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Abstract

Over the last decade, several studies have extensively reported that activated natural killer (NK) cells can kill autologous
immature dendritic cells (DCs) in vitro, whereas they spare fully activated DCs. This led to the proposal that activated NK
cells might select a more immunogenic subset of DCs during a protective immune response. However, there is no
demonstration that autologous DC killing by NK cells is an event occurring in vivo and, consequently, the functional
relevance of this killing remains elusive. Here we report that a significant decrease of CD11c+ DCs was observed in draining
lymph nodes of mice inoculated with MHC-devoid cells as NK cell targets able to induce NK cell activation. This in vivo DC
editing by NK cells was perforin-dependent and it was functionally relevant, since residual lymph node DCs displayed an
improved capability to induce T cell proliferation. In addition, in a model of anti-cancer vaccination, the administration of
MHC-devoid cells together with tumor cells increased the number of tumor-specific CTLs and resulted in a significant
increase in survival of mice upon challenge with a lethal dose of tumor cells. Depletion of NK cells or the use of perforin
knockout mice strongly decreased the tumor-specific CTL expansion and its protective role against tumor cell challenge. As
a whole, our data support the hypothesis that NK cell-mediated DC killing takes place in vivo and is able to promote
expansion of cancer-specific CTLs. Our results also indicate that cancer vaccines could be improved by strategies aimed at
activating NK cells.
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Introduction

Natural Killer (NK) cells, which were originally identified as

lymphoid cells capable of lysing a number of tumor cell lines in the

absence of previous stimulation in vivo or in vitro [1–3], are now

appreciated as multifunctional innate immune cells [4–6]. Their

activation is guided by a balance of signals given by different

groups of activating [7] and inhibitory receptors [8–11], the latter

recognizing MHC class I molecules on target cells.

Recently, the key role for a cooperative dialogue between DCs

and natural killer (NK) cells in triggering the immune response has

emerged [12–17]. It has been shown that their interaction results

in a bi-directional activation and in the development of a Th1 and

CTL mediated response [18–21]. In humans, at least in vitro, this

cross-talk also results in the lysis of immature DCs, while mature

DCs are protected [13,15]. The activating receptor NKp30 and

DNAM-1 are critical receptors for DC lysis, while resistance to

lysis is mediated by up-regulation of MHC class I molecules during

DC maturation [15,22–24].

On the basis of these in vitro findings, it has been proposed that

the killing of immature DCs by NK cells should promote the

survival of the most immunogenic DCs (i.e. mature DCs), favoring

initiation of an efficient and protective immune response [25–27].

In vivo, DC/NK-cell interactions might occur in lymphoid

organs as well as in non lymphoid tissues [28]. Adoptively

transferred, ex vivo generated, immature DCs have been reported

to be rapidly eliminated by NK cells via TNF-related apoptosis-

inducing ligand (TRAIL) [29,30]. Similarly, it has been shown that

the transplantation of alloreactive NK cells can suppress T-cell-

mediated graft-versus-host disease by eliminating host DCs

[31,32]. During chronic viral infections, an aberrant DC

susceptibility to NK cell-mediated lysis resulted in an accumula-

tion of poorly immunogenic DCs in lymph nodes, causing

progressive immune dysfunction [33]. On the other hand, DC

lysis by NK cells could also negatively regulate the duration of

virus-specific T cell responses in vivo by limiting exposure of T cells

to infected antigen-presenting cells [34].
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However, DC killing by autologous NK cells in vivo has not been

directly demonstrated to date and the potential relevance of this

lysis during a physiological immune response remains to be

evaluated.

A number of in vivo models have provided evidence that NK cell

recognition of MHC class I-deficient target cells results in an

enhanced generation of CTLs against tumors [21,35]. In these

experimental models, activated NK cells produce cytokines that, in

turn, appear to first promote DC activation and subsequently a

protective CTL response against parental tumors. This prompted

us to investigate whether, during a protective immune response

against tumors, activated NK cells might also select a more

immunogenic subset of DCs. We show here that DC editing

occurs in vivo and that this phenomenon plays a key role for tumor-

specific CTL development and mice survival in a murine model of

tumor vaccination.

