Aalborg Universitet

Integrated care for atrial fibrillation management

The role of the pharmacist

Ritchie, Leona A.; Penson, Peter E.; Akpan, Asangaedem; Lip, Gregory Y. H.; Lane, Deirdre Α. Published in: The American Journal of Medicine

DOI (link to publication from Publisher): 10.1016/j.amjmed.2022.07.014

Creative Commons License CC BY 4.0

Publication date: 2022

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Ritchie, L. A., Penson, P. E., Akpan, A., Lip, G. Y. H., & Lane, D. A. (2022). Integrated care for atrial fibrillation management: The role of the pharmacist. The American Journal of Medicine, 135(12), 1410-1426. https://doi.org/10.1016/j.amjmed.2022.07.014

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

CrossMark

Integrated Care for Atrial Fibrillation Management: The Role of the Pharmacist

^aLiverpool Centre for Cardiovascular Science, University of Liverpool, United Kingdom; ^bDepartment of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, United Kingdom; ^cClinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, United Kingdom; ^dMusculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, United Kingdom; ^eLiverpool University Hospitals NHS Foundation Trust, United Kingdom; ^fLiverpool Heart and Chest Hospital NHS Foundation Trust, United Kingdom; ^gAalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Denmark.

ABSTRACT

Within Europe and the Asia-Pacific, the Atrial Fibrillation Better Care (ABC) pathway is the gold standard integrated care strategy for atrial fibrillation management. Atrial fibrillation diagnosis should be confirmed and characterized (CC) prior to implementation of ABC pathway components: 1) "A"- Anticoagulation/ Avoid stroke; 2) "B"- Better symptom management; and 3) "C"- Cardiovascular and other comorbidity optimization. Pharmacists have the potential to expedite integrated care for atrial fibrillation across the health care continuum: hospital, community pharmacy, and general practice. This review summarizes the available evidence base for pharmacist-led implementation of the "CC to ABC" model.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) • The American Journal of Medicine (2022) 135:1410–1426

KEYWORDS: Atrial fibrillation; Clinical trial; Integrated care; Observational study; Pharmacist

INTRODUCTION

Integrated care for atrial fibrillation has been advocated for over a decade, with different models proposed. The Atrial Fibrillation Better Care (ABC) pathway was first proposed in 2017 as a framework for integrated care to align generalist and specialist atrial fibrillation management across primary and secondary care settings.¹ The pathway is comprised of 3 components: 1) "A" – Anticoagulation/ Avoid stroke; 2) "B" – Better symptom management; and

Funding: None.

Conflicts of Interest: PEP owns 4 shares in AstraZeneca PLC and has received honoraria or travel reimbursement for events sponsored by AKCEA, Amgen, AMRYT, Link Medical, Napp, and Sanofi. AA has received a National Institute for Health Research Applied Research Collaboration grant, a Liverpool Clinical Commissioning Group grant, honoraria for lectures on behalf of Astellas and Profile Pharma, support with meeting and travel on behalf of the British Geriatrics Society, has consulted for the British Medical Journal, is on the external advisory group for the cognitive frailty interdisciplinary network, the study steering committee for VOICE2 and is the Deputy chair for the British Geriatrics Society England Council. GYHL has been a consultant and speaker for Bristol-

3) "C" – Cardiovascular and other comorbidity optimization.¹ Currently, the ABC pathway is recommended as the "gold-standard" atrial fibrillation management strategy in the latest European Society of Cardiology and Asia-Pacific guidelines.^{2,3} The European guidelines also highlight 2 steps that precede ABC pathway implementation, providing a complete model for integrated atrial fibrillation care, "CC to ABC".² This consists of "C" – Confirming the atrial fibrillation diagnosis with a 12-lead electrocardiogram

E-mail address: leona.ritchie@liverpool.ac.uk

0002-9343/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) https://doi.org/10.1016/j.amjmed.2022.07.014

Myers Squibb (BMS)/Pfizer, Boehringer Ingelheim, and Daiichi-Sankyo; no fees are received personally. LAR has no conflicts of interest to declare. DAL has received investigator-initiated educational grants from BMS, has been a speaker for Bayer, Boehringer Ingelheim, and BMS/Pfizer, and has consulted for BMS and Boehringer Ingelheim.

Authorship: We can confirm that authors had access to the data and a role in writing the manuscript.

Requests for reprints should be addressed to Leona A. Ritchie, MPharm, Liverpool Centre for Cardiovascular Science, William Henry Duncan Building, University of Liverpool, Liverpool L7 8TX, UK.

(ECG) or single-lead ECG tracing of \geq 30 seconds, followed by "C" – Characterization of atrial fibrillation including stroke risk, symptom severity, severity of atrial fibrillation burden, and substrate severity.²

With definitive guidance on what integrated care model to follow, the next consideration is whether pharmacists could help operationalize it. As medicines experts, pharma-

cists screen and optimize medication prescriptions to ensure safety and effectiveness. In addition, pharmacist prescribers can initiate and modify medications, and monitor for their effect. With this skill set, pharmacists have the potential to implement integrated atrial fibrillation care across the health care continuum of hospital, community pharmacy, and general practice (Figure). This narrative review summarizes the findings from research studies of pharmacist interventions that can be mapped to the "CC to ABC" model. The aim is to determine what role pharmacists could adopt in the delivery of integrated atrial fibrillation care.

CLINICAL SIGNIFICANCE

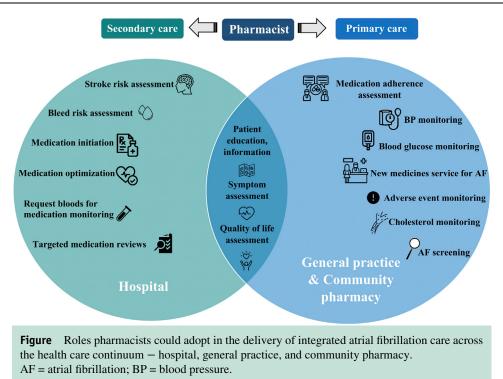
- Pharmacists are a potentially untapped resource in relation to Atrial Fibrillation Better Care pathway delivery across the health care continuum of hospital, community pharmacy, and general practice.
- Most research has focused on pharmacist interventions to implement pathway components in isolation, particularly "A — Anticoagulation/Avoid stroke".
- The pharmacy service framework needs re-structuring to support translation of pharmacist interventions into everyday clinical practice, and with scope for these to include prescribing.

"CC": CONFIRM AND CHARACTERIZE ATRIAL FIBRILLATION: PHARMACIST INTERVENTIONS FOR ATRIAL FIBRILLATION SCREENING AND CHARACTERIZATION

Thirteen studies have tested the feasibility of pharmacist-led atrial fibrillation screening programs (Table 1).⁴⁻ ¹⁶ Three of these also attempted to characterize atrial fibrillation by assessing symptoms¹² or using the CHA₂DS₂-VASc score (score of 1 point each for congestive heart failure, hypertension, female, age 65-74 years, diabetes mellitus, vascular disease and 2 points for previous stroke/transient ischemic attack/thromboembolism and age \geq 75 years) to quantify stroke risk.^{8,11} None of these studies have characterized atrial fibrillation by severity of atrial fibrillation burden or substrate severity.

Eleven studies^{4-6,8,9,11-16} relied on a single-lead electrocardiogram (ECG) recording for the detection of atrial fibrillation using the AliveCor KardiaMobile device (Alive-Cor Inc., Mountain View, Calif; n = 9),^{4-9,11,15,16} MyDiagnostick (MyDiagnostick Medical B.V., Maastricht, The Netherlands; n = 1)¹³ and HeartCheck (CardioComm Solutions, Inc., North York, Ont, Canada; n = 1).¹⁴ In one study, the AliveCor KardiaMobile single-lead ECG was performed only if abnormalities were first detected by a blood pressure monitor (Microlife AFIB; Microlife AG Swiss Corporation, Widnau, Switzerland).¹⁵ One study did not specify the device used to generate the single-lead ECG,¹² and another study used the Microlife AFIB in isolation to detect atrial fibrillation.¹⁰ Manual pulse palpation was performed in 5 studies,^{5,6,9,12,16} and in one study¹² this was combined with a symptom and risk factor assessment.

Study settings varied but were predominantly conducted in community pharmacies (n = 7).^{4,7,10,12,14-16}


The incidence of new atrial fibrillation was reported in 8 studies^{4,5,7,9,12,14-16} and ranged from $0.7\%^5$ to 6.3%.⁹ Other studies only reported cases of possible atrial fibrillation,^{6,8,10,11} and no results were available for one study.¹³

In 7 studies^{5-7,9,14-16} a cardiologist was an integral part of the screening program and had responsibility for interpreting single-lead ECG recordings before follow-up was arranged with the participant's physician,^{5-7,9,15,16} or jointly by their physician and local atrial fibrillation clinic.¹⁴ Five studies^{4,8,10,11,13} relied initially on algorithm interpretation of the Microlife AFIB blood pressure monitor,¹⁰ AliveCor KardiaMobile,^{4,8,11} or MyDiagno-

stick single-lead ECG recording¹³ to detect abnormalities and determine the need for referral.

