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The synthesis of ATP in mitochondria is dependent on a low permeability of the
inner membrane. Nevertheless, mitochondria can undergo an increased permeability
to solutes, named permeability transition (PT) that is mediated by a permeability
transition pore (PTP). PTP opening requires matrix Ca2+ and leads to mitochondrial
swelling and release of intramembrane space proteins (e.g., cytochrome c). This feature
has been initially observed in mammalian mitochondria and tentatively attributed to
some components present either in the outer or inner membrane. Recent works on
mammalian mitochondria point to mitochondrial ATP synthase dimers as physical basis
for PT, a finding that has been substantiated in yeast and Drosophila mitochondria. In
plant mitochondria, swelling and release of proteins have been linked to programmed
cell death, but in isolated mitochondria PT has been observed in only a few cases and
in plant cell cultures only indirect evidence is available. The possibility that mitochondrial
ATP synthase dimers could function as PTP also in plants is discussed here on the
basis of the current evidence. Finally, a hypothetical explanation for the origin of PTP is
provided in the framework of molecular exaptation.
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THE PERMEABILITY TRANSITION

ATP synthesis in mitochondria occurs by a chemiosmotic coupling of substrate oxidation and
phosphorylation (Mitchell, 1961). This explanation is based on the highly selective permeability of
the inner mitochondrial membrane (IMM) and on utilization of protonmotive force by the F1FO
ATP synthase (F-ATPase) for the synthesis of ATP. Nevertheless, a sudden increase in permeability
of the IMM has been described in the 1950s (Raaflaub, 1953a,b) and characterized in the late 1970s
(Haworth and Hunter, 1979; Hunter and Haworth, 1979a,b). Initially considered an artifact, later it
has been named Permeability Transition (PT) and associated to a pore, the Permeability Transition
Pore (PTP). The appreciation of its relevance has increased since it has been related to many
diseases in mammals, including reperfusion injury of the heart and muscular dystrophy (Bernardi,
2013a). This mitochondrial PT requires matrix Ca2+ and is favored by matrix Pi, as well as
benzodiazepine Bz-423 and thiol oxidants, while it can be inhibited byMg2+, thiol reductants, ADP
and ATP (Bernardi, 2013b). Cyclosporin A (CsA) acts as inhibitor of PT (Crompton et al., 1988) by
binding with the peptidyl-prolyl isomerase Cyclophilin D (CyPD) (Halestrap and Davidson, 1990).
The features of PTP (e.g., pore diameter of ∼2.8 nm and size exclusion of about 1500 Da) are
consistent with those described for the Mitochondrial Mega-Channel (MMC), a high-conductance
channel, which is considered to be its electrophysiological equivalent (Szabó and Zoratti, 1992).
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THE PT IN PLANTS

The first evidence of a Ca2+-induced and CsA-delayed collapse
of transmembrane electrical potential difference (��) in pea
stem mitochondria dates back to 1995 (Vianello et al., 1995).
PT has been then observed in different plant species, although
the features of this phenomenon cannot be summarized in a
straightforward model (Table 1). Potato tuber mitochondria
exhibit a typical Ca2+/Pi-induced PT, inhibited (Arpagaus et al.,
2002) or not (Fortes et al., 2001) by CsA. These mitochondria
do not show any Ca2+ uptake, suggesting an external effect of
Ca2+ on PT (Fortes et al., 2001), which is not consistent with
the observations in mammals (Bernardi et al., 2015). The PT
described in oat leaves (Curtis and Wolpert, 2002) and wheat
roots (Virolainen et al., 2002) shows a Ca2+/Pi -induced ��
collapse and matrix swelling, which are CsA-insensitive. Calcium
uptake by isolated plant mitochondria occurs spontaneously in
wheat, but requires the addition of the Ca2+/H+ ionophore
A23187 in oat.

Indirect evidence of PT in plants has been also based on
the CsA-induced inhibition of programmed cell death (PCD),
reviewed by Vianello et al. (2007, 2012). However, the prevention
of PCDmight depend on CsA binding to cytosolic Cyclophilin A
(a ubiquitous enzyme) that drives enzymatic cascades (Lu et al.,
2007), linked to oxidative stress (Nigro et al., 2013).

THE MITOCHONDRIAL Ca2+
ACCUMULATION IN PLANTS

The PT requires Ca2+ accumulation into the mitochondrial
matrix (i.e., matrix Ca2+ is a permissive factor, although it
may not be sufficient per se). Calcium transport in isolated
plant mitochondria exhibits distinct features. The uptake could
be mediated by a low-affinity electrophoretic Pi-dependent
symport, with low or no sensitivity to ruthenium red and
lanthanides (Dieter and Marme, 1980; Akerman and Moore,
1983; Silva et al., 1992), but also by a uniport mechanism
(Zottini and Zannoni, 1993). CsA inhibits mitochondrial Ca2+
transport in Citrus (de Oliveira et al., 2007), suggesting its
synergic effect with PT. A low concentration of matrix free
Ca2+ (∼100 nM) is maintained under steady state, where
influx is balanced by an efflux through a yet speculative
Na+-independent Ca2+/H+ antiport mechanism (Nomura and
Shiina, 2014). The influx of Ca2+ in plant mitochondria is
highly variable, depending on species and tissues, or might be
even completely absent (Martins and Vercesi, 1985). In vivo

Ca2+ dynamics have been monitored by fluorescent probes
targeted to plant mitochondria (Manzoor et al., 2012; Loro and
Costa, 2013). Matrix Ca2+ uptake can be induced by abiotic
stresses such as heat, oxidative stress, or anoxia, and follows
the cytosolic Ca2+ pattern (Subbaiah et al., 1998; Logan and
Knight, 2003; Schwarzländer et al., 2012; Rikhvanov et al.,
2014).

