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Abstract: There is a group of users within the vehicular traffic ecosystem known as Vulnerable
Road Users (VRUs). VRUs include pedestrians, cyclists, motorcyclists, among others. On the other
hand, connected autonomous vehicles (CAVs) are a set of technologies that combines, on the one
hand, communication technologies to stay always ubiquitous connected, and on the other hand,
automated technologies to assist or replace the human driver during the driving process. Autonomous
vehicles are being visualized as a viable alternative to solve road accidents providing a general safe
environment for all the users on the road specifically to the most vulnerable. One of the problems
facing autonomous vehicles is to generate mechanisms that facilitate their integration not only within
the mobility environment, but also into the road society in a safe and efficient way. In this paper, we
analyze and discuss how this integration can take place, reviewing the work that has been developed
in recent years in each of the stages of the vehicle-human interaction, analyzing the challenges of
vulnerable users and proposing solutions that contribute to solving these challenges.
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1. Introduction

According to the World Bank, since 2020 more than 56% of the world’s population live
in urban areas [1]. This agglomeration of people in urban areas causes serious mobility
problems. The World Health Organization mentions that the number of vehicles circulating
in big cities has increased uncontrollably, which means risks of more accidents, especially
for Vulnerable Road Users (VRUs), including pedestrians, cyclists, and motorcyclists,
among others.

Over the last decade, the automotive industry, along with research and development
groups, have focused on creating intelligent vehicles with self-driving capabilities, known
as connected autonomous vehicles (CAVs), which aim to increase the safety of passengers,
road users and at the same time to contribute to reduce traffic accidents, road congestion,
environmental pollution levels, etc. [2,3]. CAVs can detect and classify objects that are
close to them and can notify the driver and other road users about the situation. For
example, pedestrian detection state (pedestrians with intention to cross, pedestrians that
stops suddenly or start running), detection of a traffic signal, detection of objects on the
road, among others. CAVs can take real time control of certain operations with the aim of
avoiding accidents.

CAVs should interact with all the elements that make up the ecosystem, including
VRUs [4]. However, beyond the technical challenges related to automate driving, the
success or failure of this type of CAVs is closely related to their acceptance and social
integration within the vehicle traffic ecosystem.

In this review, we focus on analyzing the whole process of interaction between VRUs
and CAVs. First, we examine the operating principles of a connected autonomous vehicle
and explain the concept of VRUs. Secondly, we describe the technologies involved in the
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VRU-CAVs interaction process, describing them from two categories: sensing technologies,
and algorithms that provide the intelligence to the CAVs. Thirdly, we analyze all the stages
involved for a CAV to interact with VRUs, we make an in-deep literature review of the
different papers that have been published for each of the interaction stages. Finally, we
close this work showing the existing challenges in the VRU-CAVs interaction and the
conclusions of the paper.

2. Vehicular Traffic Ecosystem

The road traffic ecosystem is seen as the entire travel environment on streets and roads
that is used by vehicles and all kind of road users to move from one point to another. The
vehicular traffic ecosystem is composed of several elements that must interact with each
other to maintain a safe, accident-free environment. The elements that make up a vehicu-
lar traffic ecosystem are vehicles, VRUs (elderly pedestrians, children, disability people,
cyclists, motorcyclists, and lately light commuting vehicles such as scooters, skateboards,
electric scooters), traffic infrastructure (traffic signals, traffic lights, streets roads, etc.). The
ecosystem also includes communications infrastructure (cellular networks such as 4G, 5G,
wireless networks such as WiFi6, Bluetooth, and emerging networks such as Sigfox, among
others). However, traffic ecosystem has changed in recent years and there are new elements
such as CAVs (with different levels of automation), sensing infrastructure and automated
electric vehicles. The traffic ecosystem focuses on increasing safety, improving traffic flow
conditions, and reducing pollution levels. Figure 1 shows different vehicles that provide
mobility services into a new vehicular traffic ecosystem.
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2.1. Connected Autonomous Vehicles (CAVs)

In recent decades, the vision of automotive manufacturers is focused on the creation
of intelligent vehicles that, on the one hand, offers all the mobility capabilities offered by
currently vehicles, and on the other hand, have capabilities that allow them to perceive and
understand the driving environment in which they are circulating, being able to perform
the driving task with minimal or no human intervention. Precedence research released a
report where it mentions that the autonomous vehicles market was 94.43 billion in 2021
and is projected to be around 1808.44 billion by 2030 [5].

The concept of CAVs refers to vehicles that are equipped with intelligent driving
assistance systems and telecommunications technologies to establish communication with
elements of the driving environment. CAVs are classified based on levels of automation,
which were defined by the Society of Automotive Engineers in 2014 [6]. These levels of
automation are based on the degree of human interaction during the driving task. The
levels range from 0, where the driver has full control of the driving task, to 5 where
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the vehicle, through its implemented automation systems, can control all driving tasks
dynamically without the intervention of a human driver. Figure 2 shows the different levels
of automation.
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A CAV is controlled by a set of heterogeneous autonomous driving systems, which
are made up of several components that contribute to perform specific functions within the
driving process. A functional and technical architecture of an autonomous vehicles was
presented in [8], explaining from the technical point of view the integration of hardware and
software inside the vehicle, and from the functional point of view, showing the processing
blocks of all the activities performed by the vehicle to work correctly and efficiently. The
functional architecture proposed in [8] consists of five main blocks: perception, planning
and decisions, vehicle motion and control, system supervision and data exchange and
communication control.

• Perception block. The function of the perception block is to create a representative
model of the world surrounding the vehicle through the data received, both by the
sensors installed in the vehicle, as well as external data generated by other elements
of the ecosystem (pedestrian wearable networks, road side units, infrastructure, data
processed in cloud services or fog). It also uses static data from the environment (such
as digital maps, rules, routes) or environmental conditions (weather conditions and
exact position in real time). The main perception tasks are object detection, localization,
and object tracking. Localization integrates data from different sources, such as LiDAR
(Light Detection and Ranging), Global Positioning System and Inertial Measurement
Unit to increase the accuracy of the result. The implementation of particle filters are
widely used for localization systems and have been shown to achieve accuracy levels
of up to 10 cm [9–12]. Object detection consists of identifying and classifying the
different objects, through the application of intelligent algorithms, which are detected
through the set of sensors implemented in the CAVs. Trajectory tracking consists of
identifying and predicting the possible path that an object will follow when it is in
motion to avoid a risky situation.

• Planning and decision block. The purpose of this block is to generate the navigation
plan for the vehicle, with the representative model of the world created within the
perception block, and data information such as destination point, traffic rules, and
maps, among others. This system must make a series of decisions to generate a safe
and efficient real-time action plan. Its three main tasks are prediction, route planning
and obstacle avoidance. Prediction is related to the function that the vehicle must
perform to ensure that it can move safely within the driving environment [13]. Route
planning focuses on defining the path to be followed by the vehicle within a dynamic
traffic environment. To generate the movement plan, there are several context factors
such as the state of the vehicle (speed, direction of movement, geo-reference, etc.), in-
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formation from the vehicle’s travel environment (dynamic and static obstacles, driving
spaces, etc.) and traffic regulations. Context factors help to create a safe travel path
searching for all possible paths and filter them to select the best movement alternative.
However, this type of evaluation and discrimination demands a large number of
computational resources, which could affect the response time of the navigation plan.
Generally, solutions are based on trajectory optimization through computationally
intensive algorithms, trying to find a balance between optimization and computational
time [14,15]. Obstacle avoidance refers to avoiding a collision situation with other
elements located within the driving environment that endanger the safety of people.
Through productive actions based on traffic predictions, measurements of minimum
distances or time to collision with the object are used by the obstacle avoidance sys-
tems to make appropriate decisions and re-plan the navigation route of the vehicle.
Reactive actions can make use of radar sensor data to avoid the detected obstacles.

• Motion and vehicle control. This block is in charge of the execution of the trajectory
generated in the previous block through motion commands that control actuators
inside the vehicle.

