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Abstract

Introduction The protective effect of glutamine, as a
pharmacological agent against lung injury, has been reported in
experimental sepsis; however, its efficacy at improving
oxygenation and lung mechanics, attenuating diaphragm and
distal organ injury has to be better elucidated. In the present
study, we tested the hypothesis that a single early intravenous
dose of glutamine was associated not only with the
improvement of lung morpho-function, but also the reduction of
the inflammatory process and epithelial cell apoptosis in kidney,
liver, and intestine villi.

Methods Seventy-two Wistar rats were randomly assigned into
four groups. Sepsis was induced by cecal ligation and puncture
surgery (CLP), while a sham operated group was used as control
(C). One hour after surgery, C and CLP groups were further
randomized into subgroups receiving intravenous saline (1 ml,
SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were
anesthetized, and the following parameters were measured:
arterial oxygenation, pulmonary mechanics, and diaphragm, lung,
kidney, liver, and small intestine villi histology. At 18 and 48
hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1,

interleukin (IL)-6 and 10 were quantified in bronchoalveolar and
peritoneal lavage fluids (BALF and PLF, respectively).

Results CLP induced: a) deterioration of lung mechanics and
gas exchange; b) ultrastructural changes of lung parenchyma
and diaphragm; and c) lung and distal organ epithelial cell
apoptosis. Glutamine improved survival rate, oxygenation and
lung mechanics, minimized pulmonary and diaphragmatic
changes, attenuating lung and distal organ epithelial cell
apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid
at 18 hours and bronchoalveolar lavage fluid at 48 hours, but
decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours.

Conclusions In an experimental model of abdominal sepsis, a
single intravenous dose of glutamine administered after sepsis
induction may modulate the inflammatory process reducing not
only the risk of lung injury, but also distal organ impairment.
These results suggest that intravenous glutamine may be a
potentially beneficial therapy for abdominal sepsis.

P1: resistive pressure; P2: viscoelastic/inhomogeneous pressure; ALI: acute lung injury; ANOVA: analysis of variance; ARDS: acute respiratory 
distress syndrome; BALF: bronchoalveolar lavage fluid; C: control; CINC-1: Cytokine-Induced Neutrophil Chemoattractant; CLP: cecal ligation and 
puncture; ELISA: enzyme-linked immunosorbent assay; Est: static elastance; FiO2: fraction of inspired oxygen; Gln: glutamine; H&E: haematoxylin & 
eosin; HSP: heat shock protein; IL: interleukin; ip: intraperitoneal; iv: intravenous; NF- B: nuclear factor- B; PaO2: partial pressure of arterialoxygen; 
PEEP: positive end-expiratory pressure; PLF: peritoneal lavage fluid; Pplat: plateau; Req: flow resistance; Req/V': resistive pressure; TTF1: Thyroid 
Transcription Factor 1; TUNEL: Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labelling; VT: tidal volume.
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Introduction
Sepsis is the most important risk factor for acute lung injury

(ALI)/acute respiratory distress syndrome (ARDS) [1] and can

trigger long-term consequences. Overwhelming inflammatory

and immune responses are fundamental features of sepsis and

are known to play a crucial role in the pathogenesis of hypo-

tension, tissue damage, multiple organ dysfunction syndrome,

and death.

Levels of glutamine (Gln), a non-essential amino acid, have

been demonstrated to decrease during critical illness, mainly

in sepsis [2-4]. Additionally, lower levels of Gln have also been

associated with immune dysfunction [2,5] and higher mortality

rate [6,7]. In this line, many clinical [8-10] and experimental

[11-17] studies have suggested that intravenous (iv) Gln may

prevent the occurrence of lung injury, tissue metabolic dys-

function, improving survival after sepsis. The mechanism by

which Gln attenuates pro-inflammatory cytokines and

improves patient outcome has been extensively investigated

[17-19]. Gln can enhance stress-inducible heat shock protein

(HSP) expression, such as HSP 70 [12,13,17,18], and sup-

press nuclear factor- B (NF- B) signal transduction activity

[11,19], decreasing neutrophil infiltration and production of

cytokines [11,19,20]. However, no previous studies have eval-

uated the impact of iv Gln at improving oxygenation and lung

mechanics, attenuating diaphragm and distal organ injury in

sepsis [20].

In the present study, we tested the hypothesis that a single

early iv dose of Gln was associated not only with the improve-

ment of lung morpho-function, but also the reduction of the

inflammatory process and epithelial cell apoptosis in kidney,

liver, and intestine villi in an experimental model of abdominal

sepsis. For this purpose, we evaluated the effects of Gln on

partial pressure of arterial oxygen (PaO2), lung mechanics, and

histology (light, electron and confocal microscopy, and apop-

tosis), electron microscopy of diaphragm, and histology and

epithelial cell apoptosis in kidney, liver, and small intestine villi.

