded as a parameter governing the
phase transition. The model equations are two reaction-diffusion equations which
trace back to the Ginzburg-Landau theory.

Though the experimental observations show an involved set of physical effects,
here we set aside some features about the microscopic properties (ice microstructure,
presence of air bubbles, pH value) and develop a consistent scheme where balance
and constitutive equations are framed within continuum thermodynamics. We take
the mass density and the concentrations of salt and ice to be the pertinent variables
describing saline water. Hence we write the balance equations for them as with a
mixture of three constituents (salt, water, ice).

To keep the model as simple as possible we account for the balance of momentum
and energy as for a single constituent. However, due to the internal structure of
the mixture we allow for an extra-energy flux, in addition to the heat flux. Also we
account for motion and diffusion effects by letting the stress in the mixture have
additive viscous terms. As a result we obtain a whole set of evolution equations for
the mass density, the concentrations, the velocity, and the temperature through the
balance of mass, linear momentum, and energy.

The main aspects to emerge from this paper are summarized as follows. The
constitutive equations allow for the dependence on the temperature θ, the mass
density ρ, the salt concentration c and the ice concentration φ in addition to the
stretching tensor, and the gradient of θ, c, and φ. The balance of mass is established
for the single constituents and the corresponding equations provide eventually the
evolution equations for c and φ. A whole set of constitutive equations compatible
with thermodynamics are established. A free energy function is given by borrowing
from the separate modelling of phase separation and phase transition. This choice
allows us to capture the main feature which occurs during the freezing of the salted
water, namely, the salt entrapment in small regions where the cryoscopic effect for-
bid complete ice formation. The generalization with respect to previous approaches
is pointed out.
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2. A mixture model for saline water and ice. We model saline water and
ice as a mixture of three constituents occupying a time-dependent region Ω ⊂ R

3.
Denote by the subscripts s, w, i the quantities pertaining to salt, water and ice.
Accordingly, ρs, ρw, ρi are the mass densities of salt, water and ice and

ρ = ρs + ρw + ρi

is the mass density of the mixture. We let at least one of the components be
compressible and this makes the use of concentrations more convenient than that
of volume fractions. Let c, φ be the concentrations of salt and ice,

c =
ρs
ρ
, φ =

ρi
ρ
.

Also let

ξ =
ρs

ρs + ρw
be the concentration of salt relative to water. It follows that

1

c
=
ρi
ρs

+
ρs + ρw
ρs

=
φ

c
+

1

ξ

and hence

c = ξ(1− φ). (2.1)

Since φ, c, ξ ∈ [0, 1], each of them can be regarded as a phase field. As a consequence,
we may regard as independent variables the triplet ρ, φ, c or ρ, φ, ξ, the two triplets
being in 1-1 correspondence except when φ = 1 or ρw = 0. In terms of the two
triplets we have

ρs = ρc = ρ(1− φ)ξ, ρi = ρφ, ρw = ρ(1− c− φ) = ρ(1− ξ)(1 − φ).

Let Ms, Mw, and Mi be the whole masses of salt, water, and ice of the mixture.
We define

c∗ :=
Ms

Ms +Mw +Mi

, ξ∗ :=
Ms

Ms +Mw

.

So c∗ (ξ∗) is the mean value of c (ξ) when the salt is distributed uniformly in the
mixture (in the water). On the other hand, ξ∗ cannot exceed ξs, the solubility of
salt relative to water. According to their definitions, we infer that c∗ ≤ ξ∗ ≤ ξs.
Typically, seawater in the world’s oceans has a uniform salinity c∗ ≈ 0.035.

For further convenience, we shall identify ξℓ and ξs, since they differ for less
than 4%. Accordingly, the phase diagram in the concentration-temperature plane
may be represented in a simplified form (see Fig. 2). Since the aim of this study is
brine rejection, we are not interested in the precipitation phenomena which occurs
for concentration values beyond ξℓ. Then, hereafter, we restrict our attention to
c ∈ [0, ξℓ].

We now state the local form of the balance equations. Let vs, vw , vi be the
velocity fields. The barycenter velocity v is given by

v = cvs + φvi + (1− c− φ)vw .

Let us, ui be the diffusion velocities and js, ji the mass fluxes,

us = vs − v, ui = vi − v, js = ρcus, ji = ρφui.