• System supervision. This block oversees checking the correct operation of hardware
and software components of the vehicle to maintain the safety of all road users. It is
based on the ISO (International Organization for Standardization) 26,262 functional
safety standard [16], which is an adaptation of the IEC (International Electrotechnical
Commission) 61,508 standard [17].

• Data exchange and communication control. This block is responsible for managing
the entire data exchange process with the other elements of the road traffic ecosystem.
All information travels over the network using one or more radio interfaces.

Figure 3 presents a functional architecture for CAVs [8].
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The architecture of Figure 3 has a data source called external data, which is integrated
to enrich the data set to be used in the CAVs perception process. The dataset comes from
the process of collecting data that is shared by other vehicles, VRUs through their personal
wearable networks, and traffic infrastructure (surveillance cameras, sensors installed on
streets and roads). Data will extend the vision of the CAVs being able to identify hidden
objects located within their vision coverage (e.g., a pedestrian who is hidden by another
object such as a vehicle or a pedestrian that is approaching the intersection at a corner
where walls do not allow the pedestrian detection (the perception system of the CAVs).

In connected autonomous vehicle, the data exchange and communication control
functionality are integrated into the functional architecture. This block coordinates the
communication and the transmission of emergency and notification messages that are sent
from the vehicles on board unit to the rest of vehicles, pedestrians and the road side units.
The vehicle will always be connected to the network using different radio interfaces. There
is an architecture that details how notification messages are broadcasted through platforms
such as 4G, WiMAX, etc. [18]. In addition, it is required to develop adaptive quality of
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service routing schemes that can quickly redirect traffic and alert notifications when the
established routes are no longer available. In [19] there is a general review about which
protocols, techniques and technologies would fit best for CAVs applications. The study
details technical aspects of Transmission, Quality of Service, Security, Location and there
is an in-depth analysis of the routing aspect, specifically focusing on which protocols are
the best option to communicate vehicles with different Road Side Units (RSUs). Authors
implemented a sensor technology and made different tests to analyze bandwidth limitation,
delays, etc. In this context, packet delivery ratio, bit error rate, delay and connection
duration have been analyzed in [20]. Some authors have discussed architectural issues and
wireless technologies that support inter-vehicular communication, discussing outstanding
challenges for enabling the deployment and adoption of inter-vehicular communication
technology and how to combine these technologies in a cooperative way to exploit the
advantages and cover the limitations of each of them [21–24].

CAVs will implement intelligent algorithms to select the data exchange interfaces.
The selection process involves different parameters such as the type of application to be
used (mission critical application, entertainment application, driver assistance application,
among others), the requirements of the application (bandwidth, minimum delay, percentage
of lost packets) and the level of quality of service that the network technology can offer [19].

2.2. Vulnerable Road Users (VRUs)

Within the areas of transport and road safety, the term vulnerable group has been
used to refer to a specific section of road users such as walkers and cyclists. According
to Ptak [25], the first time a similar term was used was in the 1950s, when it referred to
unprotected road users, who were later called VRUs. The term VRUs has become very
relevant in recent years in the transport and road safety environment. In 2013, the World
Health Organization used the term VRUs to include pedestrians, cyclists, and motorcyclists.
The United States Department of Transportation National Strategy on Highway Safety
defined the term VRUs as “road users who are most at risk for serious injury or fatality
when they are involved in a motor-vehicle-related collision. These include pedestrians
of all ages, types and abilities, particularly elderly children and people with disabilities,
bicyclists and motorcyclists” [26]. For the European Union’s Intelligent Transportation
System Directive [27], the term VRUs is specified as “non-motorized road users, such as
pedestrians and cyclists as well as motor-cyclists and persons with disabilities or reduced
mobility and orientation”.

The Organisation for Economic Co-operation and Development proposed the creation
of new categories according to their mobility and their ability to manage within the road
environment including all users who have minimal protection when circulating in vehicular
traffic areas and therefore can easily be injured or even killed in an environment dominated
mainly by vehicles [28].

In this survey, we classify VRUs in the following categories (Figure 4):

• Distracted road users. They are the type of pedestrians walking in the road traffic
ecosystem, who are distracted by some extra activity they are doing. Gen-erally, the
activity they are doing may be using a cell phone, conversing with an-other person, or
thinking about something else.

• Road users inside the vehicle. We refer to passengers of a CAVs or drivers of a
traditional vehicle. People into the car could be elderly or sick people who could suffer
an eventuality while traveling. Passengers/drivers can be continuously monitored
through Body Sensor Networks or through monitoring devices such as cameras or
sensors that are implemented in the steering wheel. These sensors al-ways verify the
driver’s conditions and can detect risk situations (fatigue, stress, distraction, among
others). On the other hand, passengers in a CAVs can also be monitored through
sensors implemented in the seats to detect physiological changes that lead to risky
situations.Kjh.
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• Special road users. This category refers to people who have a very low travel speed,
including elderly and children. They are the most at risk within a road en-vironment.
Around half of accident pedestrian occurs at sites remote from cross-ing facilities,
with many occurring when parked vehicles obscured driver vision. Children appear
suddenly to cross the road while being masked by stationary ve-hicles, failing to look
properly, or being careless. Elderly tends to move slowly and are more likely to be less
able to judge the path and speed of vehicle.

• Users of transport devices. In recent years, there has been a trend to decrease the usage
of cars and use lighter modes of transportation, especially for the last mile. For this
reason, this category refers to users in a transport device who are not pro-tected by
and external mechanism, such as skates, scooters, roller skis or skates as well as by
kick sleds or kick sleds equipped with wheels.

• Animals. They are all types of animals that could be within the road driving zone,
such as cats, dogs, horses, among others.

• Road users with disabilities. These are the type of pedestrians moving through the
road traffic ecosystem but who have a disability (such as blind people, deaf people,
people in wheelchairs or people with assistive devices such as canes, crutches, etc.).
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3. CAVs and VRUs Interaction

For CAVs to be a success, they will need to be always in direct communication with
the different elements of the road traffic ecosystem. The interaction between the CAVs
and the VRUs is of great importance since poor or deficient communication can have fatal
consequences. Communication is of great relevance because on the one hand, if the vehicle
knows the intentions of the VRUs, then the vehicle could react and avoid a collision with
the VRUs that could cause severe damage to the VRUs, up to and including loss of life. On
the other hand, if the VRUs knows the intentions of the CAVs, then the VRUs may react
positively and more confidently to be able to, for example, cross the road.

The traditional process of interaction between the pedestrian and the driver of a
vehicle is carried out through non-verbal communication, including facial gestures, eye
contact, hand signals and even sounds [29,30]. This informal language indicates the actions
to be taken by the vehicle (stop and give way to the pedestrian, continue driving, etc.),
and the actions to be taken by the pedestrian (stop, cross the street) to avoid a possible
eventuality [31]. However, with the addition of CAVs to the streets, the entire interaction
process will change as automation levels advance [32].

The vehicular traffic ecosystem will start to become a hybrid environment where
traditional vehicles (non-automated and non-connected), semi-autonomous vehicles, CAVs,
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and VRUs will coexist. Therefore, non-verbal communication will no longer work in all
interactions. Some researchers believe that CAVs will no longer need such nonverbal
communication [33]; however, some other authors believe that the lack of nonverbal
communication will lead to distrust and rejection of CAVs by pedestrians.

The base of the CAVs-VRU interaction is to predict what other users (cyclists, scooters,
pedestrians, motorcyclists, drivers, among others) intend to do next in order to make
a proper movement decision. Connected and automated vehicles will not only detect
objects, but also predict the behavior of other users and notify their intention to the rest of
road users.

In [34] authors explain the interaction without non-verbal communication occurs
through two stages. The first stage is called communication of awareness and describes
the entire process that must be carried out for the CAVs to detect and identify the VRUs.
The second stage, called communication of intent, describes the capabilities of the CAVs
to notify the VRUs of its next action (stopping or not stopping for the pedestrian). In
this article, we consider that a third stage is necessary, called broadcast communication,
which describes the different types of communication between the CAVs and the RSUs,
infrastructures, VRUs and other CAVs.