Additionally, the balance of pro- and anti-inflammatory

cytokines in bronchoalveolar lavage fluids (BALF) and perito-

neal lavage fluids (PLF) were analysed.

Materials and methods
Animal preparation and experimental protocol

This study was approved by the Ethics Committee of the Car-

los Chagas Filho Institute of Biophysics, Health Sciences

Centre, and Federal University of Brazil. All animals received

humane care in compliance with the Principles of Laboratory
Animal Care formulated by the National Society for Medical

Research and the Guide for the Care and Use of Laboratory
Animals prepared by the US National Academy of Sciences.

A total of 72 adult male Wistar rats (weighing 230 to 250 g)

were randomly assigned into two main groups: cecal ligation

and puncture-induced sepsis (CLP, n = 36) [20]; and control

(C, n = 36), a sham-operated group. One hour after surgery,

C and CLP groups were further randomized into subgroups

receiving iv saline (1 ml, SAL, n = 18 per group) or Gln (0.75

g/kg body weight, 1 ml iv, Gln, n = 18 per group) through a

lateral tail vein. Gln was administered as an alanyl-Gln dipep-

tide (Dipeptiven 20%®, Fresenius Kabi Brazil, LTDA Campi-

nas, São Paulo, Brazil). Pulmonary mechanics and the

histology of lung, diaphragm, liver, kidney, and small intestine

villi were studied in eight animals per group at 48 hours and

the amount of cytokines in PLF and BALF were analysed in five

animals per group at 18 and 48 hours.

Animals were fasted for 16 hours before any surgical proce-

dure to create similar bowel contents. Rats were anesthetized

with sevoflurane, a midline laparotomy (2 cm incision) was per-

formed, the cecum was carefully isolated to avoid damage to

blood vessels, and a 3.0 cotton ligature was placed around the

cecum just below the ileocecal valve to avoid bowel obstruc-

tion. In the CLP group, the cecum was punctured twice with

an 18 gauge needle [21]. In sham-operated group, an abdom-

inal incision was made with no cecal ligation and perforation.

Both layers of abdominal cavity were closed with 3.0 silk

sutures, followed by fluid resuscitation (20 ml/kg body weight

of sterile saline, subcutaneously) [21].

Forty-eight hours after surgery, rats were sedated (diazepam 5

mg, intraperitoneally (ip)), anaesthetised (thiopental sodium

20 mg/kg, ip), tracheotomised, paralysed (pancuronium bro-

mide 1 mg/kg, iv), and ventilated with a constant flow ventilator

(Samay VR15; Universidad de la Republica, Montevideo, Uru-

guay) with the following parameters: tidal volume (VT) = 6 mL/

kg, constant airflow = 7 mL/sec, frequency = 100 breaths/min,

inspiratory to expiratory ratio = 1:2, fraction of inspired oxygen

(FiO2) = 0.21, and positive end-expiratory pressure (PEEP) =

5 cmH2O. A polyethylene catheter (PE-10) was introduced

into the femoral artery for blood sampling. Blood (300 L) was

drawn into a heparinised syringe for PaO2 (i-STAT, Abbott

Laboratories, North Chicago, IL, USA). After a 15-minute ven-

tilation period, PaO2 was measured and lung mechanics com-

puted. Lungs, liver, kidneys, small intestine villi, and diaphragm

were then prepared for histology.

Respiratory mechanics

A pneumotachograph was connected to the tracheal cannula

for the measurements of airflow (V'). The pressure gradient

across the pneumotachograph was determined by means of a

differential pressure transducer (SCIREQ, SC-24, Montreal,

Quebec, Canada). VT was obtained by integration of the V' sig-

nal. The flow resistance of the equipment (Req), tracheal can-

nula included, was constant up to flow rates of 26 mL/s, and

amounted to 0.12 cmH2O/mL/s. Equipment resistive pressure

(Req/V') was subtracted from pulmonary resistive pressure so

that the results represent intrinsic values. Tracheal pressure

was also measured with a differential pressure transducer

(SCIREQ, SC-24, Montreal, Quebec, Canada). Changes in
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oesophageal pressure, which reflect chest wall pressure, were

measured with a 30 cm long water-filled catheter (PE205)

with side holes at the tip connected to a SCIREQ differential

pressure transducer (SCIREQ, SC-24, Montreal, Quebec,

Canada). Transpulmonary pressures were calculated by the

difference between tracheal and oesophageal pressures [22].

