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Abstract In the multibody field the design of state observers proves useful for several tasks,
ranging from the synthesis of control schemes and fault detection strategies, to the identi-
fication of uncertain parameters. State observers are designed to obtain accurate estimates
of unmeasurable or unmeasured variables. Their accuracy and performance depend on both
the models used and the measurement sets. In multibody systems, if it is reasonable to ne-
glect joint clearance and to assume that links are rigid, the estimates of kinematic variables
(i.e. position, velocity and acceleration) can be carried out very effectively using kinematic
models, i.e. models based on kinematic constraint nonlinear equations, which provide much
less uncertain models than dynamic equations. Under the aforementioned assumptions, this
paper proposes a general theory, valid for both open-chain and closed-chain multibody sys-
tems, to design observers based on nonlinear kinematic models. The concurrent use of kine-
matic models and nonlinear estimators is original in the multibody field and represents the
chief contribution of the paper. The soundness of the proposed theory is proved through
numerical and experimental tests on both open-chain and closed-chain multibody systems.
Finally, a comparison is given between the kinematic estimations computed through two
nonlinear observers (the extended Kalman filter, EKF, and the spherical simplex unscented
Kalman filter, SS-UKF), in order to demonstrate the benefits of the SS-UKF in nonlinear
estimation.

Keywords Nonlinear state observers · Kinematic estimation · Rigid-link multibody
systems

1 Introduction

Not only is the knowledge of the actual state of multibody systems (MBSs) an essential
requirement for assuring proper motion through advanced control schemes [1], but it is also
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useful in the implementation of techniques for fault detection, virtual sensors and of strate-
gies for the identification of uncertain parameters. Unfortunately, the direct measurement
of all the state variables (positions and velocities) is frequently unfeasible for technical or
economical reasons. Therefore, the availability of efficient and effective techniques for the
estimation of state variables in MBSs is often necessary.

To this end, closed-loop state observers (estimators) [2] are typically employed. An ob-
server reconstructs the missing state variables by means of a reliable system model and of
measurements of both the system inputs and outputs. Such a fusion of system model and
sensor measurements allows tackling very effectively a wide class of issues. On the one
hand, the closed-loop architecture of a state observer provides a means to compensate for
model parameter errors, due to, for example, bad calibration, modeling errors, unexpected
parameter changes. On the other, the use of a model, albeit uncertain, allows filtering ex-
ternal noise and hence avoiding the considerable delay that causal low-pass filters would
introduce.

In the multibody field, the design of state observers has been typically based on Kalman
filters employing dynamic equations of motion, also whenever the estimated state variables
are only kinematic quantities, such as position, speed or acceleration [3, 4]. Such dynamic
models are inherently uncertain because they depend on several uncertain geometric and
inertial parameters (such as link dimensions, joint positions, actual mass and moments of
inertia values, positions of centers of mass) and on external inputs (such as friction, control
and disturbance forces), which are sometimes unknown. All these uncertainties may seri-
ously compromise the accuracy and the performance of observers, and affects their actual
usefulness in practical applications.

Whenever the system links are rigid and joint clearance is negligible, improvement of the
estimates of kinematic state variables can be achieved by only involving kinematic quantities
and by employing kinematic models instead of dynamic models. Indeed, kinematic models
are geometrical models, which depend on a lower number of parameters and variables com-
pared to dynamic ones. Additionally, estimation through kinematic model can be employed
effectively regardless of the knowledge of the external forces and of the presence of joint
friction, which are often difficult to measure or to estimate. In contrast, dynamic models
need accurate knowledge of such a phenomenon to operate properly. State observers based
on kinematic models have already been proposed in the literature [5, 6] and are known as
Kinematic Kalman Filters (KKFs). In its original definition, a KKF is a sensor-based esti-
mator where the measurement set is used both as the output and the input to first-order dif-
ferential equations representing the kinematic model of a system. To the best of the authors’
knowledge, so far kinematic state observers have been employed just to perform simple
encoder–accelerometer sensor fusion (without the use of kinematic constraints) in a single
body system [6], or to perform end-effector sensing both in a planar two-link robot [6] and
in an industrial open chain robot [7]. In [8], an observer based on kinematic models has
instead been used for kinematic parameter estimation in rigid body systems.

Clearly, there still lacks a comprehensive theory for kinematic state estimation, capa-
ble of dealing with both open-chain and closed-chain MBSs, and explicitly addressing the
problems arising from the nonlinearity of state estimation. In particular, with reference to the
latter issue, in all the quoted references, nonlinear kinematic state estimation has been per-
formed using the discrete Extended Kalman Filter (EKF) [9]. Such an algorithm computes
the observer gains by means of a linearization around the estimated state trajectory of the
nonlinear model equations. However, in the case of highly nonlinear systems, as MBSs are,
the linearization introduced by the EKF and the related computation of Jacobian matrices
can cause significant errors and sometimes may lead to filter instability too.
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Therefore, the aim of this paper is to introduce a general theory for the design of nonlinear
discrete state observers based on kinematic equations, suitable for MBSs with rigid links and
negligible joint clearance. The theory is general in the sense that it can be applied to both
open-chain and closed-chain MBSs. The theory also addresses the problem of closed-loop
state derivative estimation, which is not trivial when discrete observers are employed, and
the problem of computing the estimates in the presence of model singularity, by taking
advantage of a switching model.

The theory proposed can make use of both the EKF and the recently introduced observers
based on the unscented transformation [9, 10], the so-called Sigma Point Kalman Filters
(SPKFs). SPKFs are aimed at overcoming the limitations displayed by the application of the
EKF to nonlinear state estimation. In particular, the use of the Spherical Simplex Unscented
Kalman Filter (SS-UKF) [9, 11] is evaluated in this paper, as a representative example of
SPKF. Indeed, the SS-UKF is very accurate, easy to implement, and similar to the EKF in
terms of computational costs. Nonetheless, as previously mentioned, the theory presented
can make use of any unscented transformation.