The mass of salt is conserved and hence ρs satisfies the continuity equation

∂tρs +∇ · (ρcvs) = 0, (2.2)
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Figure 2. Simplified phase diagram of a water-salt (NaCl) solution.

where ∂t denotes the partial derivative with respect to time t. Given any function
ψ(t,x), t ∈ R,x ∈ Ω, we denote by a superposed dot the barycentric time derivative
so that

ψ̇ = ∂tψ + v · ∇ψ.

Hence by (2.2) it follows that

ρċ = −∇ · js. (2.3)

The global conservation of mass for salt implies that
∫

Ω

ρc dv = constant.

Hence it follows that

0 =
d

dt

∫

Ω

ρc dv =

∫

Ω

ρċ dv.

By (2.3) and the divergence theorem we have
∫

∂Ω

js · n da = 0, (2.4)

where n is the unit outward normal to the boundary ∂Ω of Ω. For definiteness we
account for (2.4) by letting

js · n = 0 at ∂Ω.

Because of the phase transition, ice and water are regarded as chemically reacting
continua so that ρi satisfies the continuity equation

∂tρi +∇ · (ρφvi) = τ, (2.5)

where τ is the mass of ice produced per unit time and unit volume because of the
phase transition. Hence it follows that

ρφ̇ = −∇ · ji + τ. (2.6)

Accordingly, the continuity equation for ρw becomes

∂tρw +∇ · (ρwvw) = −τ. (2.7)

Summation of (2.2), (2.5), (2.7) provides the continuity equation for the mixture,

ρ̇ = −ρ∇ · v. (2.8)

We might go on and consider the evolution equation for js and ji. For simplicity,
though, following a standard view in the modelling of mixtures, we regard js and ji
as unknown functions subject to thermodynamic restrictions.
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When focusing on the triplet of independent variables (ρ, φ, ξ), by virtue of (2.1)
we have

ċ = (1 − φ)ξ̇ − ξφ̇,

and then it is convenient to replace (2.3) with

ρ(1 − φ)ξ̇ = ξτ −∇ · js − ξ∇ · ji. (2.9)

The balance of linear momentum for the mixture is given in the standard form

ρv̇ = ∇ ·T+ ρf , (2.10)

where T is the stress tensor and f is the body force density. The stress T is taken
to be symmetric, as it follows from the balance of angular momentum.

About the balance of energy and entropy, the (total) energy flux h and the
entropy flux Φ need not be merely related by

Φ =
1

θ
h.

Also, different definitions of h and Φ lead to significantly different consequences
about thermodynamic restrictions. To fix ideas we let

h = q+w

and regard q as the heat flux and w as an extra-energy flux as is done e.g. in [15]
where the extra-energy flux is considered as tċ, t being an appropriate generalized
force. The balance of energy is then taken in the form

ρ(e +
1

2
v2 )̇ = ∇ · (Tv − q)−∇ ·w+ ρf · v + ρr,

where e is the energy density, L the velocity gradient and r the heat supply (per
unit volume). In view of (2.10) it follows that

ρė = T · L−∇ · q−∇ ·w + ρr. (2.11)

Beacuse of its internal character, and hence differently from q, w is required to
satisfy the boundary condition

w · n = 0 at ∂Ω.

The second law is taken as the statement that the entropy density η satisfies the
inequality

ρη̇ ≥
ρr

θ
−∇ ·

q

θ

for every process compatible with the balance equations (2.3), (2.6), (2.8), (2.10),
(2.11). Hence substitution of ρr − ∇ · q from (2.11) and use of the free energy
ψ = e− θη provide the Clausius-Duhem (or second law) inequality in the form

− ρ(ψ̇ + ηθ̇) +T · L−
1

θ
q · ∇θ −∇ ·w ≥ 0. (2.12)
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3. Thermodynamic restrictions. Let D = symL be the stretching tensor. A
superposed ring ◦ denotes the deviatoric part. Since trL = trD = ∇ · v then

◦

L= L−
1

3
(∇ · v)1,

◦

D= D−
1

3
(∇ · v)1.

We assume that js, ji, T, w are determined by the set of variables

Γ = (θ, ρ, c, φ,∇θ,∇c,∇φ,D, ...),

through appropriate constitutive functions, the dots indicating possible higher-order
gradients of θ, c, φ,D. Also we let ψ be given by a C2-function of

Γ0 = (θ, ρ, c, φ,∇θ,∇c,∇φ).

For a direct interpretation of the results, we eventually regard ξ and φ as indepen-
dent variables instead of c and φ. Technically, though, because of (2.3) and (2.6) it
is convenient to start with c and φ as independent variables and next to regard the
dependence on c and φ through that on ξ and φ.