Results and Discussion

Activation of NK Cells in Peripheral Tissues Results in a
Perforin-dependent Decrease of DC Content in Draining
Lymph Nodes

Mice were inoculated s.c. with YAC-1, a MHC-devoid cell line,

as an NK cell target able to induce NK cell activation. After 36 h,

DCs derived from both draining and controlateral LN were

analyzed. As shown in figure 1, both the percentage and the

absolute number of CD11c+ DCs were dramatically decreased in

draining LNs compared to controlateral LNs (p = 0.0029 for the

percentage and p = 0.007 for absolute number). In vivo depletion of

NK cells by injecting anti-asialo-GM1 monoclonal antibodies

(mAbs) reverted this phenomenon, confirming the major role

played by NK cells. In draining LNs from NK cell-depleted mice,

both the percentage and the absolute number of CD11c+ DCs

were comparable with controlateral LNs, indicating that NK cells

should be involved in the decrease of DCs. Anti-asialo GM1 mAb

treatment led to a decrease of at least 80% of NK cells (Figure 1,B).

These results suggested that the decline in DC number observed in

draining LN was NK cell-dependent and apparently consequent to

NK cell activation upon recognition of MHC-devoid cells.

One possible explanation for the observed reduction of DC cell

numbers upon NK cell activation is the release of specific

cytokines, by NK cells, able to influence the survival of DCs or

their ability to migrate from the periphery to the LN. Alterna-

tively, NK cells may affect the number of DCs in draining LN by

direct lysis.

To elucidate the mechanism underlying the decline in DC

numbers, we repeated the same experiment in perforin knockout

(pfn2/2) mice, since perforin is an essential molecule for NK cell

cytotoxicity. In the pfn2/2 mice, there were no differences in the

number and percentage of CD11c+ DCs found in draining and

controlateral LNs (not shown). These data suggest that perforin-

dependent cytotoxicity might represent a pathway in the NK cell-

dependent decrease of LN DCs.

NK Cell Activation Selects Lymph Node DC with Higher T
Cell Activating Capability

NK cells have been shown to kill immature DCs in vitro [13,15].

One interpretation for the specific killing of healthy autologous

cells by NK cells was that NK cells might act to control the quality

of DCs undergoing maturation [26]. This hypothesis implies that

NK cells would prevent the survival of less immunogenic

immature DCs, which would induce inappropriate, low affinity

T-cell priming, eventually resulting in a state of tolerization. The

final outcome of this DC editing process mediated by NK cells

might therefore be the selection of more immunogenic DCs, due

to the removal of DCs that would fail to mediate optimal T cell

priming.

In order to verify whether this mechanism is functionally

relevant in vivo, we tested whether DCs persistent in the draining

LN after NK cell editing were phenotipically and functionally

more immunogenic. Groups of mice that were either NK cell

depleted or not were inoculated s.c. with YAC-1 cells. After 36 h

DCs from the draining and controlateral lymph nodes were

analyzed for the expression of co-stimulatory molecules and

maturation markers such as CD40, CD80, CD83, CD86 by flow

cytometry and for IL12p35, IL-12p40 and IL23p19 mRNA by

real time PCR. In addition, we assessed whether DCs persistent in

draining LN upon NK cell editing presented higher T cell

activating capability. Splenocytes from C57BL/6 mice were

stimulated with DCs sorted from lymph nodes of BALB/c mice

injected with YAC-1 cells 24 h before lymph node removal. Six

days later, the rate of proliferation was evaluated as loss of CFSE

dye. Although significant differences for the analyzed surface

molecules or cytokines were not discernable (not shown),

allogeneic T cell proliferation was significantly decreased when

DCs from NK cell-depleted mice were used as stimulus (Figure 2).