Only 2 studies^{5,6} reported the inter-rater agreement between the pharmacist, cardiologist, and the AliveCor KardiaMobile algorithm interpretation of single-lead ECG recordings. In one study, the interrater agreement (Cohen's kappa [κ]) was 0.56 between the pharmacist and mobile algorithm, and 0.70 between the cardiologist and mobile algorithm.⁶ In the other study, inter-rater agreement was reported as Cohen's κ 0.69 (95% confidence interval [CI], 0.56-0.82) between the pharmacist and cardiologist, and 0.72 (95% CI, 0.60-0.85) between the mobile algorithm and cardiologist.⁵

Two studies evaluated cost-effectiveness using a National Institute for Health and Care Excellence costing report for atrial fibrillation,⁵ or treatment/outcome data from a UK cohort of 5555 patients with incidentally detected asymptomatic atrial fibrillation.¹⁶ Incremental savings of approximately £120 million using the AliveCor KardiaMobile device and £50 million using pulse palpation were predicted on the basis that screening was applied to all patients in England and Wales \geq 65 years old, with 50% uptake of screening and newly detected atrial fibrillation.⁵ In the other study, an incremental cost-effectiveness ratio, based on 55% of warfarin prescription adherence, was reported as \$AUD 30,481 (€15,993; \$USD 20,695) for preventing one stroke.¹⁶

"A" ANTICOAGULATION/AVOID STROKE: PHARMACIST INTERVENTIONS FOR ANTICOAGULANT MANAGEMENT

Thirty studies investigated the effect of pharmacistled interventions to optimize anticoagulation for stroke prevention in atrial fibrillation¹⁷⁻⁴⁷) (Table 2). Half of the studies (n = 15) were conducted in hospitals, ^{17,18,20,21,26,28-31,35-37,40,42,44} and the remainder in outpatient clinics (n = 6),^{22-24,33,45,46} general practice (n = 2),^{25,43} non-profit integrated health care practice (ii = 2), in hon-profit integrated nearth care delivery systems (n = 2),^{19,39} Veterans Health Admin-istration site(s) (n = 2),^{34,41} and an Academic Health-care System (n = 1).²⁷ The study setting was not specified in 2 studies.^{32,38} Studies included patients on warfarin (n = 9),^{18-20,23,30,36,37,39,44} non-vitamin K antagonist oral anticoagulants (NOACs) $(n = 8)^{17,27,31-35,41}$ or both (n = 1).⁴⁶ Nine studies referred broadly to anticoagulants, ^{22,24,25,28,29,38,40,43,45} and 3 evaluated antithrombotics.^{21,26,42} Seven studies reported the quality of warfarin therapy, measured by time in therapeutic range (TTR),^{18,20,30,36,37,39,44} reported on health outcomes (thromboembolism, bleeding, mortality),^{19,27,29,33,35,39,44} 15 reported on oral anticoagulant prescribing,^{21-26,} (OAC) 28,31,34,38,40,42,43,45,46 one on patient knowledge, 32 one on patient cognition,¹⁷ 2 on patient satisfaction,^{17,28} and 3 on medication adherence.^{32,33,41} Six of these studies reported on 2 outcomes, including TTR and health outcomes, 39,44 medication adherence and health outcomes,³³ satisfaction and patient OAC

prescribing,²⁸ patient satisfaction and cognition,¹⁷ and patient knowledge and medication adherence.³²

Quality of Warfarin Therapy (TTR)

Physician-pharmacist collaborations were the most common intervention types in studies reporting on quality of warfarin therapy, using TTR.^{18,30,44} Most studies reported differences in TTR between the pharmacist intervention and control group, with 3 reporting significantly higher TTR in the intervention group compared with controls.^{20,30,39} Two studies found no significant difference in TTR between groups (Table 2).^{18,36} One study found a significantly higher proportion of participants with TTR ≥60% in the physician-pharmacist atrial fibrillation warfarin clinic compared with those who attended a general clinic (73.7% vs 47.1%, P = .002).⁴⁴ Another study implemented a 12-week pharmacist management program for atrial fibrillation patients with a TTR <50%. Participants were categorized by warfarin adherence (low: 2 or more missed doses; medium: one missed dose; high: no missed doses).³⁷ There was a significant difference in basal, 12-week, and 1-year mean TTR within low-, medium-, and high-adherence groups (Table 2).

Health Outcomes

Seven studies reported on health outcomes^{19,27,29,33,35,39,44} (Table 2). Only one study that used a before-and-after design was powered to performed adjusted analyses,³⁹ and found that a pharmacist-led anticoagulant management service focused on TTR improvement was

Downloaded for Anonymous User (n/a) at Aalborg University Hospital from ClinicalKey.com by Elsevier on December 12, 2022. For personal use only. No other uses without permission. Copyright ©2022. Elsevier Inc. All rights reserved.

First Author (Study Name), Year, Country		^a Sample Size ^b Age (Median [IQR], Mean ± SD) ^c Proportion of Females, n (%)	Description of Screening Intervention
creening device: AliveCor Kardi	iaMobile single-lead ECG		
Khanbhai (CAPTURE-AF), 2020, UK ⁴	Community pharmacies (28)	^a 1737 ^b * (n = 851 were >75 y) ^c 846 (48.7%)	Pharmacist screening (ECG, atrial fibrillation screening tool), specialist team referral if possible atrial fibrillation
Savickas (PDAF), 2020, UK 5	General practice (4)	^a 604 ^b 73 [69-78] ^c 346 (57.3%)	Pharmacist screening (pulse palpation, ECG), ECG over-read by cardiologist within 72 h, irregular ities reported to GP
Savickas, 2019, UK ⁶	Care homes (4)	^a 53 ^b 90 ± * ^c 40 (76%)	Pharmacist screening (pulse palpation, ECG), ECG over-read by cardiologist within 72 h, irregular ities reported to GP
Zaprutko, 2020, Poland ⁷	Community pharmacies (10)	^a 525 ^b 73.72 ± 6.49 ^c 358 (68.19%)	Pharmacist or student (with pharmacist supervi- sion) screening (ECG only), ECG over-read by cardiologist within 48 h, participants contacted if atrial fibrillation detected, advised to self- refer to GP
Anderson, 2020, USA ⁸	Health fairs (13)	^a 697 ^b 56 ± 15 ^c 494 (71%)	Student pharmacist screening with pharmacist supervision (ECG, CHA ₂ DS ₂ -VASc), advised to seek follow-up with doctor if irregularities
Cunha, 2019, Portugal ⁹	Community pharmacy (1), nursing home (1), hos- pital outpatient cardiol- ogy clinic (1)	^a 223 ^b 66 ± 15	Pharmacist screening (brief medical history, puls palpation, ECG), ECG over-read by cardiologist, if irregularities, advised to seek follow-up with doctor (community pharmacy), directly referred to physician (nursing home), or 12-lead ECG immediately reviewed by cardiologist (hospital outpatient cardiology clinic)
Hazelrigg, 2019, UK ¹¹	Public awareness campaign	^a 1144 ^b 54.99 ± * ^c 505 (44.1%)	Pharmacist and nurse screening (ECG, CHA ₂ DS ₂ - VASc), participant education, 12-lead ECG if irregularities with referral to GP
Twigg, 2016, UK ¹⁵	Community pharmacies (6)	^c 594 ^d 68.3 ± 8.9 ^e *	Pharmacist or pharmacy staff initial screening (brief medical history, alcohol consumption questionnaire [Audit-C], atrial fibrillation detecting BP monitor) and if possible atrial fibrillation, ECG obtained and over-read by car- diologist if atrial fibrillation detected again
Lowres (SEARCH-AF), 2015, Australia ¹⁶	Community pharmacies (10)	^c 1000 ^d 76 ± 7 ^e 560 (56%)	Pharmacist screening (brief medical history, puls palpation, ECG) and ECG over-read by cardiologist
Screening device: Microlife AFIB			
Bacchini, 2019, Italy ¹⁰	Community pharmacies (74)	^a 3071 ^b 73.7 ± 9.2 (screening positive), 66.4 ± 9.9 (screening negative) ^c 1855 (60.4%)	Pharmacist screening and brief medical history, advised to seek follow-up with doctor or attend hospital if irregularities
Screening device:* Lobban, 2018, UK, Portugal, Spain, Canada, New Zea- land, France, Hungary, Prague, Switzerland, Australia ¹²	Community pharmacies (*)	^a 2573 ^b 64.71 ± 12.95 ^c 1773 (68.9%)	Pharmacist screening (pulse palpation, single- lead ECG where possible, symptom and risk fac- tor assessment), referral to doctor if irregularities
Screening device: MyDiagnostic Modesti (Elba-AF), 2017, Italy ¹³	k single-lead ECG General practice (10), community pharmacies (10)	^a 1000 (target) ^b * ^c *	Pharmacist screening (brief medical history, ECG)

 Table 1
 Characteristics of Cross-Sectional Studies of Pharmacist-Led Screening for Atrial Fibrillation

First Author (Study Name), S Year, Country	Study Setting (n)	^a Sample Size ^b Age (Median [IQR], Mean ± SD) ^c Proportion of Females, n (%)	Description of Screening Intervention
Screening device: HeartCheck Card Sandhu (PIAAF-Pharmacy), C 2016, Canada ¹⁴	ioComm single-lead ECG Community pharmacies (30)	^a 1145 ^b 77.2 ± 6.8 (unrecognized or undertreated atrial fibrillation), 74.6 ± 6.8 (no atrial fibrillation) ^c 677 (59.1%)	Volunteer or research staff screening (brief medical history, ECG over-read by cardiologist, 2 automated BP readings [PharmaSmart], Canadian Diabetes Risk Assessment Questionnaire), participant education and opportunity to speato pharmacist

for congestive heart failure, hypertension, female, age 65-74 years, diabetes mellitus, vascular disease and 2 points for previous stroke/transient ischemic attack/thromboembolism and age ≥75 years; ECG = electrocardiogram; Elba-AF = screening of undiagnosed atrial fibrillation on the Isle of Elba; GP = general practitioner; PDAF = pharmacists detecting atrial fibrillation; PIAAF-Pharmacy = Program for the identification of "actionable" atrial fibrillation in the pharmacy setting; SEARCH-AF = Stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies *Not reported.