Time differentiation of ψ(Γ0) and substitution in (2.12) gives

−ρ[(∂θψ + η)θ̇ + ∂ρψρ̇+ ∂cψċ+ ∂φψφ̇+ ∂∇cψ · ∇̇c+ ∂∇cψ · ∇̇c

+∂∇φψ · ∇̇φ+ ∂∇φψ · ∇̇φ] +T · L−
1

θ
q · ∇θ −∇ ·w ≥ 0,

We first infer that this inequality holds for any value of θ̇ only if

η = −ψθ.

For any function g on Ω× R, the identity

∇̇g = ∇ġ − LT∇g

holds. Substitution for c and φ and use of the balance equation (2.8) allow us to
write

[T+ ρ2∂ρψ1+ ρ∇c⊗ ∂∇cψ + ρ∇φ⊗ ∂∇φψ] · L− ρ∂cψċ− ρ∂φψφ̇

−ρ∂∇cψ · ∇ċ− ρ∂∇φψ · ∇φ̇−
1

θ
q · ∇θ −∇ ·w ≥ 0. (3.1)

Letting
δcψ := ρ ∂cψ −∇ · (ρ ∂∇cψ),

and the like for φ, we can write (3.1) in the form

[T+ ρ2∂ρψ1+ ρ∇c⊗ ∂∇cψ + ρ∇φ⊗ ∂∇φψ] · L− δcψ ċ− δφψ φ̇

−
1

θ
q · ∇θ −∇ · (ρ ∂∇cψċ+ ρ ∂∇φψφ̇+w) ≥ 0.

In view of (2.3) and (2.6) we can replace ċ and φ̇ to obtain

[T+ ρ2ψρ1+ ρ∇c⊗ ∂∇cψ + ρ∇c⊗ ∂∇cψ] · L−
1

θ
q · ∇θ

+
1

ρ
δcψ∇ · js +

1

ρ
δφψ∇ · ji −

τ

ρ
δφψ +∇ · (−w− ρ ∂∇φψφ̇− ρ ∂∇cψċ) ≥ 0.

(3.2)

To obtain restrictions placed by (3.2) we need to specify the dependence of T on
L. We let

T = T0 + 2ν
◦

D + σ(∇ · v)1, ν, σ ≥ 0

where T0 is independent of D. Also, let −p be the isotropic part of T0 so that

T0 = −p1+
◦

T0 .
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In view of (2.8), substitution in (3.2) and some rearrangements yield

(
◦

T0 +ρ
◦

∇c⊗ ∂∇cψ +ρ
◦

∇φ⊗ ∂∇φψ)·
◦

L +2ν
◦

D ·
◦

D +σ(∇ · v)2

+(−p+ ρ2∂ρψ +
1

3
ρ∇c · ∂∇cψ +

1

3
ρ∇φ · ∂∇φψ)∇ · v −

τ

ρ
δφψ −

1

θ
q · ∇θ

+µs∇ · js + µi∇ · ji +∇ · (−w − ρ∂∇φψφ̇+ ∂∇cψ∇ · js) ≥ 0, (3.3)

where µs and µi are defined by

ρµs := δcψ, ρµi := δφψ. (3.4)

Hence we can write (3.3) in the form

(
◦

T0 +ρ
◦

∇c⊗ ∂∇cψ +ρ
◦

∇φ⊗ ∂∇φψ)·
◦

L +2ν
◦

D ·
◦

D +σ(∇ · v)2

+(−p+ ρ2∂ρψ +
1

3
ρ∇c · ∂∇cψ +

1

3
ρ∇φ · ∂∇φψ)∇ · v −

τ

ρ
δφψ −

1

θ
q · ∇θ

−js · ∇µs − ji · ∇µi +∇ · (−w− ρ∂∇φψφ̇− ρ∂∇cψċ+ µsjs + µiji) ≥ 0.

It then follows that the Clausius-Duhem inequality (2.12) holds if

T0 = −ρ2∂ρψ1− ρ∇c⊗ ∂∇cψ − ρ∇φ⊗ ∂∇φψ, (3.5)

w = µs js + µi ji − ρ∂∇cψċ− ρ∂∇φψφ̇, (3.6)

τ

ρ
δφψ +

1

θ
q · ∇θ + js · ∇µs + ji · ∇µi ≤ 0. (3.7)

In addition, since T (and hence T0) is symmetric then ψ is required to satisfy

∇c⊗ ∂∇cψ = ∂∇cψ ⊗∇c, ∇φ⊗ ∂∇φψ = ∂∇φψ ⊗∇φ.