These results indicate that NK cell-mediated decrease of DC

number represents a functionally relevant in vivo mechanism by

which the more immunogenic DCs are efficiently selected. Indeed,

following peripheral NK cell activation, DCs contained in the

draining LNs were reduced in number but endowed with more

potent T cell activating properties.

The Editing of DCs by NK Cells Promotes Antigen Specific
T Cell Expansion and a More Protective Immune
Response During Cancer Cell Vaccination

Our data show that in vivo activation of NK cells results in a

perforin-dependent decrease of LN dendritic cells, which is

associated with the presence of more immunogenic DCs in

draining LN. We therefore investigated whether it results in a

more protective adaptive immune response in a cancer cell

vaccination model. Groups of mice, which had either undergone

NK cell depletion or mock treatment, were injected s.c. with the

MHC-devoid cells (i.e. YAC-1 cells) and TS/A cells, a NK cell-

resistant mammary adenocarcinoma tumor cell line. As controls,

groups of mice were injected with either TS/A or YAC-1 cells

alone. After three weeks, spleens were collected and cells were

restimulated in culture with TS/A tumor cells or the AH1 peptide,

which is an immunodominant MHC class I- restricted epitope of

TS/A gp70env antigen [36,37]. Splenocytes from mice that had

been injected with TS/A plus YAC-1 cells showed significantly

higher numbers of IFN-c producing cells upon stimulation as

compared to NK cell depleted mice or control mice (p,0.05 and

,0.01) (Figure 3,A). These data indicate that lysis of DCs by

activated NK cells supports the expansion of antigen-specific T

lymphocytes in vivo. No increase in IFN-c producing cells was

observed when cultures were restimulated by YAC-1 cells,

indicating that the increase in IFN-c producing cells was not

associated with NK cell activation. In addition, restimulation by

either TS/A or their immunodominant MHC class I-restricted

epitope AH1 induced a similar increase of IFN-c producing

splenocytes, indicating that they were mainly represented by

MHC-class I-restricted cytotoxic T lymphocytes (CTL).

To elucidate whether NK cell help for CTL expansion was in

fact associated to NK cell-mediated DC lysis, we set the same

experiment using groups of pfn2/2 mice, which lack NK cell

cytolytic activity. Spleen cells from pfn2/2 mice injected with TS/

A plus the MHC-negative cells YAC-1 contained a significantly
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lower number of IFN-c producing T cells when compared to wild

type mice that were also injected with TS/A plus YAC-1

(Figure 3,B). These results suggest that NK cell-mediated,

perforin-dependent, lysis of DCs has a role in the optimal

generation of antigen-specific T cells. However, the present results

also offer, at least in part, an alternative interpretation, i.e. that

NK cells can directly stimulate DC maturation, most likely by

releasing pro-inflammatory cytokines (e.g. TNF-a), as previously

demonstrated [21,35]. Indeed, in perforin-deficient mice, the

activation of anti-tumor T cells was not as low as observed in NK

cell-depleted mice using anti-asialo treatment (Figure 3,A). Thus,

the enhanced antigen-specific T cell response, detectable upon NK

cell-mediated DC editing could represent the outcome of both DC

killing and cytokine-mediated DC activation.

Finally, we also observed that vaccination with irradiated TS/A

cells plus YAC-1 cells resulted in a significant increase of survival

of mice upon challenge with a lethal dose of TS/A cells (Figure 4).

60% of mice pre-injected with irradiated TS/A plus YAC-1

survived 8 weeks after tumor challenge whereas, in the same time

interval, only 20% of either NK cell-depleted mice or mice pre-

injected with irradiated TS/A cells alone survived the tumor

challenge. Altogether, these results support the concept that the

Figure 1. Subcutaneous administration of MHC-negative cells results in an NK cell-dependent decrease of CD11cbright DCs in the
draining lymph nodes. A: representative analyses of mononuclear cells isolated from either draining or controlateral (Control LN) lymph nodes of
mice depleted or not of NK cells (Draining LN + anti-asialo GM1). B: NK cells are efficiently depleted in mice upon administration of anti-asialo GM1
mAbs. C: the percentage (left) and the absolute number (right) of DCs among mononuclear cells isolated from lymph nodes. Bars represents mean
values and SD of five independent experiments (three mice per group). ** = p , 0,001; * = p , 0,005.
doi:10.1371/journal.pone.0039170.g001
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activation of NK cells induced by MHC-negative cells may

promote a more protective immune response during cancer cell

vaccination.

