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Abstract 
Woody plants living in temperate climates finely regulate their growth and development in relation to seasonal changes; their 
transition from vegetative to dormancy phase represents an adaptation to their environment. Events occurring in the shoot 
during onset/release from dormancy have been largely investigated, whereas in woody roots they remain completely 
unknown. In recent years, we have been interested in understanding the molecular and physiological events occurring in 
poplar woody root during release from dormancy. Here, we propose the results of a comparative analysis of the proteome of 
poplar woody root sampled at different time points: T0 (dormancy condition), T1 (release from dormancy), and T2 (full 
vegetative condition). This study identified proteins that may be involved in the long-term survival of a dormant root or 
landmarking a specific time point. 
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Introduction dormancy in the shoot of woody plants (Welling et al. 
2002). Despite the recognized importance of the 

Temperate perennial woody plants use different aboveground parts of trees, shrubs, and forests, roots 
environmental signals, i.e. light and temperature, to have been poorly investigated (Long et al. 2011; 
coordinate their growth and development in relation Rewald et al. 2011; Delgado et al. 2012; Ow & Sim 
to seasonal changes. The capacity to modulate the 2012; Verma et al. 2012), and very few studies have 
phase shift from growth to dormancy is a basic been interested on the variety of internal (e.g., 
adaptation of temperate perennial plants to their genotype of plant species) and external (e.g., light, 
environment (Jansson et al. 2010; Desotgiu et al. temperature, precipitation, and soil properties) 
2012; Vitale et al. 2012). Indeed, the transition of factors that coordinate root dynamics (Abbasi et al. 
meristems into and out of dormant bud is crucial for 2011; Palove-Balang &Mistrik 2011; Zhang et al. 
plant growth and survival (Furukawa et al. 2011). 2011) in relation to seasonal changes (Chiatante 

Physiological and molecular changes occurring et al. 2005; Montagnoli et al. 2012a, 2012b; Zhang 
during dormancy induction and break have been et al. 2012). 
mainly investigated in the shoots of several woody Since poplar is the first forest tree the genome of 
plants (Arora et al. 2003, Ruttink et al. 2007; which has been determined (Tuskan et al. 2006), 
Campoya et al. 2011; Terzoli et al. 2011), whereas it has become a pivotal model for studies related to 
the effects of seasonal changes on the root functions different aspects of growth and dormancy in woody 
and activities have not been well characterized yet. plants (Durand et al. 2011; Bonadei et al. 2012). 
For example, it is well established that photoperiod In previous studies, we investigated the effects of 
and temperature are the environmental signals that bending stress on the woody roots of poplar (Populus 
trigger the transitions between rapid growth and nigra) along a three-point time course that, based on 
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shoot phenological observations, was proposed to 
correspond to dormancy, beginning of vegetative 
growth, and active growth (Trupiano et al. 2012a, 
2012b, 2013b). Preliminary insights were also 
obtained on the molecular and physiological events 
occurring in poplar root during the transition from 
dormancy to active growth (Trupiano et al. 2013b). 
To further investigate molecular factors regulating 
the root functions, which may play important roles in 
the long-term survival of dormant structures, we 
reanalyzed the proteome of poplar woody root along 
the three time points. In this study, we present data 
referring to proteins remaining unchanged during 
the whole time course, together with the expression 
trend of the most significant proteins landmarking 
the dormancy, the beginning of vegetative growth, 
and the active growth. 

Materials and methods 

Plant material 

The seedlings of one-year-old Populus nigra were 
grown in a mixture of soil, peat, and pumice under 
controlled water regime, natural photoperiod, and 
temperature (mean annual temperature of 12–138C) 
in a greenhouse. Taproots were harvested after 12 
(February; T0; dormancy), 13 (March; T1; beginning 
of the vegetative growth), and 14 (April; T2; active 
growth) months of plant development; sections 
between 10 and 25 cm were randomly sampled and 
used for proteomic profiling. Three biological 
replicates were sampled for each condition. 