Homologue genes of mammalian mitochondrial Ca2+
uniporter (MCU) and its regulatory protein MICU1 have been
found in plants (Bick et al., 2012; Stael et al., 2012; Rikhvanov
et al., 2014). The MICU1 homologue in Arabidopsis (AtMICU)
is a negative regulator of mitochondrial Ca2+ uptake in root tips,
providing strong evidence for the operation of a mitochondrial
Ca2+ uniporter in plants (Wagner et al., 2015).

THE INVOLVEMENT OF PT/PCD IN
PLANT DEVELOPMENT AND STRESS
RESPONSES

The physiological role of mitochondrial PT in plants is often
related to developmental processes (Reape et al., 2015) and mild
environmental stresses, which involve also PCD in many cases.
However, the mechanistic link between PT and PCD remains still
speculative.

Permeability transition/programmed cell death are
fundamental in the selection of damaged cells and in sculpturing
new anatomical and morphological structures (Van Hautegem
et al., 2015). Morphological modifications are also needed for
adaptive responses to environment (e.g., climate changes) and,
more in general, for fitness increase. In particular, Aponogeton
madagascariensis forms lacunae on its leaves by executing PCD,
which is inhibited by CsA, suggesting the involvement of PT
(Lord et al., 2013). In aerenchyma formation, lack of oxygen
induces stress characterized by mitochondrial PT, ATP depletion,
and PCD induction (Yamauchi et al., 2013). Consistently,
stressed pea plants show cytochrome c release, followed by DNA
fragmentation (Sarkar and Gladish, 2012).

Programmed cell death is a common response in plants
subjected to abiotic and biotic stresses, which may be linked
to the sessile lifestyle, providing a survival strategy for the
whole organism. Excess of UV-C stimulates reactive oxygen
species (ROS) formation and collapse of �� in Arabidopsis
mitochondria (Gao et al., 2008). The role of PT has also
been described in case of extreme temperatures. In Arabidopsis
protoplasts, heat stress induces mitochondrial swelling, and
�� loss, but these damages are counteracted by a heat shock

TABLE 1 | Characteristics of permeability transition (PT) in plant mitochondria.

Plant material Ca2+ stimulation CsA inhibition Sucrose swelling Cytochrome c release Reference

Etiolated pea stem Yes Yes No Not detected Vianello et al., 1995

Potato tuber Yes (external) No Yes Yes Fortes et al., 2001

Potato tuber Yes Yes Yes Yes Arpagaus et al., 2002

Oat leaves Yes (with A23187) No Yes Yes Curtis and Wolpert, 2002

Wheat roots Yes No Yes Yes Virolainen et al., 2002
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transcription factor (Zhang et al., 2009). Similarly, ROS and
mild heat shock induce mitochondrial PT and the subsequent
induction of cell death in Arabidopsis protoplasts, which are
prevented by the superoxide dismutase analog TEMPOL, by the
Ca2+ channel-blocker lanthanum chloride, and by CsA (Scott
and Logan, 2008). The role of mitochondria in PCD is confirmed
in heat-stressed rice protoplasts, where mHSP70 overexpression
maintains mitochondrial �� , partially inhibits cytochrome
c release and suppresses PCD by lowering ROS formation
(Qi et al., 2011). In wheat cells subjected to freezing, ROS-
dependent PCD is associated to �� collapse and cytochrome
c release (Lyubushkina et al., 2014). In salt-stressed tobacco
protoplasts, PCD is triggered by ROS produced by mitochondria,
through a process controlled by a CsA-sensitive PT (Lin et al.,
2006).

The response to heavy metals requires the participation
of mitochondrial PT. In particular, aluminum triggers a high
ROS production in peanut, by plasmalemma NADPH oxidases,
which induce mitochondrial mediated-PCD (Huang et al., 2014).
Consistently, metal phytotoxicity appears to be also mediated by
PT in aluminum- treated Arabidopsis protoplasts (Li and Xing,
2011) and in cadmium-treated rice roots (Yeh et al., 2007).

Biotic stress, such as pathogen attack, may lead to protoplast
shrinkage, mitochondria swelling and cytochrome c release.
These responses appear to be associated to PCD involvement
during the hypersensitive response, a strategy to counteract
biotrophic pathogens. The generation of a defensive layer,
promoted by PT-induced PCD, has been shown in Arabidopsis. In
particular, PCD is mediated by a rapid decrease in mitochondrial
�� , which is partially counteracted by CsA (Yao et al., 2004).
Finally, there is evidence on the release of cytochrome c induced
by elicitors such as harpin or victorin (Curtis and Wolpert, 2002;
Krause and Durner, 2004).

THE MOLECULAR STRUCTURE OF PTP

The components involved in PTP formation initially included the
voltage-dependent anion channel, the benzodiazepine receptor,
the adenine nucleotide translocase and the phosphate carrier.
This model has been questioned, since isolated mitochondria
from organisms where the expression of each of these proteins
has been suppressed still exhibit a PT (Kokoszka et al., 2004;
Krauskopf et al., 2006; Baines et al., 2007; Gutiérrez-Aguilar et al.,
2014; Šileikytė et al., 2014).

Recent evidence shows that F-ATPase is involved in PTP
formation in different species and taxa (Bernardi, 2013b; Bonora
et al., 2013; Alavian et al., 2014). This enzyme is highly conserved
in both prokaryotes and eukaryotes (Hamasur and Glaser, 1992;
Heazlewood et al., 2003), consisting in the hydrophilic F1 and the
hydrophobic FO sectors, which operate in concert to carry out
distinct functions (Antoniel et al., 2014).

