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ABSTRACT. A practical synthesis of a new bifunctional diketopiperazine (DKP) scaffold 1, formally 

derived from the cyclization of L-aspartic acid and (S)-2,3-diaminopropionic acid, is reported. DKP-1

bears a carboxylic acid and an amino functionalities in a cis relationship, which have been used to grow 

peptide sequences. Tetra-, penta- and hexapeptidomimetic sequences were prepared by solution phase 

peptide synthesis (Boc strategy). Conformational analysis of these derivatives was carried out by a 

combination of 1H-NMR spectroscopy, IR spectroscopy, CD spectroscopy and computer modeling, and 

reveal the formation of β-hairpin mimics involving 10-membered and 18-membered H-bonded rings and 

a reverse turn of the growing peptide chain. 

KEYWORDS. Diketopiperazines / Reverse-turn mimics / β-Turns / β-Hairpins / β-Peptides

BRIEFS. A New Bifunctional Diketopiperazine Scaffold as β-Hairpin Inducer.

Introduction

In the field of peptidomimetics much effort has been focused on the design and synthesis of 

conformationally constrained compounds that mimic, or induce, specific secondary structural features of 

peptides and proteins.1 In fact, short linear peptides are inherently flexible molecules, especially in 

aqueous solution, and so are often poor mimics of the secondary structures (turns, α-helices, β-strands) 

found on the surfaces of folded proteins. A common motif in protein structure is the reverse-turn, which 

is defined as a site where the peptide backbone reverses the direction of propagation by adopting a U-

shaped conformation.2 Reverse-turn mimics are generally cyclic or bicyclic dipeptide analogs which, as 
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a result of their constrained structure, force a peptide chain to fold back upon itself.3 Some of us have 

recently prepared several azabicycloalkane amino acid scaffolds containing a bicyclic lactam unit, and 

studied their conformational properties as reverse-turn inducing dipeptide mimics, where the nature and 

stereochemistry of the bicyclic lactam strongly influence their turn-inducing abilities.4

Diketopiperazines (DKP), the smallest cyclic peptides, are a common motif found in several natural 

products with therapeutic properties.5 In addition, DKP have been used as organic catalysts in the 

hydrocyanation of imines,6 and have been shown to be useful scaffolds for the rational design of drugs 

and peptidomimetics.7 In these cases, advantage can be taken from the synthesis of symmetrical and 

unsymmetrical DKP bearing reactive functionalities in the lateral chains of the amino acids. For 

instance, Wennemers and co-workers have prepared a few symmetrical diketopiperazine two-armed 

receptors derived from 4-amino-proline where the two amino groups (with a cis disposition) were 

functionalized with two tripeptide side chains.8 The resulting two-armed receptors were screened 

towards a tripeptide library and showed highly selective binding properties which were attributed to the 

specific turn geometry of the receptor. In alternative, two different functionalities can be created in the 

lateral chains of the two amino acids forming the DKP core, such as an amine (e.g. derived from Lys, 

Orn or diaminobutyric acid) and a carboxylic acid (e.g. derived from Asp or Glu). In this case, a new 

peptidomimetic structure is formed, possessing a fixed conformation (due to the cyclic DKP core and 

the configuration of the two amino acids), and which can now be inserted in oligopeptide sequences.9

For instance, Royo, Albericio, et al. reported the synthesis of cyclic peptidomimetics containing a 

bifunctional DKP (cyclo-Lys-Glu) and a RGD sequence and measured their binding affinity to the αVβ3

integrin receptor.10 Robinson and co-workers have synthesized a novel bicyclic template, comprising a 

diketopiperazine derived from L-aspartic acid and (2S,3R,4R)-diaminoproline, which in the context of a 

cyclic peptide mimic can stabilize β-hairpin conformations.11

In this paper we report the synthesis of a new bifunctional DKP scaffold 1 (DKP-1, Figure 1), 

formally derived from L-aspartic acid and (S)-2,3-diaminopropionic acid, bearing a carboxylic acid and 

an amino functionalities. As a consequence of the absolute configuration of the two α-amino acids 
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4

forming the cyclic dipeptide unit, the two reactive functionalities (amino and carboxylic acid) are locked 

in a cis-configuration. When inserted into an oligopeptide sequence, the DKP-scaffold acts as a 

reverse-turn inducer. In addition, the DKP scaffold 1, while being derived from α-amino acids [L-

aspartic acid and (S)-2,3-diaminopropionic acid], can be seen as a conformationally constrained

dipeptide formed by two β-amino acids (see Figure 1),12 and in particular a β2 and a β3-amino acids 

(following Seebach’s nomenclature).13 A few sequences incorporating the DKP-scaffold 1 were 

synthesized (tetra- AA1-DKP-AA2, penta- AA1-AA2-DKP-AA3 and hexapeptides AA1-AA2-DKP-AA3-

AA4), and their conformations studied by NMR, IR, CD spectroscopy and molecular modeling showing 

the formation of a β-hairpin mimic. 

N

COOH

N

O

O
Ph

NHBoc

H

(1)

β3-amino acid

β2-amino acid

 

Figure 1. Structure of the bifunctional diketopiperazine scaffold 1 (DKP-1) highlighting the 

conformationally constrained β2-β3 dipeptide sequence.