All signals were filtered (100 Hz), amplified in a four-channel

conditioner (SCIREQ, SC-24, Montreal, Quebec, Canada),

sampled at 200 Hz with a 12-bit analogue-to-digital converter

(DT2801A, Data Translation, Marlboro, MA, USA), and stored

on a microcomputer. All data were collected using LABDAT

software (RHT-InfoData, Montreal, Quebec, Canada).

Lung resistive pressure ( P1), viscoelastic/inhomogeneous

( P2) pressure, and static elastance (Est) were computed by

the end-inflation occlusion method [23]. Briefly, after end-

inspiratory occlusion there is an initial fast drop in pressure

from the preocclusion value (peak inspiratory pressure) down

to an inflection point ( P1), followed by slow pressure decay

( P2), until a plateau (Pplat, L) is reached. This plateau corre-

sponds to the lung elastic recoil pressure. P1 selectively

reflects airway resistance and P2 reflects lung viscoelastic

properties together with a small contribution of time-constant

inhomogeneities. Est was calculated by dividing Pplat, L by the

VT. Pulmonary mechanics measurements were performed 10

times in each animal, and analyzed using ANADAT data analy-

sis software (RHT-InfoData Inc., Montreal, Quebec, Canada).

Light microscopy

A laparotomy was performed immediately after the determina-

tion of lung mechanics (END) and heparin (1000 IU) was intra-

venously injected in the vena cava. The trachea was clamped

at 5 cmH2O PEEP, and the abdominal aorta and vena cava

were sectioned, yielding a massive haemorrhage that quickly

killed the animals. Then, the lungs were removed en bloc at the

same PEEP in all groups to avoid distortion of lung morphom-

etry. The right lung was immersed in 3% buffered formalde-

hyde. Liver, kidneys, and small intestine were also removed,

immersed in 3% buffered formaldehyde, and paraffin embed-

ded. Four- m-thick slices were cut and stained with H&E.

Lung morphometric analysis was performed with an integrat-

ing eyepiece with a coherent system consisting of a grid with

100 points and 50 lines (known length) coupled to a conven-

tional light microscope (Olympus BX51, Olympus Latin Amer-

ica-Inc., São Paulo, Brazil). The volume fraction of the lung

occupied by hyperinflated structures (alveolar ducts, alveolar

sacs, or alveoli wider than 120 m) or collapsed alveoli or nor-

mal pulmonary areas were determined by the point-counting

technique [24] at a magnification of 200× across 10 random,

non-coincident microscopic fields [22].

Transmission electron microscopy

Three slices of 2 × 2 × 2 mm were cut from three different seg-

ments of the left lung and diaphragm. They were then fixed for

electron microscopy analysis. For each electron microscopy

image (20 per animal) an injury score was determined. The fol-

lowing parameters were analyzed concerning lung paren-

chyma: type II epithelial cell lesion; hyaline membrane; and

endothelial cell damage [22]. The following data were

obtained from the electron microscopy of diaphragm muscle:

oedema of Z-disc and mitochondrial injury. The pathologic

findings were graded according to a five-point semi-quantita-

Figure 1

Means ± standard deviation of eight animals in each group (10 determi-nations per animal)Means ± standard deviation of eight animals in each group (10 determi-
nations per animal).  (a) Lung static elastance (Est, L) measures are 
shown. (b) Stacked bars chart plot data in which white bars represent 
the lung viscous pressure ( P1, L) and gray bars are the viscoelastic/
inhomogeneous ( P2, L) pressure dissipations. The whole column rep-
resents the total pressure ( Ptot, L) variation in each group. Sepsis 
was induced by cecal ligation and puncture surgery (CLP). A sham-
operated group was used as control group (C) for animals undergoing 
CLP. One hour after surgery, C and CLP groups were treated with 
saline (SAL) or glutamine (Gln). *Significantly different from C-SAL 
group (P < 0.05).
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tive severity-based scoring system as follows: 0 = normal lung

parenchyma or diaphragm, 1 = changes in 1 to 25%, 2 =

changes in 26 to 50%, 3 = changes in 51 to 75%, and 4 =

changes in 76 to 100% of examined tissue.

Confocal microscopy

Anti-Thyroid Transcription Factor 1 (TTF1) and anti-CD34 flu-

orescence immunohistochemistry were respectively used to

analyze epithelial and endothelial components of the alveolar

barrier using confocal microscopy. Cells were incubated with

anti-TTF1 (monoclonal antibody, Santa Cruz Biotechnology,

Santa Cruz, CA, USA, 1:25) and anti-CD34 (monoclonal anti-

body, Novocastra Laboratories Ltd., Newcastle upon Tyne,

UK, 1:400), followed by double staining with fluorescein and

rhodamine (rhodamine-conjugated goat anti-mouse IgG-R,

dilution 1:40, Santa Cruz Biotechnology, Santa Cruz, CA,

USA). Images were obtained using a Zeiss LSM-410 laser-

scanning confocal microscope (Carl Zeiss Canada Ltd,

Toronto, ON, Canada) [25].