associated with lower odds of a composite endpoint of clinically relevant bleeding, thromboembolism, and allcause mortality (adjusted odds ratio [OR] 0.69; 95% CI, 0.54-0.87).³⁹ A cohort study of 460 participants (intervention n = 90, control n = 370) carried out at an Academic Healthcare System found no association between pharmacist-led management of patients taking NOACs and the same composite endpoint (Table 2), although the study was limited by low statistical power.²⁷ One cohort study of pharmacist-led rivaroxaban management for atrial fibrillation patients found no association with heart failure, left atrial dilation, or thrombosis, but a significantly lower incidence of bleeding events when compared with patients under the care of cardiologists or primary care providers (gastrointestinal: 6.1% vs 12.4%, P = .038; skin ecchymosis 0.6% vs 4.5%, P = .018).³⁵ Other studies reported no association between pharmacist-led interventions and health outcomes.^{19,33,}

OAC Prescribing

Most studies explored the impact of pharmacist interventions on the appropriateness of OAC prescribing^{24,28,31,34,46} or OAC prescribing rates (Table 2).^{21-23,26,40,42,45} Inappropriate OAC use was reported to be less likely in atrial fibrillation patients who received multidisciplinary follow-up (cardiologist, nurse, pharmacist) compared with cardiologist-only follow-up (8% vs 22%).⁴⁶ Other interventions, including pharmacist-delivered patient education to promote shared decision-making²⁸ and a pharmacist anticoagulant management program for patients newly initiated on NOACs,³⁴ were also associated with improved appropriateness of OAC therapy (Table 2). One small cohort study (n = 87) found pharmacist-led clinics targeting patients with suboptimal

vitamin K antagonist (VKA) therapy (TTR <65%) promoted review of anticoagulant therapy, with 65 participants (74.7%) switched from VKA to NOAC.²⁴ In 5 studies,^{22,25,38,43,45} pharmacists were responsible for independently reviewing medical records to identify patients with atrial fibrillation not prescribed anticoagulation. Only 3 studies explored whether this translated into increased OAC prescribing.^{22,25,45} One randomized controlled trial of 1727 participants found no significant difference in the proportion of OAC prescriptions between intervention and usual care groups (Table 2).⁴⁵ In a before-and-after study, higher OAC prescribing rates were reported in 2 clinical commissioning groups,²² and in another cohort study, the proportion of atrial fibrillation patients prescribed OAC increased significantly from 62% to 80% (Table 2).²⁵ Other studies also demonstrated positive effects of other distinct pharmacist-led interventions on increasing OAC prescribing (Table 2).^{21,23,26,40,42}

Medication Adherence, Knowledge, and Patient Satisfaction

Pharmacist-delivered patient education was a core component of 3 studies^{32,33,41} that reported on patient knowledge³² and medication adherence (Table 2).^{32,33,41} In a before-and-after study of 68 participants taking dabigatran, there was no significant difference in the proportion of participants with a medication possession ratio (number of dispensed doses in a specified time period divided by the total number of days in that time period) $\geq 80\%$ (Table 2).³³ A larger mixed-method study (n = 4863) also found no significant association between pharmacist education and dabigatran adherence (adjusted relative risk 0.94; 95% CI, 0.83-1.06).⁴¹ In contrast, another educational intervention significantly increased

2022. For personal use only. No other uses without permission. Copyright ©2022. Elsevier Inc. All rights reserved.

Downloaded for Anonymous User (n/a) at Aalborg University Hospital from ClinicalKey.com by Elsevier on December 12, 2022 For nerconal use only. No other uses without permission. Convicint @2022 Elsevier Inc. All rights reserved

Author (Study Name), Year,	Study Setting (n), Study Design	Intervention/Control Sample Size	Description of Intervention and Control (Where Applicable)	Main Findings
Country	t t	Page (Median [IQR], or Mean ± SD) Proportion of Females, n (%)		
Quality of warfarin the				
Wang, 2021, China ⁴⁴	Hospital (1), cohort study	^b 67.1 ± 10.9/70.4 ± 9.5 ^c 31 (54.4%)/116 (55.8%)	Physician—pharmacist atrial fibrilla- tion warfarin clinic, joint determi- nation of INR target, drug dosage, treatment course, date of next visit. Pharmacist-delivered patient education, assessment of TTR and INR at follow-up, dose adjustments as needed vs general clinic (control)	Significantly higher proportion of participants achieved a TTR ≥60% (intervention 73.7% vs usual care 47.1%, <i>P</i> = .002).
Marcatto [†] , 2021, Brazil ^{48,37}	Hospital (1), cohort study	^a 262 b* c*	Pharmacist-led warfarin management for atrial fibrillation patients with TTR <50%, 12-wk program (educa- tion, dispensing, INR monitoring, dose adjustment, adherence/ adverse event assessment). Phar- macist visits once weekly for 4 wk, then according to INR monitoring. After wk 12, medical team provide care without pharmacist presence	Significant difference in basal, 12 wk, and 1 y mean TTR within low-, medium-, and high- war- farin adherence groups (low: $15.8\% \pm 17.4$ vs $35.9\% \pm$ 19.9 vs $46.7\% \pm 20.8$, $P < .001$; medium: $11.7\% \pm 15.9$ vs $49.0\% \pm 23.5$ vs 51.7 ± 20.9 , P $< .001$; high: $13.7\% \pm 15.8$ vs $61.4\% \pm 21.5$ vs $60.8\% \pm 22.6$, P < .001).
Liang, 2019, China ³⁶	Hospital (1), randomized controlled trial	a 77/75 b 60.1 \pm 16.3/62.5 \pm 14.5 c 36 (46.8%)/31 (41.3%)	Pharmacist-led warfarin education and follow-up service (2 phone calls days 30 and 90 post-dis- charge) vs usual care (control)	No significant difference in TTR (intervention 35.9% vs usual care 29.5%, <i>P</i> = .203)
Phelps, 2018, USA ³⁹	Non-profit inte- grated healthcare delivery system (1), before-and- after study	^a 4764/3641 ^b 74.6 ± 10.1/73.9 ± 10.6 ^c 2626 (55.1%)/1948 (53.5%)	Pharmacist-led AMS with efforts to improve warfarin therapy for atrial fibrillation patients, specifically TTR vs pharmacist-led AMS before efforts were made to improve war- farin therapy (control)	Significantly higher TTR after efforts were made as part of the pharmacist-led AMS (70.5% vs 63.4%, <i>P</i> < .001)
Kose, 2018, Japan ³⁰	Hospital (1), cohort study	^a 16/23 ^b 71.8 ± 2.2/ 72.3 ± 1.8 ^c 7 (43.8%)/4 (17.4%)	Pharmacist and physician vs physi- cian-only (control) guidance on warfarin treatment for atrial fibril- lation patients with chronic kidney disease	TTR (defined as PT-INR 1.6-2.6) significantly higher in pharma- cist and physician group vs phy- sician-only group (76.8% \pm 15.6 vs 55.9% \pm 25.1, <i>P</i> = .005)
An, 2017, Japan ²⁰	Hospital (1), cohort study	^c 25/32 ^d 70 [64-76.5]/72 [66.3-76.8] ^e 13 (52%)/9 (28.1%)	Pharmacist (confirmation of drug —drug interactions, monitoring bleeding/PT-INR, dose-adjustment recommendations, patient educa- tion-lifestyle precautions, warfa- rin-food interactions) and physician (oral instructions with lifestyle guidance generally omit- ted) management of atrial fibrilla- tion patients with HF vs physician- only management (control)	TTR (defined as PT-INR 1.6-2.6) significantly higher in pharma- cist and physician group vs phy- sician-only group (73.8% [61.4- 93.4] vs 59.8% [44.2-77.4], <i>P</i> = .017)