Results and Discussion

The synthesis of DKP-1 was conveniently obtained according to Scheme 1, starting from suitably 

protected N-(tert-butoxycarbonyl)-(2S)-aspartic acid β-allyl ester14 and (S)-N-benzylserine methyl 

ester,15 which were coupled to form dipeptide 2. Dipeptide 2 was then deprotected and its 

trifluoroacetate salt cyclized, in good yields, to the diketopiperazine 3, in a basic biphasic system 

(EtOAc / NaHCO3aq).
16 These conditions were selected to minimize the epimerization of the serine 

methyl ester and the formation of the diastereomeric trans-DKP (< 10%), which could, however, be 

separated by a chromatographic purification. Other conditions, such as the use of tertiary amines (Et3N 

or iPr2EtN) as base or of other solvents (e.g. dichloromethane), gave increased proportions of the 

epimeric trans-DKP. The stereochemistry of the cis-DKP 3 was unequivocally established by X-ray 

diffraction.
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Scheme 1. Synthesis of the diketopiperazine scaffold DKP-1
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The introduction of the nitrogen functionality was then realized through a Mitsunobu type reaction 

using HN3·Tol in a toluene / dichloromethane solution, thus obtaining azide 4 in a moderate yield 

(48%). This procedure had been reported for the successful synthesis of 2,3-diamino propionic acid 

starting from serine derivatives.17 Other methodologies, involving the activation of the hydroxyl group 

of serine, were hampered by the concurrent elimination reaction leading to the dehydroalanine derivative 

as the major reaction product. The same Mitsunobu-HN3 reaction run on dipeptide 2 gave a higher yield 

of the azide derivative, but, unfortunately, all attempts to cyclize this derivative met with no success. 

Finally, a one pot Staudinger – Boc protection18 yielded the DKP scaffold allyl ester 5, which was de-

allylated19 to give the amino acid derivative 1 in quantitative yield.

As we anticipated in the introduction, the diketopiperazine scaffold 1 can be seen as a 

conformationally constrained dipeptide formed by a β2 and a β3-amino acids (see Figure 1). Extensive 
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6

investigation on β-peptides indicated that these are able to adopt stable secondary structures such as 

helices and sheets. The stabilization of β-peptide-hairpins sequences was also studied,12 and in particular 

Seebach and co-workers described the formation of turn-like secondary structures in oligo-β-peptides 

containing the dipeptide sequence formed by a β2-amino acid (C2-substituted) followed by a β3-amino 

acid (C3-substituted).20 Gellman and co-workers reported the formation of a hairpin conformation when 

a heterochiral dinipecotic acid β-peptide unit was introduced in a tetrapeptide.21 The intramolecular 

hydrogen bonding pattern in these two cases is different: in the first case a 10-membered H-bonded ring 

is formed involving the C=O of the β3-amino acid and the NH of the β2-amino acid, while, in the second 

case a 12-membered H-bonded ring can be identified, which is a two-term homolog of the β-turn 

structure formed by α-amino acids. β-Hairpins containing both α- and β-amino acids have also been 

reported to be very stable.22

In view of these potential properties, we decided to study the ability of DKP-1 to form well-defined 

folded structures, when introduced in peptide sequences. We realized the synthesis of several 

peptidomimetics (6-11, Scheme 2) by solution phase peptide synthesis (Boc strategy) starting from the 

C-terminus.23 Good yields were obtained in the coupling of the amino acids to the amino terminus of 

DKP 1, using EDC (N-ethyl,N’-[3’-(dimethylamino)propyl]carbodiimide)/HOAt (7-aza-1-hydroxy-

1,2,3-benzotriazole) or HATU {[(dimethylamino)-([1,2,3]triazolo[4,5b]pyridin-3-yloxy)-methylene]-

dimethylammonium-hexafluorophosphate},24 in a methylene chloride or DMF solution, and in the 

presence of a tertiary amine (N-methylmorpholine or N,N-diisopropylethylamine). 
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7

Scheme 2. Peptidomimetics containing DKP-1 (Synthetic schemes, experimental procedures and 

characterization of compounds 6-11 are reported in the Supporting Information)
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The tendency of the DKP-1-containing peptidomimetics 6-11 to adopt a β-hairpin conformation was 

then evaluated. Characteristic differences in the NMR spectral parameters for unstructured peptides and 

peptides in extended and intramolecularly hydrogen bonded conformations have been reported in 

organic solvents.4c,25 Chemical shifts and coupling constants for the Cα hydrogens reflect the average 

conformations of individual amino acid residues, while the chemical shifts of the NH hydrogens and 

their temperature dependence reveal whether they are solvent exposed or hydrogen bonded 

intramolecularly. 
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8

The dipeptide mimic 6, in CDCl3, showed some degree of concentration dependence and a strong 

temperature dependence of the chemical shifts of all the NH’s (> 20 ppb/K) at a 2 mM concentration, 

while the chemical shift values were only slightly deshielded (6.25-7.02 ppm) with respect to the 

average values for non-hydrogen-bonded NH protons (ca 6.0 ppm). These data are in agreement with an 

equilibrium between a non-hydrogen-bonded and an intermolecularly H-bonded status (aggregation). 

We next turned our attention to the tetrapeptide mimics 7 and 8 (Scheme 2). The NMR studies for 

these compounds were performed in CDCl3 (see Table 1). Dilution studies indicated that in both cases 

no aggregates are formed in the concentration range 0.5-10 mM. From the NMR data summarized in 

Table 1 it appears that the amide protons NH4 are in an intramolecularly hydrogen-bonded status. In 

fact: (a) their resonance is shifted substantially downfield (8.10 and 8.18 for 7 and 8, respectively); (b) 

the temperature dependence of the NH4 chemical shift falls within the typical values for intramolecularly 

hydrogen bonded protons: 2.7 ppb/K for 8 and slightly higher (4.1 ppb/K) for 7; (c) the ∆δ (NH4) upon 

addition of CH3OH (obtained measuring the spectrum in a CDCl3/CH3OH, 4/1 mixture), is small (0.03 

in the case of 8), and the rate of exchange H4/D upon addition of CD3OD is quite slow (ca. 960 min). In 

the case of proton NH1, the same parameters (i.e. values of chemical shift, temperature dependence,  ∆δ 

upon addition of CH3OH and rate of exchange H1/D upon addition of CD3OD), are indicative of an 

equilibrium between an intramolecularly hydrogen-bonded and a non-hydrogen-bonded status for both 7

and 8. A similar equilibrium is also partially displayed by proton NH2, although in this case the NMR 

parameters reflect a looser intramolecular hydrogen-bond. 

