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Abstract 
Malaria epidemiology is characterised by extensive heterogeneity that manifests across a range 

of spatial and temporal scales. This heterogeneity is driven by a diversity of factors spanning 

the human host, the parasite, the mosquito vector and the environment. Together, variation in 

these factors lead to marked differences in the epidemiology of malaria across different settings; 

in where malaria is concentrated, how malaria is transmitted and who is most at-risk. These 

differences have material consequences for the impact of control interventions aimed at 

combatting the disease, underscoring the crucial need to better understand and quantify the 

factors underlying heterogeneity in malaria epidemiology and transmission dynamics. In this 

thesis, I use a combination of statistical and mathematical modelling to further our 

understanding of how variation in the epidemiological and entomological determinants of 

malaria transmission drives heterogeneity in dynamics across settings and explore the 

implications of this variation for control efforts. 

Accurate ascertainment of malaria infections represents a crucial component of malaria 

surveillance and control. Previous work has revealed the often-substantial prevalence of 

infections with parasite densities lower than the threshold of detection by microscopy (so called 

“submicroscopic” infections). The drivers of these infections remain uncertain, despite their 

established relevance to onwards transmission. In Chapter 2, I carry out a systematic literature 

review and meta-analysis exploring the prevalence of submicroscopic malaria infections and 

how this varies between settings. My results highlight extensive variation between settings, with 

much of this driven by a combination of both historical and current levels of transmission. 

Crucially, these results highlight significant variation in the prevalence of submicroscopic 

infections even across settings characterised by similar current levels of transmission, with 

implications for the utility of control efforts specifically targeting this infected sub-group 

depending on the context.  

Within communities, the distribution of malaria infections is frequently characterised by 

extensive spatial heterogeneity, which can make identification and treatment of infections 

challenging. In Chapter 3, using a regression-based approach, I characterise the fine-scale 

spatial clustering of malaria infections at the household level across a diverse range of sub-

Saharan African settings through systematic analysis of 57 Demographic and Health Surveys 

spanning 23 countries. My results highlight that malaria infections cluster within households, 

and that the extent of this clustering becomes significantly more pronounced as transmission 

declines – a factor which will affect the comparative impact of household-targeting or whole-

community based control strategies and result in their appropriateness depending closely on 

the levels of transmission characterising a setting.  
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In addition to this spatial heterogeneity, malaria transmission dynamics are also frequently 

characterised by extensive temporal heterogeneity, a phenomenon underpinned by the (often 

annual) temporal fluctuations in the size of the mosquito populations responsible for 

transmission. Many questions remain surrounding the drivers of these dynamics however, 

questions that are rarely answerable from individual entomological studies (focussed on only a 

single location or species). In Chapter 4 I carry out a systematic literature review to collate 

anopheline mosquito time-series data from across India and develop a statistical framework 

capable of characterising the dominant temporal patterns in this dataset. The results 

demonstrate extensive diversity in the timing and extent of seasonality across mosquito species, 

but also show that this diversity can be clustered into a small number of “dynamical archetypes”, 

each shaped and driven by a largely unique set of environmental factors including rainfall, 

temperature, proximity to water bodies and patterns of land use.  

In Chapter 5, I apply this framework to time-series data from across South Asia and the Middle 

East for the highly efficient vector Anopheles stephensi, to better understand the factors shaping 

its seasonal dynamics and the likely impact of its recent establishment in the Horn of Africa. My 

results reveal significant differences in the extent of seasonality across Anopheles stephensi 

populations, with dynamics frequently differing between rural and urban settings, suggesting 

structural differences in how these environments shape patterns of vector abundance and 

potentially warranting different vector control strategies depending on predominant patterns of 

land-use. Integrating these seasonal profiles into a mathematical model of malaria transmission 

highlights the crucial need for an understanding of the timing of seasonal peaks in vector density 

if control interventions like IRS are to be most effectively deployed.  

Overall, the results presented here highlight some of the drivers influencing spatial and temporal 

heterogeneity in malaria epidemiology, quantifies how they contribute to the diverse malaria 

dynamics observed across different settings, and explores the implication of this variation for 

effective control of the disease.  
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Chapter 1 Introduction 

In this Chapter, I review the epidemiology, public health burden, and transmission dynamics of 

malaria, primarily the specific manifestation of the disease caused by the parasite Plasmodium 

falciparum. A specific focus of this Chapter is on the factors that underly the marked differences 

in the transmission dynamics and epidemiology of malaria across different contexts and 

ecologies. Developing a better understanding of these different factors, how they contribute to 

the diverse malaria dynamics observed across different settings, and what this variation means 

for the control of the disease, represents the main objective of this thesis work. I conclude this 

Chapter by describing the aims and objectives of this thesis, as well as a brief summary of the 

work contained in each of the chapters that follow this one.  

Malaria Global Epidemiology and Burden 

With over 620,000 estimated deaths in 2020 (World Health Organization, 2021b), malaria 

represents one of the most serious infectious diseases globally (Roth et al., 2018). The human 

form of the disease is caused by 5 members of the Plasmodium genus. These are the human 

parasites Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium 

ovale, and also includes the more recently identified zoonotic malaria of macaques, Plasmodium 

knowlesi (Singh et al., 2004), though clear human to human transmission for this latter parasite 

is yet to be confirmed. The parasite is transmitted by mosquitoes belonging to the Anopheles 

genus, with parasite development and maturation occurring in a series of defined steps that 

span both the human and mosquito hosts. Of the roughly 460 recognised members of the 

Anopheles genus, approximately 70 possess the capacity to transmit human malaria parasites 

(Warrell and Gilles, 2017), with 41 having been identified as dominant vector species 

responsible for the majority of transmission that occurs (Sinka et al., 2012) (Figure 1.1). Both 

parasites and vectors are heterogeneously distributed across the tropical and sub-tropical 

regions where malaria is endemic, a feature that results in marked differences in the 

transmission dynamics and epidemiology of malaria across different contexts and ecologies.  