Ritchie et al	The Pharmacist's Role in A	trial Fibrillation Management

Author (Study Name), Year, Country	t t	Intervention/Control Sample Size Age (Median [IQR], or Mean ± SD) Proportion of Females, n (%)	Description of Intervention and Control (Where Applicable)	Main Findings
Aidit, 2017, Malaysia ¹⁸	Hospital (1), before-and-after study	^a 106/126 ^b 66.11 ± 10.81 (all participants) ^c 80 (53%) (all participants)	Pharmacist and physician-led WMTAC for atrial fibrillation patients. Phar- macists responsible for patient education/counseling and imple- mentation of a treatment protocol, recommendations made for dose adjustments/continuation of war- farin therapy vs physician-led WMTAC with referral to pharmacist only when necessary (control)	No significant difference in TTR between pharmacist and physi- cian-led WMTAC vs physician- led WMTAC (63.97% ± 19.41 vs, 59.25% ± 20.74, P = .120)
Health outcomes Wang, 2021, China ⁴⁴	Hospital (1), cohort study	a 57/208 b 67.1 \pm 10.9/70.4 \pm 9.5 c 31 (54.4%)/116 (55.8%)	See Wang 2021, Quality of warfarin therapy (TTR)	No significant difference in thromboembolic (intervention 5.3% vs control 5.3%, $P = 1.000$) or bleeding events (intervention 3.5% vs control 4.3% , $P = 1.000$)
Li, 2020, China ³⁵	Hospital (1), cohort study	a 179/202 b 76.3 ± 7.8/75.2 ± 7.1 c 69 (38.5%)/80 (39.6%)	Remote pharmacist-led management of atrial fibrillation patients taking rivaroxaban. Education, drug administration and observation of drug interactions, weekly adverse event monitoring vs usual care by cardiologists or primary care pro- viders (control)	No significant difference in thrombosis, heart failure, left atrial dilation. Significant reduction in incidence of gas- trointestinal bleeding (inter- vention 6.1% vs control 12.4%, P = .038), skin ecchymosis (intervention 0.6% vs control 4.5%, $P = .018$)
Jones, 2020, USA ²⁷	Academic Health- care System (1), cohort study	^a 90/370 ^b 68.9 ± 11/67.1 ± 12 ^c 34 (37.8%)/141 (38.1%)	Pharmacist-led AMS for atrial fibrilla- tion patients on NOACs. Initial patient education, phone calls (discuss stroke or bleeding con- cerns, adherence, and provide reminders about required blood tests) or chart reviews vs other pro- viders: neurologists, cardiologists and primary care providers (control)	No significant difference in the composite endpoint of throm- boembolism, bleeding, and all- cause mortality between inter- vention vs control (HR 1.25; 95% CI, 0.70-2.24)
Kirwan [‡] , 2020, Canada ²⁹	Hospital emergency departments (2), cohort study	^a 177 ^b 70 [61-78] ^c 92(52%)	Implementation of a pathway (SAFE) developed by pharmacists and physicians for patients with new atrial fibrillation diagnoses (step 1: assessment of contraindications to OAC; step 2: stroke risk assessment with CHADS65; step 3: OAC dosing if indicated). Pathway triggered referral to atrial fibrillation clinic, letter for family physician, and fol- low-up call from pharmacist	65/73 (89%) participants reached 90-d follow-up, one report of gastrointestinal bleeding in participant taking OAC, and one report of stroke in participant who refused OAC
Phelps, 2018, USA ³⁹		${}^{a}4764/3641$ ${}^{b}74.6 \pm 10.1/73.9 \pm 10.6$ ${}^{c}2626 (55.1\%)/1948$ (53.5%)	See Phelps 2018, Quality of warfarin therapy (TTR)	Significantly lower odds of the com- posite endpoint of clinically rele- vant bleeding, thromboembolism, and all-cause mortality associated with pharmacist-led anticoagulant management (adjusted OR 0.69; 95% CI, 0.54-0.87)

Table 2 (Continued)				
Author (Study Name), Year, Country	j j t	Intervention/Control Sample Size Age (Median [IQR], or Mean ± SD) Proportion of Females, n (%)	Description of Intervention and Control (Where Applicable)	Main Findings
An, 2017, USA ¹⁹	Nonprofit, inte- grated health care delivery organiza- tion (1), com- prised of hospitals (14), outpatient facilities (>200), and a centralized laboratory (1), cohort study	^c 13,645 (42.5%)	Pharmacist-led anticoagulation clinic for atrial fibrillation patients on warfarin (approximately weekly for first 3 mo of treatment and every 3 wk after 6 mo). Pharmacists responsible for monitoring, dose adjustment, and reversal, triage of related adverse events, drug inter- action interventions, telephone counseling	No significant difference in stroke or systemic embolism event rates between patients with TTR <65% who received frequent pharmacist interventions (\geq 24 times per year) and patients with TTR <65% who received less frequent interven- tions (1.88 vs 1.54 per 100 per- son-years, respectively, P = .780)
Lee, 2013, USA ³³	Outpatient clinic (1), before-and- after study	^a 20/48 ^b 78 [72-83]/72 [67-81] ^c 0 (0%)/1 (2%)	Pharmacist anticoagulation clinic for dabigatran (patient education on adherence, tolerance issues, stor- age and refill at initial consulta- tion). Follow-up at 2 wk, 1 mo, and 3 mo vs usual care (control)	
OAC prescribing Sandhu ^{x223C} (PIAAF Rx), study ongo- ing, Canada ⁴⁷	Community phar- macy (†), random- ized controlled trial	^a 370 (estimate) _{b*} c*	Community pharmacist initiates/ adjusts OAC therapy in atrial fibril- lation patients vs enhanced usual care — community pharmacist refers atrial fibrillation patients to physician for OAC therapy (control)	Proportion of participants receiv- ing optimal OAC therapy (pend- ing, study ongoing)
Brouillette [‡] , 2021, Canada ⁴⁶	Multidisciplinary heart failure clinic (1), general out- patient clinic (1), cohort study	^a 307 b* c*	MDT follow-up of cardiologists, nurses and pharmacists for atrial fibrillation patients vs cardiologist- only follow-up (control)	Inappropriate anticoagulant use less likely with MDT follow-up (8% vs 22%). Prescription of VKA in NOAC-eligible patients and incorrect NOAC dosing were the most common reasons for inappropriate use
Khalil, 2021, Australia ²⁸	Hospital (1), before-and-after study	$^{a}65/61$ $^{b}72.78 \pm * (males),$ $75.03 \pm * (females)/$ $75.30 \pm * (males),$ $74.60 \pm * (females)$ $^{c}29 (44.6\%)/30$ (49.1%)	One-to-one education with pharma- cist during admission of new atrial fibrillation patients, provision of atrial fibrillation brochure to pro- mote shared decision-making about OAC therapy vs usual care provided pre-intervention (control)	Significant improvement in the appropriateness of OAC therapy (intervention 92% vs control 36% , $P < .001$)
Schwab, 2021, USA ⁴⁰	Hospital (1), cohort study		Emergency physicians, pharmacists, and electrophysiologists collabo- rating in shared decision-making model; emergency physician iden- tifies atrial fibrillation patients using ECG, referral to electrophysi- ologist when atrial fibrillation con- firmed, pharmacist determines appropriate OAC, provides medica- tion, arranges post-discharge clinic with electrophysiologist/cardiolo- gist vs usual care (control)	Significant increase in proportion of atrial fibrillation patients discharged on OAC (87.8% intervention vs 62.3% control, $P \leq .001$)

Author (Study Name), Year, Country	Study Setting (n), Study Design	Intervention/Control ^a Sample Size ^b Age (Median [IQR], or Mean ± SD) ^c Proportion of Females, n (%)	Description of Intervention and Control (Where Applicable)	Main Findings
Wang [§] , 2019, USA ⁴⁵	AMS clinics (14), randomized con- trolled trial	a1727 [§] b* c*	Pharmacist assessment of appropri- ateness of initiating OAC in atrial fibrillation patients identified with CHA_2DS_2 -VASc score ≥ 2 and no OAC prescription within 12 mo, escala- tion to primary care provider as needed vs usual care (control)	432/1727 (25%) participants potentially eligible for OAC. After pharmacist screening, 75, 432 (17%) escalated to the pri- mary care provider. No signifi- cant increase in proportion of OAC prescriptions (interventior 4.1% vs control 4.0%, <i>P</i> = .860
Mensah [‡] , 2019, USA ³⁸	*, cohort study	^a 489 b* c*	Pharmacist review of patient records to confirm documentation support- ing absence of OAC in patients with atrial fibrillation/atrial flutter. Pharmacist contact with physician to request review to initiate OAC or document reason for no treatment	349/489 (71.4%) patients had warfarin initiated or clear docu mentation to explain reason fo the absence of OAC therapy after pharmacist review
Leef, 2019, USA ³⁴	Veterans Health Administration (1), cohort study	^a 5060 ^b 69 ± 10 ^c 96 (1.9%)	AMS for new atrial fibrillation patients started on NOACs, gener- ally led by pharmacists	Improvement in correct NOAC dosing when compared with other fee-for-service nonintegrated systems. 4735/5060 (93.6%) new atrial fibrillation patients prescribed rivaroxaban or dabi- gatran at the correct dose, 86/ 5060 (1.7%) overdosed and 239/5060 (4.7%) under-dosed
Durand [‡] , 2018, UK ²⁵	General practices (20), before-and- after study	^a 501 b* c*	Pharmacist identification of atrial fibrillation patients not on OAC or on antiplatelet monotherapy using patient records and APL-AF soft- ware, review of medical records to confirm atrial fibrillation diagnosis, blood results and patient charac- teristics with initiation of OAC therapy (warfarin or NOACs) when indicated vs usual care provided pre-intervention (control)	Significant increase in proportion of atrial fibrillation patients prescribed OAC from 62% to 80%, P < .001
Brown [‡] , 2017, UK ²²	Outpatient clinics ([†]), before-and- after study	a* b* C*	Pharmacist-led virtual clinics with GPs to identify atrial fibrillation patients with a CHA ₂ DS ₂ VASc score ≥2 not anticoagulated vs usual care provided pre-intervention (control)	Increased prescription of anticoa gulation for atrial fibrillation patients in 2 CCGs from 73% (pre-intervention) to 83% (postintervention), and from 72% to 78%
Virdee, 2017, UK ⁴³	General Practices (15), cross-sec- tional study	^a 497 ^b 75.5 ± 11.9 ^c 206 (41.4%)	Pharmacist treatment recommenda- tions made to GP for atrial fibrilla- tion patients with CHA ₂ DS ₂ -VASc score ≥1/≥2 (male/female) and no anticoagulant prescription	202/497 participants (40.6%) suitable for anticoagulation, 103/202 (51%) commenced on anticoagulant (76/202 refused, 16/202 failed to attend, 7 com- menced treatment in secondary care), 85/103 (83%) switched from antiplatelet to anticoagulant