3.1. CAVs-VRU Interaction Process

The CAVs-VRU interaction process is made up of different stages. Figure 5 shows in a
general way the stages that must be executed for a successful interaction process.
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Object detection. This function is a prerequisite for the CAVs to be able to perform
autonomous navigation. The CAVs detects all types of objects within its driving environ-
ment. Based on the number of objects, it will set a guideline to calculate its possible future
trajectory. For this it will make use of a set of sensors (such as LiDAR, cameras, radar, and
Global Positioning System) that will allow it to detect objects, their position, their distance
and keep track of objects (moving and stationaries) [35].

Object classification. Object classification is the phase that allows the vehicle to identify
each type of object being detected as the vehicle moves through the road traffic ecosystem
(such as pedestrians, traffic lights, road signs, walkways, and much more). In addition
to classifying them you need to know the exact distance between itself and each object
around it.

Intention prediction. This stage refers to predicting the behavior of the VRUs so that
the CAVs can redesign its trajectory and actions to prevent accidents. Intent identification
of a VRUs allows to classify its activities to predict, for example, whether a pedestrian will
cross the street or stop for a vehicle to pass [36].

Trajectory and tracking. Trajectory prediction is one of the essential components to
increase VRUs safety. Through this prediction the CAVs estimates the future state of each
of the moving elements within the road driving environment. The objective is basically to
anticipate the next action through the analysis of previous actions. This will increase safety
for VRUs.

Communication. Communication is focused on how the CAVs will let the VRUs know
of its intent to move. In the absence of such non-verbal communication with the driver,
alternatives need to be sought for the exchange of information between the CAVs and
the VRUs.
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3.2. Technologies for Interaction between CAVs-VRUs

The CAVs-VRU interaction process involves several technologies such as a driving
assistance system to reduce the risk of accidents and to reduce the percentage of human
error [37].

3.2.1. Sensing Technology

For CAVs-VRU interaction, advanced sensors are used to detect movement and thus
reduce the risk of accidents. The heterogeneous sensing mechanisms are integrated into the
On board Unit of the vehicles to generate a robust data acquisition system that is intercon-
nected through different communication media such as Local Interconnect Network (LIN),
Controller Area Network (CAN), Media Oriented Systems Transport (MOST), Low-Voltage
Differential Signalling (LVDS), Ethernet, among others. Each link used for interconnection
has different characteristics. Local Interconnect Network (LIN) is a unidirectional bus that
has a transmission capacity of 20 Kbps and is used to connect sensors and actuators to
Electronic Control Units (ECUs). LIN uses a single cable connection and the maximum
transmission distance between two ECUs is 40 m.

CAN is a bus based on message protocols for the interconnection of controllers and
devices in order to establish communication between them. CAN buses are classified
into high-speed, which achieves communication speeds of up to 1 Mbps, and low-speed
fault-tolerant with speeds of up to 125 kbps and transmission distance up to 40 m. Flexible
Data bus is a variant that can be transmitted at different data rates by varying the message
size. It achieves transmission speeds 8 times faster than traditional CAN.

MOST (Media Oriented Systems Transport) is a standard for high-speed intercon-
nection of multimedia components in vehicles. MOST uses a ring topology, performing
one-way transfer within the ring and transmits data via light pulses. It uses synchronous
data transmission to exchange audio, video and data signals via optical fiber or electrical
conductor. MOST provides a data-rate of 25 up to 150 Mbps using optical fiber in a shared
ring topology.

Automotive Ethernet is a bus used to transport a large amount of data in real time
with very low latency. Automotive Ethernet uses a point-to-point network technology and
defines the 100Base-T1 standard to achieve transmission speeds of 100 Mbps. Currently, a
new task force, called 802.3cy, is working on the development of the automotive PHY layer
standard for 25, 50 and 100 Gbps.

Low-Voltage Differential Signalling (LVDS) is a transmission system based on inex-
pensive media, such as twisted pair that transmits signals at high speeds. This standard
specifies only the physical layer. It is used for high-speed video, graphics, and video cam-
era data transfer. Its speeds of 655 Mbps have made it a viable alternative for connecting
self-driving vehicle camera systems.

Gigabit Multimedia Serial Link (GMSL) serializer and deserializers are high-speed
communication interfaces that support high bandwidth requirements, complex intercon-
nections, and data integrity that are applied in ADAS and infotainment systems. It uses
a point-to-point connection with support for 4K video. In general, it operates through a
serializer on the transmitter side to convert the data to a serial stream and implements a de-
serializer on the receiver side to convert the serialized data to a word format for processing,
reaching transmission speeds of up to 6 Gbps. You have transmission distances of around
15 m.

Table 1 shows a summary of the different communication media used in cars for the
interconnection of their devices.
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Table 1. Summary of autonomous vehicles’ communication media.

Media Description Transmission Speed Usage Distance

LIN Single-wire unidirectional bus 20 kbps

This media connects sensors
and actuators to ECUs. This
media is used in applications

such as cruise control, position
sensor control, temperature

control, sunroof,
among others.

Up to 40 m

CAN bus based on a
message protocol

High speed up to 1 Mbps.
Low speed 125 kbps

It is used for controller and
device communication
without the need for a

computer host.

Up to 40 m

CAN FD A variant of CAN that uses
flexible data 8 Mbps

Used in communications with
sensors at different
transmission rates.

Up to 40 m

MOST

A standard used for
interconnection of multimedia

components that uses a ring
topology, performing one-way

transfer within the ring and
transmits data via light pulses.

Up to 64 devices can be
connected to the network

From 25 up to 150 Mbps
using optical fiber.

Used for audio and video
applications in or out of the

car. Most is the best
transmission and multimedia
control network most widely

used in automotive electronics.

Up to 40 m

LVDS
Transmission system based on

twisted pair, that transmits
signals at high speeds.

655 Mbps.
A viable alternative for

connecting self-driving vehicle
camera systems.

15–20 m

GMSL

High-speed communication
interfaces that support high

bandwidth requirements,
complex interconnections, and

data integrity

Up to 6 Gbps

Used for ADAS and
infotainment systems. It uses a
point-to-point connection with

support for 4 K video.

Using shielded
twisted pair (STP) or
coax cables of up to

15 m

Sensors are interconnected to small electronic control units that control each of the
different functions that the CAVs must execute to perform the self-driving process. One of
the key points of the interconnection of the different elements of the CAVs is its topology.
In-vehicle network architecture models there has been a migration from an architecture
model based on a central multi-bus gateway to a functional domain controller architecture
model (Figure 6) that performs all functions with more few ECUs [38]. In this architectural
model, the ECUs are relocated within a functional domain, and a series of updates are
applied to them to adapt them to the new vehicle features. However, in recent years, a new
architectural model is being worked on, where ECUs are viewed as generic computing
units used to perform functions that demand high processing requirements (such as object
detection and classification, object intention and trajectory prediction, among others zonal
ECUs are used to perform traditional ECU functions according to vehicle characteristics.

For the vehicle to interact with the other elements of the environment it needs to “see”
everything around it. That ability of the vehicle allows it to detect and recognize all the
elements within its driving environment (other vehicles, traffic signs, VRUs, to name a
few) [39]. A series of sensors installed inside and outside the CAVs are used to collect
all the information from its environment. These sensors are used in a complementary
manner to increase the accuracy of object recognition [40]. All the information collected
by the sensors is analyzed to construct the route that the vehicle will use to move from
point A to point B, and thus send a series of instructions to the vehicle’s control systems
(braking system, acceleration system, steering system). According to a report presented
by the company YOLE Développement (Villeurbanne, France), there are three types of
sensors that dominate the autonomous vehicle market: LiDAR, image sensors and RADAR
sensors [41].



Sensors 2022, 22, 4614 10 of 31Sensors 2022, 22, 4614 10 of 32 
 

 

 
Figure 6. Representation of the different types of architectural models for ACs, adapted from [38]. 