The paper is set out as follows: Sect. 2 briefly outlines the general estimation strategies
currently available for nonlinear systems. A general first-order (state-space) formulation
suitable for performing kinematic estimation is provided in Sect. 3, where the suggested
estimation procedure is presented, too. In Sect. 4, some open issues in kinematic estimation
are tackled. In particular, state derivative estimation and state estimation in the presence
of model singularity are discussed. Numerical and experimental tests on both closed-chain
(1 dof) and open-chain (2 dofs) MBSs are presented in Sect. 5: they prove the soundness of
the proposed theory. Finally, concluding remarks are given in Sect. 6.

2 Nonlinear state estimation: state-of-the-art schemes

The synthesis of state observers requires to model systems as a set of first-order, ordinary
differential equations (ODEs) relating inputs (u), outputs (y), and state variables (x) as fol-
lows: {

ẋ(t) = f c

(
x(t),u(t)

)
,

y(t) = g
(
x(t),u(t)

) (1)

where f c is a nonlinear differential function, called the system equation, while g is an
algebraic function representing the observation model, named the measurement equation.
Although physical processes are continuous in time, both sensor measurements and the nu-
merical computation of the estimates are obtained at discrete instants of time because of
sampling. Hence, the use of discrete-time filtering is preferred, which is based on modeling
both the measurement and system equations as discrete-time processes:{

xk = f (xk−1,uk−1),

yk = g(xk,uk).
(2)

In the equation above, index k denotes the kth time sample, while f is the discrete-time
state equation (often referred to as the state transition function), which depends on both its
continuous expression f c and on the discretization scheme adopted.

Several uncertainty sources usually affect both system models (e.g. approximations in the
model parameters, unmodeled effects) and measurements (e.g. sensor noise, bad calibration
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Fig. 1 General scheme of the estimation procedure based on the concept of Kalman filters

or misalignment). Therefore, system equations should include process and measurement
noises too, respectively named vk and wk :{

xk = f (xk−1,uk−1,vk−1),

yk = g(xk,uk,wk).
(3)

As a consequence, the state variables should be considered stochastic variables and the
estimation problem is often formulated as Bayesian estimation [9]. In order to solve the
Bayesian estimation problem, approximate solutions are usually employed. In particular,
the most widespread simplification is to assume a Gaussian distribution of noise. This is one
of the basic assumptions of Kalman filters, whose general recursive scheme is represented
through the block diagram in Fig. 1, which highlights the presence of two macro phases:
the prediction and the correction. The block diagram just presents the equations of the cor-
rection phase since these equations are general and are required for any estimation scheme.
Conversely, the equations for computing the a priori estimates in the prediction phase of the
state vector (x̂k|k−1), the input vector (ŷk|k−1) and the covariance matrices (P̂xx

k|k−1, P̂yy
k|k−1,

P̂xy
k|k−1), are specific for each filter and are not discussed here. The subscript k|k − 1 just

means that the value refers to the kth time step and it is computed making use of the infor-
mation available at the time step k − 1.

The recursive scheme in Fig. 1 shows that an observer corrects the so-called prediction
(or a priori estimation), x̂k|k−1, computed through the uncertain model f and the noisy input
measurements uk−1 of the previous time step (k − 1), by means of the output estimation
error (yk − ŷk|k−1) weighed through the filter gain Kk|k :

x̂k|k = x̂k|k−1 + Kk|k(yk − ŷk|k−1). (4)

The estimation error (yk − ŷk|k−1) is often referred to as the innovation.
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Therefore, the final estimation at the current time step k (a posteriori estimation),
x̂k|k , includes both the prediction x̂k|k−1 based on the system model, and the correction
Kk|k(yk − ŷk|k−1) The latter term behaves as a closed-loop correction, in the control the-
ory sense, forcing the estimation to correctly track sensor measurements by compensating
model uncertainty.

In the following subsections, the algorithms used by the EKF and by the SPKFs for
computing state and observation predictions are briefly explained to highlight similarities
and differences. The interested reader could refer to the quoted references for more detailed
discussions.

2.1 Discrete extended Kalman filter

Basically, the EKF is the extension to nonlinear systems of the Kalman filter (KF) [2] orig-
inally developed for linear systems. Such an extension is made by directly employing the
nonlinear system equations (f ) and measurement equations (g) to perform both the state
prediction x̂k|k−1 = f (x̂k−1|k−1,uk−1) and the observation ŷk|k−1 = g(x̂k|k−1). In contrast,
the EFK algorithm replaces the nonlinear model with its Jacobian matrices F̂k−1|k−1 =
∂f /∂x|x̂k−1k−1,uk−1 (the state transition matrix) and Ĥk|k−1 = ∂g/∂x|x̂k|k−1 (the observation
matrix), computed about the estimated state trajectory, in order to propagate the covariance
matrices P̂xx, P̂yy, P̂xy. Such matrices have the following dependence on the covariance ma-
trices of the model and the measurement noises, named respectively Q and R:

P̂xx
k|k−1 = F̂k−1|k−1P̂xx

k−1|k−1F̂T
k−1|k−1 + Q; P̂yy

k|k−1 = Ĥk|k−1P̂xx
k|k−1ĤT

k|k−1 + R;
P̂xy

k|k−1 = P̂xx
k|k−1ĤT

k|k−1.

Therefore, EKF is based on equations that are optimal only in the case of linear systems, but
when nonlinearities are significant, linearization unavoidably leads to large errors, inaccu-
rate estimations, and sometimes to filter instability.