Globally, sub-Saharan Africa has the highest burden of morbidity and mortality associated with 

the disease, with nineteen countries in sub-Saharan Africa along with India accounting for 

almost 85% of the global burden (Figure 1.2). 95% of all malaria cases and 96% of all malaria 

deaths between 2019 and 2020 were estimated to have occurred in the World Health 

Organization (WHO) African (AFRO) region (World Health Organization, 2021b), where the 

majority of malaria morbidity and mortality is caused by the parasite Plasmodium falciparum. 

Outside sub-Saharan Africa, the dominant malaria causing species is highly variable – across 

the Americas, Plasmodium vivax dominates, with over 75% of malaria cases in 2018 attributed  
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Figure 1.1 Global Map Indicating the Dominant Vector Species Responsible for Malaria Transmission. Sourced from Sinka et al 2012 (Sinka 

et al., 2012).  
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Figure 1.2 The Incidence of Malaria Globally.Sourced from Our World In Data (Roser and Ritchie, 2019). Colour indicates number of malaria 

cases per 1,000 population at risk.  
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to the parasite. Across South-East Asia, there was an almost equal split of estimated cases 

attributed to Plasmodium falciparum and Plasmodium vivax, with India alone accounting for 

almost 50% of the global Plasmodium vivax burden (Battle et al., 2019) (Figure 1.3). Across 

much of southeast Asia, the simian malaria parasite Plasmodium knowlesi (which can cause 

severe and fatal diseases in humans) is also present (Moyes et al., 2014) and increasingly 

relevant public health threat. For example, across parts of Malaysia, Plasmodium knowlesi has 

become the most common cause of human malaria (and despite near elimination of other 

previously present human-only Plasmodium species (Cooper et al., 2019a)).  

Despite this marked heterogeneity in the spatial distribution of parasites and cases, burden of 

disease, in particular mortality, is highly concentrated in sub-Saharan Africa, where an 

estimated 96% of malaria deaths in 2020 occurred – 80% of these in children under 5 years 

(World Health Organization, 2021b). Since the millennium, significant gains have been made in 

controlling and mitigating the public health impact of the disease. Between 2000 and 2015 an 

estimated 1.2 billion cases and 6 million deaths have been averted, with global incidence of 

malaria having fallen by an estimated 37% (Bhatt et al., 2015b), an achievement underpinned 

predominantly by significant scale-up of control interventions including insecticide-treated 

bednets (Bhatt et al., 2015a). Indeed, despite more limited recent progress, global trajectories 

in the decades since the year 2000 have overall been characterised by significant declines in 

morbidity and mortality. 

Parasite Natural History and Lifecycle 

The Lifecyle of the Malaria Causing Parasite Plasmodium falciparum  

The lifecycle of the malaria causing parasite Plasmodium falciparum in the human host is 

structured into three key stages, spread across the human and mosquito hosts. The “exo-

erythrocytic” stage begins with the injection of Plasmodium falciparum sporozoites (the infective 

motile stage of the parasite) into the human host via the bite of an infected female mosquito of 

the Anopheles genus. These sporozoites then migrate from the site of the bite, until they reach 

a blood vessel, whereupon they journey to the liver. In the liver they invade the host 

hepatocytes, develop into trophozoites and begin replicating through multiple asexual fissions 

(schizogony) to produce a significant number of merozoites (often tens of thousands), which 

are released into the bloodstream upon hepatocyte eruption (Meis et al., 1986). The process of 

infection, invasion, replication and release takes approximately 6-7 days in the case of 

Plasmodium falciparum (though can be many months or even years for hypnozoites in the case 

of Plasmodium vivax). Following release into the blood stream, the erythrocytic cycle 

commences. The released merozoites rapidly invade the host erythrocytes and develop into   
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Figure 1.3 Estimated Country Share of Malaria In 2020.Results are displayed for (A) Total 

estimated malaria cases; and (B) Plasmodium vivax malaria cases. Sourced from the WHO 

World Malaria Report 2021. 
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ring stage trophozoites. Multiple rounds of asexual reproductive occur within the erythrocyte, 

eventually followed by rupture and release of the newly produced merozoites, ready to begin 

another round of the erythrocytic cycle. This asexual reproductive cycle takes approximately 1-

2 days. Of the released merozoites, a number will differentiate into the sexual stage of the 

Plasmodium falciparum parasite, which are known as gametocytes and which are responsible 

for infecting the mosquito host when it takes a blood meal (Baker, 2010). Though there are both 

male and female gametocytes, gametocyte sex ratios are frequently female-biased (though see 

here for work highlighting plasticity of these ratios in response to a wide diversity of human-host 

related factors (Paul et al., 2000; Mitri et al., 2009)). (Figure 1.4) 

The sporogenic stage of the Plasmodium falciparum life cycle takes place inside the anopheline 

mosquito host responsible for onwards transmission. Gametocytes concentrate in skin 

capillaries and are taken up by the mosquito during feeding. Upon feeding, the gametocytes are 

transferred to the mosquito’s gut, whereupon they undergo a process of further development 

and maturation. Each male gametocyte produces eight microgametes through 3 rounds of 

mitosis, whilst the female gametocyte matures into a microgamete directly. The male and female 

gametocytes then fuse to form a diploid zygote, which elongates into the motile ookinete, which 

exits the gut through invasion and subsequent passage through the epithelium as an oocyst. 