Apoptosis assay of lung and distal organs

Apoptotic cells of lung, kidney, liver, and small intestine villi

were quantified using the Terminal deoxynucleotidyl Trans-

ferase Biotin-dUTP Nick End Labelling (TUNEL) assay [26]

and immunohistochemical staining for Fas and FasL protein

[27].

To detect DNA fragmentation in cell nuclei, TUNEL reaction

was applied to the paraffin sections by using In Situ Cell

Death Detection Kit, Fluorescin (Boehringer, Mannheim, Ger-

many). Formalin fixed and paraffin-embedded lung tissue sec-

tions were deparaffinized and antigen retrieval was carried out

by incubating tissue slides with protein kinase K (Roche

Applied Science, Indianapolis, IN, USA) for 20 minutes at 15

g/ml. TUNEL reaction mixture was applied for one hour at

37°C. For negative controls the transferase enzyme was omit-

ted. The nuclei without DNA fragmentation stained blue as a

result of counterstaining with hematoxylin. Positive controls

consisted of rat prostatic gland after castration.

The cellular localization of Fas and FasL proteins was studied

by the streptavidin-biotin immunoperoxidase method using a

polyclonal rabbit anti-FasL antibody (Chemicon/Millipore, Bill-

erica, MA, USA). Immunoreactivity was detected with 3,3'-

diaminobenzidine tetrachloride. Specificity controls consisted

of omission of primary antibody and/or preabsorption with

blocking peptide, which abolished all immunoreactivity.

Three sections from each specimen were initially examined

under light microscopy at low magnification (× 100), allowing

the evaluation of surface area occupied by apoptotic cells.

Then, 10 fields per section were randomly examined at a

higher magnification (× 400). A five-point semi-quantitative

severity-based scoring system was used and graded as: 0 =

no apoptotic cells; 1 = 1 to 25%; 2 = 26 to 50%; 3 = 51

Figure 2

Representative photomicrographs of lung parenchyma in C-SAL, C-Gln, CLP-SAL and CLP-GlnRepresentative photomicrographs of lung parenchyma in C-SAL, C-
Gln, CLP-SAL and CLP-Gln.  In CLP group, animals were submitted to 
cecal ligation and puncture technique. A sham-operated group was 
used as control (C) for animals undergoing CLP. One hour after sur-
gery, C and CLP groups were treated with saline (SAL) or glutamine 
(Gln). Note the areas of alveolar collapse (arrows). Photomicrographs 
were taken at an original magnification of × 200 from slides stained by 
haematoxylin & eosin.

Figure 3

Electron microscopy of lung parenchymaElectron microscopy of lung parenchyma.  Type II pneumocyte was well 
preserved with integrity of lamellar bodies and typical microvilli project-
ing from its surface in C-SAL, C-Gln and CLP-Gln groups. Neutrophils 
(N); type III collagen fibres (CIII); type II pneumocytes (PII); surfactant 
molecule (S); endothelial cell (E); fibroblast (F). *Degeneration of lamel-
lar bodies. Note the damage in microvilli of type II pneumocyte in CLP-
SAL group (arrow). Photomicrographs are representative of data 
obtained from lung section derived from five animals. C = control; CLP 
= cecal ligation and puncture; Gln = glutamine; SAL = saline.
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to75%; 4 = 76 to 100% of apoptotic cells in the examined tis-

sue.

Two investigators, unaware of the origin of the material, exam-

ined the samples microscopically. The slides were coded and

examined only at the end of all measurements.

Peritoneal and bronchoalveolar lavage fluids

Another 20 rats (n = 5 per group) were submitted to the same

protocol previously described to obtain aliquots of PLF and

BALF at 18 and 48 hours after surgery. Amounts of Cytokine-

Induced Neutrophil Chemoattractant (CINC-1), and IL-6 and

10 were quantified by ELISA according to manufacturer's pro-

tocol (Duo Set, R&D Systems, Minneapolis, MN, USA).

Statistical analysis

SigmaStat 3.1 statistical software package (Jandel Corpora-

tion, San Raphael, CA, USA) was used. Differences among

the groups were assessed by a two-way analysis of variance

(ANOVA) followed by Tukey's test when required. Nonpara-

metric data were analyzed using a two-way ANOVA on ranks

followed by Dunn's post hoc test. The parametric data were

expressed as mean ± standard deviation, while the non-para-

metric data were expressed as median (interquartile range). A

P < 0.05 was considered significant.