NOE contacts can be highly indicative of the formation of a β-hairpin mimic when inter-strand 

contacts are visible. Unfortunately, in the case of the tetrapeptide mimics 7 and 8 we could not detect 

this kind of contacts, and only strong intra-strand contacts were observed, which are indicative of an 

extended conformation for the amino acid residues. The FT-IR spectrum of the tetrapeptide mimic 7 (2 

mM solution in CHCl3), is characterized by two bands, at 3427 and 3395 cm-1 (free NH groups) and two 

prominent bands at 3321 and 3291 cm-1 (H-bonded NH groups), respectively.26 In the case of 8, only 

two bands can be recognized, one in the free NH region (3410 cm-1), and one at 3291 cm-1 indicative of 
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9

H-bonded NH’s. These data support the formation of a β-hairpin mimic involving a 10-membered and a 

18-membered H-bonded rings and a reverse turn of the growing peptide chain. The weak hydrogen-

bonded character of NH2 might indicate that a different β-hairpin mimic involving a 12-membered and a 

16-membered H-bonded rings (vide infra the molecular modeling discussion) is present as a minor 

conformer at the equilibrium.

Table 1. 1H-NMR data for the amide protons in compounds 7 and 8

7; R = O-tBu
8; R = CH3

N

N

N
N
H1

N
Ph

N
R

O

O
O

O

H4

O

H3

CH3

CH3

H5

H2

Ph

O

7a 8b

δc (ppm)
∆δ/∆Td

(ppb/K)
δc (ppm)

∆δ/∆Td

(ppb/K)
∆δe (add.n 
CH3OH)

NH/ND 
exchangef (min)

NH1 7.81 -7.6 8.21 -4.6 -0.07 300

NH2 7.03 -8.2 7.21 -5.3 0.53 160

NH3 6.28 -9.1 6.61 -15.5 1.25 < 10

NH4 8.10 -4.1 8.18 -2.7 0.03 960

NH5 5.41 -1.8 6.40 -2.3 ≥ 0.7 -g

a) Concentration 0.5 mM in CDCl3; b) Concentration 2.0 mM in CDCl3; c) at 298 K; d) determined 
between 238 and 288 K; e) measured in CDCl3/CH3OH 4/1; f) measured in CDCl3/CD3OD 4/1; g) not 
determined due to overlap with other resonances.

Computational studies designed to investigate the ability of the DKP-1 scaffold to induce β-hairpin 

conformations were performed on the tetrapeptide mimic 8. The molecule was subjected to an extensive, 

unconstrained Monte Carlo/Energy Minimization (MC/EM) conformational search27 by molecular 

mechanics methods using the AMBER* force field28 and the implicit CHCl3 GB/SA solvent model.29
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10

Only two types of conformations, both featuring a β-hairpin-like arrangement, are predominant among 

the structures found within 3 kcal/mol from the global minimum. The lowest energy conformer features 

an intramolecular hydrogen bonding pattern involving the formation of a 10-membered and a 18-

membered H-bonded rings (Figure 2, 8a). The 10-membered ring of this conformer features a gauche

orientation of the NH and C=O groups around the C2-C3 bond (β-amino acid numbering),13 with the 

β2 and β3 amino acid torsion angles (θ) of -87° and 81°, respectively.30 This cross-strand hydrogen 

bonding pattern is in agreement with the structure proposed on the basis of the NMR experiments (see 

Table 1 and discussion above).

A second β-hairpin-like conformer was found at 1.09 kcal/mol from the global minimum, involving 

the formation of a 12-membered and a 16-membered H-bonded rings (Figure 2, 8b). The 12-membered 

ring requires anti C2-C3 torsion angles, with θ values of -171° and -177° for the corresponding β2 and β3

amino acids. As also suggested by the NMR data reported in Table 1, this second type of β-hairpin 

structure, or at least its 12-membered H-bonded ring portion, might participate as a minor conformer to 

the conformational equilibrium.

Figure 2. Structures of low-energy conformers (MC/EM, AMBER*, CHCl3 GB/SA ) calculated for 

compound 8. Upper row: Global minimum (8a); Lower row: Conformer with relative energy of 1.09 
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11

kcal/mol (8b). Hydrogen bonds are indicated with dotted lines and for clarity all non-polar hydrogen 

atoms and phenyl groups have been omitted.

The solution structure of the pentapeptide mimic 9 was also studied by determining the temperature 

dependence of the NH chemical shifts at 2 mM in CDCl3 (no aggregation was detected at this 

concentration). An equilibrium between an intramolecularly hydrogen-bonded and a 

non-hydrogen-bonded status is suggested by the various parameters for protons NH2 and NH5 (δ = 7.71 

and 7.77; ∆δ/∆T  = -7.7 and -6.3 ppb/K, respectively; see the Supporting Information for the complete 

set of parameters), which might be indicative of the presence of a β-hairpin conformation with a 

10-membered and a 18-membered H-bonded rings, in analogy to the tetrapeptide-mimics 7 and 8 

(Scheme 3).

Scheme 3. Proposed H-bonded structure for pentapeptide 9

N N

N
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O

OH3

H2

N CH3

O

H1

N
N O

H5

H6

O

O

H

H
O

O

H4

H

H

Ph

9

The hexapeptides 10 and 11 (Scheme 2) were then prepared; the first dramatic difference with respect 

to the shorter homologs was the insolubility of these products, in particular 11. In fact 11 was only 

soluble in DMSO and in hot methanol, while compound 10 was also sparingly soluble in CHCl3 and 

soluble in methanol. For this reason the NMR studies of these compounds were performed in DMSO-d6

and, in the case of 10, also in 5% CD3OH-CDCl3. All the proton resonances could be assigned by means 

of COSY and ROESY spectra. The 2D-NMR analysis in DMSO-d6 suggests that both compounds 10

and 11 adopt a β-hairpin-type conformation with a 10-membered H-bonded ring similar to that observed 
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12

in the previous structures. In fact, the ROESY spectra show a set of NOE cross peaks that support this 

conclusion (Scheme 4).