Protein extraction, 2D gel electrophoresis, gel scanning 
and analysis 

Total proteins were extracted according to the phenol 
protocol (Mihr & Braun 2003) with minor modifi

cations, as reported in Scippa et al. (2008), and 
separated by 2D gel electrophoresis (2-DE), as 
described by Trupiano et al. (2012a). 2-DE gels (in 
technical triplicate for each sample) were scanned 
using a GS-800 calibrated densitometer (Bio-Rad, 
Hercules, CA, USA); corresponding images were 
analyzed by the PDQuest software (Bio-Rad, 
Hercules, CA, USA). Spot detection and matching 
between gels were done automatically, followed by 
manual verification. Protein spots were annotated 
only if detectable in all gels. After normalization of 
the spot densities against the whole-gel densities, the 
percentage volume of each spot was averaged for 
three different replicates of each biological sample, 
and statistical Student’s t-test analysis ( p , 0.01) 
was carried out to find out significant changes in 
proteomic profiles between the samples. A twofold 
change in normalized spot densities was considered 

as indicative of a differential expression. Further
more, to identify specific time-related protein 
markers, analysis of variance (ANOVA – p , 0.05) 
was carried out. 

In-gel digestion, mass spectrometry and protein 
identification 

Spots were manually excised from the gels, tritu
rated, and washed with water. Proteins were in-gel 
reduced, S-alkylated, and digested with trypsin as 
previously reported (Ialicicco et al. 2012). Digest 
aliquots were removed and subjected to a desalting/ 
concentration step on ZipTipC18 (Millipore Corp., 
Bedford, MA, USA) using 5% formic acid/50% 
acetonitrile as eluent before MALDI-TOF-MS and/ 
or nanoLC-ESI-LIT-MS/MS analysis. Resulting MS 
data were used for protein identification following 
the procedures already described in Trupiano et al. 
(2012a, 2013b). 

Results and discussion 

In our earlier papers (Trupiano et al. 2012a, 2013b), 
we analyzed the effect of bending on the proteomic 
profile of poplar roots by performing a differential 
study with respect to non-bent counterparts; this 
study was carried out on time-course basis by 
analyzing the tissues from plants under a dormancy 
(T0), beginning of vegetative growth (T1), and active 
growth (T2) condition, which are represented here 
according to their corresponding shoot phenology 
(Figure 1). Data related to unbent roots were simply 
used as a background to be subtracted to the whole 
proteomic data-set of the bent counterparts, with the 
aim to identify specific elements associable with root 
bending. Interpretation of the differential results for 
unbent roots at the three time points was achieved 
later; this is the topic of the short communication 
reported here. 

Figure 1. Populus nigra phenological stages assessment by bud 
development analysis: winter buds, stage A (February, T0); 
swelling buds, stage B (March, T1); flushing buds, stage C (April, 
T2). Bud development was quantified using six levels of 
morphology score (0–6); minimal score (0) was given to the 
winter bud and maximum score (6) to buds with a growing stem. 
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Figure 2. Two-dimensional proteome reference map of the woody poplar roots. The 31 proteins that were differentially expressed at a 
significant level (ANOVA – p , 0.05) during time course (T0, T1, and T2) are numbered in green. The expression trends of the main 
identified time-related protein markers are shown by histograms. The 63 constant proteins are numbered in black. b-1,3-G, b-1,3-glucanase; 
Dhn, putative dehydrin; EF-1a, elongation factor 1a; ERF, ethylene responsive factor; GST, glutathione-S-transferase; MSP, major storage 
protein; nRNA-BP, nuclear RNA-binding protein; PAE, pectin acetyltransferase; PDI, protein disulfide isomerase; PPI, peptidyl-prolyl cis– 
trans isomerase; PX, peroxidase; SHMT, serine hydroxymethyltransferase; TPI, triosephosphate isomerase; USP, universal stress protein. 