2.2 Sigma point Kalman filters

Another extension of the KF to nonlinear state estimation is the family of the SPKFs. Such
observers are based on the idea that “it should be easier to approximate a Gaussian distribu-
tion than it is to approximate an arbitrary nonlinear function” [10]. The Gaussian distribu-
tion of the state variables is approximated by means of a set of weighed sample points (called
sigma points) that are selected so as to capture completely the first two moments of a Gaus-
sian distribution. Once the sigma points have been chosen, they are propagated through the
actual nonlinear function and are used to approximate the desired statistics with the same ac-
curacy of, at least, the 2nd order Taylor’s series expansion [10]. Therefore, SPKFs calculate
the statistics of random variables undergoing nonlinear transformations without the need of
linearization. Different sigma point selection strategies have been proposed in the literature,
such as the Unscented Transformation [10], the Scaled Unscented Transformation [12], the
Minimal Skew Simplex Unscented Transformation [13], the Spherical Simplex Unscented
Transformation [11]. Each strategy leads to a different number of sigma points and has a dif-
ferent computational cost and numerical accuracy. The selection of the most suitable SPKF
depends on the requirements of the specific application (in terms, for example, of computa-
tional power available, need for accuracy, presence of noise) and will not be discussed here
since it goes beyond the scope of this paper.
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The general algorithm used to perform the prediction step with SPKFs is briefly de-
scribed in the following by means of a matrix formulation, just to explain the basic idea
of the SPKFs. Each SPKF formulation is based on a definition of the matrix of the sigma

points, X̂k−1|k−1 = [x̂k−1|k−1 x̂k−1|k−1 . . . x̂k−1|k−1] +
√

P̂xx
k−1|k−1χ ∈ �N×p , where matrix χ

depends on the sigma point selection strategy. The scalars N and p are respectively the state
dimension and the number of sigma points; these two parameters play a crucial role in af-
fecting the computational cost of the estimation. Once the sigma points are defined, both the
prediction and the computation of the observer gains are performed through the nonlinear
system equations. As for the prediction, the a priori estimates of both the state x̂k|k−1, and
the output ŷk|k−1 are computed as the weighed sum of the sigma points propagated through
the nonlinear functions f and g:

x̂k|k−1 = X̂k|k−1w, ŷk|k−1 = Ŷk|k−1w,

X̂k|k−1 = f (X̂k−1|k−1,uk−1) ∈ �N×p, Ŷk|k−1 = g(X̂k|k−1) ∈ �o×p.
(5)

In the previous set of equations, w ∈ �p , w = {w0 w1 . . . wp}T, is the vector of the sigma
point weights (which depend on the sigma point selection strategies) while o represents the
number of output variables. For shortness of notation the functions f and g have been
redefined in Eq. (5) as f : �N×p �→ �N×p and g : �o×p �→ �o×p , meaning that matrix
X̂k|k−1 is obtained applying function f to each column of X̂k−1|k−1, for example, the ith
column of X̂k|k−1 is obtained as X̂i

k|k−1 = f (X̂i
k−1|k−1,uk−1).

The covariance matrices for the synthesis of the filter gain Kk|k are computed on the basis
of the previously defined values X̂k|k−1 and Ŷk|k−1 as follows:

P̂xx
k|k−1 = X̂k|k−1WcX̂T

k|k−1 + Q; P̂yy
k|k−1 = Ŷk|k−1WcŶT

k|k−1 + R;
P̂xy

k|k−1 = X̂k|k−1WcŶT
k|k−1

with the weights represented as Wc = [I − Wm]diag(w)[I − Wm],
Wm = [

w w . . . w
] ∈ �p×p.

Among the several sigma point selection strategies proposed for the unscented transforma-
tion, in this paper the one called spherical simplex sigma point selection is adopted as a rep-
resentative sample [11], which leads to the so-called Spherical Simplex Unscented Kalman
Filters (SS-UKF). Such a strategy provides an effective trade-off between computational
cost and overall effectiveness [4]. Indeed, this unscented transformation selects p = N + 2
sigma points lying on a hypersphere whose radius is proportional to

√
N , where N is the

state dimension.

2.3 Non-stochastic interpretation of Kalman filters

Both the SPKFs and the EKFs, previously discussed, perform the so-called stochastic state
estimation, and therefore require the knowledge of the zero-mean Gaussian noise covariance
matrices Q and R to compute the filter gains. Since, in practice, noise is often non-Gaussian
(in particular the model noise, whose covariance is also difficult to be evaluated), these
filters can be also seen in a non-stochastic way by considering matrices Q and R as design
parameters to be tuned for optimizing performances, rather than actual properties of the
disturbance.
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3 Kinematic modeling of multibody systems: state-space formulation
of kinematic models

3.1 The kinematic model

The basic idea behind kinematic estimation is to exploit kinematic models, based on kine-
matic constraint equations, and a proper set of measurable kinematic variables in order to
estimate other unmeasured kinematic variables. Let us consider an arbitrary open-chain or
closed-chain MBS with rigid links, joints with no clearance and holonomic, scleronomous
constraints. In order to perform estimation through the proposed approach, the system
should be modeled through a suitable set of n independent coordinates z (n is the number of
degrees of freedom, dofs), and a set of m dependent coordinates h to be measured at some
order of derivative (as it will be discussed later in Sect. 3.2). A set of m algebraic constraint
equations relating the dependent and the independent coordinates can be hence defined:

�(z,h) = 0. (6)

Such an equation is a set of nonlinear equations in the variables z and h, and does not depend
explicitly on time in the case of scleronomous constraints. By differentiating Eq. (6) with
respect to time, the following velocity and acceleration equations are obtained:

ḣ = S(z)ż, (7)

ḧ = S(z)z̈ + Ṡ(z, ż)ż. (8)

Matrices S and Ṡ ∈ R
m×n are the sensitivity coefficient matrix and its time derivative, re-

spectively. In practice, the columns of matrix S constitute a basis of the nullspace of the
Jacobian matrix of the constraint equation [14], and just depend on the mechanism position.

Equations (6), (7) and (8) define the kinematic model.

3.2 First-order model formulation

In order to be useful to state estimation, the kinematic model defined in the previous section
must be reformulated as first-order ODEs to fit the model of Eq. (1). To this end, proper
definitions of the state vector x, the system measured input vector u, and the measured output
vector y are crucial. Such definitions must ensure both model existence and the observability
of the system model realization.

As far as the state vector is concerned, it is defined as a 2n-dimensional vector including
both the independent coordinates and their first derivatives:

x = {z ż }T. (9)

As for the model input vector u, it should include at least n independent measured acceler-
ations.

After these preliminary definitions of the state and the inputs, it is possible to define the
first-order ODEs representing a MBS in the kinematic estimation. Such a model is inferred
from the acceleration equation (8):

ẋ =
{

ż
z̈

}
=

{
ż

[ST(z)S(z)]−1ST(z){u − Ṡ(z, ż)ż}
}

. (10)

In Eq. (10), the model input u is the m-dimensional vector of the sensed accelerations, u = ḧ
(m ≥ n, n being the number of dofs). It is worth noticing that, in kinematic estimation, the
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accelerations ḧ play the same role as the forces (or torques) in the traditional synthesis
of state observers based on dynamic models, where the input vector collects the external
actuation and disturbance forces.