Scheme 4. Selected intrastrand (dashed black arrows) and interstrand (dashed red arrows) NOE contacts 

for hexapeptides 10 and 11

N
N

O

OH3

H2

N CH3

O

H1

N
N

H5

H6

O
N R
H7

O O

H

H

Ala1Val1

Val2Ala2

10; R = O-tBu
11; R = CH3

N

N

O

O H4
H

H

H

H

H

In particular, in the case of 10, several interstrand NOE contacts were observed: a strong contact 

between the CαH of the Val1 and CαH of the Ala2 residue (see also Figure 3a); a contact between NH2

and the CαH of the Ala2 residue (see also Figure 3b) and a weak contact between NH2 and NH7 (see also 

Figure 3c). The same contacts were also observed when the ROESY spectrum of 10 was collected in 5% 

CD3OH-CDCl3 (see the Supporting Information). A similar pattern is also shown by the spectrum of 11

in DMSO-d6, with the exception of the cross peak between NH2 and NH7 which is too weak to be 

detected in this case. 
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Figure 3. Sections of the ROESY spectrum of 10 (2 mM in DMSO-d6) showing: a) interstrand NOE’s 

in the CαH region, b) interstrand NOE’s for CαH and NH, c) interstrand NOE’s for the NH.

The analysis of the 1H-NMR spectrum of hexapeptide mimic 10 in 5% CD3OH-CDCl3 (Table 2) 

showed that protons NH2 and NH5 are notably shifted downfield with respect to the other NH protons. 

The temperature dependency is indicative of a hydrogen-bonded status for both NH2 and NH5, and of an 

equilibrium between an intramolecularly hydrogen-bonded and a non-hydrogen-bonded status for NH7. 

The 3J values for the NH-CαH in DMSO-d6 for both compounds 10 and 11 (Table 2) are in agreement 

with the typical values for peptides showing a β-hairpin secondary structure (7.5-8.5 Hz).25a Similar 

values were also found for the spectrum of 10 in 5% CD3OH-CDCl3.

Table 2. 1H-NMR data for the amide protons in compounds 10 and 11

N N

N
N

O

OH3

H2

N CH3

O

H1

N
N

H5

H6

O
N R
H7

O O

H

H
O

O

H4

H

H

Ph

Ala1Val1

Val2Ala2

10; R = O-tBu
11; R = CH3

10 11

δa,b (ppm)
∆δ/∆Ta,c

(ppb/K)

3JNHCHα
a,

d
3JNHCHα

e,f δ (ppm)e,f 3JNHCHα
e,f

NH1 6.99 -8.0 5.7 5.6 7.83 5.6

NH2 8.24 -2.5 7.7 7.4 8.19 7.9

NH3 7.61 -15.5 8.0 8.1 8.29 7.2

NH4 7.68 -16.5 -g -g 8.28 -g

NH5 7.97 -1.3 -g -g 8.25 -g

NH6 7.42 -8.5 8.0 7.8 8.18 7.8
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NH7 5.76 -6.0 6.8 9.1 7.96 8.9

a) Concentration 2.0 mM in 5% CD3OH-CDCl3; b) at 288 K; c) determined between 248 and 288 K; 
d) at 278 K; e) Concentration 2.0 mM in DMSO-d6; f) at 298 K; g) broad signal.

The ability of peptidomimetics 7, 8, 10 and 11 to adopt an ordered secondary structure in solution was 

also evaluated by CD spectroscopy (Figure 4). The spectra were measured in methanol (0.5 mM) and  

showed a similar behavior: two negative minima, one at 200-205 nm (201 nm for compound 11) and a 

second one at about 220 nm (220 nm for compound 11), and a negative maximum at 209-215 nm (209 

nm for 11) were displayed by all these compounds. Unfortunately, while several CD studies have been 

reported for β-peptides adopting helical conformations (and in particular 12- and 14-helices),12d,31  no 

conclusive data on β-peptides assuming hairpin-type conformations have appeared in the literature. A 

hexapeptide consisting of β3-homo-amino, β2-homo-amino and α-amino acids with a central β2-β3

segment, was recently reported by Seebach and co-workers to adopt a turn-like conformation with a 

10-membered H-bonded ring induced by the β2-β3 unit.22 Its CD spectrum (0.2 µM in CH3OH) 

displayed a similar behavior with respect to our derivatives, with a minimum at 197 nm, a shoulder at 

205 nm, a negative maximum at about 215 nm and a less pronounced minimum at ca 220 nm. In 

addition, both minima and the maximum showed negative molar ellipticities of comparable intensity to 

our compounds. 
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Figure 4. CD spectra of peptidomimetics 7, 8, 10, 11 (0.5 mM in methanol). The data are normalized 

for peptide concentration and for the number of residues.

Page 14 of 27

ACS Paragon Plus Environment

Submitted to The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

Molecular mechanics calculations were performed on the hexapeptide mimic 11, similarly to the 

tetrapeptide mimic 8, to investigate the ability of the DKP-1 scaffold to induce β-hairpin conformations. 

The molecule was subjected to an unconstrained Monte Carlo/Energy Minimization (MC/EM) 

conformational search27 in vacuo (the implicit DMSO solvation model is not available in the software 

employed) with a distance dependent dielectric constant of 4r, to generate a suitable starting 

conformation for the following restrained simulation in explicit DMSO solvent (see below). Two 

different, energetically equivalent, β-hairpin conformations were found within 3 kcal/mol from the 

global minimum (Figure 5). The lowest energy conformer is characterized by the presence of hydrogen 

bonds involving the amide protons NH3, NH6 and NH1 and forming, respectively, a 12-membered, a 16-

membered and a 24-membered rings (Figure 5, 11a). However, no experimental evidence is provided by 

the NMR data in solution (Scheme 4, Table 2) for such intramolecular hydrogen bonding pattern 

(resembling conformer 8b of the tetrapeptide mimic 8, see discussion above).