The F1 contains five subunits: α and β forming the catalytic
region, while γ, δ, and ε are organized in the central stalk. In
all eukaryotes these subunits show a high degree of similarity in
the sequences (Hamasur and Glaser, 1992; Antoniel et al., 2014;
Jiko et al., 2015), while the subunit composition of the FO varies

among different taxa and species (Hamasur and Glaser, 1992).
For details about F-ATPase components in mammals, fungi and
algae, see Vázquez-Acevedo et al. (2006), van Lis et al. (2007),
Dabbeni-Sala et al. (2012), Antoniel et al. (2014), Lee et al. (2015)
and Liu et al. (2015). Specific subunits have been characterized
in plants such as sweet potato (Morikami et al., 1992), potato
(Dell’Orto et al., 1993; Polgreen et al., 1995) and soybean (Smith
et al., 1994).

Plant F1 includes the classical five-subunit structure (Hamasur
and Glaser, 1990, 1992), and also a 24 kDa protein (Li et al.,
2012), but the picture of FO components remains still incomplete.
Several proteins belonging to FO have been identified in spinach
(Hamasur and Glaser, 1992), potato (Jänsch et al., 1996), rice
(Heazlewood et al., 2003), and Arabidopsis (Heazlewood et al.,
2003; Meyer et al., 2008; Klodmann et al., 2011). As shown by
Klodmann et al. (2011) and by Li et al. (2012), FO includes
subunits a, c, d, 4 (corresponding to subunit b or orf25,
Heazlewood et al., 2003), a 6 kDa protein (plant specific), subunit
8 (also called AL6 or orfB, Heazlewood et al., 2003), ATP17 (plant
specific) and Oligomycin Sensitivity-Conferring Protein (OSCP),
sometimes referred to as δ’ in plants (Morikami et al., 1992), for
some authors belonging to F1 (Jänsch et al., 1996). Subunit g
was found detached from F-ATPase monomer, suggesting that
it could represent a dimer-specific protein (Meyer et al., 2008;
Klodmann et al., 2011). Plant subunit e sequences have been
identified so far only in protein databases for few species (e.g.,
rice andMedicago truncatula).

Multimeric structures of F-ATPase are present in animal, fungi
(Davies et al., 2011; Seelert and Dencher, 2011; Liu et al., 2015)
and plant mitochondria (Eubel et al., 2003, 2004; Krause et al.,
2004; Bultema et al., 2009). Eubel et al. (2003) highlighted the
presence of F-ATPase dimers in Arabidopsis, potato, bean, and
barley. The relative abundance of dimers in plants is low, with
respect to the total F-ATPase, and even lower when comparing
different organisms (Eubel et al., 2003, 2004).

Rows of F-ATPase dimers in cristae seem to be a universal
feature of all mitochondria (Davies et al., 2011) that enable the
formation of highly curved ridges in cristae (Davies et al., 2012).
The Inhibitory factor 1 (IF1) that binds F-ATPase at low pH
(Campanella et al., 2008) could favor dimer formation even if it
is not clear how it improves dimer stability. The arrangement of
F-ATPase in mammals and fungi is different from that of potato,
being the angle between monomers in the latter larger (∼115◦)
than in the former (∼80◦) (Davies et al., 2011). Interestingly,
this correlates with cristae morphology observed for many plant
mitochondria, where irregular saccular structures with a less
convex curvature appear particularly prevalent (Douce, 1985). In
aging Podospora anserina (Ascomycetes) mitochondria, the IMM
is progressively vesiculated, the cristae collapse and the F-ATPase
dimers are disassembled (Daum et al., 2013). The impairment
of ATP synthesis, and the outer membrane rupture by swelling,
lead to the release of pro-apoptotic factors and, finally, to cell
death.

Animal mitochondria F-ATPase dimers have been shown to
act as pores with properties of the PTP (Giorgio et al., 2013).
CyPD modulates F-ATPase activity by binding OSCP (Giorgio
et al., 2009) and this interaction is favored by Pi, while CsA
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displaces CyPD from the enzyme. F-ATPase is inhibited by Bz-
423, which binds to OSCP (Cleary et al., 2007). These features
are consistent with those observed for PT regulation. Magnesium,
Ca2+, adenine nucleotides, membrane potential and matrix pH
are also key modulators of both F-ATPase activity and PTP.
Electrophysiological experiments, after isolation and insertion of
F-ATPase dimers in artificial phospholipid bilayers, showed that
the pore activity matches that of PTP-MMC (Giorgio et al., 2013).

The involvement of F-ATPase dimers in PTP formation has
been extended and confirmed in yeast and Drosophila, even if
these organisms show specific differences. In yeast mitochondria
the ionophore ETH129 is needed for Ca2+ uptake in the
matrix and the PT displays a low conductance (around 300 pS).
Phosphate acts as an inhibitor of PT, while CsA does not interfere
with PTP. Yeast mutants lacking of subunits e and g, which are
involved in dimerization, display a striking resistance to PTP
opening (Carraro et al., 2014). In Drosophila (von Stockum et al.,
2015), PTP has been initially identified as mitochondrial Ca2+-
induced Ca2+ release channel (mCrC). The main differences

between mCrC and mammalian PTP are: (i) absence of swelling;
(ii) absence of CsA effect, since no CyPD is present in this
species; (iii) sensitivity to rotenone, an inhibitor of Complex
I; (iv) inhibition of mCrC by Pi; (v) low conductance (around
53 pS) of the F-ATPase dimers in artificial bilayer.

Other research groups have also suggested that F-ATPase is
involved in pore formation by the channel activity within the
c-ring formed by c subunits of FO (Bonora et al., 2013; Alavian
et al., 2014). Nevertheless, this hypothesis is still under debate,
since it does not justify the different pore size observed in
bovine, yeast, and Drosophila, where similar c-rings are present
(Bernardi et al., 2015). Finally, the possible involvement of IF1
in modulation of PTP through F-ATPase dimerization needs
further investigations (Faccenda et al., 2013; Bernardi et al.,
2015).

The presence in plants of many common components and
features of F-ATPase lead us to speculate that, similarly to
mammals, yeast, and Drosophila, PT function could be exerted
by F-ATPase dimers also in such organisms.