Oocysts then undergo multiple rounds of replication to form sporozoites, which then migrate 

from the mosquito’s abdomen to its salivary glands, whereupon they become available for 

transmission to humans during subsequent successful bloodmeal feeding by the mosquito. The 

time required for this process of sporogyny i.e. the time between the malaria causing parasite 

infecting a mosquito, reproducing and migrating to the salivary glands whereupon they can be 

transmitted, is known as the extrinsic incubation period (EIP). The length of the EIP is typically 

long (typically 10-14 days) relative to the lifespan of the mosquito (Smith and McKenzie, 2004), 

meaning it is predominantly older mosquitoes that pass on infection (and that malaria 

transmission responds acutely to changes in the longevity and survival of mosquitoes 

(Macdonald, 1956)). It is also highly plastic – parasite development rates are highly sensitive to 

a number of factors, including environmental temperature (Shapiro, Whitehead and Thomas, 

2017), mosquito nutritional status (Hien et al., 2016) and innate immune responses (Clayton, 

Dong and Dimopoulos, 2014) amongst others. All of these factors are able to modulate parasite 

development rates (as well as various mosquito traits related to vector competency (Mordecai 

et al., 2019)) and in doing so, shift the timing and establishment of the Plasmodium falciparum 

parasite in the mosquito vector.  
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Figure 1.4 Lifecycle of Plasmodium falciparum and Plasmodium vivax across both the 
mosquito and human host. The life cycle of malaria involves both mosquito and human hosts. 

During feeding on a human, sporozoites present in the mosquito salivary gland enter the 

bloodstream. These then pass into the liver where they invade liver cells (hepatocytes) and 

multiply asexually over the next 7 to 10 days. Following this, the merozoites are released from 

liver cells into the bloodstream, where they invade red blood cells (erythrocytes). What follows 

is a cycle of multiplication, bursting of the erythrocyte and release of the new parasites into the 

bloodstream, followed by invasion of more erythrocytes. A small proportion of the infected red 

blood cells exit from this cycle of asexual multiplication and instead develop into sexual forms 

of the parasite, known as gametocytes. These circulate in the bloodstream where they can be 

picked up by mosquitoes during their feeding on humans. Ingestion of the gametocytes by a 

mosquito triggers further maturation into mature sex cells known as gametes. Fertilisation then 

occurs, with the fertilised female gamete developing into ookinetes that traverse the mosquito’s 

midgut wall, forming oocysts on the exterior surface. Inside these oocysts, numerous 

sporozoites develop. Multiplication of these sporozoites leads to bursting of the oocyst, 

releasing the sporozoites into the body cavity and allowing passage to the mosquito’s salivary 

glands. Upon reaching the salivary glands, the sporozoites are now ready for transmission to 

the human during the mosquito’s next feed. 
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Plasmodium falciparum Malaria Natural History, Morbidity, Mortality and Immunity  

The symptoms and consequences of infection with Plasmodium species vary in severity 

depending on both the parasite species and a number of host factors, including the level of host 

immunity (linked to past exposure to the parasite, which increases with age (Rodriguez-

Barraquer et al., 2018)) and genetic factors. In individuals with limited prior exposure (and hence 

immunity), rapid division and proliferation of merozoites in the erythrocytic stage of the parasite 

life cycle leads to development of symptoms on average 7-15 days after inoculation by the 

mosquito vector. Initial symptoms typically include nausea, headaches and fever. As the 

infection progresses, continual depletion of erythrocytes due to parasite replication can result in 

acute anaemia (and the cyclical fever and chills characteristic of malaria infections (Lamikanra 

et al., 2007)). A proportion of these symptomatic cases will go on to develop severe malaria, 

which is associated with significantly elevated mortality and whose complications include severe 

anaemia, end-organ damage, cerebral malaria and numerous pulmonary complications (Phillips 

et al., 2017). The exact clinical manifestations of severe disease depend in part on the setting 

and its overarching patterns and intensity of malaria transmission – in high transmission areas 

where the average age at first infection is lower, severe disease frequently manifests as severe 

anaemia (which is more common in young children). By contrast, cerebral malaria is typically 

concentrated in older children, and so more likely to occur in areas of low to moderate 

transmission (Njuguna et al., 2019; Reyburn et al., 2005). Cerebral malaria typically has a higher 

case fatality rate, reaching up to 25% (Mockenhaupt et al., 2004; Seydel et al., 2015), though 

recent work has highlighted the substantially increased risk of mortality in the months following 

clinical discharge (in those who have received treatment) that severe anaemia results in 

(Kwambai et al., 2020). 

The burden of severe malaria in endemic areas is typically concentrated in children who have 

little to no pre-existing immunity against the malaria causing Plasmodium parasites. Indeed, 

infection with malaria results in an immune response, with cumulative exposures resulting in 

gradual acquisition of immunity against symptomatic malaria. These dynamics are a key driver 

of the epidemiology of malaria in endemic settings, and result in dynamics that vary significantly 

with overall levels of transmission – specifically that acquisition of immunity is highest in high 

transmission settings (Griffin et al., 2015), with adults in these settings often not developing 

malaria symptoms during infection due to the high levels of immunity in the population 

(Langhorne et al., 2008). Gradual acquisition of adaptive immunity against symptomatic malaria 

is typically subdivided into anti-parasite immunity (i.e. an increased ability to control parasite 

densities during infection) and anti-disease immunity (an ability to tolerate higher parasite 

densities without developing the fever and other symptoms characteristic of a malaria infection) 

(Rodriguez-Barraquer et al., 2018). Both aspects of immunity build up in response to repeated 
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exposures and infections, though at substantially different rates. In highly endemic settings, 

immunity to severe disease typically develops rapidly, as evidenced by the drop in frequency of 

malaria deaths typically falling between the ages of 2-5 years (Doolan, Dobaño and Baird, 

2009), and the majority of malaria morbidity and mortality occurring in children under the age of 

5 (Murray et al., 2012). Anti-parasite immunity by contrast, appears to build up more slowly, 

developing over the course of multiple infections (Rodriguez-Barraquer et al., 2018).  