Results
In pilot studies we determined that this CLP model of sepsis

resulted in an approximate 60% survival rate at 48 hours. A

single dose of Gln (0.75 g/kg body weight iv), one hour after

the CLP surgery, significantly increased (P < 0.05) survival

(100%) at 48 hours (CLP-Gln). No deaths occurred in the C

group.

CLP-SAL showed lower PaO2 (55 ± 6 mmHg) than C-SAL

(91 ± 8 mmHg). PaO2 was significantly (P < 0.05) higher in

CLP-Gln than CLP-SAL (86 ± 6 mmHg vs 55 ± 6 mmHg), and

a similar result was seen in C-SAL and C-Gln (from 91 ± 8

mmHg to 87 ± 4 mmHg).

There were no significant differences in flow, VT as well as

chest wall mechanical data among groups. Lung Est (+ 71%),

Figure 4

Representative photomicrographs of lung parenchymaRepresentative photomicrographs of lung parenchyma.  Samples were stained with (top) haematoxylin & eosin, (middle) TUNEL, and (bottom) 
double immunofluorescence for TTF1 (Thyroid Transcription Factor 1, alveolar epithelium) and CD34 (endothelium). Control lung (C) shows thin 
alveolar septa (Alv) with sparse apoptotic cells and normal histoarchitecture after tridimensional reconstruction of confocal microscopy. Positive 
staining is indicated by black-brown and the contrast background staining is green. CLP-SAL lung presented thickened alveolar septa with inflam-
matory cells, numerous brownish alveolar apoptotic cells and distortion of the architecture after tridimensional reconstruction at confocal micros-
copy. Note the regeneration and decreased apoptosis of alveolar epithelial cells after glutamine treatment and restoration of the acinar architecture 
by tridimensional reconstruction at confocal microscopy (CLP-Gln). Photomicrographs are representative of data obtained from lung sections 
derived from five animals. CLP = cecal ligation and puncture; Gln = glutamine; SAL = saline.



Critical Care    Vol 13 No 3    Oliveira et al.

Page 6 of 11
(page number not for citation purposes)

P1 (+ 28%), and P2 (+ 64%) were increased in CLP-SAL

as compared with C-SAL (Figures 1a and 1b). CLP-Gln

showed lung mechanical data similar to C-Gln (Figures 1a and

1b).

In CLP-SAL, lung histology presented neutrophil infiltration,

alveolar collapse, interstitial oedema (Table 1 and Figure 2),

distortion of lung parenchymal structure, degeneration of

lamellar bodies, damage in microvilli, and apoptosis in type II

pneumocytes (Figure 3). Note in CLP-Gln regeneration and

restoration of the acinar architecture (Figure 3 and Table 2)

with tridimensional reconstruction at confocal microscopy

(Figure 4). Electronic microscopy of the diaphragm showed

oedema between muscle fibres, mitochondrial injury, and

apoptosis in muscle cells (Figure 5 and Table 2), while Gln

attenuated these morphological changes (Figure 5).

Small intestine villi, kidney, lung, and liver epithelial cell apop-

tosis were higher in CLP-SAL compared with C-SAL (Figures

4 and 6, and Table 3), while Gln attenuated epithelial cell

apoptosis in kidney and lung, and avoided these changes in

small intestine villi and liver. In CLP-SAL we observed glomer-

ular lesion degeneration and vacuolization in the liver, and

small intestine villi epithelial injury (Figure 6).

Eighteen hours after surgery, CINC-1 levels increased in CLP-

SAL compared to C-SAL in the broncho-alveolar lavage fluid

and peritoneal lavage fluid, while Gln minimized these changes

(Figure 7). However, no significant changes in CINC-1 were

observed at 48 hours both in broncho-alveolar lavage fluid and

peritoneal lavage fluid. At 18 hours, IL-10 and IL-6 were higher

in CLP-SAL than C-SAL in the peritoneal lavage fluid, but sim-

ilar in all groups in the broncho-alveolar lavage fluid. Gln

reduced IL-6 in the peritoneal lavage fluid. At 48 hours, IL-10

increased in the CLP-Gln group in BALF and at 18 hours in the

PLF (Figure 7). However, no significant changes were

observed in IL-10 in the PLF at 48 hours.

Discussion
In the present experimental model of polymicrobial sepsis

induced by cecal ligation and puncture surgery in rats, one sin-

gle early iv dose of Gln (0.75 g/kg) improved survival and oxy-

genation, prevented lung mechanics deterioration, and

minimized pulmonary and diaphragm histological changes,

attenuating epithelial cell apoptosis of the lung and distal

organs. In addition, Gln acted on balancing pro- and anti-

inflammatory cytokines, decreasing CINC-1 and IL-6 in BALF

and PLF at 18 hours, and increasing IL-10 in PLF at 18 hours

and BALF at 48 hours.