Figure 5. Structures of the lowest energy conformers (MC/EM, AMBER*, in vacuo) calculated for 

compound 11. Upper row: Global minimum (11a). Lower row: Conformer with relative energy of 0.26 
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kcal/mol (11b). Hydrogen bonds are indicated with dotted lines and for clarity all non-polar hydrogen 

atoms, except CαH of Val1 and Ala2 residues, and the phenyl residues, have been omitted.

The second conformer (Figure 5, 11b) shows a β-hairpin conformation in agreement with the structure 

proposed on the basis of the spectroscopic data (Scheme 4, Table 2). This conformer features a 10-

membered and a 18-membered H-bonded rings that resemble the hydrogen bonding pattern observed in 

conformer 8a of the tetrapeptide mimic 8, and an additional 22-membered H-bonded ring involving the 

NH7 amide proton and the Ala1 carbonyl group. 

Furthermore, comparing the calculated interstrand distances in conformers 11a and 11b between 

protons CαH of the Val1 and CαH of the Ala2 residues and between the proton CαH of the Ala2 residue 

and the NH2 amide proton (Table 3), only the 11b conformer shows distance values consistent with the 

NOE contacts observed in DMSO solution (Scheme 4).

Table 3. Relevant proton distances of the low-energy conformers (MC/EM, AMBER*, in vacuo) 

calculated for compound 11

Conformer ∆E

(kcal/mol)

Proton distance (Å)

CαH(Val1)-CαH(Ala2)

Proton distance (Å)

CαH(Ala2)-NH2

11a 0.0 7.56 7.92

11b 0.26 2.49 3.95

Finally, a simulated annealing protocol in explicit DMSO solvent32 with the NMR restraints derived 

from the NOE contacts (see the Experimental Section for computational details) was performed starting 

from conformer 11b. The simulation converged to a unique β-hairpin structure (Figure 6). Consistent 

with the NMR analysis, this β-hairpin arrangement features a 10-membered and a 18-membered H-
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bonded rings involving the NH5 and NH2 amide protons, respectively, while the NH7 amide proton does 

not form any intramolecular hydrogen bond.

Figure 6. Simulated annealing superimposed solutions. Hydrogen bonds are indicated with dotted lines 

and all non-polar hydrogen atoms, except CαH of Val1 and Ala2 residues, have been omitted for clarity.

Conclusions

In this paper, we reported the synthesis of a new bifunctional diketopiperazine (DKP) scaffold 1, 

derived from L-aspartic acid and (S)-2,3-diaminopropionic acid. DKP-1 bears an amino and a carboxylic 

acid functionalities in a cis relationship. As a consequence, DKP scaffold 1 can be seen as a 

conformationally constrained mimic of a dipeptide formed by two β-amino acids (namely a β2 and a β3

amino acids). When inserted into a peptidic sequence, involving α-amino acids, DKP-1 is 

accommodated into the turn position of a β-hairpin. IR, NMR and CD experiments provide strong 

support to this conclusion, strengthened by molecular modeling and molecular dynamics calculations. 

Experimental Section
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(S)-N-benzyl-3-tert-butoxycarbonylamino-N-[(S)-2-hydroxy-1-methoxycarbonyl-ethyl]-

succinamic acid allyl ester (2). To a solution of β-allyl (2S)-N-(tert-butoxycarbonyl)aspartate ester (329 

mg, 1.2 mmol) in CH2Cl2 (8 mL), under a nitrogen atmosphere and at 0 ºC, was added HATU (510 mg, 

1.3 mmol, 1.1 equiv) and DIPEA (417 µL, 2.4 mmol, 2 equiv). After 30 min, a solution of (S)-N-

benzylserine methyl ester (251 mg, 1.2 mmol, 1 equiv) in CH2Cl2 (1.6 mL) was added and the reaction 

was stirred at 0 ºC for 1 h and at rt for 24 h. The mixture was then diluted with EtOAc (100 mL) and the 

organic phase was washed in order with: 1 M KHSO4 (2×20 mL), aqueous NaHCO3 (2×20 mL) and 

brine (2×20 mL), dried over Na2SO4 and volatiles were removed under reduced pressure. The residue 

was purified by flash chromatography on silica gel (petroleum ether/EtOAc, 75:25) to afford the desired 

product as a yellow oil (401 mg, 72%). [α]21
D= -2.65 (c 1.0, CHCl3); 

1H NMR (CDCl3) δ 7.24-7.34 (m, 

5H), 5.83-5.93 (m, 1H), 5.48 (d, 1H, J=8.2 Hz), 5.30 (d, 1H, J=17.2 Hz), 5.23 (d, 1H, J=10.4 Hz), 4.51-

4.61 (m, 3H), 4.32-4.48 (m, 2H), 3.88 (d, 1H, J=13.1 Hz), 3.75 (s, 3H), 3.73 (d, 1H, J=13.1 Hz), 3.55 (t, 

1H, J=4.7 Hz), 2.99 (dd, 1H, J1=17.0 Hz, J2=4.3 Hz), 2.85 (dd, 1H, J1=17.0 Hz, J2=4.7 Hz), 2.21 (br s, 

1H), 1.45 (s, 9H). Two set of signals were observed in the 13C spectrum due to the presence of two 

rotational isomers A:B (20:1 ratio): 13C NMR (CDCl3) δ 172.8 (A), 172.1 (B), 171.0 (A), 170.3 (B), 

155.7 (A), 155.0 (B), 139.6 (A), 138.9 (B), 132.1 (A), 131.4 (B), 128.9 (A), 128.7 (A), 128.1 (B), 127.9 

(B), 127.6 (A), 126.9 (B), 119.1 (A), 118.4 (B), 80.6 (A), 79.9 (B), 66.2 (A), 66.1 (A), 65.5 (B), 65.4 

(B), 59.5 (A), 58.8 (B), 52.7 (A), 52.2 (A), 51.9 (B), 51.4 (B), 50.3 (A), 49.6 (B), 37.1 (A), 36.4 (B), 

28.7 (A), 27.9 (B); IR (CHCl3) νmax 3438, 3338, 3026, 2983, 2953, 2857, 1739, 1500, 1453, 1378, 1341, 

1279, 1247, 1176. HRMS (ESI) m/z calcd for [C23H33N2O8]
+: 465.22314 [M+H]+; found: 465.22326. 