FIGURE 1 | (A) Hypothetical model of PTP in plants, based on F-ATPase dimer formation, as proposed by Bernardi (2013b), Bonora et al. (2013), and Alavian et al.
(2014). Plant F-ATPase subunits are organized on the basis of their putative correspondence to the mammalian ones. (B) Circular phylogenetic tree of peptide
sequences of homologous subunit g of mitochondrial ATP synthase in four representative taxa (i.e., Bos taurus, Drosophila melanogaster, Saccharomyces
cerevisiae, and Arabidopsis thaliana). Alignments of multiple amino acid sequences were performed using MUSCLE software (Edgar, 2004). Phylogenetic trees were
obtained using phyML version 3.0 with the maximum-likelihood (ML) method (Guindon et al., 2010). The NCBI Reference Sequence accession codes for the g
subunit are: B. taurus = NP_001019721; D. melanogaster = NP_609142; S. cerevisiae = NP_015345; A. thaliana = NP_179558. Where more isoforms were found
in NCBI databases, we randomly selected only one of these sequences.
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THE EMERGENCE OF PT DURING
EVOLUTION

Evolution does not always proceed by adaptations. It may also
develop a non-adaptive exaptation/cooptation (pre-adaptation),
where the term exaptation/cooptation means a trait evolved to
accomplish a specific function (or even no function), which may
be then exapted/coopted to perform a novel function (or to
acquire a function) (Gould and Vrba, 1982).

It has been suggested that the structure of PTP (as a
multicomponent complex, Bernardi, 2013a) may have arisen by
a mechanism of molecular exaptation, a phenomenon largely
recognized at different levels of complexity (genes, proteins,
organs), during evolution (Vianello et al., 2012; Barve and
Wagner, 2013). The new model, involving F-ATPase dimer in
PTP formation, does not contradict our previous interpretation
on its origin, but rather appears to support it further. The dimer
appears to be the result of a molecular exaptation/cooptation,
where two monomers are assembled to perform an additional
function (Figure 1A). In other words, F-ATPase seems to have
a “Janus double face”, catalyzing the synthesis of ATP, but in
some circumstances preventing such a synthesis (Bernardi et al.,
2015). This dimer could even possess a “triple face”, because the
dimerization induces also the curvature of the IMM.

The F-ATPase dimer is present in eukaryotes, but not in
prokaryotes, because the F-ATPase of the latter is lacking of
some crucial subunits (e and g) involved in dimer formation
(Antoniel et al., 2014). It is thus reasonable to assume that the
dimer/PTP may be arisen after the endosymbiosis between an
alpha-proteobacterium and an archaeon (Martin and Müller,
1998). At the beginning, these dimers could have transferred ATP
from the endosymbiont to the cytoplasm of the host cell, because
the former presumably did not have ATP/ADP transporters. PTP
was then maintained to dissipate the protonmotive force, thus
regulating both ATP synthesis and exchanges of solutes between
the cytoplasm and the mitochondrial matrix.

The presence of F-ATPase dimer has been assessed in
different evolutionary divergent eukaryotes, some of which
exhibit mitochondrial PT, such as ‘Unikonts’ (Opisthokonts) and
Plantae (Arpagaus et al., 2002; Giorgio et al., 2013; Carraro et al.,
2014; von Stockum et al., 2015). To understand the phylogenesis
of this structure/function, a cladogram has been generated
by comparing the ancestral sequences of FO subunit g from
bovine and Drosophila (animals), yeast (fungi, Ascomycetes),
and Arabidopsis (Plantae) (Figure 1B). The tree suggests an
early differentiation at higher taxonomical levels (supergroups):
Plantae show the highest phylogenetic distance and within the

Opisthokonts, mammals, and insects exhibit similar distances,
whereas yeast shows a higher distance. These phylogenetic
patterns are consistent with the main evolutionary life tree (e.g.,
Keeling et al., 2005).

It has been suggested that F-ATPase shows a progressive
differentiation along the main steps of evolution. In turn, some
features of PTP seem to be occurred independently from changes
in ATP synthase. As an example, swelling of mitochondria occurs
only in bovine (Bernardi et al., 2015) and in some plants (see
Table 1), suggesting that PTP has been differently shaped by
exaptation during the evolution. Hence, exaptation leading to PT
seems to have occurred in diverse contexts during life history,
depending on the molecular characteristics of F-ATPase structure
and the specific requirements of the respective taxa.

FUTURE DIRECTIONS

The molecular nature of PTP in plants is still elusive. Further
structural and functional studies are required to verify if
F-ATPase dimers represent the channel associated to PT also
in plants. This is needed to understand better the relationship
between mitochondrial PT and PCD in plants.
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Carraro, M., Giorgio, V., Šileikytė, J., Sartori, G., Forte, M., Lippe, G., et al. (2014).
Channel formation by yeast F-ATP synthase and the role of dimerization in
the mitochondrial permeability transition. J. Biol. Chem. 289, 15980–15985. doi:
10.1074/jbc.C114.559633

Cleary, J., Johnson, K. M., Opipari, A. W. Jr., and Glick, G. D. (2007).
Inhibition of the mitochondrial F1FO-ATPase by ligands of the peripheral
benzodiazepine receptor. Bioorg. Med. Chem. Lett. 17, 1667–1670. doi:
10.1016/j.bmcl.2006.12.102

Crompton, M., Ellinger, H., and Costi, A. (1988). Inhibition by cyclosporin A of a
Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate
and oxidative stress. Biochem. J. 255, 357–360.

Curtis, M. J., and Wolpert, T. J. (2002). The oat mitochondrial permeability
transition and its implication in victorin binding and induced cell death. Plant
J. 29, 295–312. doi: 10.1046/j.0960-7412.2001.01213.x

Dabbeni-Sala, F., Rai, A. K., and Lippe, G. (2012). “F1FO ATP Synthase: a
fascinating challenge for proteomics,” in Proteomics: Human Diseases and
Protein Functions, eds T.-K. Man and R. J. Flores (Rijeka: InTech), 161–188.