Author (Study Name), Year, Country	Study Setting (n), Study Design	Intervention/Control ^a Sample Size ^b Age (Median [IQR], or Mean ± SD) ^c Proportion of Females, n (%)	Description of Intervention and Control (Where Applicable)	Main Findings
Dowling, 2016, UK ²⁴	Outpatient clinic (1), cohort study	^a 87 ^b 76.9 ± * ^c 46 (52.9%)	Pharmacist-led anticoagulant review clinic (weekly, 4-h clinic for 6 mo) targeted at atrial fibrillation patients on VKA with TTR <65%	65/87 (74.7%) switched from VKA to NOAC, 63/87 continued on NOAC at 2-wk follow-up, 1/87 had VKA discontinued (hemor- rhagic risk outweighed benefit), 21/87 (24.1%) remained on VKA
Larock, 2014, Belgium ³¹	Hospital (1), cross- sectional study	^a 69 ^b 74 [45-89] ^c 26 (38%)	Pharmacist assessment of dabigatran and rivaroxaban prescribing using Medication Appropriateness Index tool adapted for NOAC prescribing with recommendations made to physicians	34/69 (49%) inappropriate crite- ria for treatment, 48 pharmacis interventions, 94% accepted by physicians
Jackson, 2011, Australia ²⁶	Hospital (1), before-and-after study	^a 134/394 ^b 79 ± */75 ± * ^c 84 (63%)/180 (45%)	Pharmacist stroke risk assessment in atrial fibrillation patients, antith- rombotic therapy recommendations to physicians vs usual care pro- vided pre-intervention (control)	Significant increase in warfarin use from 43% to 58% $P = .050$, significant decrease in aspirin use from 48% to 39%, $P = .040$ from admission to discharge in intervention group, no signifi- cant change in antithrombotic use from admission to discharge in usual care
Touchette, 2007, USA ⁴²	Hospital (1), before-and-after study	^a 154/98 ^b 79.7 ± 10.2/77.8 ± 10.1 ^c 76 (49.4%)/57 (58.2%)	Pharmacist review of antithrombotic prescribing in atrial fibrillation patients, assessment of bleeding risk factors, interacting medicines, direct patient interview, treatment recommendations made to physi- cians vs usual care provided pre- intervention (control)	No significant difference in antithrombotic use (70.8% intervention vs 67.3% control, P = .580), significant difference in proportion of patients with antithrombotic discharge plan (88.3% intervention vs 73.5% control, $P < .01$), significantly higher odds of planned or actua warfarin use with intervention (adjusted OR 2.46; 95% CI, 1.63-3.74)
Bajorek, 2005, Australia ²¹	Hospital (1), cohori study	t ^a 218 ^b 85.2 ± 6.2 ^c 133(61%)	Pharmacist identification of atrial fibrillation patients, consultation with patients, caregivers, and MDT to obtain information for applica- tion of evidence-based algorithm to determine appropriate antith- rombotic, discussion with clinical team at ward rounds/case confer- ences before final treatment deci- sions made	78/218 (35.8%) had changes made to antithrombotic pre- scribed pre-intervention (at admission); 60/78 (76.9%) treatment upgrade (no therapy/ antiplatelet to anticoagulant), significant overall increase in antithrombotic use pre-inter- vention vs postintervention (at discharge), 59.6% vs 81.2% P < .001
Burkiewicz, 2004, USA ²³	Outpatient clinics (2), cohort	^a 131/47 ^b 71.7 ± 11.3/74.7 ± 11.5 ^c 66 (50.4%)/24 (51.1%)	Ambulatory care clinic (delivered by cardiologists and primary care physicians) for atrial fibrillation patients with access to a pharma- cist—staffed AMS vs ambulatory care clinic without access (control)	Significant difference in warfarin use between clinic with access to pharmacist-staffed AMS vs clinic without access (77.9% vs 61.7%, $P = .030$), access to pharmacist-staffed AMS was an independent predictor of warfa- rin use (adjusted OR 2.19; 95% CI, 1.05-4.56)

Table 2 (Continued)				
Author (Study Name), Year, Country	Study Setting (n), Study Design	Intervention/Control ^a Sample Size ^b Age (Median [IQR], or Mean ± SD) ^c Proportion of Females, n (%)	Description of Intervention and Control (Where Applicable)	Main Findings
Medication adherence, Khalil, 2021, Australia ²⁸	, knowledge and pati Hospital (1), before-and-after study	ent satisfaction ^a 65/61 ^b 72.78 \pm * (males), 75.03 \pm * (females)/ 75.30 \pm * (males), 74.60 \pm * (females) ^c 29 (44.6%)/30 (49.1%)	See Khalil 2021, OAC prescribing	Significant improvement in patient satisfaction measured using a standard satisfaction survey based on a Likert scale (intervention 68% vs control 25%, $P < .001$)
Sun, 2021, China ¹⁷	Hospital (1), ran- domized con- trolled trial	^a 100/99 ^b 75.9 ± 9.0/75.8 ± 9.1 ^c 45 (45%)/46 (46.5%)	Pharmacist implementation of evi- dence-based pharmaceutical care model. Pharmacists consider patients' preferences, search and evaluate literature, provide objective suggestions to hospitalized atrial fibrillation patients taking rivaroxa- ban vs implementation of a general pharmaceutical care model (control)	Satisfaction $(14.6 \pm 0.9 \text{ vs } 13.8 \pm 1.0, P < .01)$ and cognition scores $(22.6 \pm 2.2 \text{ vs } 20.8 \pm 3.0, P < .01)$ measured using a questionnaire designed by the researchers significantly higher in patients in intervention group
Leblanc [‡] , 2017, Canada ³²	*, cohort study	^a 338 b* c*	Pharmacist-delivered education and counseling to atrial fibrillation patients taking NOACs	Increased patient knowledge (assessed using 5 questions) of atrial fibrillation and NOAC use from 3.7/5 (baseline) to 4.3/5 (4-mo follow-up), increased medication adherence from 93% (baseline) to 98% (4-mo follow- up), P < .001
Shore, 2015, USA ⁴¹	Veterans Health Administration sites (67), mixed- method study	a4863 b∗.¶ c*,¶	Pharmacist review of dabigatran pre- scriptions for atrial fibrillation patients, patient education, adverse event and adherence monitoring	Pharmacist patient education had no effect on dabigatran adher- ence (adjusted RR 0.94; 95% CI, 0.83-1.06), significant associa- tion between pharmacist-led monitoring on dabigatran adherence (adjusted RR 1.25; 95% CI, 1.11-1.41)
Lee, 2013, USA ³³	Outpatient clinic (1), before-and- after study	^a 20/48 ^b 78 [72-83]/72 [67-81] ^c 0 (0%)/1 (2%)	See Lee 2013, Health outcomes	No effect on mean medication pos- session ratio (intervention 93.1% vs control 88.3%), no effect on the proportion of participants achieving a medication posses- sion ratio \geq 80% (intervention 25% vs usual care 10%, $P = .160$)

AMS = anticoagulant management service; APL-AF = Active Patient Link — Atrial Fibrillation; CCG = clinical commissioning group; CHADS65 score = Canadian algorithm which recommends anticoagulation for most people aged 65 years old and for younger patients with congestive heart failure, hypertension, age, diabetes, stroke/transient ischemic attack score of 1; CHA_2DS_2 -VASc score = score of 1 point each for congestive heart failure, hypertension, female, age 65-74 years, diabetes mellitus, vascular disease and 2 points for previous stroke/transient ischemic attack/thromboembolism and age \geq 75 years; CI = confidence interval; ECG = electrocardiogram; GP = general practitioner; HF = heart failure; HR = hazard ratio; INR = international normalized ratio; MDT = multidisciplinary team; NOAC = non-vitamin K antagonist oral anticoagulant; OAC = oral anticoagulant; OR = odds ratio; PIAAF Rx = The Improving Stroke Prevention in Atrial Fibrillation Through Pharmacist Prescribing study; PT-INR = prothrombin time — international normalized ratio; RR = relative risk; SAFE = safe anticoagulation initiation for atrial fibrillation in the emergency department; TTR = time in therapeutic range; VKA = vitamin K antagonist; WMTAC = warfarin medication therapy adherence clinic.

Studies reporting on more than one outcome are listed under all relevant outcome headings with reporting of outcome-relevant results only. *not reported.

†Marcatto et al have one other publication [Ref 48] that uses the same cohort and reports on TTR at weeks 4 and 12 without a breakdown of different warfarin adherence groups

‡available as abstract only.

§total cohort of algorithm identified participants, stepped-wedge randomised controlled trial, all participants eventually received intervention

||45/48 participants in control group had atrial fibrillation +/- flutter and 3/48 had atrial flutter only, all participants in intervention group had atrial fibrillation +/- flutter

¶not reported for the entire cohort of 4,863 participants, only reported for participants taking part in the qualitative aspect of the study.