The model obtained in Eq. (10) clearly shows that the choice of the system inputs affects
the existence of the system model, since it sets the existence of matrix [ST(z)S(z)]−1.

3.3 Definition of the output vector

In order to set the measurement equation g, the output vector y should be defined by se-
lecting a set of other additional measured variables adequate ensuring system observability
even in the presence of relevant uncertainty on the model and on the state initial estimates.
The concept of observability can be simplified as the issue of whether the state of a sys-
tem, whose model is known, is uniquely determinable from its measured inputs and outputs,
and the initial conditions [15]. The estimation error is therefore asymptotically stable if the
system satisfies the observability condition and if the initial estimation error, as well as the
disturbance noise terms, are small enough [16, 17].

The number of the independent measured variables in y should be at least equal to the
number of system dofs, n. Although a rigorous discussion of observability is beyond the
aims of the paper, some general rules for selecting the output vector are here provided. Gen-
erally speaking, a set of sensors ensuring adequate observability even in the presence of
uncertain state initial conditions and of model noise (i.e. modeling errors) should include
as many non-redundant position measurements as the number of dofs, since such measure-
ments are able to capture the zero-frequency dynamics and hence prevent estimation drifts.

Once the variables in y have been selected, the measurement equation g is established.
Function g is a set of algebraic equations relating the output variables y and the state x, and
hence its formulation is obtained through Eqs. (6) and (7).

Finally, it is worth highlighting the different role played in the estimation process by the
measured variables collected in u and those in y. Indeed, the variables in y intervene in the
correction phase by contributing to the filter innovation, which is the discrepancy between
the measurements predicted through the nominal model and the actual ones (see Sect. 2). In
contrast, the variables in u play a key role in allowing the correct model formulation and the
existence of [ST(z)S(z)]−1, without contributing to the filter innovation. They intervene in
just the prediction phase.

From the considerations made so far it is apparent that at least 2n non-redundant mea-
surements are collected in vectors u and y, to properly perform state estimations in the
prediction–correction way typical of the closed-loop observers here discussed. In Sect. 4.1,
it will be shown that, by following the original approach here proposed, the same set of
measurements allows performing also state derivative estimation.

3.4 Discrete-time representation of the filter ODEs

As previously discussed in Sect. 2, the use of discrete-time filtering is very common in
practice. Therefore, the first-order ODEs of the kinematic model stated in Eq. (10) should
be represented as a discrete-time process. A typical discrete-time general representation of
the state-space model is shown in Eq. (2). As far as the discretization scheme is concerned,
most of the works in the literature on state observers usually perform model discretization
through the first-order Euler’s method, since its implementation is straightforward and it
usually requires small computational efforts. In the case of MBSs, in order to handle the
significant nonlinearities due to kinematic constraints, a great improvement can be obtained
by adopting the single-step higher order numerical techniques developed for the numerical
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integration of the equations of motion [14]. Indeed, higher order methods usually allow
improving accuracy and getting a larger region of absolute stability, even in the presence of
a larger sample time.

The following is an adequately general expression which can be employed to represent a
discrete-time model, in the case of a wide number of both implicit (e.g. the trapezoidal rule)
and explicit (e.g. Runge–Kutta) techniques, leading to similar expressions of the discrete
state transition function f [14]:

xk = xk−1 + �t

ν∑
i=1

βικi, κi = f c

(
xk−1 + �t

ν∑
j=1

λij κj ,uk−1

)
. (11)

The parameters βι, λij and ν are peculiar to the specific discretization scheme adopted.
Yet, the approach to state estimation proposed in this paper does not impose any specific
discretization scheme, and therefore any other method leading to a model representation
slightly different from the one in Eq. (11) can be adopted.

As for the discretization of the measurement equation g, it does not represent a critical
issue since g is an algebraic equation.

Once the model formulated in Eq. (10) is discretized and the output vector is defined,
the observer synthesis can be performed through the methods discussed in Sect. 2. The
whole procedure discussed represents a general and consistent approach to state estimation
of kinematic variables.

4 Nonlinear state estimation for MBSs: critical issues

4.1 State derivative estimation with discrete-time observers

The use of discrete-time filters based on the model in Eq. (2) allows estimating the state of a
MBS once the system model, the inputs, the outputs, and the initial state vector are known.
Conversely, state derivative estimation (i.e. acceleration estimation) with the prediction–
correction scheme proposed in Fig. 1 is less straightforward with discrete schemes. Indeed,
it imposes to include all the variables to be estimated within the state, and consequently, to
augment the set of the continuous-time first-order ODEs in Eq. (10) with some relations in-
volving variables of a greater derivative order. Therefore, accelerations should be included in
the augmented state vector, denoted xaug, and consequently, the set of first-order ODEs must
be augmented with some relations involving also jerks. This implies that, at least theoreti-
cally, jerk should be measured and included within the system input vector. Indeed, the input
vector of a kinematic model includes kinematic quantities having the same time-derivative
order of the components of ẋ with the highest derivative order. This is clearly unfeasible in
the case of acceleration estimation.

As two alternative approaches to acceleration estimation, discrete-time state estimations
can be computed through open-loop estimation with no prediction–correction iterations,
either by means of numerical derivatives of the state variables or by means of the solution
of the acceleration equations. Since no correction is performed, these approaches may be
inaccurate because they are respectively affected by sensor noise and model uncertainty.

In order to perform accurate discrete-time closed-loop state derivative estimations with
the prediction–correction iterations, the equations representing the state derivative should
be included in the state transition function f , so that the correction Kk|k(ymeas

k − ŷk|k−1) is
applied to compensate for measurement noise or model uncertainty. To this purpose, this
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section proposes three alternative approaches which embed the state derivative equations
into the state transition function. In particular, the first approach includes the acceleration
equations in f and is therefore suitable in the case of noisy measurements that do not allow
effective numerical derivative without introducing delay due to low-pass causal filters. On
the other hand, the second approach is chiefly based on numerical derivatives whose scheme
is, however, included into f : it is hence suggested in the presence of considerable model
uncertainty. Finally, the third approach combines the advantages of the previous ones, at the
cost of a slight increase in the model formulation complexity.