Daum, B., Walter, A., Horst, A., Osiewacz, H. D., and Kühlbrandt, W. (2013). Age-
dependent dissociation of ATP synthase dimers and loss of inner-membrane
cristae in mitochondria. Proc. Natl. Acad. Sci. U.S.A. 110, 15301–15306. doi:
10.1073/pnas.1305462110

Davies, K. M., Anselmi, C., Wittig, I., Faraldo-Gómez, J. D., and Kühlbrandt, W.
(2012). Structure of the yeast F1FO-ATP synthase dimer and its role in shaping
the mitochondrial cristae. Proc. Natl. Acad. Sci. U.S.A. 109, 13602–13607. doi:
10.1073/pnas.1204593109

Davies, K. M., Strauss, M., Daum, B., Kief, J. H., Osiewacz, H. D., Rycovska, A.,
et al. (2011). Macromolecular organization of ATP synthase and complex I
in whole mitochondria. Proc. Natl. Acad. Sci. U.S.A. 108, 14121–14126. doi:
10.1073/pnas.1103621108

Dell’Orto, P., Moenne, A., Vincent Graves, P., and Jordana, X. (1993). The potato
mitochondrial ATP synthase subunit 9: gene structure, RNA editing and partial
protein sequence. Plant Sci. 88, 45–53. doi: 10.1016/0168-9452(93)90108-C

de Oliveira, H. C., Saviani, E. E., de Oliveira, J. F. P., and Salgado, I. (2007).
Cyclosporin A inhibits calcium uptake by Citrus sinensis mitochondria. Plant
Sci. 172, 665–670. doi: 10.1016/j.plantsci.2006.12.002

Dieter, P., andMarme, D. (1980). Ca2+ transport inmitochondrial andmicrosomal
fractions from higher plants. Planta 150, 1–8. doi: 10.1007/BF00385606

Douce, R. (1985). Mitochondria in Higher Plants: Structure, Function, and
Biogenesis. New York, NY: Elsevier.

Edgar, R. C. (2004).MUSCLE: amultiple sequence alignment method with reduced
time and space complexity. BMC Bioinformatics 5:113. doi: 10.1186/1471-2105-
5-113

Eubel, H., Heinemeyer, J., Sunderhaus, S., and Braun, H.-P. (2004). Respiratory
chain supercomplexes in plant mitochondria. Plant Physiol. Biochem. 42, 937–
942. doi: 10.1016/j.plaphy.2004.09.010

Eubel, H., Jänsch, L., and Braun, H.-P. (2003). New insights into the respiratory
chain of plant mitochondria. Supercomplexes and a unique composition of
complex II. Plant Physiol. 133, 274–286. doi: 10.1104/pp.103.024620

Faccenda, D., Tan, C. H., Seraphim, A., Duchen, M. R., and Campanella, M.
(2013). IF1 limits the apoptotic-signalling cascade by preventingmitochondrial
remodeling. Cell Death Differ. 20, 686–697. doi: 10.1038/cdd.2012.163

Fortes, F., Castilho, R. F., Catisti, R., Carnieri, E. G. S., and Vercesi, A. E.
(2001). Ca2+ induces a cyclosporin A-insensitive permeability transition pore
in isolated potato tuber mitochondria mediated by reactive oxygen species.
J. Bioenerg. Biomembr. 33, 43–51. doi: 10.1023/A:1005672623709

Gao, C., Xing, D., Li, L., and Zhang, L. (2008). Implication of reactive oxygen
species and mitochondrial dysfunction in the early stages of plant programmed
cell death induced by ultraviolet-C overexposure. Planta 227, 755–767. doi:
10.1007/s00425-007-0654-4

Giorgio, V., Bisetto, E., Soriano, M. E., Dabbeni-Sala, F., Basso, E., Petronilli, V.,
et al. (2009). Cyclophilin D modulates mitochondrial FOF1-ATP synthase by
interacting with the lateral stalk of the complex. J. Biol. Chem. 284, 33982–
33988. doi: 10.1074/jbc.M109.020115

Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., et al.
(2013). Dimers of mitochondrial ATP synthase form the permeability
transition pore. Proc. Natl. Acad. Sci. U.S.A. 110, 5887–5892. doi:
10.1073/pnas.1217823110

Gould, S. J., and Vrba, E. S. (1982). Exaptation – A missing term in the science of
form. Paleobiology 8, 4–15.

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and
Gascuel, O. (2010). New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59,
307–321. doi: 10.1093/sysbio/syq010

Gutiérrez-Aguilar, M., Douglas, D. L., Gibson, A. K., Domeier, T. L., Molkentin,
J. D., and Baines, C. P. (2014). Genetic manipulation of the cardiac
mitochondrial phosphate carrier does not affect permeability transition. J. Mol.
Cell. Cardiol. 72, 316–325. doi: 10.1016/j.yjmcc.2014.04.008

Halestrap, A. P., and Davidson, A. M. (1990). Inhibition of Ca2+-induced large-
amplitude swelling of liver and heart mitochondria by cyclosporin is probably
caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-
trans isomerase and preventing it interacting with the adenine nucleotide
translocase. Biochem. J. 268, 153–160. doi: 10.1042/bj2680153

Hamasur, B., and Glaser, E. (1990). FOF1-ATPase of plant mitochondria: isolation
and polypeptide composition. Biochem. Biophys. Res. Commun. 170, 1352–
1358. doi: 10.1016/0006-291X(90)90543-V

Hamasur, B., and Glaser, E. (1992). Plant mitochondrial FOF1 ATP synthase.
Identification of the individual subunits and properties of the purified
spinach leaf mitochondrial ATP synthase. Eur. J. Biochem. 205, 409–416. doi:
10.1111/j.1432-1033.1992.tb16794.x