We used a CLP model of sepsis for the following reasons: it is

reproducible and more comparable with human surgical sep-

sis; apoptosis of selected cell types and host immune

Figure 5

Photomicrographs of electron microscopy of diaphragmPhotomicrographs of electron microscopy of diaphragm.  In C-SAL, C-
Gln, and CLP-Gln groups the mitochondria (M) and Z bands (ZB) are 
well preserved. Asterisk indicates apoptosis in nucleus of muscle. Note 
the presence of disorganized Z bands (circle) and oedema between 
muscle fibres in CLP-SAL group. Photomicrographs are representative 
of data obtained from diaphragm section derived from five animals. C = 
control; CLP = cecal ligation and puncture; Gln = glutamine; SAL = 
saline.

Table 1

Lung morphometric parameters

Groups Normal area (%) Alveolar collapse (%) MN (%) PMN (%)

C-SAL 92.7 ± 0.7 7.3 ± 0.7 36.2 ± 0.4 7.8 ± 0.3

C-Gln 88.3 ± 1.8 11.7 ± 1.8 36.2 ± 0.4 7.7 ± 0.3

CLP-SAL 27.6 ± 3.0* 72.4 ± 3.0* 17.5 ± 1.5* 42.2 ± 1.3*

CLP-Gln 80.7 ± 2.6* # 19.3 ± 2.6* # 31.9 ± 0.6* # 12.9 ± 0.7* #

Values are means (± standard deviation) of eight animals in each group. All values were computed in 10 random, non-coincident fields per rat. The 
volume fraction of the lung occupied by normal pulmonary areas or collapsed alveoli. Fractional areas of polymorphonuclear cells (PMN) and 
mononuclear cells (MN). Sepsis was induced by cecal ligation and puncture surgery (CLP). A sham-operated group was used as control (C) for 
animals undergoing CLP. One hour after surgery, C and CLP groups were treated with saline (SAL) or glutamine (Gln). *Significantly different 
from C-SAL group (P < 0.05). #Significantly different from CLP-SAL group (P < 0.05).
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responses seem to mimic the course of human sepsis [28];

and it is considered a good model for abdominal sepsis ther-

apy research [28-30].

In our study, a single 0.75 g/kg dose of iv Gln was used as it

resulted in a plasma Gln level of 3 to 7 mM/L in a model of

endotoxemia [4]. This dose of Gln was found to markedly

enhance HSP expression in lung attenuate proinflammatory

cytokine release [4,11], and improve survival after endotox-

emia [4,12,17].

In the present study, Gln led to a reduction in neutrophil infil-

tration, interstitial oedema, and alveolar collapse (Table 1), as

well as a repair in alveolar capillary membrane (Figure 2 and

Table 2) yielding an improvement in oxygenation, lung Est,

P1, and P2 (Figure 1). The beneficial effects of iv Gln on

pulmonary inflammation in experimental models of sepsis have

been previously reported [11-13,17], but not directly related

to gas-exchange and lung mechanics. Furthermore, no prior

study has analysed the impact of Gln on the repair of the alve-

olar capillary membrane through electron or confocal micros-

copy. Therefore, the beneficial effects of Gln on lung

parenchymal structure result in the improvement in clinical

parameters (lung mechanics and gas exchange) which may

lead to a less injurious setting of mechanical ventilation.

We also observed that Gln reduced in vivo epithelial cell

apoptosis in lung, small intestine villi, kidney, and liver (Table

3). Emerging in vitro evidence showed that Gln deprivation

may influence cell survival and gene expression [15,31-33].

Additionally, the effects of Gln on epithelial cell apoptosis have

been studied mainly in intestinal [32-34] but not in lung cells.

A recent in vitro study demonstrated that in intestinal cells, the

role of extracellular signal-regulated kinase pathway in Gln-

mediated prevention of cellular apoptosis following stress or

injury [33]. The phosphoinositide-3 kinase/Akt pathway

appears to be activated during periods of Gln starvation,

which may serve as a protective mechanism to limit apoptosis

associated with cell stress [34]. Additionally, other factors

have been variably implicated in Gln-dependent survival sig-

nalling [15]. To date, no other studies have shown in vivo distal

organ apoptosis after iv Gln therapy in sepsis.