50	rhythmic ^a 12/9 c (1) ^{b†}	Pharmacy-led outpatient Inpatients administered 120 mg twice
	^c 3 (25%)/4	 clinic using the AliveCor KardiaMobile ECG to deliver sotalol loading (electro- physiologist oversight) vs inpatient sotalol loading (control) daily, 88.3% outpatients received thi dose (3 received different doses at electrophysiologist discretion (n = 2) because of prolonged baseline QT interview
Finks, 2011, USA ⁴⁹ Hospit	tal (1) ^a 36 ^b 75 ± 8.9 de priate or a dose adjus ± 7.6 part adjustmen c†	Pharmacist assessment of Pharmacist recommendation of drug dis se appro- sotalol prescribing for atrial continuation/dose amendment in 32, cepted fibrillation patients accord- accepted for 12/32 (appropriate ther ment, 78 ing to renal function, physi- al dose cian prescribing or no recommendations made admission rates at 6 mo for patients of

medication adherence from baseline to 4 months and marginally improved patient knowledge about AF and NOAC.³² Two studies assessed the effect of pharmacist interventions on patient satisfaction^{17,28} and reported significant improvements (Table 2).^{17,28}

"B" BETTER SYMPTOM MANAGEMENT: PHARMACIST INTERVENTIONS FOR SYMPTOM MANAGEMENT

Two studies tested pharmacist interventions for symptom management in atrial fibrillation,^{49,50} focusing on prescription of sotalol⁴⁹ or the care setting for administration⁵⁰ (Table 3). In one small cohort study (n = 360), pharmacists identified that most (89%) sotalol prescriptions were inappropriate based on patients' renal function and recommended changes to physicians, but only 38% of recommendations were implemented.⁴⁹ In another study, pharmacists led an anti-arrhythmic outpatient clinic for sotalol loading (oversight from electrophysiologist) to determine feasibility compared with inpatient sotalol loading.⁵⁰ Outpatient sotalol loading was found to be a safe alternative.⁵⁰

"ABC": MULTIFACETED PHARMACIST INTERVENTIONS COVERING TWO OR MORE **COMPONENTS OF THE ATRIAL FIBRILLATION BETTER CARE PATHWAY**

Three before-and-after studies explored pharmacist implementation of multifaceted interventions aligned with ≥ 2 components of the ABC pathway (Table 4).⁵¹⁻⁵⁶ One beforeand-after study (n = 300) examined an AF-specific medication assessment tool (MAT-AF) focused on appropriate OAC dosing by renal function, and necessary monitoring of rate- or rhythm-controlling agents.⁵² Use of the medication tool was associated with significantly higher odds of OAC and rate-control prescriptions (OR 4.07; 95% CI, 2.12-7.82 and OR 3.92; 95% CI, 1.06-14.54, respectively).⁵² In another study, pharmacists used Active Patient Link-Atrial Fibrillation software to identify AF patients potentially eligible for OAC therapy and invited them to attend a general practitioner-pharmacist clinic.⁵¹ The clinic initiated OAC therapy where appropriate, and optimized antihypertensive/lipidlowering therapy. The intervention was associated with a significant increase in OAC prescription (77% to 83%) and the proportion of patients with a serum cholesterol <5 mmol/L, although this did not translate into a significant increase in statin use. Data on dosage changes to statin therapy are not reported.⁵¹ There was no significant difference in the proportion of patients with uncontrolled blood pressure $\geq 140/$ 90 mmHg.⁵¹ Delivery of a protocol for atrial fibrillation care post-hospital discharge that comprised rate control, stroke prevention, and risk factor assessment and modification was associated with significantly higher odds of discharge from the hospital emergency department (OR 4.2; 95% CI, 1.9-9.8), but no significant reduction in hospital length of stay for subsequent admissions.⁵³

PHARMACIST-LED EDUCATIONAL **INTERVENTIONS**

Three	studies	(one	before-and-after ⁵⁴	and	2	cohort
studies	^{55,56})	tested	pharmacist-delive	red	ed	ucation

1421

Table 4

First Author	Atrial Fibrillation Study Setting, (n),	Intervention/Control	Description of Intervention and	Main Findings
(Study Name), Year, Country	Study Design	^a Sample Size ^b Age (Median [IQR], or Mean ± SD) ^c Proportion of Females, n (%)	Control (Where Applicable)	Main Fillungs
lultifaceted inter	rventions covering 2 or m	ore components of the A	BC pathway	
Chahal, 2019, UK ⁵¹	before-and-after study	, ^a 310,972 (2016/17)/ 320,422 (2017/18) ^b * c*	Pharmacist identification of atrial fibrillation patients potentially eligible for anticoa- gulation using patient records and APL-AF software, patient invitation to GP—pharmacist consultation with anticoagu- lant initiation, optimization of BP/lipid therapy where appro- priate, discussion of complex patients at weekly MDT (cardi- ologist, hematologist, GP with specialist interest in cardiol- ogy, GP coordinator, and phar- macist) vs usual care provided pre-intervention between April 2016/17 (control)	Significant increase in proportion atrial fibrillation patients pre- scribed anticoagulation from 2016/17 to 2017/18 (77% to 83 P < .0001), nonsignificant increase in use of statins (66.8% to 68.1%), but significant increas in serum cholesterol reported as <5 mmol/L (64.2% to 68%, P = .012), no significant different in proportion of patients with blood pressure \geq 140/90 mmHg (2.9% to 3.2%)
Gauci, 2019, Malta ⁵²	Hospital (1), before- and-after study	^a 150/150 ^b 82.7 ± 6.4/81.7 ± 7.6 ^c 106 (70.7%)/96 (64%)	Pharmacist implementation of MAT-AF to assess appropriate- ness of antithrombotic, rate, and rhythm therapy for atrial fibrillation patients vs usual care provided pre-intervention (control)	Significantly higher odds of pre- scription of oral anticoagulants (OR 4.07; 95% CI, 2.12-7.82, $P <$.001), rate-control (OR 3.92; 95° CI, 1.06-14.54, $P =$.041), digoxi monitoring (OR 10.40; 95% CI, 3.59-30.10, $P <$.001), referral o patients on anti-arrhythmic drug not in sinus rhythm to cardiolog (OR 8.00; 95% CI, 1.13-56.79, P =.038)
Gehi, 2018, USA ⁵³	Hospital (1), before- and-after study	^a 98/100 ^b 68.5 ± 14.2 (all par- ticipants) ^c *	Pharmacist-led atrial fibrillation clinic (cardiologist/electro- physiologist supervision) for patient follow-up post-ED dis- charge after an atrial fibrilla- tion-related admission, pharmacist delivery of protocol for atrial fibrillation care including rate-control and stroke prevention, risk factor assessment and modification, education, coordination of care across teams in primary care and ED vs usual care provided pre-intervention (control)	Significantly higher odds of dis- charge from ED (OR 4.20; 95% CI 1.90-9.80) but had no significan difference on hospital length of stay in the event of repeat ED pro- sentations (pre-intervention 3.0 \pm 4.6 d vs postintervention 2.5 \pm 4.4 d, <i>P</i> = .560)

Characteristics of Studies of Pharmacist-Led Educational or Multifaceted Interventions Covering Two or More Components of the

Downloaded for Anonymous User (n/a) at Aalborg University Hospital from ClinicalKey com by Elsevier on December 12

First Author (Study Name), Year, Country	Study Setting, (n), Study Design	Intervention/Control ^a Sample Size ^b Age (Median [IQR], or Mean ± SD) ^c Proportion of Females, n (%)	Description of Intervention and Control (Where Applicable)	Main Findings
Educational-base		_		
Dorian, 2020, Canada ⁵⁵	Hospital EDs (3), cohort study	^a 212 ^b 65 ± * ^c 95 (45%)	Implementation of nurse practi- tioner and pharmacist-centered follow-up program (AF-QCP) for atrial fibrillation patients dis- charged from hospital. Tailored patient education, support for self-management, atrial fibril- lation care plan for primary care providers, support from cardiologists and internists vs usual care provided pre-inter- vention (control)	No difference in repeat ED visits or hospital admissions over 12 mo between patients on AF-QCP fol- low-up program compared with historic controls
Marvanova, 2019, USA ⁵⁴	Faith-based institu- tions (4), before- and-after study	^a 97 ^b 75.0 ± 13.7 ^c 69 (71.1%)	Pharmacist-led education (70- min event; baseline assessment of stroke knowledge, study questionnaire, BP and HR read- ings, presentation, question- and-answer session, postedu- cation questionnaire) for com- munity-dwelling adults	Participants self-reporting atrial fibrillation (n = 6) identified atria fibrillation management as a mod ifiable stroke risk factor after phan macist-led education (none identified it prior to educational session)
Tran, 2013, USA ⁵⁶	Hospital (1), cohort study	$^{a}71$ $^{b}71.7 \pm 9.54$ clinic patient nonhospital- ized with atrial fibril- lation, 72 \pm 11.8 clinic patient hospi- talized with atrial fibrillation $^{c}22$ (31.1%)	MDT atrial fibrillation clinic led by pharmacists and electro- physiologists to evaluate and implement individualized treatment plans and provide patient education, medication management, and follow-up	17/71 (23.9%) clinic patients hos- pitalized and 2/17 (11.7%) had an ischemic stroke, reduction in hos- pital admission rate within 1 y when compared with reported national admission rates occurring within 6 mo (23.9% vs 65.8%), study ischemic stroke rate (2.82% lower than rates reported in the literature (23.50%)

ABC = Atrial Fibrillation Better Care pathway; AF-QCP = Atrial Fibrillation Quality Care Programme; APL-AF = Active Patient Link — Atrial Fibrillation; BP = blood pressure; CI = confidence interval; ED = emergency department; GP = general practitioner; HR = heart rate; MAT-AF = medication assessment tool for AF; MDT = multidisciplinary team; OR = odds ratio. *Not reported.