Haworth, R. A., and Hunter, D. R. (1979). The Ca2+-induced membrane transition
in mitochondria: II. Nature of the Ca2+ trigger site. Arch. Biochem. Biophys.
195, 460–467. doi: 10.1016/0003-9861(79)90372-2

Heazlewood, J. L., Whelan, J., and Millar, A. H. (2003). The products of the
mitochondrial orf25 and orfB genes are FO components in the plant F1FO ATP
synthase. FEBS Lett. 540, 201–205. doi: 10.1016/S0014-5793(03)00264-3

Huang, W., Yang, X., Yao, S., LwinOo, T., He, H., Wang, A., et al. (2014). Reactive
oxygen species burst induced by aluminum stress triggers mitochondria-
dependent programmed cell death in peanut root tip cells. Plant Physiol.
Biochem. 82, 76–84. doi: 10.1016/j.plaphy.2014.03.037

Hunter, D. R., and Haworth, R. A. (1979a). The Ca2+-induced membrane
transition in mitochondria: I. The protective mechanisms. Arch. Biochem.
Biophys. 195, 453–459. doi: 10.1016/0003-9861(79)90371-0

Hunter, D. R., and Haworth, R. A. (1979b). The Ca2+-induced membrane
transition in mitochondria: III. Transitional Ca2+ release. Arch. Biochem.
Biophys. 195, 468–477. doi: 10.1016/0003-9861(79)90373-4

Jänsch, L., Kruft, V., Schmitz, U. K., and Braun, H.-P. (1996). New insights
into the composition, molecular mass and stoichiometry of the protein
complexes of plant mitochondria. Plant J. 9, 357–368. doi: 10.1046/j.1365-
313X.1996.09030357.x

Frontiers in Plant Science | www.frontiersin.org 6 December 2015 | Volume 6 | Article 1120

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Zancani et al. PT in Plant Mitochondria

Jiko, C., Davies, K. M., Shinzawa-Itoh, K., Tani, K., Maeda, S., Mills, D. J., et al.
(2015). Bovine F1FO ATP synthase monomers bend the lipid bilayer in 2D
membrane crystals. Elife 4, e06119. doi: 10.7554/eLife.06119

Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. W., Pearlman,
R. E., et al. (2005). The tree of eukaryotes. Trends Ecol. Evol. 20, 670–676. doi:
10.1016/j.tree.2005.09.005

Klodmann, J., Senkler, M., Rode, C., and Braun, H.-P. (2011). Defining the protein
complex proteome of plant mitochondria. Plant Physiol. 157, 587–598. doi:
10.1104/pp.111.182352

Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P.,
et al. (2004). The ADP/ATP translocator is not essential for the mitochondrial
permeability transition pore. Nature 427, 461–465. doi: 10.1038/nature02229

Krause, F., Reifschneider, N. H., Vocke, D., Seelert, H., Rexroth, S., and Dencher,
N. A. (2004). “Respirasome”-like supercomplexes in green leaf mitochondria of
spinach. J. Biol. Chem. 279, 48369–48375. doi: 10.1074/jbc.M406085200

Krause, M., and Durner, J. (2004). Harpin inactivates mitochondria in
Arabidopsis suspension cells. Mol. Plant Microbe Interact. 17, 131–139. doi:
10.1094/MPMI.2004.17.2.131

Krauskopf, A., Eriksson, O., Craigen, W. J., Forte, M. A., and Bernardi, P. (2006).
Properties of the permeability transition in VDAC1-/- mitochondria. Biochim.
Biophys. Acta 1757, 590–595. doi: 10.1016/j.bbabio.2006.02.007

Lee, J., Ding, S.,Walpole, T. B., Holding, A. N., Montgomery,M. G., Fearnley, I. M.,
et al. (2015). Organization of subunits in the membrane domain of the bovine
F-ATPase revealed by covalent cross-linking. J. Biol. Chem. 290, 13308–13320.
doi: 10.1074/jbc.M115.645283

Li, L., Carrie, C., Nelson, C., Whelan, J., and Millar, A. H. (2012). Accumulation of
newly synthesized F1 in vivo in Arabidopsis mitochondria provides evidence
for modular assembly of the plant F1FO ATP synthase. J. Biol. Chem. 287,
25749–25757. doi: 10.1074/jbc.M112.373506

Li, Z., and Xing, D. (2011). Mechanistic study of mitochondria-dependent
programmed cell death induced by aluminium phytotoxicity using fluorescence
techniques. J. Exp. Bot. 62, 331–343. doi: 10.1093/Jxb/Erq279

Lin, J., Wang, Y., and Wang, G. (2006). Salt stress-induced programmed cell
death in tobacco protoplasts is mediated by reactive oxygen species and
mitochondrial permeability transition pore status. J. Plant Physiol. 163, 731–
739. doi: 10.1016/j.jplph.2005.06.016

Liu, S., Charlesworth, T. J., Bason, J. V., Montgomery, M. G., Harbour, M. E.,
Fearnley, I. M., et al. (2015). The purification and characterization of ATP
synthase complexes from the mitochondria of four fungal species. Biochem. J.
468, 167–175. doi: 10.1042/BJ20150197

Logan, D. C., and Knight, M. R. (2003). Mitochondrial and cytosolic calcium
dynamics are differentially regulated in plants. Plant Physiol. 133, 21–24. doi:
10.1104/pp.103.026047

Lord, C. E. N., Dauphinee, A. N., Watts, R. L., and Gunawardena, A. H. L. A. N.
(2013).Unveiling interactions amongmitochondria, caspase-like proteases, and
the actin cytoskeleton during plant programmed cell death (PCD). PLoS ONE
8:e57110. doi: 10.1371/journal.pone.0057110

Loro, G., and Costa, A. (2013). Imaging of mitochondrial and nuclear Ca2+
dynamics in Arabidopsis roots. Cold Spring Harb. Protoc. 8, 781–785. doi:
10.1101/pdb.prot073049