Pro-inflammatory cytokines are primarily responsible for initiat-

ing an effect against exogenous pathogens. However, exces-

sive production of these mediators may significantly contribute

to shock and multiple organ failure [21]. In contrast, anti-

inflammatory cytokines are crucial for down regulating the

incremented inflammatory process and maintaining homeosta-

sis for the correct function of vital organs. Therefore, a balance

between pro- and anti-inflammatory cytokines is important for

appropriate immune response; although excessive inflamma-

tion or hyporesponsiveness could lead to complications. The

protective effects of Gln against apoptosis in lung and periph-

eral organs may also be attributed to the association of

reduced pro-inflammatory cytokines (CINC-1 and IL-6) with an

increase in anti-inflammatory cytokine (IL-10) in BALF and PLF

(Figure 7). It has been reported that CINC-1 plays an impor-

tant role in the recruitment of neutrophils to the lung in lipopol-

ysaccharide-induced ALI [35]. The migration of blood

neutrophils into the lung partially depends on chemokines

such as IL-8 (human), CINC-1 (rat), and macrophage inflam-

matory protein-2. On the other hand, the lack of endogenous

IL-10, a prototypic anti-inflammatory cytokine, resulted in

increased levels of TNF and enhanced mortality in mouse

models of endotoxemia, whereas in models of bacterial infec-

tion, endogenous IL-10 impairs the bacterial clearance [36].

Therefore, our data suggest that Gln's protective effects on

lung and distal organ injury can also be explained by a better

anti-inflammatory response and immune regulation.

Different mechanisms have been investigated to explain the

potential protective effects of Gln against inflammatory injury,

such as: attenuation of excessive NF- B activation reducing

the release of TNF- , IL-6, and IL-18 in sepsis [11]; up regula-

tion of HSP70 and HSP72 [12-17] repairing denaturated/

injured proteins or promoting their degradation following irrep-

arable injury; and increment in tissue glutathione levels,

improving the antioxidant status [37]. Although these parame-

ters were not measured in the present study, it is likely that

Table 2

Semi-quantitative analysis of lung and diaphragm electron microscopy

Groups Type II epithelial cell lesion Hyaline membrane Endothelial cell damage Oedema of Z-disc Diaphragm mitochondrial injury

C-SAL 0 (0 to 1) 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 0 (0 to 0)

C-Gln 0 (0 to 0.25) 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 0 (0 to 0)

CLP-SAL 3 (2 to 3)* 2 (2 to 3)* 4 (3 to 4)* 3 (2 to 4)* 3 (2 to 3)*

CLP-Gln 1 (1 to 2)* # 0 (0 to 1) 1 (1 to 2)* # 0 (0 to 1) 1 (0 to 1)* #

Values are median (25th to 75th percentile) of five rats in each group. The pathologic findings were graded according to a five-point semi-
quantitative severity-based scoring system: 0 = normal lung parenchyma or diaphragm, 1 = changes in 1 to 25%, 2 = changes in 26 to 50%, 3 = 
changes in 51 to 75%, and 4 = changes in 76 to 100% of the examined tissue. Sepsis was induced by cecal ligation and puncture surgery (CLP). 
A sham-operated group was used as control (C) for animals undergoing CLP. One hour after surgery, C and CLP groups were treated with saline 
(SAL) or glutamine (Gln). *Significantly different from C group (P < 0.05). #Significantly different from CLP-SAL group (P < 0.05).
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Figure 6

Representative photomicrographs of kidney, liver and small intestine villi stained with (upper panels) haematoxylin & eosin and (lower panels) immu-nohistochemical staining for FasLRepresentative photomicrographs of kidney, liver and small intestine villi stained with (upper panels) haematoxylin & eosin and (lower panels) immu-
nohistochemical staining for FasL.  (Kidney). Control (C) group shows glomeruli (G) and renal tubules (T) with preserved architecture and sparse 
apoptotic renal cells (arrowheads). Cecal ligation and puncture (CLP) group presents disarrangement of renal tubules with degenerative cytoplas-
mic changes (arrows) and numerous apoptotic cells. Note in CLP group treated with glutamine (Gln) that the histoarchitecture of the renal tubules is 
restored with a decrease in apoptotic cells (arrowheads). (Liver) C group shows hepatocytes (H) adjacent to centro-lobular vein (CLV) with pre-
served architecture and few apoptotic cells. In CLP group treated with saline (SAL). CLP-SAL group shows disarrangement of hepatocytes with dif-
fuse microvacuolization by fat degeneration (arrows) and numerous apoptotic cells. Note that in CLP group treated with Gln, the histoarchitecture of 
the hepatocytes is restored with decreased apoptotic cells (arrowheads). (Small intestine villi) C group depicted preserved architecture with nor-
mal crypts (Cry) and villi (Vil) with few apoptotic cells. CLP presents necrosis of the top of villi (Nec), degenerative cytoplasmic changes of entero-
cytes (arrows), and numerous apoptotic cells. In CLP-Gln group, the histoarchitecture of the crypts and villi is restored with decrease of the 
apoptotic cells (arrowheads).
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these mechanisms are involved in the reduction of the distal

organ inflammatory process.