For the vehicle to interact with the other elements of the environment it needs to 
“see” everything around it. That ability of the vehicle allows it to detect and recognize all 
the elements within its driving environment (other vehicles, traffic signs, VRUs, to name 
a few) [39]. A series of sensors installed inside and outside the CAVs are used to collect 
all the information from its environment. These sensors are used in a complementary 
manner to increase the accuracy of object recognition [40]. All the information collected 
by the sensors is analyzed to construct the route that the vehicle will use to move from 
point A to point B, and thus send a series of instructions to the vehicle’s control systems 
(braking system, acceleration system, steering system). According to a report presented 
by the company YOLE Développement (Villeurbanne, France), there are three types of 
sensors that dominate the autonomous vehicle market: LiDAR, image sensors and RA-
DAR sensors [41]. 

LiDAR is a type of sensor that works through a sonar, using laser light pulses to 
recreate a map of all objects near the vehicle. The basic architecture of a LiDAR system 
consists of four components: the transmitter that emits laser pulses, the receiver that re-
ceives the bounced light pulses, the optical analysis system whose function is to process 
the input data, and a computer to display a live three-dimensional image of the system 
environment. The computer measures the time it takes for the light pulse to travel back 
and forth, and with this value calculates the distance that the light pulse traveled, and also 
the angle of the LiDAR unit and the firing angle of the light pulse. To avoid failures due 
movement and changes of angles, it is necessary to integrate the inertial measurement 
unit. By integrating data from this unit with collected data, it is possible to have the track-
ing of thousands of points per second, allowing building the digital image of the environ-
ment. 

The millions of points received by LiDAR form a concept called “point cloud”. This 
information is processed at different stages. There is a stage called Clustering which 
causes multiple “point clouds” to be overlaid to give the objects a recognizable shape. 
Subsequently, the classification stage performs the identification of each type of objects, 
and they are classified into categories (such as pedestrians, cars, traffic signs, etc.). Finally, 
the modelling stage assigns predictive contexts to each of the scanned objects to map all 
possible movements. 

One of its key features is its depth perception accuracy, knowing how far away an 
object is from a few centimetres to 60 m away. LiDAR is used by CAVs to generate a 3D 
detailed picture of the area through a point cloud [42], which allows them to have a better 
knowledge of the distance of objects and is not affected by textured or textureless reflec-
tive surfaces. LiDAR application area within self-driving vehicles focuses on obstacle de-
tection, road users and lane markers [43–45]. 

Figure 6. Representation of the different types of architectural models for ACs, adapted from [38].

LiDAR is a type of sensor that works through a sonar, using laser light pulses to
recreate a map of all objects near the vehicle. The basic architecture of a LiDAR system
consists of four components: the transmitter that emits laser pulses, the receiver that
receives the bounced light pulses, the optical analysis system whose function is to process
the input data, and a computer to display a live three-dimensional image of the system
environment. The computer measures the time it takes for the light pulse to travel back
and forth, and with this value calculates the distance that the light pulse traveled, and also
the angle of the LiDAR unit and the firing angle of the light pulse. To avoid failures due
movement and changes of angles, it is necessary to integrate the inertial measurement unit.
By integrating data from this unit with collected data, it is possible to have the tracking of
thousands of points per second, allowing building the digital image of the environment.

The millions of points received by LiDAR form a concept called “point cloud”. This
information is processed at different stages. There is a stage called Clustering which
causes multiple “point clouds” to be overlaid to give the objects a recognizable shape.
Subsequently, the classification stage performs the identification of each type of objects,
and they are classified into categories (such as pedestrians, cars, traffic signs, etc.). Finally,
the modelling stage assigns predictive contexts to each of the scanned objects to map all
possible movements.

One of its key features is its depth perception accuracy, knowing how far away an
object is from a few centimetres to 60 m away. LiDAR is used by CAVs to generate a 3D
detailed picture of the area through a point cloud [42], which allows them to have a better
knowledge of the distance of objects and is not affected by textured or textureless reflective
surfaces. LiDAR application area within self-driving vehicles focuses on obstacle detection,
road users and lane markers [43–45].

Some advantages of the Lidar sensor are: (i) Speed and accuracy to collect data,
(ii) Active illumination sensors improve efficiency because it is not affected by light varia-
tions (e.g., day and night), (iii) Not affected by geometric distortions, (iv) Data collection is
not affected by extreme weather conditions (such as extreme sunlight).

As any type of sensor, LiDAR has a series of limitations in its operation, among which
we can mention (i) its high cost of operation, (ii) in specific weather situations such as
rainfall, snowfall or low hanging clouds the sensor is affected in its performance due to
the refraction effect, (iii) when generating a huge amount of data, it is necessary a great
processing capacity to analyze the data.

RADAR sensors detect objects of interest and estimates some features such as distance,
size, location, motion, relative velocity of an object with respect to the transmitter [46].
Its operation is based on the principle of reflection, whereby a series of radio waves are
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transmitted through space until they collide with an object and are reflected back to the
transmitter. With this information, the details of the object can be calculated. RADAR
sensors operate at different frequencies (24, 74, 77 and 79 GHz), which allows them to work
at different ranges [47]. Ranges used in RADAR have different functions:

• Short-range radars are used in functions such as blind-spot monitoring, lane-keep
assistance, and parking assistance.

• Medium-range radars are implemented for obstacle detection functions within the
range of 100 to 150 m and the beam angle varies between 30◦ and 160◦.

• Long-range radars are used for automatic distance control and brake assistance.

The advantages of RADAR sensors are: (i) their robustness of operation even in
unfavorable conditions such as snow, clouds, fog, allowing them to collect data from the
environment without being affected in its performance [48], (ii) they provide the exact
distance of an object due to the use of electromagnetism, (iii) they allows to calculate the
speed of displacement of a moving object, which complements the data of the object’s
position and its possible trajectory, (iv) they have the ability to simultaneously target several
objects, since its radio signals operate over a wide area, which allows it to collect data
from several objects simultaneously, (v) since different return angles of the signals can be
received, a 3D image of the environment can be generated, (vi) their cost is lower compared
to other sensors.

The disadvantages of this type of sensors are: (i) Time to target an object is not so
efficient, due to the time it takes for the signals to reach the object and return to the
transmitter, (ii) the range or coverage of this type of sensors is shorter (200 feet) compared
to other sensors such as LiDAR, (iii) they can suffer interference from other signals traveling
through space, altering the data transmitted, (iv) they cannot identify the type or the shape
of the object correctly, (v) these sensors can only detect objects that are within their line of
sight, if an object is hidden by another object, the sensor cannot detect it and therefore will
not be able to react quickly.

Vision sensors (cameras) facilitates that automated vehicles detect pedestrians, objects
and read traffic signs [49]. Cameras will scan the road, processing information about what
they see and responding to an obstacle in its path. To process the information, cameras
will have a software architecture that combines conventional image-processing algorithms
with AI-driven methods and embedded it on a high-performance system-on-chip with an
integrated microprocessor.

Vehicles will have a system of cameras covering all viewing angles to provide a
360◦ panoramic view of the external environment, facilitating the detection of VRUs and
surrounding traffic conditions.