4.1.1 Acceleration equations with random walk

The acceleration equations in Eq. (8) cannot be expressed as discrete-time state-space equa-
tions if acceleration belongs to the state, and therefore are not suitable to be employed in
the observer model straightforwardly. To overcome this limitation, acceleration is modeled
through a so called “random walk”:

z̈k = z̈k−1 + δk−1 (12)

where δk−1 is the noise vector, representing the uncertainty on this equation, usually assumed
as white noise. Basically, this approach assumes that the current value of the acceleration
vector z̈k is equal to the previous one z̈k−1 plus a noise terms δk−1. The use of random
walk is a trick often adopted for approximating the model of unknown, or highly uncertain,
dynamics. Then, by making explicit the acceleration equations in Eq. (8), Eq. (12) can be
rewritten in the following form:

z̈k = [
ST

k−1Sk−1
]−1

ST
k−1{ḧk−1 − Ṡk−1żk−1} + δk−1. (13)

This approach casts the acceleration equations as first-order difference equations, by taking
also advantage of the probabilistic nature of the state observer.

The system model adopted in the estimation of the augmented state xaug = {xT z̈T}T is
therefore represented through the following system of equations, originated from Eqs. (10)
and (13):

xaug
k =

{
xk

z̈k

}
=

{
f (xk−1, ḧk−1)

[ST
k−1Sk−1]−1ST

k−1{ḧk−1 − Ṡk−1żk−1}
}

= f aug

(
xaug

k−1, ḧk−1
)
. (14)

4.1.2 Numerical derivative with model uncertainty

An alternative approach to acceleration estimation embeds in the system model a set of
first-order difference equations ψ representing the numerical derivation, in the presence of
noise δk :

z̈k = ψ(żk, zk, z̈k−1, żk−1, zk−1) + δk−1. (15)

The estimation of the augmented state xaug = {xT z̈T}T is therefore performed through the
following model: {

Ixk

Ψl(xk, z̈k)

}
=

{
f (xk−1,uk−1)

Ψr(xk−1, z̈k−1)

}
= f aug

(
xaug

k−1,uk−1

)
(16)

where I is the identity matrix, while functions Ψl and Ψr are obtained from Ψ by splitting
the current state and the one at the previous time step (k − 1). Having introduced the nu-
merical derivation scheme in the observer, the error due to measurement noise and to the
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approximate nature of numerical derivation is partially compensated by the closed-loop cor-
rection. Such a correction behaves as an optimal nonlinear filter whose gains, and therefore
bandwidth, are updated at each time step depending on the estimation error and on noise, in
accordance with the theory discussed in Sect. 2.

For instance, following a very popular approach in multibody system dynamics, the New-
mark’s first-order interpolation method [14] can be employed as a derivative scheme for
accelerations:

z̈k = 1

β�t2
(zk − zk−1) − 1

β�t
żk−1 +

(
1 − 1

2β

)
z̈k−1, (17)

or alternatively,

z̈k = żk − żk−1

γ�t
+ γ − 1

γ
z̈k−1. (18)

In Eqs. (17) and (18), �t is the sample time adopted in the estimation (which can be different
from the ones of sensor measurements in the case of multi-rate estimation). β and γ are
positive parameters defining the derivation method.

Compared with the model-based method in Sect. 4.1.1, this approach is more effective
in the presence of considerable model uncertainty, while it introduces high-frequency errors
in the presence of noisy sensors. Nevertheless, the low-pass filtering due to the correction
ensures that such high-frequency errors are smaller than the ones obtained through open-
loop numerical derivatives.

4.1.3 Acceleration equations with numerical derivative

A third approach is proposed in this paper and is basically obtained by merging the two
techniques presented above, in order to improve the overall estimation by reducing model
uncertainty through kinematic modeling, a numerical derivative scheme, and the correction
provided by the filter. The method consists in writing explicitly the state derivative at step
k − 1 (i.e. z̈k−1 in the acceleration estimation) through the acceleration equations relating
state, state derivative and inputs at time step k − 1:

z̈k−1 = [
ST

k−1Sk−1
]−1

ST
k−1{ḧk−1 − Ṡk−1żk−1}. (19)

By taking advantage of the numerical derivative scheme in Eq. (18), the following set of
equations augments the system model:

z̈k = żk − żk−1

γ�t
+ γ − 1

γ

[
ST

k−1Sk−1

]−1
ST

k−1{uk−1 − Ṡk−1żk−1} + δk−1. (20)

For instance, if the EKF is employed for the estimation, and the Newmark’s method is
adopted, the accelerations are estimated as follows (the hat denotes the estimated values):

ˆ̈zk = ˆ̇zk − ˆ̇zk−1

γ�t
+ γ − 1

γ

[
ST

k−1Sk−1

]−1
ST

k−1{uk−1 − Ṡk−1 ˆ̇zk−1} + Kk|k(yk − ŷk|k−1). (21)

4.2 Estimation in the presence of model singularity

In Sect. 3, the importance of a proper definition of the system inputs has been discussed,
since the existence of matrix [ST(z)S(z)]−1 depends on the choice of such variables. Indeed,
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the set of input variables may lead to some configurations where matrix [ST(z)S(z)] is sin-
gular, and therefore the system model in Eq. (10), (explicitly representing ẋ as a function
of u) cannot be formulated. These configurations will be hereafter denoted as “model singu-
larities”. In practice, the system input cannot be employed to reconstruct the state variables
in these configurations.

Although a good selection of the sensor position and the use of sensor redundancy allow
solving this occurrence, a solution based on the use of a switching model is proposed in
this work to overcome this issue whenever the definition of the input vector is restricted by
technical or economical constraints. Switching models are widely and effectively employed
in control theory to approximate more complicate models in the synthesis of controllers
or estimators (see, e.g. [1]). In particular, whenever the system is in the neighborhood of a
singular configuration, the kinematic model defined in Sects. 2 and 3 is switched to a random
walk model with Gaussian noise, which provides an approximation of the actual one.