As a consequence, there exist two scalar functions, χ and ζ, such that

∂∇cψ = χ(θ, ρ, c, φ)∇c, ∂∇φψ = ζ(θ, ρ, c, φ)∇φ.

Hence it follows that

ψ = Ψ(θ, ρ, c, φ) +
1

2
χ(θ, ρ, c, φ)|∇c|2 +

1

2
ζ(θ, ρ, c, φ)|∇φ|2. (3.8)

Though the inequality in (3.7) involves both q and js, ji, for the sake of simplicity
we require each term to be non-positive, which in turn implies that

τ = −γδφψ, js = −κ∇µs, ji = −λ∇µi, q = −k∇θ, (3.9)

γ, κ, λ and k being positive-valued functions of Γ0.
Some remarks are in order about the constitutive equation for the stress tensor

T and the chemical potential µ. It is natural to regard ρ2∂ρψ as the (dynamic)
pressure P which is then a function of θ, ρ, c,∇c,∇φ. Also, by (3.5) and (3.8),

p = −
1

3
trT0 = P +

1

3
ρχ|∇c|2 +

1

3
ρ ζ|∇φ|2.

This means that the spherical part p of T consists of a pressure term P and ad-
ditional contributions, ρχ|∇c|2/3 and ρ ζ|∇φ|2/3, due to the inhomogeneity of the
concentration c and of the phase variable φ.
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4. Evolution equations. The evolution of the mixture is governed by eqs (2.3),
(2.6), (2.7), (2.10), (2.11) in the unknowns c, φ, ρ,v, θ. Based on the thermodynamic
restrictions (3.4) and (3.9), in view of the general form (3.8) of the free energy we
have

µs = ∂cψ−
1

ρ
∇ · (ρχ∇c), µi = ∂φψ−

1

ρ
∇ · (ρζ∇φ), τ = −γ[ρ∂φψ−∇ · (ρζ∇φ)].

We can then write the evolution equations in the form

ρċ = ∇ · (κ∇µs), (4.1)

ρφ̇ = ∇ · (λ∇µi) + τ, (4.2)

ρ̇ = −ρ∇ · v, (4.3)

ρv̇ = ∇ · {−ρ2∂ρψ1− ρχ∇c⊗∇c− ρζ∇φ ⊗∇φ+ 2ν
◦

D +σ(∇ · v)1} + ρf , (4.4)

ρė =− ρ2∂ρψ∇ · v − ρχ∇c ·D∇c− ρζ∇φ ·D∇φ+ 2ν
◦

D ·
◦

D

+ σ(∇ · v)2 +∇ · (k∇θ)−∇ ·w + ρr.
(4.5)

By virtue of (3.6) and (3.9), the energy flux w takes the form

w = −
1

2
κ∇µ2

s −
1

2
λ∇µ2

i − ρχ∇c ċ− ρζ∇φ φ̇, (4.6)

where ċ and φ̇ stand for 1/ρ times the right-hand side of (4.1) and (4.2).
Equations (4.1)-(4.5) generalize corresponding evolution equations appeared in

the literature. The relation to such equations is provided in §6. In particular,
a Ginzburg-Landau equation can be obtained from (4.2) by letting λ = 0. This
supports the view that the diffusion effect, which is proportional to λ, turns out to
be negligible when a solid-liquid phase transition occurs. Then this phenomenon is
usually ruled by an evolution equation of the second-order, rather than the fourth-
order, in space (see, for instance, [7] and references therein).

Now, to be operative, we need a specific function for the free energy ψ of (3.8).
This function is set up by borrowing from the separate modelling of phase separation
and phase transition.

5. Free energy. Our goal is to capture the main feature occurring during the
freezing of the salted water, namely, the salt entrapment in small regions where the
cryoscopic effect forbid complete ice formation. This can be achieved by modeling
the ice-water transition jointly with the salt separation and concentration into water.
To get a model which accounts for both phase separation and phase transition we
first set up separately the free energies for the two phenomena.

Hereafter, we introduce some simplifying assumptions in order to bring into focus
the main features of the phenomenon we deal with. First, we restrict our attention
to stationary conditions, so that stable states correspond to minima of the free
energy function ψ. Then, we limit our analysis to local processes, so that we are
allowed to assume ∇c = ∇φ = 0 in a neighborhood of a point x ∈ Ω. If this is the
case, by virtue of (3.8) the function ψ reduces to Ψ.