(Table 4). Studies reported on different outcomes and the results were variable.⁵⁴⁻⁵⁶ One reported no difference in the number of emergency department visits or hospital admissions after matching participants to historic controls,⁵⁵ and another reported lower hospital admission rates when national admission rates were used as a comparator.⁵⁶ A 70-minute pharmacist-led educational session increased the proportion of participants who identified atrial fibrillation as a modifiable stroke risk factor (none identified it pre-education, 6 identified it post-education).⁵⁴

DISCUSSION

Research efforts have predominantly focused on pharmacist interventions for anticoagulant management in atrial fibrillation, reporting on appropriateness (guideline-adherence) or prescription rates. Thirteen studies have demonstrated the feasibility of pharmacist-led atrial fibrillation screening in primary care, most commonly using the Alive-Cor KardiaMobile single-lead ECG. There is a paucity of research on pharmacist-led characterization or symptom management of atrial fibrillation, or delivery of multifaceted interventions to provide holistic care for AF patients based on the ABC pathway. Extensive heterogeneity among included studies in relation to their design, populations, interventions, outcome measures, and statistical analyses limits the conclusions that can be drawn from the available evidence.

Pharmacist-led atrial fibrillation screening programs appear to have demonstrated feasibility across a variety

1423

screening.⁵⁷ There is a paucity of cost-effectiveness data to accompany the studies, and use of a cross-sectional design limited study follow-up: for example, not all studies quantified the number of new atrial fibrillation cases. To support implementation of atrial fibrillation screening programs, studies need to demonstrate that the associated expenditure translates into a reduced burden on health and social care services. Large-scale randomized controlled trials are underway to address this,⁵⁶⁻⁶⁰ but do not mention the involvement of pharmacists in screening program delivery. Pharmacists embedded within primary care services (general practice or community pharmacy) could run opportunistic or systematic atrial fibrillation screening programs.

Arguably, the interventions most suitably aligned to a pharmacist's skill set are those that focus on medication initiation, optimization, and education. Pharmacist-led anticoagulant management services education,^{18,20,27,28,33,36,37,44} comprised of adverse monitoring, ^{19,27,29,33,35,37,39,41,44} event and dose adjustment^{18,20,37,44} were the most common interventions tested, as well as pharmacist identification of people with an atrial fibrillation diagnosis recorded with no evidence of anticoagulant prescription.^{22,25,38,43,45} Overall, pharmacist interventions increased OAC prescription rates in eligible patients, and improved the appropriateness of prescribing.

Studies that report on health outcomes require cautious interpretation because of low statistical power due to low event rates, with only one study adequately powered and adjusting for confounders.³⁹ Further refinement of pharmacist interventions to improve the quality of warfarin therapy is required; only 3 of 7 studies reported improvements in TTR above the recommended target >70%.^{2,20,30,39} The paucity of studies testing pharmacist interventions for atrial fibrillation symptom management may reflect the perceived competency of pharmacists in making prescribing interventions for rate and rhythm control therapies. A review of studies investigating pharmacist confidence and competency in prescribing concluded that while most pharmacists felt competent to prescribe, they lacked confidence.⁶¹ Prescribing is a growing scope of practice for pharmacists, and in the United Kingdom reforms have been made to education and training so that individuals qualify as prescribers at the point of first registration as a pharmacist.⁶² Interventional studies should adapt and move away from traditional physician-led prescribing models.

Pharmacist delivery of multifaceted interventions for atrial fibrillation that targeted 2 or more ABC pathway components relied on collaboration with general practitioners, cardiologists, and electrophysiologists. This is similar to the core integrated atrial fibrillation care team outlined in the European Society of Cardiology guidelines.² Two multifaceted interventional studies considered atrial fibrillation symptom management with rate- or rhythm-controlling therapies, but none reported patient-centered outcomes such as improved symptom management and quality of life. A patient-centered approach ought to be adopted in future interventional studies that aim to improve symptom management in atrial fibrillation.

CONCLUSIONS

In summary, pharmacists can help to operationalize different components of the "CC to ABC" model for integrated atrial fibrillation care. Most of the available data consider individual ABC pathway components in isolation, particularly "A - Anticoagulation/Avoid stroke". As the scope of pharmacist practice continues to evolve and includes prescribing, it seems feasible for pharmacists to deliver all components of the ABC pathway across the health care continuum. Hospital pharmacists could perform targeted medication reviews for atrial fibrillation patients, optimizing therapies with cardiology input as needed and providing education. In primary care, pharmacists could lead screening programs, check medication adherence, provide new medicine reviews, monitor for adverse effects, monitor blood pressure, blood glucose, and cholesterol, and reinforce key educational messages. Pharmacists are a potentially untapped resource in relation to integrated atrial fibrillation care, but the pharmacy service framework would need some re-structuring to support translation of these pharmacist interventions into everyday clinical practice.

References

- 1. Lip GYH. The ABC pathway: an integrated approach to improve AF management. *Nat Rev Cardiol* 2017;14(11):627–8.
- 2. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. *Eur Heart J* 2020;42(5):373–498.
- **3.** Chao TF, Joung B, Takahashi Y, et al. 2021 Focused update consensus guidelines of the Asia Pacific Heart Rhythm Society on Stroke Prevention in Atrial Fibrillation: executive summary. *Thromb Haemost* 2021;122(1):20–47.
- Khanbhai Z, Manning S, Fordham R, Xydopoulos G, Grossi-Sampedro C, Hussain W. Community pharmacy led atrial fibrillation detection and referral service – the Capture AF study. *Eur Heart J* 2020;41 (suppl 2): [ehaa946.0537.
- Savickas V, Stewart AJ, Rees-Roberts M, et al. Opportunistic screening for atrial fibrillation by clinical pharmacists in UK general practice during the influenza vaccination season: a cross-sectional feasibility study. *PLoS Med* 2020;17(7):1–21.
- **6**. Savickas V, Stewart AJ, Short VJ, et al. P6145 Atrial fibrillation screening in care homes by clinical pharmacists using pulse palpation and single-lead ECG: a feasibility study. *Eur Heart J* 2019;40 (suppl 1).
- Zaprutko T, Zaprutko J, Baszko A, et al. Feasibility of atrial fibrillation screening with mobile health technologies at pharmacies. *J Cardiovasc Pharmacol Ther* 2020;25(2):142–51.

1425

- Anderson JR, Hunter T, Dinallo JM, et al. Population screening for atrial fibrillation by student pharmacists at health fairs. *J Am Pharm Assoc* (2003) 2020;60(4):e52–7.
- Cunha S, Antunes E, Antoniou S, et al. Raising awareness and early detection of atrial fibrillation, an experience resorting to mobile technology centred on informed individuals. *J Res Social Admin Pharm* 2020;16(6):787–92.
- Bacchini M, Bonometti S, Del Zotti F, et al. Opportunistic screening for atrial fibrillation in the pharmacies: a population-based cross-sectional study. *High Blood Press Cardiovasc Prev*, 26; 2019. p. 339–44.
- Hazelrigg B, Antoniou S, Miller M. Determining pharmacists' ability to detect atrial fibrillation by utilising mobile single-lead electrocardiogram systems (Alivecor/Kardia) in "Know Your Pulse" awareness campaigns. J Pharm Pharmacol 2019;71(S1):4–5.
- Lobban T, Breakwell N, Hamedi N, et al. 1357 Identifying the undiagnosed AF patient through "Know Your Pulse" community pharmacy based events held in ten countries during Arrhythmia Alliance World Heart Rhythm Week 2017. *Eur Heart J* 2018;39(suppl 1): [ehy565.1357.
- 13. Modesti PA, Donigaglia G, Fabiani P, Mumoli N, Colella A, Boddi M. The involvement of pharmacies in the screening of undiagnosed atrial fibrillation. *Intern Emerg Med* 2017;12(8):1081–6.
- Sandhu RK, Dolovich L, Deif B, et al. High prevalence of modifiable stroke risk factors identified in a pharmacy-based screening programme. *Open Heart* 2016;3(2):e000515.
- Twigg MJ, Thornley T, Scobie N. Identification of patients with atrial fibrillation in UK community pharmacy: an evaluation of a new service. *Int J Clin Pharm* 2016;38(4):784–7.
- 16. Lowres N, Neubeck L, Salkeld G, et al. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study. *Thromb Haemost* 2014;111(6):1167–76.
- Sun J, Chen GM, Huang J. Effect of evidence-based pharmacy care on satisfaction and cognition in patients with non-valvular atrial fibrillation taking rivaroxaban. *Patient Prefer Adherence* 2021;15:1661–70.
- Aidit S, Soh YC, Yap CS, et al. Effect of standardized warfarin treatment protocol on anticoagulant effect: comparison of a warfarin medication therapy adherence clinic with usual medical care. *Front Pharmacol* 2017;8:637.
- **19.** An J, Niu F, Zheng C, et al. Warfarin management and outcomes in patients with nonvalvular atrial fibrillation within an integrated health care system. *J Manag Care Spec Pharm* 2017;23(6):700–12.
- An T, Kose E, Kikkawa A, Hayashi H. Hospital pharmacist intervention improves the quality indicator of warfarin control: a retrospective cohort study. *J Med Invest* 2017;64(3.4):266–71.
- Bajorek BV, Krass I, Ogle SJ, Duguid MJ, Shenfield GM. Optimizing the use of antithrombotic therapy for atrial fibrillation in older people: a pharmacist-led multidisciplinary intervention. *J Am Geriatr Soc* 2005;53(11):1912–20.
- Brown A, Byrne R, William H, Hamedi N, Hodgkinson A. Optimisation of anticoagulation therapy for stroke prevention in atrial fibrillation using a virtual clinic model. *Res Pract Thromb Haemost* 2017;1:996.
- Burkiewicz JS. Effect of access to anticoagulation management services on warfarin use in patients with atrial fibrillation. *Pharmacotherapy* 2005;25(8):1062–7.
- Dowling T, Patel A, Oakley K, Sheppard M. Assessing the impact of a targeted pharmacist-led anticoagulant review clinic. *Clin Pharm* 2016;8(9). https://doi.org/10.1211/PJ.2016.20201474.
- Durand L, Chahal J, Shabana A, et al. 4CPS-018 Specialist pharmacist-led support in primary care to optimise cardiovascular risk management in patients with atrial fibrillation (af-patients). *Eur J Hosp Pharm* 2018;25(suppl 1). https://doi.org/10.1136/ejhpharm-2018eahpconf.109 [A49.2-A49.
- Jackson SL, Peterson GM. Stroke risk assessment for atrial fibrillation: hospital-based stroke risk assessment and intervention program. J Clin Pharm Ther 2011;36(1):71–9.