Anal. Calcd for C23H32N2O8: C 59.47, H 6.94, N 6.03; found C 59.07, H 7.01, N 5.91.

[(2S,5S)-4-benzyl-5-hydroxymethyl-3,6-dioxo-piperazin-2-yl]-acetic acid allyl ester (3). Dipeptide 

2 (1.95 g, 4.2 mmol) was dissolved in TFA (32 mL) and stirred for 3 h at rt. The solvent was evaporated, 

methanol (3×50 mL) was added followed by evaporation, and then Et2O (35 mL) was added and 

evaporated to give the TFA salt of the dipeptide 2 as a white solid. This salt was dissolved in a mixture 

of saturated aqueous NaHCO3/EtOAc (0.1 M, 1:1 v/v) and stirred at room temperature for 24-48 h. 
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Subsequently, the layers were separated and the aqueous layer was extracted with EtOAc (4×). The 

combined organic layers were washed with brine, dried over Na2SO4 and volatiles were removed under 

reduced pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2/CH3OH, 

97:3) to afford the desired product as a white solid (1.13 g, 81%). Mp 119-120 ºC; [α]25
D= -72.1 (c 1.0, 

CHCl3); 
1H NMR (CDCl3) δ 7.25-7.37 (m, 5H), 7.05 (br s, 1H), 5.84-5.94 (m, 1H), 5.25-5.34 (m, 3H), 

4.55-4.66 (m, 2H), 4.49-4.51 (m, 1H), 4.07 (d, 1H, J=15.0 Hz), 3.98 (d, 1H, J=11.1 Hz), 3.85-3.89 (m, 

2H), 3.21 (dd, 1H, J1=17.5 Hz, J2=2.8 Hz), 3.16 (br s, 1H); 3.13 (dd, 1H, J1=17.5 Hz, J2=10.4 Hz); 13C 

NMR (CDCl3) δ 171.9, 167.0, 166.3, 135.6, 131.9, 129.5, 128.6, 119.5, 66.4, 61.3, 60.5, 52.8, 47.6, 

40.7; IR (CHCl3) νmax 3388, 3275, 3031, 3017, 2945, 1728, 1680, 1452, 1379, 1336, 1276, 1183, 1124. 

MS (FAB+) m/z 333 ([M+1]+,  80%), 275 (11%), 154 (57%), 136 (48%), 91 (100%). Anal. Calcd for 

C17H20N2O5: C 61.44, H 6.07, N 8.43; found C 61.23, H 5.97, N 8.24.

X-ray crystallographic data of 3: Crystal data: C17H20N2O5; MW = 332.35 g mol-1; T = 293 K; λ(Mo, 

Kα) = 0.71073 Å, monoclinic, space group P21, a = 7.394(4) Å, b = 10.764(19) Å, c = 10.800(5) Å, β = 

99.71(4)°, V = 847(2) Å3, ρcalc = 1.303 g cm-3, Z = 2; µ(Mo, Kα) = 1.0 cm-1. R and wR2 0.086 and 

0.155, respectively, for 1230 unique data collected in the 3-25.3° 2θ range.

[(2S,5S)-5-azidomethyl-4-benzyl-3,6-dioxo-piperazin-2-yl]-acetic acid allyl ester (4). To a solution 

of 3 (565 mg, 1.7 mmol) in CH2Cl2/toluene (6.6 mL/12.2 mL), under nitrogen atmosphere and at -20 ºC, 

was added PPh3 (530 mg, 2.0 mmol, 1.2 equiv) and the mixture was stirred until a solution was 

obtained. Hydrazoic acid (0.45 M in toluene,33 7.6 mL, 3.4 mmol, 2 equiv) was added followed by a 

dropwise addition of DIAD (0.41 mL, 2.0 mmol, 1.2 equiv) and the reaction was stirred at -20 ºC for 3.5 

h. After evaporation of the solvent under reduced pressure, a quick chromatographic purification 

(petroleum ether/EtOAc, 6:4) was performed to remove the hydrazo-derivative and the resulting crude 

residue was then purified by flash chromatography on silica gel (CH2Cl2/CH3OH, 99:1) to afford the 

desired product as a colorless oil (291 mg, 48%). [α]23
D= -72.7 (c 1.9, CHCl3); 

1H NMR (CDCl3) δ 7.26-

7.39 (m, 5H), 6.91 (br s, 1H), 5.89-5.99 (m, 1H), 5.36 (d, 1H, J=17.2 Hz), 5.30 (d, 1H, J=10.4 Hz), 5.18 

(d, 1H, J=15.0 Hz), 4.62-4.71 (m, 2H), 4.51-4.54 (m, 1H), 4.20 (d, 1H, J=15.0 Hz), 3.95 (br s, 1H), 3.89 
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(dd, 1H, J1=12.7 Hz, J2=1.7 Hz), 3.68 (dd, 1H, J1=12.7 Hz, J2=3.4 Hz), 3.31 (dd, 1H, J1=17.7 Hz, 

J2=2.2 Hz), 3.08 (dd, 1H, J1=17.7 Hz, J2=11.2 Hz); 13C NMR (CDCl3) δ 171.6, 165.7, 165.1, 135.3, 

131.8, 129.6, 128.8, 128.6, 119.6, 66.5, 58.8, 52.6, 51.1, 48.0, 40.7; IR (thin film) νmax 2984, 2929, 

2853, 2119, 1734, 1686, 1667, 1451, 1336, 1274, 1181. MS (FAB+) m/z 358 ([M+1]+,  12%), 330 (2%), 

149 (16%), 109 (27%), 91 (100%). Anal. Calcd for C17H19N5O4: C 57.14, H 5.36, N 19.60; found C 

57.39, H 5.28, N 19.25.