Concluding Remarks
We have here shown that NK cells can elicit DC editing in vivo.

NK cells, upon activation by MHC class I devoid cells, acquire the

ability to select the most immunogenic myeloid DCs in draining

LNs via a perforin-dependent mechanism. Although our current

data do not constitute a formal proof of direct NK cell-mediated

cytotoxicity against DCs, the abrogation of the phenomenon in

pfn2/2 mice might indicate a direct DC lysis by NK cells.

Remarkably, this putative killing leads to the selection of more

immunogenic DCs, characterized by a higher capacity to induce

proliferation of allogeneic T cells. Thus, in addition to a direct

stimulation of DCs mediated by NK cell-released cytokines, NK

cells can contribute to T cell activation by selecting the most

immunogenic DCs.

The identification of the type of NK cells responsible for the

editing process, as well as the sites where DC killing allegedly

occurs, still remains to be identified. In this context, it is possible

that this event might take place in the periphery, where NK cells

are equipped with a higher cytolytic activity as compared to those

detected in lymph nodes. On the other hand, we cannot exclude

that, under particular conditions (for example a cytokine storm),

lymph node NK cells might switch their functional phenotype and

acquire higher cytolytic potential, as previously proposed [38]. An

alternative possibility is that peripheral NK cells displaying high

cytolytic activity could migrate to lymph nodes following

activation and acquisition of appropriate chemokine receptors,

as suggested by recent reports [39–41].

The interaction between activated NK cells and DCs is also

relevant for establishing a protective immune response. In a

model of anti-cancer vaccination, administration of tumor cells

together with NK activating MHC-devoid cells, boosted the

expansion of tumor-specific CTLs resulting in enhanced survival

of mice upon challenge with a lethal dose of tumor cells.

Depletion of NK cells impaired this tumor-specific T cell

response as well as its protective role against tumor challenge.

Taken together, these results indicate that, in vivo, NK cells can

edit DCs for the optimal generation of adaptive immune

responses by an efficient selection of the more immunogenic

DCs. Finally, our data also suggest that cancer cell vaccines

could be improved by strategies aimed at NK cell activation,

such as the use of NK-sensitive cancer cells.

Materials and Methods

Cell Lines, Animal Model and Experimental Conditions
The TS/A mammary adenocarcinoma murine cell line [36]

(kindly provided by P.L. Lollini, University of Bologna, Bologna,

Italy) was cultured in DMEM /10% FCS (Cambrex, Charles City,

IA, USA). The YAC-1 (ATCC TIB-160) [42] was instead cultured

in RPMI 1640/10% FCS (Cambrex, Charles City, IA, USA). 5–8

Figure 2. Peripheral activation of NK cells results in the
selection of lymph node DCs with higher T cell activating
capabilites. Draining lymph node DCs of mice injected subcutane-

ously with MHCnegcells were sorted and cultured in the presence of
allogeneic splenocytes previously labeled with CFSE. A: Splenocytes
were cultured alone (No stimulus) or with 10% of highly purified lymph
node DCs from mice NK cell depleted (10% DC draining LN + anti-asialo
GM1) or control (10% DC draining LN) before administration of MHC-
negative target cells. CFSE dilution of the splenocytes at 6 days of
culture is shown. NK cell depletion compromises the induction of
proliferation by LN DCs. Data are representative of four independent
experiments summarized in panel B: &= 10% DC draining LN; m = 10%
DC draining LN + anti-asialo GM1. * = p,0,02.
doi:10.1371/journal.pone.0039170.g002
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week-old female wild type BALB/c (H-2Kd) mice and wild-type

C57BL/6 (H-2b) mice were purchased from Harlan (Udine, Italy).