Cameras are classified as visible or infrared. The former can be monocular [50] or
stereo [51]. Monocular cameras use a single camera to create a series of images, but they
cannot capture depth information. However, using dual-pixel autofocus hardware and
image processing algorithms, depth can be calculated in the image [52,53]. In autonomous
vehicles, two such cameras are usually installed to create a binocular camera system. Stereo
cameras are more similar to the depth perception behavior of the animal eye. These cameras
use two image sensors separated by a suitable distance known as the baseline. The authors
in [54] mention in their study that the baseline used by autonomous vehicles is 75 mm.
The disparity produced by the two cameras allows calculating the depth within the image.
Cameras capture wavelengths between 380–780 nm, which is the wavelength range of
visible light. Ordinary camera sensor chip perceives areas that are invisible to the human
eye. The active night vision cameras are sensitive to near infrared (800–1000 nm). Then
when the filter technology is used to filter out the visible light, what the camera sees should
be an image composed of infrared radiation [55]. Those cameras are less susceptible to
variations in illumination or drastic changes in illumination [56]. Higher range, resolution
and field of view pose many challenges to overcome with new electronic device innovations.
Automotive sensor integration technology would require to have video processing units
integrated in the on board unit of the vehicle (it requires a deep analysis of bandwidth
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resources, delay, jitter, etc.) or to transmit large amounts of high-resolution digital video
data over single data lines such as GMSL. The advantages of this type of sensors are: (i) easy
distinction of shapes, and faster identification of the type of object based on the information
collected, resembling the capacity of a human eye, (ii) high resolution for the detection of
objects, (iii) its cost is not high compared to LiDAR, (iv) when complemented with infrared
illumination it has a better performance in night driving.

According to the strengths and limitations of each of the sensors, the authors in [57]
made a comparative analysis of the sensors used in autonomous vehicles. Table 2 presents the
summary of the different characteristics of the most used sensors in the automated vehicles.

Table 2. Summary of autonomous vehicles’ sensors features.

Feature LiDAR RADAR Camera

Primary technology Laser light pulse Radio wave Light
Range ∼200 m ∼250 m ∼200 m

Data rate 20–100 Mbps 0.1–15 Mbps 500 Mbps in high resolution
Resolution Good Average Very good

Affected by weather conditions Yes Yes Yes
Affected by lighting conditions No No Yes

Detects speed Good Very good Poor
Detects distance Good Very good Poor

Each type of sensor has its strengths and weaknesses, and sensor fusion is used to
obtain more accurate results in automated driving systems. Sensor fusion is the process of
taking the data collected by different types of sensors to better interpret the environment
around the vehicle. Through the data from each sensor, sophisticated algorithms, known
as fusion algorithms, determine more precisely the position of each of the objects located
within its driving zone. The fusion algorithms use a prediction equation and an update
equation to estimate the kinematic state of the objects.

The equations use two models for their calculations. The motion model is focused on
the motion dynamics of the object, while the second model, known as the measurement
model, focuses on the dynamics of the sensors implemented in the vehicle. By applying the
two equations, the exact position information of each object is obtained.

The prediction equation integrates data from previous predictions and the motion
model calculates the current state of the vehicle. The update equation combines data from
the sensors and the measurement model in order to update the prediction state. Thus, at
the end of the process, a range of possible state values is available.

In [58], Cotra provides two equations that describe a motion model that represents
the knowledge about the dynamics of the object. The motion model uses a deterministic
function f() and a random variable qk−1. Thus, the state xk is a function of the previous state
xk−1 and a random motion noise qk−1, which is stochastic (Equation (1)). The measurement
model is formulated as a deterministic model that receives the current state xk as well as a
random variable representing the measurement noise of the sensor type rk (Equation (2)).
Combining the two models yields a density called posterior distribution over the state,
and a region of values for xk can be described from all observed values. The prediction
(Equation (3)) and update (Equation (4)) equations are computed to express density.

xk = f (xk−1, qk−1) (1)

yk = h (xk, rk) (2)

p (xk|y1:k−1) =
∫

p (xk|xk−1)p (xk−1|y1:k−1)dxk−1 (3)

P (xk|y1:k) = p (yk|xk)p (xk|y1:k−1)/p (yk|y1:k−1) (4)

In [59], the authors explain that there are different modalities in which sensor fusion
can be performed. In High Level Fusion each sensor performs object detection, tracking
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functions and finally fusion. This type of fusion is used because of its low complexity;
however, it may present inadequate information due to object overlapping. Mid-level fusion
integrates multi-target features (such as color, location, among others) that are obtained
from each of the sensors and with these data performs the recognition and classification
process of the fused features. Finally, low-level fusion integrates data from each sensor
type at the lowest level of abstraction, which improves the accuracy of object detection.

In [60], authors present a series of the most commonly used algorithms for sensor fu-
sion, classifying them into four categories: (i) based on the central limit theorem, (ii) Kalmar
filters, (iii) based on Bayesian networks and (iv) based on convolutional neural networks.

Algorithms based on the central limit theorem focus their operation on the argument
that as the sample size of any measurement increases, the average value will tend to a
normal distribution. Thus, as more samples are obtained from the sensors, an average
value of the set will be obtained, and therefore less noise will be present in the sensor fusion
algorithms [61,62]. Kalman filter uses input data from different sensors and estimates
unknown values without being seriously affected by high levels of noise in the signal. This
type of algorithm is applied in the process of pedestrian detection and trajectory prediction,
basing its operation on a series of predictions and state updates [63–65]. Bayesian networks
are applied in the update equation used in sensor fusion, which integrates the measurement
and motion models. Bayesian networks are applied in real-time navigation processes in
advanced driver assistance systems [66,67]. Deep learning-based algorithms perform the
processing of raw data from the different sensors and in this way extract the features that
allow it to perform intelligent driving tasks such as pedestrian detection [68–70].

3.2.2. Software Technology

Artificial Intelligence (AI) has become the core for the development of self-driving
systems. AI refers to the effort to replicate or simulate human intelligence in machines
so that they can perform tasks that are so far only performed by humans (such as visual
perception, speech recognition and decision making). Through AI, machines learn based
on the experience they acquire, adjust themselves according to that learning and can thus
perform tasks similar to humans. AI automates learning by making use of data, performing
a deep analysis of data, and making accuracy.

In the self-driving environment, different technologies such as machine learning, deep
learning, and computer vision are commonly applied.

Machine Learning and Deep Learning

Machine learning (ML) is being applied in advanced driver assistance systems (ADAS)
such as (i) object detection, (ii) object identification and classification, (iii) object localization
and motion prediction. ML is divided into three categories: supervised learning, unsuper-
vised learning, and deep learning. Supervised learning is based on the use of labeled data
used for knowledge generation and within which the results of the operation are previously
known. By means of these results, the model learns and adjusts so that it can adapt to new
data that are introduced to the system. Unsupervised learning makes use of unlabeled
data whose structure is not known. The objective is to obtain important information of
which the reference of the output variables is not known. Finally, reinforced learning builds
models that increase performance using each of the results of the interactions.

For the different types of ML to be executed, a series of algorithms need to be im-
plemented. ML algorithms can be classified into four categories: regression algorithms,
pattern recognition, cluster algorithms and decision matrix algorithms. Table 3 shows the
characteristics and uses of each of the algorithm categories.
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Table 3. Summary of Machine Learning algorithms categories.

Category Usage Description

Regression
This type of algorithm is used for

autonomous vehicles for event prediction
such as collisions, trajectory prediction.

The algorithms focus on establishing a method
to define the relationship between a set of

variables (which represent the characteristics)
and a continuous target variable. Examples of
such algorithms being applied in self-driving

systems include Bayesian regression [71],
neural network regression [72] and decision

forest regression [73].

Patter recognition

This type of algorithm is used for CAVs
for the object classification such as

pedestrians, vehicles,
cyclists, traffic signals.

This type of algorithm is used to perform data
filtering to recognize instances of a category of

objects by discarding irrelevant data points.
They focus on reducing the data set through
edge detection and fitting line segments and

circular arcs to edges. These features are
combined to define the object features to be
recognized. The most applied recognition
algorithms in Advanced Driver Assistance

Systems (ADAS) are support vector machines
(SVM) with histograms of oriented

gradients [74] and principal component
analysis (PCA) and Bayes’ decision rule [75]

and k-nearest neighbor [76].

Cluster
This type of algorithm is implemented in

autonomous vehicles for object
classification and detection.

This type of algorithm groups data to discover
its characteristics. It is generally used in

situations with little data, with discontinuous
data or with very low-resolution images. To

solve this problem, it generates “center points”
and a series of hierarchies that allow it to

discover a series of common characteristics.
Among the most used algorithms are K-Means

[77], K-Medians [78] and Hierarchical
clustering [79].