Let Ωs be the set of the singular configurations,

Ωs(z) = {
z | det

(
STS

) = 0
}
, (22)

and let Ω be a set including Ωs (Ωs ⊂ Ω), which represents the so-called switching rule,
then the following first-order discrete switching model is defined:

xk =
{

f (xk−1,uk−1,vk−1) if zk−1 /∈ Ω,

xk−1 + δk−1 if zk−1 ∈ Ω.
(23)

By taking advantage of the representation in Eq. (11), Eq. (23) can be also written as follows,
to provide a clearer sample representation of the switching model:

xk =
{

xk−1 + �t
∑r

i=1 βικi + vk−1 if zk−1 /∈ Ω,

xk−1 + δk−1 if zk−1 ∈ Ω.
(24)

The simplest choice for Ω is to define it as just a function of the position,

Ω(z) = {
z
∣∣ ∣∣det

(
STS

)∣∣ ≤ ε
}
, (25)

where ε is a suitably small threshold, usually approaching zero. More effectively, in order
to prevent chattering and instability by operating in the slow switching condition, hysteresis
can be employed in the switching rule by means of a redefinition of Ω as a function of both
position and speed (Ω(z, ż)).

5 Numerical and experimental results

Two tests are proposed to prove the effectiveness of the theory developed. The first test is
numerical and involves a single-dof, closed-chain, planar mechanism (slider–crank mecha-
nism). The second one is experimental: the estimation approach proposed is applied to an
open chain, two-dof, two-link, planar mechanism.

5.1 Test case I: slider–crank mechanism

The kinematic scheme of the slider–crank mechanism adopted in the first test case is shown
in Fig. 2. The aim of the test is estimating the angular velocity and acceleration of the
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Fig. 2 Kinematic scheme of a
slider–crank mechanism

crank, as it is often useful in practice, since feedback motion controllers often require pre-
cise knowledge of speed and acceleration in order to ensure high bandwidth control. Indeed,
when no estimator is implemented, angular velocities and accelerations are computed by
numerical derivatives and low pass filtering. However, this approach introduces a phase-lag
that reduces the controlled system phase margin, and therefore downgrades the bandwidth
considerably. Synthesizing an estimator following the proposed approach can greatly im-
prove controller performances.

In order to estimate the angular acceleration of the crank, the augmented state vector xaug

is defined, in accordance with the discussion provided in Sect. 4.1, as xaug = {θ1 θ̇1 θ̈1}T,
where θ1 is the crank rotation. The system is supposed to be equipped with an incremental
encoder and a mono-axial accelerometer, measuring respectively the crank angular position
θ1 and the slider linear acceleration a. The measured acceleration (a) is the system input for
the estimation: u = a. The encoder measurement is instead the measured output, y = θ1.
As far as the system model is concerned, a switching model is adopted in order to yield
estimates even close to the model singular configuration, which is encountered whenever the
crank is aligned to the connecting link, i.e. Ωs = {θ1 | θ1 = θ2 + kπ}, k ∈ N. The resulting
state-space model takes the following form, if discretized through the first-order Euler’s
method:

⎧⎨
⎩

θ1k

θ̇1k

θ̈1k

⎫⎬
⎭ = ↗

if θ1k−1 ∈ Ω ⊃ Ωs⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1k−1 + �tθ̇1k−1

θ̇1k−1 + �t
( sin(a cos(− L1

L2
cos(θ1k−1 )))

L1 sin(a cos(− L1
L2

cos(θ1k−1 ))−θ1k−1 )
ak−1 + · · ·

. . .
L2K2

θ2θ1,k−1
+L1 cos(a cos(− L1

L2
cos(θ1k−1 ))−θ1k−1 )

L1 sin(a cos(− L1
L2

cos(θ1k−1 ))−θ1k−1 )
θ̇2

1k−1

)
(θ̇1k

− θ̇1k−1)/�t + δk−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

↘
if θ1k−1 /∈ Ω ⊃ Ωs⎧⎪⎨
⎪⎩

θ1k−1 + �tθ̇1k−1

θ̇1k−1 + �tθ̈1k−1

θ̈1k−1 + δk−1

⎫⎪⎬
⎪⎭

yk = [
1 0 0

]
xaug

k

(26)
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Fig. 3 Simulated noisy measurements: slider acceleration (a) and crank angular position (b)

where Kθ2θ1,k−1 = ∂θ2
∂θ1

|k−1 is the sensitivity coefficient, and �t is the discretization time step
(which has been set equal to 1 ms in the numerical simulation).

The switching rule is defined as Ω = {θ1 | |θ1 − (θ2 + kπ)| ≤ 0.08 rad}.
Simulations have been carried out to assess the capability of different estimation strate-

gies to deliver accurate estimations in the presence of measurement and model uncertainties.
A simulation lasting 30 seconds has been tested, which highlights that no drift affects

the estimation, i.e. the system is stable (in the control theory sense). The crank speed is
obtained as the superposition of a constant-speed signal (12.56 rad/s) and a 2 Hz harmonic
signal (whose amplitude is 1.256 rad/s). Two sample portions of the time history of the
simulated accelerometer and encoder signals are shown respectively in Figs. 3(a) and 3(b).
Measurement noise has been added on both the encoder and the accelerometer signals to try
reproducing more realistic conditions. In particular, Gaussian noises have been generated
with amplitudes of, respectively, 0.003 rad for the encoder (corresponding to the resolution
of a 2000 ppr encoder) and 0.03 m/s2 for the accelerometer (corresponding to the resolu-
tion provided by an accelerometer with sensitivity 10 mV/m s−2, whose signal is converted
by a 16-bit ADC with input range of ±10 V). These values are typical of industrial off-
the-shelf devices, and hence represent a meaningful test case. If higher noise affects the
measurements, the filter should be properly tuned to obtain the optimal trade-off between
noise rejection, accuracy and fast response (i.e. with negligible time delay).