Gln also limited diaphragm ultrastructural changes. Doruk and

colleagues showed that Gln reversed the reduction in glutath-

ione levels in the diaphragm of rats submitted to cecal ligation

and puncture surgery [38]. However, no previous study has

demonstrated the histological changes of diaphragm in Gln-

treated sepsis model.

The current study has some limitations which need to be

addressed. First, a CLP experimental model of sepsis was

used [21]. The CLP is certainly a good model of peritonitis,

and we do not know if these results can be directly shifted to

other experimental models of sepsis. Second, the amount of

bacteria recovered from peritoneal and blood samples was not

measured. Third, only one single iv dose of Gln (0.75 g/kg)

was used [4], and consequently, we cannot exclude the pos-

sibility that multiple doses or continuous infusion could yield

better histological results [11]. Fourth, Gln was intravenously

used; thus we do not know the effects of the 0.75 g/kg Gln

dose via enteral route. Enteral Gln has a protective effect

against lipopolysaccharide-induced mucosal injury [39], as

well as ameliorates bacterial translocation, endotoxemia,

apoptosis, and improves the ileal and liver histology in the

presence of obstructive jaundice [40]. However, recently, it

has been described that Gln leads to interstitial inflammation

and fibrosis in lipopolysaccharide-induced ALI [41]. Further-

Table 3

Epithelial cell apoptosis

Groups Lung Kidney Liver Villi

C-SAL 0.0 (0 to 1) 0.0 (0 to 1) 0.0 (0 to 1) 0.0 (0 to 1)

C-Gln 0.0 (0 to 1) 0.5 (0 to 1) 0.5 (0 to 1) 0.0 (0 to 1)

CLP-SAL 2.5 (2 to 4)* 2.0 (2 to 3)* 2.0 (2 to 3)* 3.5 (3 to 4)*

CLP-Gln 1.5 (1 to 2)* # 1.0 (1 to 1)* # 0.5 (0 to 1) 0.0 (0 to 1)

Values are median (25th to 75th percentile) of five animals in each group. A five-point semiquantitative severity-based scoring system was used. 
The apoptotic findings were graded as: 0 = normal lung parenchyma; 1 = 1 to 25%; 2 = 26 to 50%; 3 = 51 to 75%; 4 = 76 to 100% of examined 
tissue. Sepsis was induced by cecal ligation and puncture surgery (CLP). A sham-operated group was used as control group (C) for animals 
undergoing CLP. One hour after surgery, C and CLP groups were further randomized into subgroups receiving saline (SAL) or glutamine (Gln). 
*Significantly different from C group (P < 0.05). #Significantly different from CLP-SAL group (P < 0.05).

Figure 7

Analysis of CINC-1 (cytokine-induced neutrophil chemoattractant-1), IL-10 and IL-6 levels measured in both bronchoalveolar and peritoneal lavage fluids 18 and 48 hours after sepsis inductionAnalysis of CINC-1 (cytokine-induced neutrophil chemoattractant-1), IL-10 and IL-6 levels measured in both bronchoalveolar and peritoneal lavage 
fluids 18 and 48 hours after sepsis induction.  Values are ± standard deviation of five animals in each group. Sepsis was induced by cecal ligation 
and puncture surgery (CLP). A sham-operated group was used as control (C) for animals undergoing CLP. One hour after surgery, C and CLP 
groups were further randomized into subgroups receiving saline (SAL) or glutamine (Gln). *Significantly different from C group (P < 0.05). #Signifi-
cantly different from CLP-SAL group (P < 0.05). BALF = bronchoalveolar lavage fluid.
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more, enteral administration of Gln may be questionable in

peritonitis and does not improve survival in intensive care unit

patients [42]. Fifth, Gln was given early after injury, and there-

fore, the use of Gln in the late phase of sepsis is unknown.

Sixth, plasma Gln levels were not analyzed, although prior

studies have shown reduced levels of Gln in plasma and mus-

cle during sepsis [5,7,43]. Finally, we measured IL-10, IL-6,

and CINC-1 in the BALF and PLF. However, the effects on

other cytokines and their amount in lung tissue have not been

investigated. Even taking into account all these limitations the

present data demonstrate the beneficial effects of Gln in

abdominal sepsis on lung as well as on diaphragm and distal

organs.

Conclusions
In the present experimental model of sepsis induced by cecal

ligation and puncture, a single early iv Gln improved survival

and arterial oxygenation, prevented pulmonary mechanics

deterioration and minimized histological changes, attenuating

epithelial cell apoptosis of the lung and distal organs. These

findings suggest that Gln may modulate the inflammatory

process reducing the risk of lung and distal organ injury. Thus

our experimental data suggest that a single early iv dose of Gln

could be beneficial to patients submitted to surgery for perito-

nitis, but this hypothesis must be proved in further clinical

studies.
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