Diagnosis and Treatment of Malaria  

Diagnosis of malaria is complicated by non-specificity of symptoms and the frequent overlap 

and similarity in clinical presentation to other diseases that typically co-occur with malaria 

(Glennon et al., 2020). Based on this, malaria detection is frequently determined using either 

microscopy of collected blood to identify parasites circulating in the blood or via rapid diagnostic 

tests (RDTs) to detect circulating parasite antigens (typically lactate dehydrogenase or histidine-

rich protein 2). More recently, there has been increased usage of more sensitive molecular 

methods (although such usage is still primarily restricted to research contexts). These 

techniques (typically utilising polymerase chain reaction based methodologies (Snounou et al., 

1993)) have highlighted the presence of infections with parasite densities lower than the 

threshold of detection by routine methods such as microscopy (so-called “submicroscopic” 

infections (Okell et al., 2012)). 

Treatment of malaria uses antimalarial drugs, with prompt access to treatment a key 

determinant of survival for severe malaria cases, and delays in the ability to access treatment 

are significantly associated with elevated mortality due to the disease (Mousa et al., 2020). The 

first anti-malaria widely used to treat malaria globally was chloroquine (CQ), though widespread 

usage as part of the Global Malaria Eradication Programme during 1955-1969 and the 

emergence of resistance (Wellems and Plowe, 2001) led to its replacement as the primary drug 

for treatment of malaria cases. CQ was subsequently replaced by sulfaxdoxine/pyrimethamine 

(SP). Resistance to SP has since emerged (Gatton, Martin and Cheng, 2004), although the 

geographical distribution of resistant Plasmodium genotypes is more limited than that of CQ. 

For example, across sub-Saharan Africa, SP resistance is primarily centred around East Africa, 

with malaria parasites across West Africa still largely susceptible to SP (Okell, Griffin and Roper, 

2017), and indeed, the drug is still routinely used (alongside amodiaquine) in largescale 

seasonal malaria chemoprevention (SMC) campaigns in the region (Baba et al., 2020). The 

1970s saw the discovery of the highly potent and effective anti-malarial drug artemisinin which 

has been crucial in the progress made in recent years to reduce the global burden of malaria – 

estimates suggest approximately 20% of the reduction in malaria incidence between 2000 and 

2015 can be attributed to artemisinin and artemisinin-related treatments (Bhatt et al., 2015b)). 
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Contemporary usage of the drug is in the form of artemisinin combination therapies (ACTs), 

which represent formulations in which artemisinin (or an artemisinin derivative) are combined 

with a longer lasting partner drug. Such combination therapies have in part been motivated by 

a desire to mitigate and slow the spread of artemisinin resistance. This resistance is primarily 

restricted to South-East Asia (World Health Organization, 2018), although recent reports of 

parasite mutations associated with artemisinin resistance in Rwanda provide significant cause 

for concern (Uwimana et al., 2020).  

Interventions and the Control of Malaria 

Brief Historical Overview of Malaria Control and Elimination Policy  

In 1955, the World Health Organization launched a global campaign aiming to eradicate malaria 

in all endemic settings around the world. This initiative (the Global Malaria Eradication 

Programme) primarily focussed on vector control efforts and included indoor residual spraying 

of households and other buildings with the insecticide dichloro-diphenly-trichloroethane (DDT) 

(The Lancet - Editorial, 2007). The programme was marked by several successes. Malaria was 

largely eradicated from southern Europe as well as parts of north Africa and the Middle East, 

with elimination achieved in a total of 37 countries. A number of these sustained this elimination 

in the decades following the decision to end the programme in 1969 when it was recognised 

that eradication was not achievable with the available means in many of the targeted areas 

(Nájera, González-Silva and Alonso, 2011). However, the end of the Global Malaria Eradication 

Programme also subsequently saw widespread resurgence of malaria in many of the areas that 

had previously been targeted with control measures (Cohen et al., 2012). The millennium saw 

the Roll Back Malaria Summit, which yielded a declaration aiming to halve malaria mortality by 

2010. 2000 also saw the formation of the Bill and Melinda Gates Foundation, which made a 

significant financial and political commitment to elimination and eradication of malaria (Roberts 

and Enserink, 2007), as well The Global Fund to Fight AIDS, Tuberculosis and Malaria, whose 

disbursements against these 3 diseases regularly eclipses $4 billion annually. The renewed 

commitment evidenced by these events has since translated into significant reductions in the 

burden of malaria (as described in more detail above), with an estimated 41% decreases in 

global incidence of malaria cases between 2000 and 2015, and over 6 million deaths averted 

(Bhatt et al., 2015b). In 2016, the World Health Organization identified 21 countries with the 

potential to achieve zero indigenous cases of malaria by 2020 (the so-called “E-2020” initiative). 

Of these countries, 8 to-date reported zero indigenous cases of malaria in 2020 (World Health 

Organization, 2021) (Figure 1.5). However, global estimated malaria incidence remained   
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Figure 1.5 Trends In Indigenous Malaria Cases in E-2020 Countries, 2010-2018. Countries 

are presented from highest to lower number of malaria cases in 2010. Years with zero 

(indigenous) malaria cases are highlighted with green points. Sourced from the WHO World 

Malaria Report 2019 
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largely constant across 2016 and 2017, declining slightly between 2017 and 2019, before 

increasing in 2020 and 2021, a factor thought to be attributable to the impact of COVID-19 on 

disrupting provision of malaria prevention, diagnosis and treatment (Sherrard-Smith et al., 2020; 

Hogan et al., 2020; Weiss et al., 2021). Motivated by this stalled progress, recent years have 

seen the launch of the “High Burden to High Impact” programme, a targeted and country-led 

approach focussed on the 11 countries where approximately 70% of the world’s malaria burden 

is concentrated – specifically Burkina Faso, Cameroon, Democratic Republic of the Congo, 

Ghana, Mali, Mozambique, Niger, Nigeria, Uganda, Tanzania and India.  