Proteomic analysis of the unbent woody root gluconeogenesis, and ATP synthesis), constant 
according to a time-course basis (T0, T1, and T2) components included (i) molecular species involved 
revealed the presence of 63 constant proteins and of in lipid mobilization, beta-oxidation and synthesis, 
31 differentially represented spots (Figure 2). As such as patatin-like protein 3 (spot 23), electron 
shown in Figure 3, beside proteins that regulate transfer flavoprotein-ubiquinone oxidoreductase 
the main energy production pathways (glycolysis, (spot 124), acetyl-CoA acetyltransferase (spot 67), 
tricarboxylic acid cycle, pentose-phosphate shunt, and two aconitase isoforms (spots 11 and 13), 

Figure 3. Constantly expressed protein spots characterizing woody taproots at T0, T1, and T2. Spot number and protein name of constantly 
expressed protein spots along the time course (T0, T1, and T2) are listed on the basis of their functional classification provided according to 
Bevan et al. (1998). 
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already described as involved in cambial reactivation 
(Druart et al.  2007; Park et al.  2008); (ii) a 
membrane-associated putative enoyl-acyl carrier 
protein reductase (spot 122) belonging to the fatty 
acid synthase complex machinery; (iii) an endomem

brane-associated protein (spot 136), which is induced 
in early spring to maintain plasma membrane 
permeability (Schrader et al. 2004; Massengo-Tiassé 
& Cronan  2009); (iv) mitochondrial lipoamide 
dehydrogenase (spot 50) and pyruvate dehydrogen
ase (spot 23), which are partners in the pyruvate 
dehydrogenase complex, thus linking cytosolic glyco
lytic metabolism with the tricarboxylic acid cycle. No 
significant changes were also observed for (i) two 
isoforms of transaminase mtnE (spots 69 and 70) that 
is involved in Met recycle thus maintaining intra
cellular Met and S-adenosylmethionine (AdoMet) 
levels for proper biosynthesis of ethylene and 
polyamines (Miyazaki & Yang 1987), which are 
essential plant regulators of response to abiotic stress 
(Gill & Tuteja 2010) and cell division in the cambial 
meristems (Papadakis & Roubelakis-Angelakis 2005; 
Love et al. 2009); (ii) a ran-binding protein (spot 95) 
and prohibitin (spot 134), which are both involved in 
the regulation of cell division and development 
(Dasso 2001; Ahn et al. 2006; Van Aken et al. 2007, 
2010; Love et al. 2009), ethylene signaling (Christians 
& Larsen 2007), and oxidative stress (Ahn et al. 
2006). In the latter context, ROS-scavenging 
enzymes, such as cystosolic ascorbate peroxidase 
(spot 104), aldoketoreductase (spots 82, 108, and 
110), gluthatione-S-transferase (spots 138, 168, and 
104), and peroxidase (spot 74), were also observed 
as constantly expressed. In particular, H2O2 is a 
signaling molecule involved in triggering dormancy 
transition into bud break (Prassinos et al. 2011). 
Constant expression of H2O2-scavenging enzymes 
may be required to reduce toxicity and to allow 
cambium activation (Mazzitelli et al. 2007). Finally, 
various cold-responsive factors eventually related to 
the protection of reactivating cambium (Druart et al. 
2007) also presented unvarying expression overtime. 
They included pathogenesis-related thaumatin (spot 
172), zeamatin precursor (spot 155), chitinase (spots 
118, 131, and 150), cystein protease inhibitor (spot 
160), late embryogenesis abundant protein (spot 96), 
glycine-rich RNA-binding protein (spot 135), heat 
shock protein (spots 17 and 19), dehydrin (spots 2, 8, 
9, and 10), proteasome a and b subunits (spots 144 
and 163), and GroES chaperonin (spot 137). 