Finally, for simplicity and a more immediate relation to classical model equations,
we regard ρ as a parameter and omit the dependence of Ψ on ρ.
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5.1. Phase separation in saline water. To fix ideas we let φ = 0 so that the
continuum consists of saline water. Hence, c = ξ is the concentration of salt in water
and we assume c ∈ [0, ξℓ]. In order to model the eutectic freeze crystallization as a
phase separation phenomenon, we introduce a change of variables. Let u = û(c) be
a monotone increasing function on [0, ξℓ] such that

û(0) = 0, û(c∗) = 1/2, û(ξℓ) = 1,

namely, u vanishes when the salt is absent, takes the mean value 1/2 when the salt is
distributed uniformly in the mixture, reaches its maximum value when c = ξℓ ≡ ξs,
that is when the brine takes the maximum salinity value. For definiteness we let

û(c) = δ cγ , γ =
ln 1/2

ln c∗ − ln ξℓ
≈ 0.339, δ =

1

ξγℓ
≈ 1.555.

Let K̂ and Ĥ be the functions

K̂(u) =

{

A sin4 πu u ∈ [0, 1],

4Au2(1− u)2 otherwise,

Ĥ(u) =

{

−2A sin2 πu u ∈ [0, 1],

0 otherwise,

where A is a positive scaling constant. Both K̂(u) and |Ĥ(u)| have a maximum at

u = 1/2, and K̂(0) = K̂(1) = Ĥ(0) = Ĥ(1) = 0. The graphs in Fig. 3 are drawn by
assuming A = 1, c∗ = 0.035 and ξℓ = 0.27.

a)

0 0.5 1 u

b)

ξsc∗0 c

u

1

0.5

Figure 3. a) Plots of K̂ (solid) and Ĥ (dashed); b) plot of û.

Hereafter we let

K(θ, c) = K̂(θ, û(c)) , H(θ, c) = Ĥ(θ, û(c)).

Unlike usual applications of the phase separation theory, we use here rescaled po-
tentials which depend on c∗ in order to adapt its techniques to the problem at hand.
The phase-separation free energy Ψ is then defined to be

Ψ(θ, c) = Ψ̂(θ, û(c)) = θSK̂(û(c)) + θĤ(û(c)), (5.1)

where θS is a reference temperature. Indeed, since the partial derivative ∂cΨ is
given by

∂cΨ(θ, c) = ∂uΨ̂(θ, û(c))û′(c) = 2Aπ sin(2π û(c)) û′(c)(θS sin2 π û(c)− θ)

and û′(c) > 0, c ∈ [0, ξℓ], it follows that Ψ has an extremum when û(c) = 1/2,
namely at c = c∗, for any value of θ. Also, if θ < θS then ∂cΨ vanishes also when
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û(c) = 1
2 ± 1

π
arccos

√

θ/θS . Hence if θ ≥ θS then Ψ̂ has a single minimum at

u = 1/2. Instead, if θ < θS then Ψ̂ is double-well shaped with a maximum, at

u = 1/2, and two minima, at u = 1
2 ± 1

π
arccos

√

θ/θS. This ascribes to θS the
meaning of critical temperature for separation (see Fig. 4).

0 10.5 φ

Ψ

Figure 4. Plots of Ψ̂(θ, ·) at θ/θS = 2/3 (solid), θ/θS = 1 (short
dashes) and θ/θS = 4/3 (long dashes) when A = 1.

5.2. Solid-liquid transition in pure water. We now let c = 0 so that the con-
tinuum is a mixture of ice and water and φ ∈ [0, 1] is the ice concentration. Let
G,L be the functions defined by

G(φ) =











B(sin2 πφ− cosπφ+ 1) φ ∈ [0, 1],

Bφ2 φ < 0,

B[(1 − φ)2 + 2] φ > 1.

L(φ) =











B cosπφ φ ∈ [0, 1],

B φ < 0,

−B φ > 1.

where B is a positive scaling constant. Their sum, F = L+G, yields a double-well
shaped function (see Fig. 5).

0 0.5 1 φ

Figure 5. Plots of G(φ) (solid), L(φ) (long dashes) and F (φ) (short
dashes) relative to B = 1.

The corresponding phase-transition potential is giving by

Ψ(θ, φ) = θTL(φ) + θG(φ). (5.2)



150 MAURO FABRIZIO, CLAUDIO GIORGI AND ANGELO MORRO

It is double-well shaped with minima at φ = 0 and φ = 1 for all values of θ. In
order to compare this expression of the free energy to other ones which appeared
in previous papers on phase-transition models (for instance, [6, 7]), we define the
double-well shaped function F = L+G so that Ψ takes the form (see Fig. 6)

Ψ(θ, φ) = θT

[

F (φ) +
θ − θT
θT

G(φ)

]

.