Methods of Malaria Control i. Anti-Malarial Measures Targeting the Malaria Parasite 

In addition to the direct treatment of disease described above, anti-malarial drugs are 

increasingly being used as preventative interventions. Examples of such measures include 

intermittent preventive therapy in infants (IPTi), which seeks to protect infants during the 

vulnerable first months of life through administration of anti-malarials such as SP (Aponte et al., 

2009), as well as seasonal malaria chemoprevention (SMC), which aims to protect school age 

children in regions with high seasonality of malaria transmission by administering prophylactic 

anti-malarial drugs over the course of the rainy season (which previous work has indicated is 

likely to overlap with the period of highest transmission (Cairns et al., 2012)). SMC has had 

significant impact across the Sahelian region of West Africa, where implementation is now 

widespread (Baba et al., 2020). Additionally, intermittent preventive treatment in pregnancy 

(IPTp) involving regular administration of SP is recommend by the WHO (World Health 

Organization, 2014) and has been associated with reduced incidence of both neonatal mortality 

(Menéndez et al., 2010) and low birthweight (Desai et al., 2018). In addition to these 

interventions targeting specific age-groups, other preventive strategies treating entire 

populations include mass drug administration (MDA), which involves treatment of an entire 

population with anti-malarials in order to reduce prevalence of infection and transmission 

(Mwesigwa et al., 2019; Tripura et al., 2018; von Seidlein et al., 2019b), or mass screen and 

treat (MSAT), which involves screening a community for malaria infection using diagnostic tools 

or clinical markers such as presence of a fever, and then treating those meeting the criteria for 

likely malaria infection (Parker et al., 2017). Concerns around the logistical feasibility and costs 

of treating entire communities in this way has in some cases motivated the usage of reactive 

strategies, such as reactive case detection (RACD), which involves testing and (if positive) 

treating household members of each malaria case passively detected at health facilities 

(Stresman et al., 2020; Hustedt et al., 2016). Other research has investigated the usage of the 

gametocyte primaquine (the only currently available anti-malaria drug that clears mature 

Plasmodium falciparum gametocytes in infected humans) in conjunction with artemether-
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lumafantrine as a way to simultaneously treat disease and limit onwards transmission of malaria 

to mosquitoes (Eziefula et al., 2014; Stone et al., 2022). 

In the instances mentioned above, treatment has typically been with anti-malarial drugs that aim 

to either clear current infections or provide some temporary degree of prophylactic protection 

from infection in the near future. There is however increasing interest in the use of endectocidal 

compounds (i.e. those that possess activity against the anopheline mosquito vector as well as 

standard anti-parasitic activity). For example, previous work has highlighted the mosquitocidal 

activity of ivermectin on anopheline mosquitoes (Smit et al., 2019, 2018), as well as the potential 

population-level impact of delivering the drug during mass-drug administration campaigns as 

assessed through mathematical modelling (Slater et al., 2020), impact that has since been 

established in recent randomized trials evaluating the impact of adding ivermectin to MDA 

regimen (Dabira et al., 2022). 

There has also been considerable interest in the development of vaccines for protection against 

malaria. Malaria vaccines can be split into three categories depending on the particular stage 

of the Plasmodium parasite lifecycle being targeted. These are pre-erythrocytic vaccines, which 

aim to prevent infection through targeting sporozoites inoculated into the skin, blood-stage 

vaccines, which aim to reduce the probability of clinical/severe disease through reducing 

parasite densities during infection, and transmission blocking vaccines, which aim to prevent 

onwards transmission of the Plasmodium parasite from humans to mosquito by targeting the 

sexual stage of the parasite in humans. Though many candidate vaccines have been explored 

to date, few have found widespread success. Perhaps the most notable exception is the vaccine 

RTS,S/AS01, developed by GlaxoSmithKline (GSK) in collaboration with the Walter Reed Army 

Institute of Research (WRAIR) and which has recently been recommended for widespread 

delivery to children across sub-Saharan Africa by the World Health Organization. Results from 

a Phase III randomised, controlled evaluation of the vaccine suggested efficacy against clinical 

malaria in the region of 30-50% (RTS,S Clinical Trials Partnership, 2015; RTS,S Clinical Trials 

Partnership et al., 2011). Concerns however over overall efficacy and waning protection over 

time (Olotu et al., 2016) have motivated considerations about potential usage of the vaccine as 

a seasonal vaccine in areas where malaria transmission is highly seasonal. Indeed, recent work 

has highlighted the substantial reduction in annual malaria burden that can be achieved by 

pairing delivery of RTS’S alongside SMC campaigns (Chandramohan et al., 2021). The search 

for more efficacious, longer lasting vaccinations remains however, with promising recent work 

including the reported 75% efficacy against clinical malaria for the low dose, pre-erythrocytic 

malaria vaccine R21 (Datoo et al., 2021).  
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Methods of Malaria Control ii. Anti-Vectorial Measures Targeting the Mosquito Vector  