Decision matrix The main use of this type of algorithms in
autonomous vehicles is decision making.

The structure of this model focuses on a set of
independently trained decision models,

combining their predictions to generate the
overall prediction, thus reducing the

probability of errors in decision-making. Some
examples of this type of algorithms are

gradient boosting [80] and AdaBoosting [81].

Deep Learning (DL) is a branch of Machine Learning that is based on a multi-layered
model that is used for feature extraction as well as for representation learning at various
levels of abstraction [82]. DL makes use of a concept called Artificial Neural Networks
(ANN). ANN is a series of learning algorithms that are based on the functioning of the
human brain to learn a huge amount of data. Within ANN, the primary element taken as a
basis is known as the neuron, which represents the fundamental unit of the DL model [83].
The interconnection of these neurons to form a processing layer is called perceptron [84].
Its basic operation consists of performing a task repeatedly with the objective of improving
the result. For this purpose, it uses “deep layers” for progressive learning to take place.

The overall operation of DL is composed of two stages known as training and inference.
The training phase focuses on performing labelling on a large amount of data to determine
the adaptive properties. On the other hand, the inference phase oversees labelling new
unseen data, making use of previously acquired knowledge. This method helps the complex
vehicle perception tasks to be performed with the highest accuracy. In addition, DL is also
known as deep structured learning as it consists of a set of interconnected layers, where the
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output of one layer is used as input to the next layer and by using nonlinear processing
performs the feature extraction process.

ML uses a much smaller amount of data, while DL uses a huge amount of data to
acquire the best result but demands a high-performance of the Central Processing Unit [85]
(Figure 7).

Computer Vision

Computer vision is a subfield of ML focused on implementing the ability to “see” in
machines to understand the surrounding environment. Using data acquisition systems
such as cameras and sensors, a set of tools process and analyze images of the real world,
which contributes to the automation of the driving process. They make use of artificial
intelligence algorithms to decode the images to help them recognize shapes, figures, and
patterns in the images.

One of the applications of computer vision in self-driving systems is object detec-
tion. This process consists of two steps: classification and localization. On the one hand,
classification is performed by training with Convolutional Neural Networks (CNN) to
recognize and classify objects. On the other hand, localization is applied by using non-max
suppression algorithms [86], which selects the best bounding box based on the intersection
over the union of the bounding boxes, omitting the rest. This process is repeated until the
boxes cannot longer be reduced.
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Augmented Reality

AR is a powerful tool that can be easily applied to the CAVs-VRU interaction offer-
ing ubiquitous situation awareness support. The first step is to determine what kind of
information has to be made artificial or augmented. Second step in the situation awareness
support will be the design of interfaces to help VRUs to understand the CAVs context
information such as the dynamics from approaching vehicles or systems to navigate traffic
situations. The AR information could be available with a multitude of mobile pervasive
and context-aware applications. For example, (a) the pedestrian could be presented with
safety corridors related to which vehicles will stop for them, (b) road specific alerts that a
vehicle is approaching, (c) highlighting hazards considering blind people, elderly, children,
etc., (d) CAV’s interfaces to predict the influx of pedestrians at schools, metro, etc. in
order to find alternative routes, (e) VRUs could have information not just about the CAV’s
intention to stop but also about where it intends to stop, (e) and in addition, there are
some proposals [88] such as an augmented traffic light in the form of a virtual fence to stop
pedestrians from crossing a vehicle lane.
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AR hybrid approaches should be proposed to consider different smartphones, wear-
ables, glasses, and user devices. Even, the possibility that some VRUs will not use any kind
of device, so the information should be also available in the road site units, infrastructures
or from the vehicle itself.

4. Stages for CAVs-VRU Interaction

Within the literature, different works can be found that contribute to solve each of the
scenarios or stages of the interaction between CAVs-VRU.

4.1. Object Detection and Classification

The first phase of the CAVs-VRU interaction process is object detection and classifica-
tion. For the CAVs, this is a primary task as it helps it to identify everything around it. The
idea of this task is that the vehicle perceives everything around it in a very similar way to
what the human eye does when the driver performs the driving task [89]. This will allow
the intelligent control systems implemented in the CAVs to learn and take action [90].

One of the problems faced by object detection within the autonomous driving model
is the high demand for processing large amounts of data, which places high performance
requirements on the algorithms [91].

For obtaining object features, the algorithms used within the autonomous driving
environment have been classified into two categories: (i) Machine learning algorithms
using artificial features and (ii) deep learning algorithms based on features by convolutional
neural networks.

Machine learning algorithms focus on feature extraction and classifiers [92]. For feature
extraction, techniques such as Histogram of Oriented Gradients [93–100], Local Binary
Pattern [101–107], Deformable Part Model [108–113], and Aggregate Channel Feature
(ACF) [114–118] are included. On the other hand, methods such as Support Vector Machine
(SVM) [94,105,119–122], Decision Tree [123–126], Random Forest (RF) [127–132] and Ada-
Boost [81,119,133,134] are used for the classification process.

Within deep learning techniques, one of the best performance algorithms for feature
extraction is CNN.

CNN is a DL architecture that has proven to have excellent results when applied to
image classification, resulting in classification rates of up to 100% accuracy [135]. CNN’s
operation can be explained as follows. Successive perceptrons learn complex features in a
supervised manner by propagating classification errors. Finally, the last layer represents
the category of the output images [136,137]. Recall that being DL-based, no prior training
module is used, but everything is carried out implicitly through supervised training,
avoiding manual feature extraction [137].

Deep Learning based algorithms for VRUs detection are divided into two categories:
(i) region proposal algorithms, (ii) regression-based algorithms. Region-based algorithms
focus their operation on two processes. First, it generates candidate regions where it is
expected to contain the object to be detected, this is accomplished by means of region
recommendation algorithms. Subsequently, applying the CNN, the final detection box
is obtained. In this category, one of the most widely used networks for VRUs detection
is known as Region-based CNN (R-CNN). R-CNN combines regions and CNN features.
It has two stages: (i) the first one identifies a number of regions that tentatively could
contain the object to be identified (they are called region proposals) and (ii) classify the
object in each proposed region. In [138], the authors apply CNNs to detect pedestrians in
situations of dark environments or illumination variation, showing that by using multi-
region features they obtain better results in detection accuracy. In [139], authors proposed
an algorithm with R-CNN and applied it to pedestrian detection. Their results proved that
the region proposals generated by their method are better than the selective search. Fast
R-CNN is a variant of R-CNN, but the main difference is that it takes as input the complete
image and a set of proposed objects and thus produces a feature map. Subsequently for
each object proposal, a layer containing a set of regions of interest generates a feature
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vector of the feature map. Within the literature, there are several works that apply R-CNN
for the detection of VRUs [140,141]. Faster R-CNN is an enhancement of Fast R-CNN
that adds a region proposal network with the objective of generating region proposals
directly and not using an external algorithm. This results in a faster generation of region
proposals, which better fit the data [142]. Several works where Faster R-CNN is applied
focus on solving the problem of occlusion of VRUs detection in natural scenarios [143–145],
small object detection [144,146]. Authors in [147] presented a solution where they apply
a variant of CNN, known as Mask Region-based CNN and instance segmentation was
used to detect pedestrians crossing the streets, showing results of over 97% accuracy in the
detection process.

Regression-based algorithms do not use the concept of region. Instead, the input
image is only processed once, and both the category and the target border can be regressed
on multiple image positions [143]. The most representative algorithms in this category
are YOLO (You Only Look Once) [141], SSD (Single-Shot MultiBox Detector) [148] and
RetinaNet. The authors of [149] proposed a method where they apply a CNN to the whole
image, dividing it into multiple regions, improving the speed of detection, a feature of
utmost importance to avoid risky situations [150]. This work underwent some improve-
ments by applying YOLO2 [151] and YOLO3 [152], providing a balance between speed
and accuracy in the detection of VRUs. Authors in [153] propose a loss function to improve
sample classification during the training process in order to solve the problem of sample
imbalance, which generates a poor detection result. YOLO version 4 was proposed in
2020 [154] as an efficient alternative for pedestrian detection due to its advances in accuracy
and real-time processing performance [130].