- Jones AE, King JB, Kim K, Witt DM. The role of clinical pharmacy anticoagulation services in direct oral anticoagulant monitoring. J Thromb Thrombolysis 2020;50(3):739–45.
- Khalil V, Blackley S, Subramaniam A. Evaluation of a pharmacist-led shared decision-making in atrial fibrillation and patients' satisfaction —a before and after pilot study. *Ir J Med Sci* 2021;190(2):819–24.
- 29. Kirwan C, Ramsden S, Kibria A, et al. LO40: Safe anticoagulation initiation for atrial fibrillation in the emergency department (the SAFE pathway). *CJEM* 2020;22(suppl S1) [S21.
- Kose E, An T, Kikkawa A. Assessment of oral anticoagulation control at pharmacist-managed clinics: a retrospective cohort study. *Pharmazie* 2018;73(6):356–60.
- Larock A-S, Mullier F, Sennesael A-L, et al. Appropriateness of prescribing dabigatran etexilate and rivaroxaban in patients with nonvalvular atrial fibrillation: a prospective study. *Ann Pharmacother* 2014;48 (10):1258–68.
- 32. Leblanc K, Jaffer A, Papastergiou J, Semchuk B. NOVEL TECHNOL-OGY-ENABLED PHARMACIST AND PATIENT EDUCATION PROGRAM ENHANCES ADHERENCE TO STROKE PREVEN-TION MEDICATIONS. *Can J Cardiol* 2017;33(10 suppl):S14–5.
- **33.** Lee P-Y, Han SY, Miyahara RK. Adherence and outcomes of patients treated with dabigatran: Pharmacist-managed anticoagulation clinic versus usual care. *Am J Health Syst Pharm* 2013;70 (13):1154–61.
- 34. Leef GC, Perino AC, Askari M, et al. Appropriateness of direct oral anticoagulant dosing in patients with atrial fibrillation: insights from the Veterans Health Administration. J Pharm Pract 2019;33(5):647–53.
- 35. Li X, Zuo C, Lu W, et al. Evaluation of remote pharmacist-led outpatient service for geriatric patients on rivaroxaban for nonvalvular atrial fibrillation during the COVID-19 pandemic. *Front Pharmacol* 2020;11:1275.
- 36. Liang J-B, Lao C-K, Tian L, et al. Impact of a pharmacist-led education and follow-up service on anticoagulation control and safety outcomes at a tertiary hospital in China: a randomised controlled trial. *Int J Pharm Pract* 2020;28(1):97–106.
- 37. Marcatto L, Boer B, Sacilotto L, et al. Impact of adherence to warfarin therapy during 12 weeks of pharmaceutical care in patients with poor time in the therapeutic range. *J Thromb Thrombolysis* 2021;51 (4):1043–9.
- Mensah TM, Yates NY. Pharmacist-led intervention to address patients with atrial fibrillation not receiving anticoagulation. *J Thromb Thrombolysis* 2019;47:615–6.
- 39. Phelps E, Delate T, Witt DM, Shaw PB, McCool KH, Clark NP. Effect of increased time in the therapeutic range on atrial fibrillation outcomes within a centralized anticoagulation service. *Thromb Res* 2018;163:54–9.
- 40. Schwab K, Smith R, Wager E, et al. Identification and early anticoagulation in patients with atrial fibrillation in the emergency department. *Am J Emerg Med* 2021;44:315–22.
- Shore S, Ho PM, Lambert-Kerzner A, et al. Site-level variation in and practices associated with dabigatran adherence. *JAMA* 2015;313 (14):1443–50.
- 42. Touchette DR, McGuinness ME, Stoner S, Shute D, Edwards JM, Ketchum K. Improving outpatient warfarin use for hospitalized patients with atrial fibrillation. *Pharm Pract (Granada)* 2008;6(1):43–50.
- 43. Virdee MS, Stewart D. Optimizing the use of oral anticoagulant therapy for atrial fibrilation in primary care: a pharmacist-led intervention. *Int J Clin Pharm* 2017;39(1):173–80.
- 44. Wang N, Qiu S, Yang Y, Zhang C, Gu Z-C, Qian Y. Physician-pharmacist collaborative clinic model to improve anticoagulation quality in atrial fibrillation patients receiving warfarin: an analysis of time in therapeutic range and a nomogram development. *Front Pharmacol* 2021;12:673302.
- 45. Wang SV, Rogers JR, Jin Y, et al. Stepped-wedge randomised trial to evaluate population health intervention designed to increase appropriate anticoagulation in patients with atrial fibrillation. *BMJ Qual Saf* 2019;28(10):835–42.

- 46. Brouillette F. Inappropriate use of anti-thrombotic therapy in patients with atrial fibrillation in a general cardiology outpatient clinic versus a multidisciplinary heart failure team. Heart Failure 2021 Online Congress [ePoster session]. Available at: https://esc365.escardio.org/presentation/233640.
- Sandhu R. Improving stroke prevention in atrial fibrillation through pharmacist prescribing (PIAAFRx). ClinicalTrials.gov Identifier: NCT03126214. 2018. Available at: https://clinicaltrials.gov/ct2/show/ NCT03126214. Accessed February 28, 2020.
- **48.** Marcatto LR, Sacilotto L, Tavares LC, et al. Pharmaceutical care increases time in therapeutic range of patients with poor quality of anticoagulation with warfarin. *Front Pharmacol* 2018;9:1052.
- 49. Finks SW, Rogers KC, Manguso AH. Assessment of sotalol prescribing in a community hospital: opportunities for clinical pharmacist involvement. *Int J Pharm Pract* 2011;19(4):281–6.
- Labreck M, Robinson A, Swinning J, et al. B-PO02-010 OUTPA-TIENT SOTALOL LOADING IS SAFE AND EFFECTIVE USING A PHARMACIST-RUN ANTIARRHTHYMIC CLINIC. *Heart Rhythm* 2021;18(8 suppl):S99.
- **51.** Chahal JK, Antoniou S, Earley M, et al. Preventing strokes in people with atrial fibrillation by improving ABC. *BMJ Open Qual* 2019;8(4): e000783.
- 52. Gauci M, Wirth F, Azzopardi LM, Serracino-Inglott A. Clinical pharmacist implementation of a medication assessment tool for long-term management of atrial fibrillation in older persons. *Pharm Pract (Granada)* 2019;17(1):1–7.
- 53. Gehi AK, Deyo Z, Mendys P, et al. Novel care pathway for patients presenting to the emergency department with atrial fibrillation. *Circ Cardiovasc Qual Outcomes* 2018;11(1):e004129.

- Marvanova M, Henkel PJ. A pharmacist-led stroke education and screening program for community-dwelling older adults. *Sr Care Pharm* 2019;34(2):127–42.
- 55. Dorian P, Bhatia R, Lebovic G, et al. TRANSITIONING EMER-GENCY ATRIAL FIBRILLATION MANAGEMENT (TEAM): INTERIM ANALYSIS OF IMPACT ON CLINICAL OUTCOMES. *Can J Cardiol* 2020;36(10 suppl):S55.
- 56. Tran HN, Tafreshi J, Hernandez EA, Pai SM, Torres VI, Pai RG. A multidisciplinary atrial fibrillation clinic. *Curr Cardiol Rev* 2013;9 (1):55–62.
- Ponamgi SP, Siontis KC, Rushlow DR, Graff-Radford J, Montori V, Noseworthy PA. Screening and management of atrial fibrillation in primary care. *BMJ* 2021;373:n379.
- Mant J BJ, Danesh J, Edwards D, et al. Screening for atrial fibrillation with ECG to reduce stroke. 2019. Available at: https://www.isrctn. com/ISRCTN16939438. Accessed January 5, 2022.
- Lubitz SA. Screening for atrial fibrillation among older patients in primary care clinics (VITAL-AF). Available at: https://clinicaltrials.gov/ct2/show/ NCT03515057?cond=Atrial+Fibrillation. Accessed January 5, 2022.
- AMALFI. AMALFI—Active Monitoring in AtriaL FIbrillation. 2019. Available at: https://www.amalfitrial.org/. Accessed January 5, 2022.
- **61.** Woit C, Yuksel N, Charrois TL. Competence and confidence with prescribing in pharmacy and medicine: a scoping review. *Int J Pharm Pract* 2020;28(4):312–25.
- 62. General Pharmaceutical Council. FAQ: reforms to the initial education and training of pharmacists. Available at: https://www.pharmacyregulation.org/education/standards-pharmacy-education/faq-reforms-initial-education-and-training-pharmacists. Accessed January 19, 2022.