A number of interventions for the control of malaria are focussed on preventing successful 

blood-feeding of the anopheline mosquito vectors responsible for onwards transmission, or 

through direct killing of the mosquito (or both). Insecticide treated bednets (ITNs) provide both 

a chemical and physical barrier against mosquito feeding and provide a barrier during sleeping 

against night-time feeding by mosquitoes, which predominates patterns of feeding by many of 

the key malaria vectors in sub-Saharan Africa (Sherrard-Smith et al., 2019). In doing so, ITNs 

both provide direct protection to individuals sleeping under the net, as well as indirect protection 

through preventing uninfected mosquitoes becoming infected during feeding on infected 

humans. This indirect impact is achieved typically through the effects of mosquitoes coming into 

contact with the insecticide impregnated bednet material, which typically results in mosquito 

mortality or sub-lethal effects leading to reduced fitness and transmission potential (Viana et al., 

2016). Indoor residual spraying (IRS) involves coating the walls and other surfaces of 

households with a residual insecticide that either kills mosquitoes that land and rest following 

feeding, or deters mosquitoes from entering the household (Tangena et al., 2020). The effects 

of IRS can last months, and in some cases, even years depending on the exact insecticide used 

(Sherrard-Smith et al., 2018), although difficulties surrounding achieving sufficient coverage and 

acceptability have meant the impact of IRS is comparatively smaller than those of ITNs 

(estimated to be responsible for approximately 13% of the reduction in malaria cases observed 

between 2000 and 2015, compared to 68% for ITNs (Bhatt et al., 2015b)).  

Whilst interventions such as ITNs and IRS have successfully reduced malaria burden across 

sub-Saharan Africa, their effectiveness is increasingly being eroded by the spread of resistance 

to their killing effects on the mosquito vector (Ranson and Lissenden, 2016; Moyes et al., 2020; 

Hancock et al., 2018). This killing effect is thought to be one of the largest contributors to the 

overall impact of ITNs in particular on malaria burden (Killeen et al., 2007; Killeen, 2014). This 

has motivated development of new ITNs, either with different insecticides or a mixture of the 

most commonly and traditionally used pyrethroid alongside synergists such as piperonyl 

butoxide (Gleave et al., 2021). In randomised controlled trials to date, piperonyl butoxide nets 

have reduced malaria prevalence in the areas they have been deployed significantly more than 

equivalent pyrethroid-only nets (Protopopoff et al., 2018), and even more recent work evaluating 

a diverse range of dual-active ingredient ITNs has further underscored their utility over 

pyrethroid-only bednets (Mosha et al., 2022).  

In addition to these more commonly and widely utilised vector control interventions, a number 

of others exist aimed at mitigating the burden of malaria, at various stages of development and 

degrees of implementation. These include larviciding, which aims to reduced malaria 
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transmission by targeting the immature stages (specifically larvae and pupae) of the anopheline 

mosquito, in doing so, reducing the proportion of mosquitoes that successfully reach adulthood 

and are available to contribute to malaria transmission (Leslie Choi, 2017). Another recently 

developed intervention is the attractive targeted sugar bait (ATSBs, (Fiorenzano, Koehler and 

Xue, 2017)), which involves placing supplies of readily accessible manufactured sugar 

alternative to the plant sugars mosquitoes typically consume around settlements. The addition 

of a toxin that rapidly kills mosquitoes upon ingestion or contact leads to death following feeding. 

ATSBs therefore both suppress the overall mosquito population and reduce the number of 

mosquitoes living long enough to pass the EIP and be capable of transmitting malaria onwards. 

Both field experiments (Müller et al., 2010; Traore et al., 2020) and modelling work (Marshall et 

al., 2013; Fraser et al., 2021) has highlighted the potential impact of ATSBs, which have the 

ability (unlike ITNs or IRS) to target outdoor-feeding mosquitoes, a source of substantial residual 

malaria transmission across sub-Saharan Africa (Sherrard-Smith et al., 2019; Musiime et al., 

2019; Sougoufara, Ottih and Tripet, 2020). There is also increasing interest in the use of genetic 

control technologies primarily to either reduce population sizes or replace existing populations 

with vectors unable to transmit disease (Marshall and Taylor, 2009; Wang et al., 2021). These 

include approaches centred around the use of the Wolbachia bacterium or transgene-based 

approaches (often gene-drive based (Alphey et al., 2020)), typically either aiming to induce 

cytoplasmic incompatibility (Adams et al., 2021; Walker et al., 2021) or reduce vector 

susceptibility to infection (Gomes et al., 2017; Dong, Simões and Dimopoulos, 2020).   

Heterogeneity and Variation In Epidemiology and Transmission 

Dynamics: Implications for Control and Elimination  

Malaria epidemiology and its transmission dynamics is characterised by extensive 

heterogeneity across a range of spatial and temporal scales. This heterogeneity is underpinned 

by factors relating to the human host (e.g. genetic variation influencing susceptibility), the 

parasite (e.g. the predominance of different Plasmodium species and differences in their life-

history), the mosquito vector (e.g. their bionomics and behaviours) and the environment (e.g. 

annual patterns of rainfall). Together, diversity and variation in these factors leads to marked 

differences in the epidemiology and transmission dynamics of malaria across different settings 

– differences that have material consequences for interventions aimed at combatting the 

disease. The next section of this thesis Chapter describes some of the main factors contributing 

to heterogeneity in malaria dynamics and epidemiology, as well as the implications of this 

heterogeneity on the control efforts required to effectively mitigate the disease’s public health 

impact.  

Sources of Heterogeneity i. Factors Relating to the Parasite 
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The predominant parasite responsible for malaria in a setting has a significant influence on the 

efforts and interventions required for control. Globally the distribution of the Plasmodium 

parasites responsible for causing malaria is highly heterogeneous. Whereas Plasmodium 

falciparum is the dominant parasite across sub-Saharan Africa, across Central and South 

America, the (more) limited malaria burden is typically associated with Plasmodium vivax 

infection. By contrast, the two parasites are similarly prevalent across South-East Asia, although 

there is marked heterogeneity within the region, with India accounting for over 50% of the global 

Plasmodium vivax burden and Papua New Guinea having the highest levels of Plasmodium 

vivax transmission in the world as measured by prevalence by light microscopy (Gething et al., 

2012).  