[(2S,5S)-4-benzyl-5-(tert-butoxycarbonylamino-methyl)-3,6-dioxo-piperazin-2-yl]-acetic acid 

allyl ester (5). To a solution of azide 4 (268 mg, 0.75 mmol) in THF (2.5 mL), under nitrogen 

atmosphere and at -20 ºC, was added Me3P (830 µL of 1 M solution in THF, 0.83 mmol, 1.1 equiv) and 

2-(t-butoxycarbonyloxyimino)-2-phenylacetonitrile (Boc-ON, 206 mg, 0.83 mmol, 1.1 equiv). After 

stirring for 5 h at rt, CH2Cl2 (60 mL) was added and the solution was washed with H2O (3×30 mL) and 

brine. The organic phase was dried over Na2SO4 and volatiles were removed under reduced pressure. 

The residue was purified by flash chromatography on silica gel (CH2Cl2/CH3OH, 99:1) to afford the 

desired product as a white solid (253 mg, 78%). [α]28
D= -123.7 (c 1.0, CHCl3); 

1H NMR (CDCl3) δ

7.28-7.36 (m, 5H), 7.06 (br s, 1H), 5.86-5.96 (m, 1H), 5.56 (d, 1H, J=15.1 Hz), 5.25-5.36 (m, 3H), 4.60-

4.69 (m, 2H), 4.48-4.51 (m, 1H), 4.09 (d, 1H, J=15.1 Hz), 3.80-3.86 (m, 2H), 3.45-3.49 (m, 1H), 3.27 

(dd, 1H, J1=17.6 Hz, J2=1.7 Hz), 2.85 (dd, 1H, J1=17.6 Hz, J2=11.1 Hz), 1.46 (s, 9H); 13C NMR 

(CDCl3) δ 171.5, 166.7, 164.9, 156.2, 135.6, 131.8, 129.4, 128.9, 128.5, 119.3, 80.8, 66.4, 59.2, 52.4, 

47.2, 40.8, 40.6, 28.7; IR (Nujol) νmax 3323, 3308, 1716, 1684, 1658, 1339, 1272, 1167, 1127. MS 

(FAB+) m/z 432 ([M+1]+,  12%), 376 (49%), 332 (41%), 302 (16%), 91 (100%). Anal. Calcd for 

C22H29N3O6: C 61.24, H 6.77, N 9.74; found C 61.47, H 6.93, N 9.56.

[(2S,5S)-4-benzyl-5-(tert-butoxycarbonylamino-methyl)-3,6-dioxo-piperazin-2-yl]-acetic acid,

DKP-1 (1). To a solution of 5 (242 mg, 0.56 mmol) in CH2Cl2 (3.0 mL), under nitrogen atmosphere and 

at 0 ºC, was added pyrrolidine (56 µL, 0.67 mmol, 1.2 equiv), PPh3 (26 mg, 0.10 mmol, 0.18 equiv) and 

then [Pd(PPh3)4] (24 mg, 0.02 mmol, 0.04 equiv). After stirring for 1 h at 0 ºC, EtOAc (25 mL) was 

added and the solution was extracted with aqueous NaHCO3 (4×10 mL). The combined aqueous phases 
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were acidified to pH 2 with a 1 M KHSO4 solution and then extracted with CH2Cl2. The resulting 

organic phase was dried over Na2SO4 and the solvent evaporated to afford the desired product as a fluffy 

white solid (209 mg, 95%). [α]26
D= -69.9 (c 1.0, CHCl3); 

1H NMR (CDCl3, 50ºC) δ 10.02 (br s, 1H), 

8.05 (br s, 1H), 7.25-7.37 (m, 5H), 5.59 (d, 1H, J=14.2 Hz), 5.36 (br s, 1H), 4.52 (d, 1H, J=11.4 Hz), 

4.03 (br s, 1H), 3.88 (s, 1H), 3.79-3.85 (m, 1H), 3.49-3.54 (m, 1H), 3.28 (dd, 1H, J1=17.7 Hz, J2=2.3 

Hz), 2.74 (dd, 1H, J1=17.7 Hz, J2=11.4 Hz), 1.50 (s, 9H); 13C NMR (CDCl3, 50ºC) δ 175.1, 168.1, 

164.9, 157.0, 135.4, 129.4, 128.8, 128.6, 81.4, 59.5, 52.4, 47.3, 40.9, 40.6, 28.7; IR (Nujol) νmax 3382, 

3325, 3227, 1715, 1659, 1647, 1272, 1162, 1125. HRMS (ESI) m/z calcd for [C19H25N3NaO6]
+: 

414.16356 [M+Na]+; found: 414.16367. 