Lu, K. P., Finn, G., Lee, T. H., and Nicholson, L. K. (2007). Prolyl cis-
trans isomerization as a molecular timer. Nat. Chem. Biol. 3, 619–629. doi:
10.1038/nchembio.2007.35

Lyubushkina, I. V., Grabelnych, O. I., Pobezhimova, T. P., Stepanov, A. V.,
Fedyaeva, A. V., Fedoseeva, I. V., et al. (2014). Winter wheat cells subjected to
freezing temperature undergo death process with features of programmed cell
death. Protoplasma 251, 615–623. doi: 10.1007/s00709-013-0562-3

Manzoor, H., Chiltz, A., Madani, S., Vatsa, P., Schoefs, B., Pugin, A., et al.
(2012). Calcium signatures and signaling in cytosol and organelles of tobacco
cells induced by plant defense elicitors. Cell Calcium 51, 434–444. doi:
10.1016/j.ceca.2012.02.006

Martin,W., andMüller,M. (1998). The hydrogen hypothesis for the first eukaryote.
Nature 392, 37–41. doi: 10.1038/32096

Martins, I. S., and Vercesi, A. E. (1985). Some characteristics of Ca2+ transport
in plant mitochondria. Biochem. Biophys. Res. Commun. 129, 943–948. doi:
10.1016/0006-291x(85)91982-5

Meyer, E. H., Taylor, N. L., and Millar, A. H. (2008). Resolving and identifying
protein components of plant mitochondrial respiratory complexes using

three dimensions of gel electrophoresis. J. Proteome Res. 7, 786–794. doi:
10.1021/pr700595p

Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen
transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148. doi:
10.1038/191144a0

Morikami, A., Aiso, K., Asahi, T., and Nakamura, K. (1992). The delta’-
subunit of higher plant six-subunit mitochondrial F1-ATPase is homologous
to the delta-subunit of animal mitochondrial F1-ATPase. J. Biol. Chem. 267,
72–76.

Nigro, P., Pompilio, G., and Capogrossi, M. C. (2013). Cyclophilin A: a key player
for human disease. Cell Death Dis. 4, e888. doi: 10.1038/cddis.2013.410

Nomura, H., and Shiina, T. (2014). Calcium signaling in plant endosymbiotic
organelles: mechanism and role in physiology. Mol. Plant 7, 1094–1104. doi:
10.1093/Mp/Ssu020

Polgreen, K. E., Featherstone, J., Willis, A. C., and Harris, D. A. (1995). Primary
structure and properties of the inhibitory protein of the mitochondrial ATPase
(H+-ATP synthase) from potato. Biochim. Biophys. Acta 1229, 175–180. doi:
10.1016/0005-2728(94)00193-9

Qi, Y., Wang, H., Zou, Y., Liu, C., Liu, Y., Wang, Y., et al. (2011). Over-expression
of mitochondrial heat shock protein 70 suppresses programmed cell death in
rice. FEBS Lett. 585, 231–239. doi: 10.1016/j.febslet.2010.11.051

Raaflaub, J. (1953a). Mechanism of adenosinetriphosphate as cofactor of isolated
mitochondria. Helv. Physiol. Pharmacol. Acta 11, 157–165.

Raaflaub, J. (1953b). Swelling of isolated mitochondria of the liver and their
susceptibility to physicochemical influences. Helv. Physiol. Pharmacol. Acta 11,
142–156.

Reape, T. J., Kacprzyk, J., Brogan, N., Sweetlove, L., and McCabe, P. F.
(2015). Mitochondrial markers of programmed cell death in Arabidopsis
thaliana. Methods Mol. Biol. 1305, 211–221. doi: 10.1007/978-1-4939-2639-
8_15

Rikhvanov, E. G., Fedoseeva, I. V., Pyatrikas, D. V., Borovskii, G. B., and
Voinikov, V. K. (2014). Role of mitochondria in the operation of calcium
signaling system in heat-stressed plants. Russ. J. Plant Physiol. 61, 141–153. doi:
10.1134/S1021443714020125

Sarkar, P., and Gladish, D. K. (2012). Hypoxic stress triggers a programmed cell
death pathway to induce vascular cavity formation in Pisum sativum roots.
Physiol. Plant. 146, 413–426. doi: 10.1111/j.1399-3054.2012.01632.x

Schwarzländer, M., Logan, D. C., Johnston, I. G., Jones, N. S., Meyer,
A. J., Fricker, M. D., et al. (2012). Pulsing of membrane potential in
individual mitochondria: a stress-induced mechanism to regulate respiratory
bioenergetics in Arabidopsis. Plant Cell 24, 1188–1201. doi: 10.1105/tpc.112.
096438

Scott, I., and Logan, D. C. (2008). Mitochondrial morphology transition is an early
indicator of subsequent cell death in Arabidopsis. New Phytol. 177, 90–101. doi:
10.1111/j.1469-8137.2007.02255.x

Seelert, H., and Dencher, N. A. (2011). ATP synthase superassemblies in animals
and plants: two or more are better. Biochim. Biophys. Acta 1807, 1185–1197.
doi: 10.1016/j.bbabio.2011.05.023

Šileikytė, J., Blachly-Dyson, E., Sewell, R., Carpi, A., Menabò, R., Lisa, F. D.,
et al. (2014). Regulation of the mitochondrial permeability transition pore by
the outer membrane does not involve the peripheral benzodiazepine receptor
(Translocator Protein of 18 kDa (TSPO)). J. Biol. Chem. 289, 13769–13781. doi:
10.1074/jbc.M114.549634

Silva, M. A. P., Carnieri, E. G. S., and Vercesi, A. E. (1992). Calcium-transport
by corn mitochondria – evaluation of the role of phosphate. Plant Physiol. 98,
452–457. doi: 10.1104/Pp.98.2.452