4.2. Intention Prediction

The intention prediction is related to the actions that the VRUs will take in a short
period. For example, when a pedestrian wants to cross a street, some signals it provides are
key to identify its intention, such as turning its head to be able to identify if any vehicle is
approaching the crossing. They, upon identifying that a vehicle is approaching the crossing,
stop and do not cross. This identification of intentions is a key element in the CAVs-VRU
interaction. Some work is focusing on the use of past and current information for intention
prediction by VRUs through different neural network architectures [155]. Some works have
proposed a dataset based on pedestrian trajectory data generated from the driver’s point of
view to study the pedestrian intention prediction field [156,157].

In [158], the authors mention that methods for predicting pedestrian intention fall
into two groups: (i) methods that approach the problem as a trajectory prediction issue
with the objective of creating a route and identifying whether that route will cross the
street [159–161] and (ii) methods that solve it as a binary classification problem that results
in the pedestrian intention [162–165].

Those focused on trajectory prediction use neural networks to predict the individual
trajectory, assuming a prior conversion from image coordinates to real world. They are
generally applied to model interaction between people or between people and environment.
Some proposed works incorporate scene information in the predictive models, taking into
consideration that trajectories remain within the driving environment [166,167].

In [168], a model based on the clustering of the hidden states of all people within
a neighbourhood is proposed. This work is improved in [169] by defining an attention
mechanism that assigns a weight to each element participating within the driving environ-
ment based on its proximity. However, according to [158], this type of model suffers from
several limitations such as the need for moving cameras to obtain a complete view of the
scenario, which can cause errors in the accuracy of the trajectories. They do not make use
of pedestrian pose information, which they say is a weakness because it is an important
indicator of intent. In addition, by requiring multiple frames, it introduces significant
delays in predictions.
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Binary classification is the simplest method within the ML environment. It consists
of categorizing the data points into two possible alternatives: for example, the pedestrian
crosses the street or does not cross the street. These methods work based on two types of
models. The first models use RGB inputs where they apply filters that either slide along
the height and width (2D convolutions) or even add temporal depth (3D convolutions).
Some papers using the 2D convolution model use Long Short-Term Memory (LSTMs) or
feature aggregation over time to propagate information across time [170]. Other work uses
3D CNN and LSTM [164,171] to generate two feature vectors, based on a single pedestrian
snippet input, which are concatenated for classification [172]. There are other methods that
work directly with the skeleton of the individual [173,174] to reduce the amount of data
(e.g., 17 joints of the skeleton compared to 2048 feature vectors), which results in a lower
probability of readjustment.

4.3. Trajectory and Tracking

Trajectory prediction and tracking are two indispensable tasks within the CAVs-VRU
interaction phase. Trajectory prediction targets where objects will be in the immediate
future. This point is important because it can be noted that we do not have data collected
by the sensors to corroborate the results obtained. What is used is past data to predict
the future position as shown in [175,176]. On the other hand, object tracking focuses on
knowing where the object is currently located. Therefore, this process makes use of sensor
data that provide or support its current position.

In [177], the authors mention that there are two methods for trajectory prediction:
(i) linear model and (ii) nonlinear model. Within the first method, the motion of the
object cannot be accurately described [178]. Non-linear methods are based on data driven
algorithms [179].

According to [180], data-driven methods using neural networks perform better than
traditional methods. Some work adds the element of interaction between pedestrians within
the driving environment, (making use of human-human interaction feature extraction [181,
182], capturing the interactivity information between adjacent pedestrians [168]), to improve
the trajectory prediction process. Other work applies inverse reinforcement to perform
the pedestrian trajectory prediction process [183]. Other works such as [165,176,184,185]
integrate different factors such as speed, location, direction of the pedestrian’s head and
environmental into the process to predict intention and future trajectory.

Different variants of deep learning have been used for the trajectory prediction process.
The three most used architectures are: (i) recurrent neural networks, (ii) convolutional
neural networks and (iii) generative adversarial networks [186].

RNNs use a fully connected two-layer neural network within which the hidden layer
implements a feedback loop, allowing sequential data to be modelled more efficiently. Some
work uses the LSTM structure to learn pedestrian activity patterns and the environment
within a scenario over a long-term period [187–189], the human body pose [190], and the
influence of human [168].

CNN contains many convolutional, non-linearity, pooling, dropout, batch normal-
ization, and fully connected layers. Based on the architecture used, the most significant
discriminative information is included, which allows for a better level of precision in the
identification of target objects. Authors in [191] proposed a model that uses a CNN fed with
different types of information (such as historical trajectory, depth map, pose, and 2D-3D
size information) that help it to better predict the trajectory of pedestrians. The problem
of prediction of complex downtown scenarios with multiple road users is addressed by
combining a Bayesian filtering technique for environment representation, and machine
learning as long-term predictor [192]. Other work uses convolutional neural networks
to predict average occupancy maps of walking humans even in environments where no
human trajectory data are available [193].

Generative Adversarial Network (GAN) uses competing generator/discriminator
architecture with the objective of reducing the fragmentation of conventional path pre-
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diction models and thus not computing costly appearance features. Compared to the
other architectures it is more lightweight and is being used to achieve multimodality in
trajectory prediction. Authors in [194] proposed a complete deep learning framework
for multi-person localization and tracking. The proposed method uses GAN for human
localization, which addresses the problems of occlusion and noisy detections by generating
human-like trajectories with minimal fragmentation. Other works address the problem
of the influence that pedestrians have on each other in determining the trajectory to be
followed. In order to determine the trajectory authors apply concepts such as socially aware
GAN, multimodal pedestrian behavior, scenario context, etc. [182,195]. GAN is also used
to perform the prediction sampling process for any agent within the scenario [196]. In [197]
there is a proposal that focus on possible failures and crashes of pedestrian trajectory with
a prediction of several seconds. The research implements, though info-GAN a cost function
to replace the L2 loss term.

4.4. Intention Communication Interfaces

Finally, the last phase of the interaction process is focused on how the pedestrian and
the vehicle will exchange information about intentions or actions. Several studies have
been conducted regarding the interaction between pedestrians and vehicles driven by a
human [198–200]. However, as the level of automation increases in vehicles, it will be
necessary to define mechanisms to replace the non-verbal communication currently used
by pedestrians with drivers.

Previous work has focused on the interaction between autonomous vehicles and
passengers [201–203]. However, as the objective is to generate a safe and efficient road
driving ecosystem, it is necessary to generate mechanisms that cover the CAVs-VRU
communication. The absence of a driver in an automated vehicle generates distrust in
pedestrians because they cannot know the intentions of the self-driving vehicle [204,205].

The new traffic ecosystem will require elements that provide a fluid, natural commu-
nication that emulates the actual, intelligent interaction between the CAVs and the VRUs
within their travel area, identifying their intentions and reacting to the actions they decide
to take. In addition, it should provide the VRUs with relevant information such as its
status and future behavior. With these two features in place, it will increase the safety and
efficiency of the road traffic ecosystem and increase the trust and acceptance of CAVs.

In recent years, human-computer interfaces, known as eHMI (external Human-Machine
Interface), which are placed on the outside of the vehicle, are being used as an alternative
solution for relevant communication and dissemination (such as speed or intention of
vehicle movement) to enable CAVs-VRU communication [206]. For the design of eHMI
interfaces, the type of information to be communicated by the interface must be taken into
consideration because it depends on several factors (such as simplicity, target audience,
how we want the target audience to find out). In [197] author classifies the information in
three categories: driving mode, intention and perception.

The driving mode is an important type of information, because as long as the vehicle
is not fully automated, it is of great relevance to indicate to other users whether the vehicle
is controlled by a person or by computers.