The estimated angular velocity and acceleration of the crank are respectively shown in
Figs. 4(a) and 4(b). Estimation has been carried out using both the EKF and the SS-UKF
observers, which are assumed as two representative examples of filters. The theory is, how-
ever, general enough to allow the use of other filters. As far as acceleration estimation is
concerned, the scheme proposed in Sect. 4.1.2, i.e. the one based on numerical derivative,
has been adopted. The estimates obtained are also compared with the actual velocity and
acceleration computed analytically, i.e. those with no measuring noise. In particular, the er-
rors between the estimated values and the actual ones are plotted in Figs. 4(c) and 4(d) to
provide clearer evidence of the estimation accuracy. The error diagrams show that both ob-
servers lead to good velocity and acceleration estimations when the mechanism is far from
model singularities, which are crossed at time instants 2.62 s and 2.88 s. When singularities
are crossed, estimates become less accurate, but still acceptable.

In particular, the use of the SS-UKF is marginally affected by singularity, especially
in the estimation of speed. The SS-UKF superiority can be traced back, first of all, to the
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Fig. 4 Estimated crank angular velocity (a) and acceleration (b). Velocity (c) and acceleration (d) estimation
errors

fact that it does not use any linearization and therefore does not require any Jacobian, whose
computation is critical at the model switch, since in such instants the model is not ensured to
be derivable. Additionally, the SS-UKF compute the prediction as the weighed sum of more
solutions related to different mechanism configurations (in term of positions, velocities, and,
in this example, accelerations), rather than just solving the uncertain system model in a
single configuration. All these considerations justify the superiority of this class of nonlinear
observers to handle such nonlinear problems.

5.2 Test case II: experimental two dof planar mechanism

The laboratory setup shown in Fig. 5(a) has been employed for the experimental validation
of the theory developed. The system is an open-chain, planar mechanism with two links,
two revolute joints, and therefore two dofs. This MBS recalls a typical planar underactuated
manipulator: the shoulder joint is the sole actuated joint, driven by a DC servomotor, while
the elbow joint B is passive.

Two incremental encoders (with resolution 1000 ppr) measure the link rotations of
both the joints, while two MEMS mono-axial accelerometers (whose sensitivities are
101.9 mV (m/s2)−1 for the accelerometer on link 1 and 6.81 mV (m/s2)−1 for the one on
link 2) are mounted to each link for measuring the acceleration in the direction orthogonal
to the link itself.

In a manipulator like this one, state estimation could be useful, for instance, in the synthe-
sis of advanced state feedback controllers (see, e.g. [18]), which require accurate knowledge
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Fig. 5 (a) Pictures of the instrumented two-dof planar manipulator (seen from one side and above); (b) Kine-
matic scheme of the manipulator

of the joint speed and sometimes also acceleration. Yet, the direct measurement of such
variables is unfeasible, and should be replaced by a suitable estimation.

To estimate the acceleration, the state vector has been augmented (see Sect. 4.1) and de-
fined as xaug = {θ1 θ2 θ̇1 θ̇2 θ̈1 θ̈2}T, with the obvious meaning for the symbols (see Fig. 5(b)).
The discrete state-space formulation of the kinematic model, obtained by discretizing the
continuous-time equations through the first-order Euler’s method, is the following one:

xaug
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1

θ2

θ̇1

θ̇2

θ̈1

θ̈2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 + �tθ̇1

θ2 + �tθ̇2

θ̇1 + �ta1/d1

θ̇2 + �t[(a2 − L1 sin(θ2)θ̇
2
1 )/d2 − a1(d2 + L1 cos(θ2))/d1d2]
a1/d1 + δ

(a2 − L1 sin(θ2)θ̇
2
1 )/d2 − a1(d2 + L1 cos(θ2))/d1d2 + δ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

k−1

.

(27)
In this test, among the three strategies proposed in Sect. 4.1, the closed-loop estimation

of accelerations has been performed using the scheme based on acceleration equations with
random walk (see Sect. 4.1.1). In Eq. (27), a1 and a2 are the accelerations measured by the
two accelerometers attached to link 1 and 2, which are located at distances d1 and d2 from
the shoulder and the elbow joints, respectively. Such accelerations are the system inputs
(u = {a1 a2}T). The output vector y comprises the rotations of both the joints to represent
correctly the zero-frequency dynamics of both the links, and therefore linearly depends on
the state:

y =
{

θ1

θ2

}
=

[
1 0 0 0 0 0
0 1 0 0 0 0

]
xaug. (28)

This set of measurements defines a less challenging condition for the EKF since it re-
duces the system model nonlinearities, by making g a linear function. It is worth noticing
that this choice of input and output vectors guarantees respectively the existence of [STS]−1

and the observability of the system for any joint configuration.
Two different tests have been carried out. The first test (“TEST 1”) consists of a sequence

of transient responses imposed by quasi-impulsive excitations exerted to link 1 by the ac-
tuator. The encoder and accelerometer signals recorded during the test are shown in Fig. 6.
The test lasted 10 seconds. The estimated angular velocities and accelerations are shown in
Figs. 7 and 8 for the shoulder and elbow joints, respectively. For sake of clarity, just the esti-
mates obtained using the SS-UKF algorithm are shown in the figures. Nevertheless, almost
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Fig. 6 TEST 1. System input: acceleration measurements at link 1 (a) and link 2 (b). System output: encoder
measurements at the shoulder (c) and elbow (d) joints

Fig. 7 TEST 1. Estimated angular velocity (a) and acceleration (b) at the shoulder joint
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Fig. 8 TEST 1. Estimated velocity (a) and acceleration (b) at the elbow joint

identical results are obtained using the EKF algorithm. Figures 7 and 8 also show the veloc-
ities and accelerations computed by means of just numerical derivatives of encoder signals.
To this purpose, a seventh-order, low-noise Lanczos differentiator [19] has been adopted,
and implemented in a non-causal form (i.e. two-sided scheme), in order to smooth noise and
reduce time delay. Nonetheless, the resulting velocities and accelerations appear extremely
noisy. In contrast, very smooth estimations are provided by both the observers, without any
significant delay. This comparison makes the usefulness of state observers apparent. The es-
timations provided by both the EKF and the SS-UKF, which are causal filters (in the control
theory sense) and hence can operate in real-time, are much more accurate and have neg-
ligible delay. In practice, kinematic estimation grants results that might be obtained only
through non-causal filtered derivatives, which, however, cannot be employed in real-time
computation since they use future samples of the input and output variables.