Smith, M. K., Day, D. A., and Whelan, J. (1994). Isolation of a novel soybean gene
encoding a mitochondrial ATP synthase subunit. Arch. Biochem. Biophys. 313,
235–240. doi: 10.1006/abbi.1994.1382

Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, U. C., and Teige, M.
(2012). Plant organellar calcium signalling: an emerging field. J. Exp. Bot. 63,
1525–1542. doi: 10.1093/jxb/err394

Subbaiah, C. C., Bush, D. S., and Sachs, M. M. (1998). Mitochondrial contribution
to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol. 118,
759–771. doi: 10.1104/Pp.118.3.759

Szabó, I., and Zoratti, M. (1992). The mitochondrial megachannel is the
permeability transition pore. J. Bioenerg. Biomembr. 24, 111–117. doi:
10.1007/BF00769537

Frontiers in Plant Science | www.frontiersin.org 7 December 2015 | Volume 6 | Article 1120

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Zancani et al. PT in Plant Mitochondria

Van Hautegem, T., Waters, A. J., Goodrich, J., and Nowack, M. K. (2015). Only in
dying, life: programmed cell death during plant development. Trends Plant Sci.
20, 102–113. doi: 10.1016/j.tplants.2014.10.003

van Lis, R., Mendoza-Hernández, G., Groth, G., and Atteia, A. (2007). New insights
into the unique structure of the FOF1-ATP synthase from the chlamydomonad
algae Polytomella sp. and Chlamydomonas reinhardtii. Plant Physiol. 144, 1190–
1199. doi: 10.1104/pp.106.094060

Vázquez-Acevedo, M., Cardol, P., Cano-Estrada, A., Lapaille, M., Remacle, C.,
and González-Halphen, D. (2006). The mitochondrial ATP synthase of
chlorophycean algae contains eight subunits of unknown origin involved in the
formation of an atypical stator-stalk and in the dimerization of the complex.
J. Bioenerg. Biomembr. 38, 271–282. doi: 10.1007/s10863-006-9046-x

Vianello, A., Casolo, V., Petrussa, E., Peresson, C., Patui, S., Bertolini, A., et al.
(2012). The mitochondrial permeability transition pore (PTP) — An example
of multiple molecular exaptation? Biochim. Biophys. Acta 1817, 2072–2086. doi:
10.1016/j.bbabio.2012.06.620

Vianello, A., Macrì, F., Braidot, E., and Mokhova, E. (1995). Effect of cyclosporin
A on energy coupling in pea stem mitochondria. FEBS Lett. 371, 258–260. doi:
10.1016/0014-5793(95)00897-I

Vianello, A., Zancani, M., Peresson, C., Petrussa, E., Casolo, V., Krajnakova, J., et al.
(2007). Plant mitochondrial pathway leading to programmed cell death. Physiol.
Plant. 129, 242–252. doi: 10.1111/j.1399-3054.2006.00767.x

Virolainen, E., Blokhina, O., and Fagerstedt, K. (2002). Ca2+-induced high
amplitude swelling and cytochrome c release from wheat (Triticum
aestivum L.) mitochondria under anoxic stress. Ann. Bot. 90, 509–516.
doi: 10.1093/Aob/Mcf221

von Stockum, S., Giorgio, V., Trevisan, E., Lippe,G., Glick, G. D., Forte,M. A., et al.
(2015). F-ATPase of Drosophila melanogaster forms 53-pS channels responsible
for mitochondrial Ca2+-induced Ca2+ release. J. Biol. Chem. 290, 4537–4544.
doi: 10.1074/jbc.C114.629766

Wagner, S., Behera, S., De Bortoli, S., Logan, D. C., Fuchs, P., Carraretto, L., et al.
(2015). The EF-hand Ca2+ binding protein MICU choreographs mitochondrial

Ca2+ dynamics in Arabidopsis. Plant Cell (in press). doi: 10.1105/tpc.15.
00509

Yamauchi, T., Shimamura, S., Nakazono, M., and Mochizuki, T. (2013).
Aerenchyma formation in crop species: a review. Field Crops Res. 152, 8–16.
doi: 10.1016/j.fcr.2012.12.008

Yao, N., Eisfelder, B. J., Marvin, J., and Greenberg, J. T. (2004). The
mitochondrion – an organelle commonly involved in programmed cell
death in Arabidopsis thaliana. Plant J. 40, 596–610. doi: 10.1111/j.1365-
313X.2004.02239.x

Yeh, C.-M., Chien, P.-S., and Huang, H.-J. (2007). Distinct signalling pathways for
induction of MAP kinase activities by cadmium and copper in rice roots. J. Exp.
Bot. 58, 659–671. doi: 10.1093/jxb/erl240

Zhang, L., Li, Y., Xing, D., and Gao, C. (2009). Characterization of mitochondrial
dynamics and subcellular localization of ROS reveal that HsfA2 alleviates
oxidative damage caused by heat stress in Arabidopsis. J. Exp. Bot. 60, 2073–
2091. doi: 10.1093/jxb/erp078

Zottini, M., and Zannoni, D. (1993). The use of fura-2 fluorescence to
monitor the movement of free calcium ions into the matrix of plant
mitochondria (Pisum sativum and Helianthus tuberosus). Plant Physiol. 102,
573–578.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Zancani, Casolo, Petrussa, Peresson, Patui, Bertolini, De Col,
Braidot, Boscutti and Vianello. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 8 December 2015 | Volume 6 | Article 1120

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	The Permeability Transition in Plant Mitochondria: The Missing Link
	The Permeability Transition
	The Pt In Plants
	The Mitochondrial Ca2+ Accumulation In Plants
	The Involvement Of Pt/Pcd In Plant Development And Stress Responses
	The Molecular Structure Of Ptp
	The Emergence Of Pt During Evolution
	Future Directions
	Author Contributions
	Funding
	Acknowledgments
	References