Perforin2/2 mice (CByJ.B6-Prf1tm1Sdz/J) were purchased from

The Jackson Laboratory (Bar Harbour, ME).

Mice were subcutaneously (s.c.) injected with 2 x 106

irradiated (20,000 rads) YAC-1 cells or, where indicated, with

either irradiated TS/A tumor cells alone (5 x 105) or irradiated

TS/A tumor cells (5 x 105) admixed with irradiated YAC-1 cells

(2 x 106). Animals undergoing in vivo NK cell depletion received

three intraperitoneal (i.p.) injections with anti-asialo-GM1

antibodies (anti-NK rabbit serum, 200 ml/mouse of 1:10 diluted

stock solution, Wako) at days 22/0/+1 as previously described

[43] (day 0 was the day of cell vaccination. Tumor challenge

was done at three weeks after vaccination with a tumorigenic

dose 5 x 104 of TS/A tumor cells. Tumor growth and size was

measured twice weekly using a caliper. Injection of YAC-1 into

BALB/c represents an allogenic system, but the absence of both

MHC class I and class II expression in YAC-1 cells minimizes

the potential alloresponse. The animals were housed in

pathogen-free colony and experiments were performed accord-

ing to the National Regulation on Animal Research Resources

and approved by the Review Board of the Istituto Nazionale

per la Ricerca sul Cancro, Genoa.

Lymphoid Organ Cell Isolation
Inguinal lymph nodes (LNs) were surgically excised and

collected in RPMI 1640/10% FCS. They were cut into small

fragments using razor blades and digested in 2 mg/ml

collagenase D and 30 mg/ml DNase I (Roche, Mannheim,

Germany) at 37uC for 30 min. Single cell suspensions were

prepared by filtration through a 70 mm cell strainer (BD

Labware, San Jose, CA, USA). CD11c+ cells were isolated by

positive selection using anti-CD11c microbeads and a magnetic

separator (Miltenyi Biotec, Bergisch Gladbach, Germany).

Spleen cells were isolated by mechanical dissociation and filtrate

through a 70 mm cell strainer (BD Labware). Erythrocytes in the

spleenic preparations were removed by hypotonic lysis with

NH4Cl/ KHCO3 /EDTA.

Figure 3. DC editing by NK cells promotes antigen specific CTL expansion. A: Mice were inoculated with immunogenic TS/A cells, TS/A cells
mixed with MHC-devoid cells (YAC-1) or YAC-1 cells alone. In a group of mice, anti-asialo GM1 mAbs were administered i.p. 48 h before
administration of cell vaccines to deplete NK cells. After 21 days, splenocytes were restimulated with either TS/A cells, the TS/A MHC class I-restricted
immunodominant peptide AH1 or with YAC-1 cells and the frequencies of IFNc-producing cells were determined by ELISPOT assay. A significant
increase of antigen-specific IFNc-producing cells was detectable in mice vaccinated with TS/A mixed with YAC-1 cells (TS/A + YAC-1). The increase in
antigen-specific CTL was abrogated when mice had been depleted of NK cells before vaccination (TS/A + YAC-1 + anti asialo GM1). B: Similar
experiments were performed in perforin KO mice (pfn 2/2) and in parallel with wild type (WT) mice. A significant lower number of TS/A tumor-specific
CTL was induced by vaccination in perforin KO mice when compared to wild type mice. Bars represent mean values and SEM of results obtained in
three independent experiments (three mice per group). ** = p , 0,001; * = p , 0,005.
doi:10.1371/journal.pone.0039170.g003
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Antibodies and Flow Cytometry
Animals undergoing in vivo NK cell depletion received two i.p.

injections with anti-asilao GM1 at day –2/0 (anti-NK rabbit

serum, 200 ml/mouse of 1:10 diluted stock solution, Wako Neuss,

Germany). After 36 h from injection, inguinal LNs were harvested

and the cell suspensions obtained were labeled with anti-CD11c,

anti-DX5, anti-CD40, anti-CD80, anti-CD86 and anti-MHC class

II (all from eBioscience, San Diego, CA ) and analyzed by flow

cytometry (Facs Canto II, BD).