0 10.5 φ

Ψ

Figure 6. Plots of Ψ(θ, ·) at θ/θT = 3/2 (solid), θ/θT = 1 (short
dashes) and θ/θT = 1/2 (long dashes).

In particular, when θ = θT both minima have the same free energy value,

Ψ(θT , φ) = θT [L(φ) +G(φ)] = B θT sin2 πφ, φ ∈ [0, 1].

This allows θT to be viewed as the transition temperature.

5.3. Solidification and separation. It seems natural to think that both phase-
transition and separation are described by combining the two free energies. This
suggest that we may generalize the previous models by adding (5.2) to (5.1) and
properly choosing the scaling constants A and B. For the sake of definiteness,
hereafter we assume A = B = 1.

A realistic modelling have to account for two effects. First, the transition temper-
ature θT may depend on the concentration c of the solute (salt). Such dependence
may be roughly approximated by (1.1). Secondly, the ice-salt separation temper-
ature θS is likely unaffected by the content of fluid relative to that of solid and
hence by φ. These assumptions are in agreement with the simplified phase diagram
depicted in Fig. 2 and may be written as follows

θT = θτ − α0c, θS = θσ.

As a consequence, we take the free energy for the mixture salt-water-ice in the form

Ψ(θ, c, φ) = θσK(c) + θ[H(c) +G(φ)] + [θτ − α0c]L(φ). (5.3)

For the ease in displaying, we express this potential as a function of u ∈ [0, 1] rather
than c ∈ [0, ξℓ], as well as in subsection 5.1, namely

Ψ(θ, c, φ) = Ψ̂(θ, u(c), φ) = θσK̂(u(c)) + θ[Ĥ(u(c)) +G(φ)] + [θτ − α0c]L(φ).
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5.4. Brine formation and salt separation. According to (4.1), salt separation
is governed by

ρċ = ∇ ·

[

κ

(

∇∂cΨ−
1

ρ
∇ · (ρχ∇c)

)]

.

In order to discuss punctual equilibrium, it is convenient to write the free energy
(5.3) in the equivalent form

Ψ(θ, c, φ) = θσK(c) + θH(c) + θT

[

F (φ) +
θ − θT
θT

G(φ)

]

, (5.4)

and replacing c with u it follows

Ψ̂(θ, u, φ) = θσK̂(u) + θ
(

Ĥ(u) +G(φ)
)

+
(

θτ − α0û
−1(u)

)

L(φ),

where û−1 denotes the inverse function of û. Setting aside the diffusion effects, we
look for equilibria by restricting our attention to the minima of the free energy (5.4)
with respect to c. Since

∂cΨ(θ, c, φ) = θσK
′(c) + θH ′(c)− α0L(φ),

it is worth distinguishing between small values of φ, φ < 1/2, when the mixture is
mostly liquid, and large values of φ, φ > 1/2, when the mixture is mostly icy.

The case φ = 0 is quite close to that already discussed in section 5.1. First, let
0 < φ < 1/2, so that L(φ) > 0. Fig. 7 shows the plot of Ψ̂ as a function of u,
corresponding to φ = 1/4 and different values of θ.

0 0.5 1 u

Ψ̂

Figure 7. Plots of Ψ̂(θ, ·, φ) at φ = 1/4, when θ/θσ > 1 (solid), θ = θσ
(dotted) and θ/θσ < 1 (dashed).

The vanishing of ∂cψ yields

θσK
′(c) + θH ′(c) = α0L(φ) > 0,

and when c ∈ [0, ξℓ] it takes the form

2Aπθσû
′(c) sin 2πû(c)[sin2 πû(c)− θ/θσ] = α0L(φ) > 0. (5.5)

If θ ≥ θσ then solutions to this equation occur only at u ∈ (1/2 , 1) or, possibly,
at u > 1. The potential is convex in a large neighborhood of u = 1/2, which
corresponds to the concentration mean value c∗. In particular, the local minimum
occurring at u > 1 represents the salt precipitation, whereas the absolute minimum
lying in (1/2 , 1) is a stable state which corresponds to a concentration of salt c†

greater than the mean value, namely c∗ < c† < ξℓ. Moreover, the corresponding
salinity of the water ξ† is even greater, in that

c† < ξ† = c†/(1− φ) < 2c†.
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If, instead, θ < θσ then sin2 πu(c)− θ/θσ may be positive or negative depending on
u and then many solutions occur, both at 0 < u < 1/2 and 1/2 < u < 1, and also
at u > 1. The potential is no longer convex around u = 1/2 and this is typical of
separation phenomena. Nevertheless, the absolute minimum still belong to (1/2 , 1).