In the second test carried out (“TEST 2”), the shoulder joint position is commanded to
track a sweep excitation ranging from 10 to 1 Hz, and lasting 9 seconds. For clarity of
representation, just a sample portion of each signal is shown in Figs. 9, 10, and 11. Similar
results are obtained in the whole frequency range but they are not shown for brevity. The
measured signals are shown in Fig. 9, while the velocities and accelerations estimated by
the EKF are shown in Figs. 10 and 11. Also in this test, the EKF and the SS-UKF provide
almost the same results, and hence just those obtained through the EKF are shown for clarity
of representation. Once again in the same figures, velocities and accelerations obtained by
means of a numerical derivative of encoder signals are shown, too.

These results are coherent with those yielded by the previous numerical investigation and
corroborate the usefulness and effectiveness of the proposed approach to kinematic state
estimation.
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Fig. 9 TEST 2. System input: acceleration measurements at link 1 (a) and link 2 (b). System output: encoder
measurements at the shoulder (c) and elbow (d) joints

Fig. 10 TEST 2. Estimated angular velocity (a) and acceleration (b) at the shoulder joint
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Fig. 11 TEST 2. Estimated angular velocity (a) and acceleration (b) at the elbow joint

Table 1 CPU times taken for
each test Test case Run duration

[s]
CPU time

SS-UKF EKF

Slider-crank mechanism 30 8.38 12.17

Two-dof mbs Test 1 10 0.85 1.42

Test 2 9 0.78 1.27

5.3 CPU time comparison between filters

The computational efficiency of the proposed approach strictly depends on the algorithms
used for computing both the state and the observation predictions, as well as on the features
of the code implementation. Although a rigorous analysis of the computational complexity
of the two observers employed goes beyond the scope of the paper, some useful indica-
tions can be found in the comparison of the computational efforts related to the two Matlab
implementations of the observers.

Table 1 lists the CPU times (obtained through a PC with Core i7-2700K, RAM 16 GB,
running Windows 7) required on average by each test. In all the tests, estimation has been
performed offline. The CPU time of each test is much smaller than the duration of the run
(i.e. of the simulation, in test case 1, and of the time interval recorded in test case 2), and
hence it is expected that hard real-time can be easily achieved.

Table 1 also shows that the SS-UKF, which is renowned to be one of the most efficient
among the SPKFs, ran faster than the EKF in all the tests performed. This result is a con-
sequence of the use of numerical Jacobians in the EKF implementation proposed, rather
than analytical (or symbolic) computations of these time-varying matrices. Indeed, the EKF
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requires computing both the state and measurement equations and their Jacobian matrices
once at each time step. In contrast, the SS-UKF requires computing both the state and mea-
surement equations N + 2 times at each time step (since N + 2 is the number of sigma
points). Given the small dimension of the state vector (N ) and the simple model equations
adopted, which are kinematic equations, this computation is less cumbersome than the com-
putation of the numerical Jacobians, in the test cases proposed. Clearly, adopting analytical
expressions of the Jacobians would reduce the computational effort required by the EKF,
but would also increase modeling complexity since Jacobian matrices are often cumber-
some to calculate in symbolic form [4] and therefore approximated formulations should be
sometimes adopted [3].

6 Conclusions

This paper has introduced and presented in detail a general theory for the design of nonlinear
state observers based on kinematic models, suitable for MBSs with rigid links and negligible
joint clearance. The approach collects contributions from different research fields and is
general, in the sense that it can be used for both open-chain and closed-chain MBSs.

The use of filters based on kinematic models is advantageous since such models are much
less affected by uncertainty than the dynamic equations of motion, usually employed in
state observers, and therefore the impact of model uncertainty in the estimation accuracy is
considerably reduced. Indeed, kinematic state estimation just relies on geometric equations
and on the measurement of kinematic quantities, while it does not require the knowledge of
dynamic equations of motion and external forces, which are often unknown in real-world
applications.

The paper deals with all the aspects concerning kinematic estimation, including state-
space first-order formulation of the kinematic models in both continuous-time and discrete-
time, and the suitable definition of system inputs and outputs. Additionally, two critical
issues are tackled to extend the range of applications of kinematic filters: the estimation of
the state derivative with discrete-time schemes and the estimation in model singularity. As
far as the first topic is concerned, three schemes are proposed to perform closed-loop estima-
tion of state derivative through the prediction–correction iterations, aimed at compensating
the numerical derivation noise and the model uncertainty. As far as the estimation in sin-
gular configurations is concerned, a switching model is proposed, which approximates the
kinematic models with a random walk model with Gaussian noise in a neighborhood of the
singular configurations.

Among the numerous strategies to implement nonlinear filters based on the Kalman filter
theory, particular attention is paid in this paper to the use of sigma point unscented Kalman
filters (SPKFs), whose application in the field of kinematic estimation has never been pro-
posed in literature and is here proposed for the first time. These filters are usually more ac-
curate than the EKF in tackling nonlinearities, since they do not use model linearization to
propagate the covariance matrices and therefore to compute the filter gains. Indeed, SPKFs
compute the prediction of both the state vector and the covariance matrices as the weighed
sum of more solutions of the constraint equations in different mechanism configurations.
Besides improving the estimation accuracy, when crossing kinematic singularities, this ap-
proach does not require the time-consuming and cumbersome computation of the kinematic
model Jacobian matrices.

Numerical and experimental assessment of the theory proposed is provided through two
different rigid-link MBSs: a simulated closed-chain, single-dof mechanism (slider–crank
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mechanism) and a laboratory test rig consisting in a two-dof, two-link, planar mechanism
with two revolute joints. Estimation is performed through the EKF and, as a representative
example of SPKFs, the SS-UKF. The results clearly show the correctness and the effective-
ness of the theory proposed. Indeed, precise estimations of the kinematic variables are ob-
tained, also including the derivative of the state. Model singularities are effectively crossed,
too.
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