Proliferation Assay
For the proliferation assay, spleen cells from B6 mice were

labeled with 5 mM carboxyfluorescein succinimidyl ester (CFSE) in

PBS plus 0.1% BSA for 10 min at 37uC. After extensive washing

with PBS plus 0.1% BSA, cells were incubated with allogeneic

CD11c DCs sorted from draining LN of mice injected with YAC-1

cells that had or had not been subjected to NK cell depletion. The

DCs were extensively washed in PBS before culture with T cells.

After 6 days, CFSE fluorescence was evaluated on CD3+ cells by

flow cytometry.

Enzyme-linked Immunospot Assays
The frequencies of IFN-c-producing spleen cells from vaccinated

animals were determined after three weeks by an enzyme-linked

immunospot (ELISPOT) assay performed on splenocytes. Multi-

screen-IP plates (Millipore, Bedford, MA and BD Pharmingen, San

Jose, CA, USA) were coated overnight with 10 mg/ml of anti-IFN-c
mAb in PBS (endogen, Woburn, MA and BD Pharmingen, San Jose,

CA, USA). Plates were then washed with RPMI 1640 and blocked for

3 h with PBS-2% bovine serum albumin. Splenocytes were counted

in complete RPMI 1640 and then seeded at a 2-fold serial dilution,

starting from 46105 cells per well, in duplicate, in the presence or

absence of: (i) irradiated (20,000 rads) TS/A tumor cells; (ii) YAC-1

cells (both at 10:1 effector/stimulator cell ratio); (iii) endogenous

retroviral gp70-derived AH1 peptide, the 9-amino acid H-2Ld-

restricted peptide (SPSYVYHQF, synthesized by INBIOS S.r.l.,

Napoli, Italy) at final concentration of 10 mg/ml. AH1 is the

immunodominant CD8 antigen expressed on surface of TS/A

cancer cell lines [37]. Where indicated, cell stimulation was also

obtained by PMA and ionomycin at final concentration of 50 ng/ml

and 500 ng/ml, respectively (SIGMA). After 40 h of incubation,

plates were washed with PBS-0.05% Tween 20 and incubated with

1 mg/ml biotinylated secondary mAb to IFN-c (Endogen and BD

Pharmingen, San Jose, CA, USA) in PBS-1% bovine serum albumin

for 3 h at room temperature. Horseradish peroxidase-conjugated

streptavidin (1:5,000) was then added for 2 h at room temperature.

After washing, the plates were stained with AEC staining kit (Sigma

and BD Pharmingen, San Jose, CA, USA) and spots were counted

using a stereomicroscope. A .2-fold increase in number of spots over

thecontrol (splenocytesculturedwithnostimulus)wasconsideredasa

positive response. Data were expressed as number of spot-forming

cells per million of spleen cells.

Figure 4. DC editing by NK cells generates a more protective immune response during cancer cell vaccination. Mice were vaccinated
with immunogenic tumor cells alone (TS/A), tumor cells mixed with MHC-negative ells (TS/A + YAC-1) or MHC-negative cells alone (YAC-1) (five mice
per group). In a group of mice, anti-asialo GM1 mAbs were administered i.p. 48 h before administration of cell vaccines to deplete NK cells. After 21
days, mice were challenged with a lethal dose of tumor cells and monitored for tumor growth twice a week for two months. Mice vaccinated with
tumor cells mixed with MHC-negative cells (TS/A + YAC-1) displayed a delay in tumor growth and a striking survival to TS/A cancer cell challenge. This
protective effect was abrogated when mice were depleted of NK cells (TS/A + YAC-1 + anti-asialo GM1).
doi:10.1371/journal.pone.0039170.g004
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Statistical Analysis
The statistical significance of differences was evaluated with

Student’s t test or Mann Whitney test using Prism Graphpad

software (GraphPad Software Inc., La Jolla, CA). All error bars

represent SEM.
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