A symmetric behaviour occurs if φ > 1/2, so that L(φ) < 0. When θ > θσ the
absolute minimum is between 0 and 1/2 and then corresponds to a salt concentration
smaller than the mean value, 0 < c† < c∗. By comparison with the previous result,
we infer that the salt concentration is higher in the liquid phase than in the solid
one (ice). If θ < θσ, the absolute minimum is near c = 0, so that the separation

(precipitation) of salt is negligible. Fig. 8 shows the plot of Ψ̂ as a function of u,
corresponding to φ = 3/4 and different values of θ.

0 0.5 1 u

Ψ̂

Figure 8. Plots of Ψ̂(θ, ·, φ) at φ = 3/4, when θ/θσ > 1 (solid), θ = θσ
(dotted) and θ/θσ < 1 (dashed).

In words, if 0 < φ < 1/2 and hence the mixture is mostly liquid then u (and hence
c) is higher. If, instead, 1/2 < φ < 1 and hence the mixture is mostly solid then the
equilibrium concentration is smaller. At equilibrium, we can then say that the salt
concentration becomes smaller and smaller as the ice concentration, φ, increases.
We can conclude that during the freezing process the salt migrates from mostly icy
to mostly liquid regions, so generating the so called brine channels.

Unfortunately, it is not possible to actually appreciate how close to 1 (the actual
precipitated salt concentration) or to 0 are the absolute minima when θ > θσ and
either 0 < φ < 1/2 or 1/2 < φ < 1. However, this is not a real drawback for the
aim of this study, which is the formation of brine channels by freezing sea water. In
the previous discussion of the punctual equilibrium values, indeed, a crucial role is
played by the fact that the initial salt concentration, c0, is assumed to coincide with
the mean value, c0 = c∗, namely u0 = û(c∗) = 1/2. Hence, the non-convexity of the
potential near the ends of the interval [0, 1] play no role in the ice-salt separation
phenomena.

5.5. Freezing of salted water. The ice formation in salted water is governed by
(4.2) with λ = 0, namely

ρφ̇ = −γ
[

ρ∂φΨ−∇ · (ρζ∇φ)
]

,

where Ψ is given by (5.4). Setting aside the diffusion effects, we look for the minima
of the free energy with respect to φ by evaluating

∂φΨ(θ, c, φ) = (θτ − α0c)L
′(φ) + θG′(φ).

The vanishing of ∂φΨ results in

(θ − θT ) sinπφ + θT sin 2πφ = 0,
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where θT = θτ − α0c. In addition,

∂2φΨ = Bπ2[(θ − θT ) cosπφ+ 2 θT cos 2πφ].

If θ = θT then ∂φΨ vanishes at φ = 0, 1/2, 1. At the solid and liquid phases, φ = 0, 1,
we have two minima with the same energy, whereas at the mixture of equal parts of
liquid and solid phases, φ = 1/2, there is a maximum. If θ > θT then the maximum
moves to the right and its abscissa exceeds 1/2. Moreover, Ψ takes its absolute
minimum at φ = 0. On the contrary, if θ < θT then the maximum moves to the
left, its abscissa falls under 1/2 and Ψ takes its absolute minimum at φ = 1. Hence,
if θ > θT the liquid phase prevails and viceversa. This statement is confirmed by
the plots of Fig. 6 and supports the view that θT is the transition temperature. In
addition, since θT = θτ − α0c, α0 > 0, the cryoscopic effect follows.

6. Relation to other approaches . A phenomenological model for the formation
of brine channels is given [13]. The model involves two fields, an order parameter u
and the salinity v. Borrowing from the Ginzburg-Landau theory (see, e.g., [10, 6, 1])
of phase transitions, Kutschan et al. [13] establish the reaction diffusion system, in
one space dimension (x), in the form

∂tu = f(u, v) +D1∂
2
xu, (6.6)

∂tv = g(u, v) +D2∂
2
xv, (6.7)

where D1, D2, a1, a2, b1, b2, c, d are positive constants and the source terms, f and
g, model the reaction kinetics and are taken to be

f(u, v) = a1u− cu3 + du5 + b1v,

g(u, v) = −a2v − b2u.