Intention is another relevant type of information since it will set the tone for the
action that the pedestrian might execute. That is, as a vehicle and a pedestrian approach
an intersection, it would be helpful for the vehicle to indicate to the pedestrian that it
has already detected the pedestrian and that it will stop so that the pedestrian can cross
the street safely. Finally, the perception of everything around the vehicle is important as
a form of collaboration with other vehicles to avoid a risky situation for the pedestrian
(for example, the non-detection of the pedestrian due to an obstacle that does not allow
the sensors to detect it). There are still many doubts about the type of information that
should be shared, but beyond that, the question that also arises is how the eHMI should be
designed to communicate the information to the VRUs.
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In [207], the authors classify interaction technologies into four categories: (i) visual,
(ii) visual and acoustic, (iii) concepts with anthropomorphic elements and (iv) infrastruc-
ture external to the vehicle (Figure 8).
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Visual Interfaces. This technology focuses on communication through interfaces
that allow the display of information. The most used interfaces are screens (Figure 8a),
LED strips (Figure 8b), holograms, or projections (Figure 8c). Displays are used to show
messages through text or icons. Generally, the displays are placed at the front or rear of
the vehicle; however, they can also be placed on the sides to cover the notification in all
directions. The messages displayed can be of intent such as “cross” or “stop”, or more
elaborate messages such as “after you”. In addition, you can make use of iconography to
indicate that you have been detected and what intention the vehicle has (stop, do not stop,
etc.) [208–211]. On the other hand, there are the LED strip interfaces, which are placed on
the windshield or on the grill of the vehicle and work as a kind of traffic light to indicate
to the VRUs the action to follow (stop, move forward, among others) [212]. Hologram
or projection interfaces use lasers to project relevant information (using text messages or
icons) onto the road surface.

Visual interfaces can also be used to communicate with hearing-impaired pedestri-
ans. Using displays, the autonomous car could communicate with people through sign
language [213,214].

Visual and Acoustic interfaces. These interfaces are simply an extension of the visual
interfaces, including within their communication mode acoustic signals with the objective
of extending the transmission of the message to people with visual impairments (Figure 8d).
We must remember that this is not new, as this type of interface has been used for years
in traffic light systems. In this way, although the vehicle will display the message on
the screen, it will also include clear and concise verbal messages, for example “safe to
cross” [215,216].

Anthropomorphic interfaces. This type of interfaces makes use of human characteris-
tics to carry a communication that gives the VRUs a greater security to perform the actions.
Specifically, efforts have been made to simulate eye contact with pedestrians (something
that is currently used within the non-verbal language used in pedestrian-driver interaction).
For this purpose, object detection and identification technologies and the use of an interface
that shows the “eye movement” of the fake driver are integrated (Figure 8e). The idea
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of this interface is to be a more intuitive form of communication than the VRUs is used
to [217,218]. Within this concept of interfaces, Jaguar Land Rover has generated a prototype,
called “virtual eyes”, which aims to understand the level of acceptance that humans will
have in relation to self-driving vehicles. The vehicle has implemented cartoon-like eyes,
which are used to interact with humans in the road traffic ecosystem. Through eye contact
with pedestrians, it notifies them that it is watching out for them [219].

From the VRUs’ point of view, efforts have been made to establish interaction di-
rectly from the pedestrian to the car. The cellular device is being used as a viable tool
for pedestrian-to-car communication. One effort focuses on using the cell phone to share
location data of both the car and the pedestrian through P2V (pedestrian-to-vehicle) com-
munication mode [220,221]. The application performs calculations to establish the risk
zone and thus reduce the likelihood of a collision. Other work focuses on the development
of an ADAS applications for mobile devices that retrieves car and pedestrian location
information to identify hazardous situations between VRUs and CAVs [222–224].

5. Challenges in the ACs-VRU Interaction

The idea behind the interaction between CAVs and VRUs is that technology will free
pedestrians, similar to the autonomous vehicles free up the driver. However, it will be
a long way before we have fully autonomous vehicles (level 5 driving automation [7])
introduced in the roads and urban environments. This new kind of environment will bring
new challenges of user privacy, invasiveness, technology feasibility, inclusiveness, etc.

In the transition process of fully interconnected vehicles with infrastructures and road
users it will be necessary that the whole mobility system should still adhere to the current
rules and ways to communicate the vehicle’s intentions such as keeping speed, braking, or
accelerating. A deep analysis of how human-driven vehicles will interact with CAVs will be
needed and also how CAVs will influence walking behavior to reduce pedestrian fatalities.

CAVs should be designed to be understandable even for those VRUs who do not have
the technology or have other limitations.

Standardization and training will be useful for all road users who may be able to
distinguish automated vehicles from manually driven vehicles to learn to interact with
them. In addition, contemporary urban design should consider unpredictable pedestrian
behaviors by (a) braking to avoid striking pedestrians, (b) predicting trajectories of pedestri-
ans, (c) providing early alerts to the road users about dangerous behaviors, (d) separating
traffic by means of tunnels and bridges, among others.

The challenge in the interaction between VRUs and CAVs is not only for the VRUs
to understand the actions that the CAVs will perform, but also for the CAVs to learn the
communication language of some VRUs, such as cyclists. Cyclists use hand signals to
indicate, for example, that they will make a left or right turn, whereupon the CAVs must
slow down for the cyclist to perform the manoeuvre and avoid an accident. One of the
solutions is to generate algorithms for the vehicle to learn the different signals generated
by cyclists. At the same time, work should be carried out to raise awareness among cyclists
to use this signalling code to have a correct communication with the CAVs.

Another challenge is in the training process of the algorithms, since the algorithm
will be good if the amount of data is sufficient, and that all data are validated. However,
the challenge is the data collection and labelling of the information. The collection can be
solved by implementing collection systems within the driving support systems, currently
implemented in many of the vehicles driving in urban areas, and that all this information
is shared in centralized repositories to be used for the creation of data sets for algorithm
training. In addition, these data sets can be enriched with data generated through sim-
ulation scenarios. On the other hand, data labelling is a crucial process for the optimal
performance of algorithms responsible for self-driving tasks. One solution is the use of
off-the-shelf labelling tool platforms that facilitate the data labelling and validation process.

Finally, it is necessary to consider different VRUs behavior between all countries
where CAVs will operate. Furthermore, trust and acceptance are particularly challenging
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in countries that currently have very little advanced technology within the transport
system [225].

6. Conclusions

The emergence and introduction of autonomous vehicles to the road traffic environ-
ment will generate a series of challenges that must be solved. One of them is the interaction
between autonomous vehicles and the rest of the road users.

In this paper, we present a review of the interaction process between VRUs and
autonomous vehicles. We analyze the road traffic ecosystem, identifying the evolution
of the environment and the new elements that are being integrated. We describe the
essential functions of an autonomous vehicle and define and describe the main categories
and characteristics that make up the group of VRUs. Subsequently, we discuss from the
technical aspect, the interaction process between VRUs and CAVs. The analysis revealed
how learning technology is positioning itself as an essential element of the interaction
process as it allows the autonomous vehicle to identify, classify and predict the behavior of
VRUs, contributing to the reduction of the probability of a risky situation ending in fatal
consequences for VRUs.

It is necessary to solve different challenges to improve the perception technologies and
the definition of interfaces that facilitate communication and understanding of intentions
by both VRUs and ACs. Although, many efforts have been made to address some of
the challenges in the interaction between VRUs and ACs, there still are open problems
pending, such as the improvement of the algorithms, training, dataset, among others,
to increase the accuracy of all stages of the interaction process. The review also shows
that eHMI interfaces are one of the driving forces that will facilitate the acceptance of
CAVs. However, eHMIs still have not make the communication between VRUs and CAVs
transparent and understandable.

CAVs-VRU interaction should be designed to guarantee the inclusion of the different
requirements of all kinds of VRUs: children, elderly, people with disabilities, etc. The
concurrent use of different safety modalities, each targeting a different human sense, seems
a promising approach.
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