Solution phase synthesis of peptidomimetics. Representative procedure for the coupling with 

HOBT/EDC: Boc-(S,S)-DKP-1-(S)-Ala-NH-CH2-Ph. To a solution of Boc-(S)-Ala-NH-CH2-Ph (67 

mg, 0.24 mmol) in CH2Cl2 (1.85 mL; 0.13 M) was added an equal volume of TFA and the reaction was 

stirred at rt for 3 h. The solvent was evaporated, methanol (3×2 mL) was added followed by evaporation, 

and then ether was added and evaporated to afford the corresponding TFA salt. This was dissolved in 

DMF (2.4 mL, 0.1 M), and 1 (98 mg, 0.25 mmol, 1.05 equiv) was added followed by HOBt (36 mg, 

0.26 mmol, 1.1 equiv) and DIPEA (84 µL, 0.48 mmol, 2 equiv). The solution was cooled in an ice bath 

and treated with EDC (40 mg, 0.26 mmol, 1.1 equiv). The reaction was stirred at 0 ºC for 1 h and at rt 

overnight. The mixture was diluted with EtOAc (15 mL) and consecutively extracted with 1 M KHSO4 

(2×3 mL), aqueous NaHCO3 (2×3 mL) and brine (2×3 mL), dried over Na2SO4 and the solvent 

evaporated under reduced pressure. The residue was purified by by flash chromatography 

(CH2Cl2/CH3OH, 95/5), to afford the product (122 mg, 92%) as a white solid. Mp 112-113 ºC; [α]28
D= -

98.4 (c 0.50, CDCl3); 
1H NMR (CDCl3, 40 ºC) δ 7.48 (br s, 1H), 7.18-7.34 (m, 12H), 5.83 (br s, 1H), 

5.41 (d, 1H, J=15.0 Hz), 4.51-4.59 (m, 1H), 4.35-4.44 (m, 3H), 3.99 (d, 1H, J=15.0 Hz), 3.78 (br s, 1H), 

3.61-3.72 (m, 1H), 3.49-3.59 (m, 1H), 3.05 (dd, 1H, J1=15.1 Hz, J2=3.9 Hz), 2.74 (dd, 1H, J1=15.1 Hz, 

J2=8.8 Hz), 1.42 (s, 9H), 1.36 (d, 3H, J=6.9 Hz); 13C NMR (CDCl3, 40 ºC) δ 172.5, 170.4, 166.4, 166.1, 

156.4, 138.6, 135.6, 129.3, 128.9, 128.8, 128.5, 128.0, 127.7, 80.6, 59.2, 53.2, 49.6, 47.5, 43.9, 41.7, 
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41.4, 28.8, 18.5; IR (Nujol) νmax 3354, 3320, 3240, 1717, 1658, 1639, 1552, 1532, 1249, 1173, 1076. MS 

(FAB+) m/z 552 ([M+1]+,  4%), 452 (18%), 369 (6%), 147 (31%), 109 (54%), 91 (100%). Anal. Calcd 

for C29H37N5O6: C 63.14, H 6.76, N 12.70; found C 62.84, H 6.75, N 12.53.

Solution phase synthesis of peptidomimetics. Representative procedure for the coupling with 

HATU: Boc-(S)-Ala-(S,S)-DKP-1-(S)-Ala-NH-CH2-Ph (7). To a solution of Boc-(S,S)-DKP-1-(S)-

Ala-NH-CH2-Ph (61 mg, 0.11 mmol) in CH2Cl2 (0.85 mL) was added an equal volume of TFA and the 

reaction was stirred at rt for 3 h. The solvent was evaporated, methanol (3×2 mL) was added followed 

by evaporation, and then ether (3 mL) was added and evaporated to afford the corresponding TFA salt. 

To a solution of Boc-(S)-Ala-OH (21 mg, 0.11 mmol, 1 equiv), in CH2Cl2 (0.55 mL), under nitrogen 

atmosphere and at 0 ºC, was added HATU (46 mg, 0.12 mmol, 1.1 equiv) and DIPEA (38 µL, 0.22 

mmol, 2 equiv). After 30 min, a solution of the TFA salt of the peptide in CH2Cl2  (0.55 mL) and 

DIPEA (19 µL, 0.11 mmol, 1 equiv), was added and the reaction mixture was stirred at 0 ºC for 1 h and 

at rt overnight. The mixture was diluted with EtOAc (10 mL) and consecutively extracted with 1 M 

KHSO4 (2×3 mL), aqueous NaHCO3 (2×3 mL) and brine (2×3 mL), dried over Na2SO4 and the solvent 

evaporated under reduced pressure. The residue was purified by flash chromatography (CH2Cl2/CH3OH, 

95/5) to afford 7 (54 mg, 82%) as a white solid. Mp 127-128 ºC; [α]25
D= -42.5 (c 0.41, CH3OH); 1H 

NMR (CDCl3) δ 8.20 (br s, 1H), 8.06 (br s, 1H), 7.75 (d, 1H, J=6.9 Hz), 7.55 (br s, 1H), 7.26-7.35 (m, 

7H), 7.15-7.21 (m, 3H), 5.52 (d, 1H, J=7.5 Hz), 5.39 (d, 1H, J=15.0 Hz), 4.67 (t, 1H, J=6.0 Hz), 4.47 (t, 

1H, J=6.7 Hz), 4.41 (br s, 2H), 4.08 (br s, 1H), 3.99 (br s, 1H), 3.96 (d, 1H, J=15.0 Hz), 3.75-3.82 (m, 

2H), 3.16 (d, 1H, J=15.2 Hz), 2.80 (d, 1H, J=15.2 Hz), 1.42 (d, 3H, J=6.0 Hz), 1.29 (br s, 12H); 13C 

NMR (CDCl3) δ 173.9, 173.7, 170.3, 166.1, 165.7, 155.9, 138.4, 135.5, 129.4, 129.0, 128.7, 128.5, 

127.6, 127.2, 80.1, 57.1, 52.4, 49.8, 46.9, 43.6, 39.5, 38.3, 28.7, 20.8, 19.4; IR (CHCl3) νmax 3429, 3395, 

3330, 3295, 2930, 1689, 1657, 1556, 1506, 1449, 1368, 1332, 1255, 1166. HRMS (ESI) m/z calcd for 

[C32H42N6NaO7]
+: 645.30072 [M+Na]+; found: 645.29916. Anal. Calcd for C32H42N6O7: C 61.72, H 

6.80, N 13.50; found C 61.42, H 6.78, N 13.35.
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