In particular, by letting (as suggested in [13])

Ψ(u) =
1

2
a1u

2 −
1

4
cu4 +

1

6
du6 −

1

2
D1|∇u|

2

the first equation of the system takes the Ginzburg-Landau expression

∂tu = ∂uΨ−∇ · ∂∇uΨ+ b1v.

At a first stage, the salinity v may be identified with the salt concentration. The
order parameter u is taken to represent the tetrahedricity and may be viewed as
the analogue of the ice concentration φ. It is worth noting that the salt exchange
between ice and water is realized by the gain term b1v and the loss term −a2v.
Unfortunately, minima of Ψ with respect to u turn out to be unstable equilibria of
this system when v = 0. If this is the case, neglecting the diffusion term it follows

∂tu = ∂uΨ,

so that if u† is a local minimum of Ψ, then it is an equilibrium point, ∂tu =
∂uΨ(u†) = 0, but ∂tu = ∂uΨ(u) > 0 all around u†, which means that it is unstable.
Hence, the resulting model cannot be compatible with thermodynamic principles.

By (2.6), we have

φ̇ =
τ

ρ
−

1

ρ
∇ · ji. (6.8)

As a consequence, the source f(u, v) in (6.6) is the analogue of τ/ρ. The evolution
equation (4.1) for c has no source term because salt is not produced in the mixture.
However salt is produced in water because of the salt exchange between ice and
water. Hence the occurrence of g in (6.7) indicates that v has to be regarded as the
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salt concentration relative to water only, that is ξ in the present notation. Indeed,
by (2.9) we have

ξ̇ =
ξ

ρ(1 − φ)
τ −

1

ρ(1 − φ)
∇ · js −

ξ

ρ(1− φ)
∇ · ji. (6.9)

Hence we find the direct correspondence between g(u, v) and ξτ/ρ(1 − φ). Finally,

the linear approximation, as in (6.6) and (6.7), provides φ̇ ≃ ∂tφ and ξ̇ ≃ ∂tξ.
Continuing the comparison between (6.6)-(6.7) and (6.8)-(6.9), we observe that

D2∂
2
xv is the linear analogue of ∇ · js/ρ. This amounts to saying that ji has to

be proportional to ∇φ or that, by (3.9), the chemical potential µi is a function
of φ but is independent of ∇φ. This in turn means that the evolution equation
(6.6) corresponds to letting the free energy be independent of ∇φ, or ∇u, that is
χ = ζ = 0. This remark applies also to (6.7). Accordingly,

τ = γρ ∂φψ, ji = −λ∇∂φψ, js = −κ∇∂cψ = −κ∇
∂ξψ

1− φ
,

since ∂ξc = 1 − φ by (2.1). Furthermore, (6.8) involves both js and ji and hence
also a term ∂2xu seems to be in order, in addition to ∂2xv. Summarizing, from our
original system (6.8)-(6.9) we derive the approximation

ρ ∂tφ = γρ ∂φψ + λ∆∂φψ

ρ(1− φ) ∂tξ = γρ ξ∂φψ + λξ∆∂φψ + κ∆
∂ξψ

1− φ

which is the analogue of (6.6)-(6.7).
A dependence of the free energy on ∇c and ∇φ, or ∇ξ and ∇φ, is in order also

in standard approaches. The classical Cahn-Hilliard equation

∂tc+ α∆2c−∆h(c) = 0

follows by letting the chemical potential µ depend on the Laplacian ∆c (see [3, 4,
10]), which in turn follows by letting the free energy be a function of ∇c.

7. Conclusions. In essence, the present approach improves classical models of the
Cahn-Hilliard types by accounting for a parameter, c, related to the salinity of the
fluid. Unlike [13], our model is compatible with thermodynamics, in particular with
the second law in the form of the Clausius-Duhem inequality. This compatibility is
guaranteed by introducing an extra-energy flux, w, whose explicit expression (4.6)
has been derived a posteriori. Also, it improves the model of [13] by accounting
for a dependence of the free energy potential on ∇c and ∇φ. Such dependence is
customary in the general setting of phase field models [2, 7]. The main feature which
occurs during the freezing of the salted water, namely, the salt entrapment in the
liquid part of the mixture, is modelled by a suitable choice of the free energy function
and assuming that all the involved processes start from states whose salinity is closed
to the mean value c∗. Finally, we stress that the temperature which rules the phase
transition is regarded here as an independent variable and not as a parameter.
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