Plasmodium falciparum and Plasmodium vivax possess different lifecycles which pose specific 

challenges for their control – this is perhaps most notably seen with the formation of hypnozoites 

(dormant liver stages of the parasite formed during primary infection) during Plasmodium vivax 

infection. These hypnozoites are able to reactivate in the weeks to years after initial clearance 

of the primary blood stage infection (White, 2011; Battle et al., 2014), leading to relapse of the 

disease. This phenomenon makes control (and elimination) of Plasmodium vivax particularly 

challenging and indeed, trials exploring potential new anti-malarial formulations for treatment of 

the parasite have highlighted that as many as 80% of new blood-stage infections are attributable 

to relapses (Robinson et al., 2015). Whilst work has highlighted the significant impact on malaria 

transmission associated with both Plasmodium falciparum and Plasmodium vivax following 

increased coverage of ITNs (Koepfli et al., 2017), existence of hypnozoites necessitates the use 

of drugs belonging to the 8-aminoquinolines (8-AQ) such as Primaquine, and recent work has 

highlighted the likely insufficiency of control efforts that do not also involve targeting hypnozoites 

for treatment (White et al., 2014). Use of Primaquine involves a lengthy treatment regimen 

however and can cause severe haemolysis in glucose-6-phosphate-dehydrogenase (G6PD) 

deficient individuals (Ramos Júnior et al., 2010; Ashley, Recht and White, 2014), further 

complicating targeting and treatment of individuals compared to Plasmodium falciparum 

infections. Though sharing some common features, the epidemiology of Plasmodum falciparum 

and Plasmodium vivax malaria are therefore marked by some important differences. Previous 

work has highlighted extensive co-endemicity of Plasmodium falciparum and Plasmodium vivax, 

though significant heterogeneity in comparative proportions (Price et al., 2020) – given the 

differences in epidemiology and treatment described above, heterogeneity in the species 

composition of malaria-causing parasites across settings is likely to have material 

consequences for how best to control and combat the disease.  

In addition to between species considerations, heterogeneity in the tools required for treatment 

and control of malaria can also arise from within-species genetic variation. Previous work has 
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documented variation across locations in the asexual blood stage multiplication rate 

of Plasmodium falciparum thought to be underpinned by genetic variation (Murray et al., 

2017) as well as extensive fine-scale genetic variation in the genes encoding the parasite’s 

surface coat and its role in partially evading acquired immunity (Day et al., 2017). However, the 

most notable examples of the impact of parasite genetic variation on the epidemiology of malaria 

has been the selection for and development of resistance against many of the most commonly 

used anti-malarials. To date, resistance has emerged against all commonly used anti-malarials, 

including to many of the frontline artemisinins and partner drugs, leading to the failure of ACTs 

against Plasmodium falciparum in several settings across South-East Asia (Haldar, 

Bhattacharjee and Safeukui, 2018). This resistance has for the most part been underpinned by 

variation in the Plasmodium falciparum K13 (PfKelch13) propeller domain (Ashley et al., 2014). 

Currently, the global distribution of ACT resistance is heterogeneously distributed globally, 

being concentrated in South-East Asia and comparatively less common elsewhere (Kagoro et 

al., 2022). Indeed, there has been limited evidence of its presence in sub-Saharan Africa to 

date, with slow clearing of infections following ACT treatment (a proxy for resistance) previously 

observed at frequencies of <1% prior to 2015 (WWARN Artemisinin based Combination 

Therapy (ACT) Africa Baseline Study Group, 2015), though more recent work has highlighted 

an increasing prevalence of such mutations in Rwanda (Uwimana et al., 2020). Patterns of 

resistance and variation in the degree and extent of resistance to different anti-malarials 

(including ACTs as described above, but also note the observed variation for SP resistance, 

which is common in East Africa and comparatively rarer in West Africa (Okell, Griffin and Roper, 

2017)) therefore has important implications for what constitutes the most appropriate tools for 

the treatment of malaria in different settings.  

Sources of Heterogeneity ii. Factors Relating to the Human Host 

Variation in human genetic features also contributes to heterogeneity in malaria epidemiology 

across settings. Given the dependence on the erythrocyte for replication and proliferation, 

genetic disorders that affect erythrocyte biology can influence malaria susceptibility 

(Kwiatkowski, 2005) – these include sickle cell trait (which impairs parasite growth through 

disrupting and altering haemoglobin polymerisation (Archer et al., 2018)) as well as deficiency 

of the enzyme G6PD, which is thought to influence the susceptibility of erythrocytes that have 

been invaded by the parasite to breakdown by endogenous host factors (Ruwende and Hill, 

1998). For Plasmodium vivax, the parasite’s invasion of reticulocytes (a subset of erythrocytes) 

is dependent on interactions between the Plasmodium vivax Duffy Binding Protein (PvDBP) and 

the Duffy human antigen receptor for chemokines – absence of the receptor (i.e. being Duffy-

negative) is thought to provide partial protection from disease (and possibly infection) (Golassa 

et al., 2020). These specific examples sit alongside mounting evidence of the role of a diversity 
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of common human host variants relating to erythrocyte function that influence malaria parasite 

fitness (Ebel et al., 2021) and the propensity for individuals to suffer from severe disease 

following infection (Timmann et al., 2012). 