Conversely, 31 protein spots were found to be 
differentially represented in the unbent roots along 
the three-point time course (ANOVA – p , 0.05). 
In this study, we focus on the expression trend of these 
deregulated proteins, with the aim to identify 
important time-related landmarks. At T0 (February), 
which is characterized by reduced temperature values 

(21.8 to 11.18C) and a related water deficit, spots 
corresponding to factors protecting cellular structures 
from cold and water stress showed augmented 
quantitative levels. In fact, low temperatures and 
water deficit may determine several cellular changes 
in woody plants, such as perturbations in membrane 
structure, protein denaturation, and increased levels 
of toxic solutes. All these changes in turn may have 
induced the over-expression of (i) stress-responsive 
proteins, such as glutathione-S-transferase (spot 
169), stable protein 1 (spot 203), and universal stress 
protein (spot 186) (Wang et al. 2002); (ii) membrane 
protection and cell wall remodeling factors, such as 
translocase (spot 164), core protein (spot 201), and 
pectin-acetyl esterase (spot 62) (Uemura & Stepon
kus 1999; Ermel et al. 2000; Follet-Gueye et al. 2000) 
(Figure 2). T0 was also characterized by the over-
expression of a major storage protein (spot 116) 
(Figure 2). Storage proteins are important for N 
recycling from senescing leaves to bark and back to 
growing leaves in the spring (Gomez & Faurobert 
2002). In this context, it has been already reported 
that Populus accumulates storage proteins during 
autumn (Clausen & Apel 1991), which are then used 
in spring to provide N and C for new growth (Wetzel 
et al. 1989). 

T1 (March) resulted to be clearly marked by the 
increased levels of b-1,3-glucanase (spot 130) 
(Figure 2). The accumulation of this enzyme, 
which degrades callose (Ruonala et al. 2008; Levy 
& Epel 2009; Rinne et al. 2011), has been already 
associated with the restoration of growth-promoting 
substances, the transport of molecular signals 
between cells, and the production of cryostabilizing 
sugars to maintain turgor in dehydrating cells 
(Kaplan & Guy 2004) (Figure 2). At T1, with 
temperatures comprised in the 2–158C range, the 
over-representation of stress/detoxification-related 
proteins, such as dehydrins (spots 4 and 5), ascorbate 
peroxidase (spot 142) and peroxidase (spot 113), 
may be required for the activation of ROS signaling 
pathways involved in root cambium reactivation 
(Yakovlev et al. 2008; Hanin et al. 2011). Factors 
involved in protein synthesis/folding, such as serine 
hydroxymethyltransferase (spot 58), elongation fac
tor 1-alpha (spot 63), and protein disulfide isomerase 
(spot 106), also marked T1 for their increased 
representation; they may represent a further evidence 
of the molecular events preparing root to growth 
reactivation (Trupiano et al. 2013b) (Figure 2). 

Enzymes involved in energy metabolism (triose
phosphate isomerase; spot 147) and components 
playing key roles in post-translational control of 
RNAs (nuclear RNA-binding protein; spot 208) and 
protein folding (peptidyl-prolyl cis– trans isomerase; 
spot 196) marked T2 (April) for their high 
representation, thus indicating the occurrence of 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 D

eg
li 

St
ud

i D
el

l'I
ns

ur
br

ia
] 

at
 0

5:
52

 1
9 

Fe
br

ua
ry

 2
01

4 



processes related to active plant growth (Druart et al. 
2007) (Figure 2). Indeed, an ethylene responsive 
protein factor (ERF; spot 166) also marked T2 

(Figure 2). This protein is implicated in many plant 
physiological functions, such as cellular proliferation 
and lateral roots formation (Negi et al. 2008; Neri 
et al. 2011; Trupiano et al. 2013a). 

In conclusion, the proteomic analysis presented 
here provided information on the molecular species 
and the metabolic pathways activated in the poplar 
roots as a result of seasonal changes. Although 
preliminary information on constant and time-

related protein markers was derived, our investi
gation was limited to a very short temporal gradient. 
Thus, additional studies of the entire growth cycle 
are required to fully understand the molecular 
mechanisms underlying active-dormant cycling of 
the tree roots. By confirming the quantitative 
changes described here for some proteins mentioned 
earlier, these studies will complete the picture 
resulting from investigations already done on stem 
cambial meristems and apical bud (Schrader et al. 
2004; Druart et al. 2007; Rohde & Bhalerao 2007; 
Park et al. 2008; Baba et al.  2011), which 
emphasized the complex network of interactions 
existing between environmental and internal factors. 
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