In addition to these genetic factors, a variety of other non-genetic factors relating to patterns of 

behaviour, exposure and immunity across populations, as well as comorbidities, coinfections 

and health inequities also leads to diversity in malaria transmission dynamics. Infectiousness 

and the degree to which individuals contribute to onwards transmission is highly heterogeneous, 

a phenomenon underpinned by extensive between-individual variation in both exposure to 

(infective) mosquito bites and their comparative infectiousness to mosquitoes. Previous work 

has highlighted the extensive heterogeneity in exposure to malaria that can occur even amongst 

individuals residing in the same community (where similar overall patterns of mosquito contact 

occur on average) (Rodriguez-Barraquer et al., 2016). Studies carried out across Burkina Faso 

and Kenya have highlighted that adults tend to receive more mosquito bites than children 

(Gonçalves et al., 2017), whilst other work conducted in Uganda has identified extensive 

overdispersion in the number of mosquito bites received within age-groups, with the degree of 

overdispersion negatively correlated with overall malaria transmission intensity (Cooper et al., 

2019b). Infectiousness to mosquitoes is similarly highly heterogeneous between individuals – 

previous work has highlighted significant variation with age in both the likelihood of infections 

carrying gametocytes, and the gametocyte densities associated with infection (Coalson et al., 

2016). Patterns of gametocyte density are strongly correlated with whether or not the infection 

is “submicroscopic” (Slater et al., 2019), with submicroscopic infections typically less infectious 

than infections which are microscopically detectable (Slater et al., 2019). There is extensive 

variation between settings in the size of the submicroscopic reservoir (i.e. what proportion of 

the infected population harbour submicroscopic infections). Previous work has highlighted that 

the size of submicroscopic reservoir is negatively correlated with overall levels of transmission, 

and that submicroscopic infections tend to predominate in low-transmission settings (Okell et 

al., 2012; Lin, Saunders and Meshnick, 2014), but also that much of the empirically observed 

variation in the prevalence of submicroscopic infection is unexplained by overall transmission 

levels (suggesting the existence of other factors influencing the size of the submicroscopic 

reservoir). Recent work has also highlighted extensive heterogeneity and individual-level 

variation in susceptibility to Plasmodium falciparum malaria, and by extension the rate of 

acquisition of clinical protection, as well as extensive variation in the rates at which individuals 

(particularly children) acquire immunity to malaria (Valletta et al., 2022). Together, these factors 

produce extensive individual-level variation within communities regarding who is infected, who 

is likely to be detected, and who is likely to be the most infectious. These are factors that have 

consequences for the viability and utility of different types of control efforts, such as those 

targeting whole communities (e.g. mass-drug administration) or more targeted approaches (e.g. 
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focussed on risk or age groups or based on symptoms such as mass-screen and treat based 

approaches).  

In addition to this variation between individuals, malaria is also highly spatially heterogeneous, 

with this heterogeneity manifesting at a range of spatial scales. Within communities, extensive 

clustering of malaria infections around individual households has previously been documented 

(Stresman et al., 2020). This fine-scale variation in malaria risk is also significantly shaped by 

the patterns and sources of mosquito exposure that predominate in communities. In some 

instances, the primary site of contact with the mosquito vectors responsible for transmission 

occurs around the household – the majority of malaria transmission is this context is peri-

domestic (Huho et al., 2013; Stresman, Bousema and Cook, 2019). This contrasts with other 

settings where the primary site of transmission lies away from the household – for example, in 

the case of forest workers across parts of Southeast Asia, where malaria is concentrated in 

groups of forest workers who are routinely exposed to bites from the highly efficient, exophagic 

vector Anopheles dirus during the course of their work (Dutta et al., 1996). This variation in who 

and how people are exposed to infectious bites leads to significant heterogeneity across settings 

in which populations are most at-risk and where the primary site of transmission is. In turn, this 

has implications for the appropriateness of different control measures. Where malaria 

transmission is peri-domestic, interventions targeting the household (such as reactive case 

detection (Stresman et al., 2020) or indoor residual spraying) are likely to be impactful. By 

contrast, in other settings where transmission that occurs away from the home predominates 

(e.g. in Cambodian forests where exposure is primarily related to occupational practices (Rossi 

et al., 2018b)), clustering of infections in those sharing similar occupational practices potentially 

necessitates other targeting strategies (such as long-lasting insecticide treated hammocks for 

forest workers (Thang et al., 2009)).  

At a larger spatial scale, and in addition to the factors described above, malaria transmission 

dynamics are also extensively influenced by the patterns of spatial connectivity that link settings. 

These contribute to the transmission of malaria on spatial scales that exceed the limits of 

mosquito dispersal and influence rates of parasite importations between locations and shape 

patterns of geographical variation in malaria prevalence on regional scales (Wesolowski et al., 

2012), and hold particular relevance in pre-elimination and elimination settings where 

prevalence is low and an increasing proportion of malaria cases are imported rather than locally 

acquired (Churcher et al., 2014; Guerra et al., 2019; Raman et al., 2020).  

Sources of Heterogeneity iii. Factors Relating to the Mosquito Vector  

In addition to factors relating to the parasite and the human host, another significant source of 

heterogeneity in the transmission dynamics and patterns of malaria transmission is variation in 
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the dominant vectors responsible for transmission. The global distribution of the approximately 

70 Anopheles vectors able to transmit human malaria parasites is highly heterogeneous; a 

feature that results in marked differences in the transmission dynamics and epidemiology of 

malaria across different contexts and ecologies. 

An area of particularly marked anopheline diversity and heterogeneity in the geographical 

distribution of the primary vectors responsible for malaria transmission is India (Dev and 

Sharma, 2013). In urban areas, transmission is dominated by Anopheles stephensi (Kumar and 

Thavaselvam, 1992) whereas in rural settings across central, eastern and northern India, 

transmission is predominantly attributed to Anopheles culicifacies (responsible for 65% of 

malaria cases in rural and peri-urban areas (Wangdi et al., 2016)) and Anopheles fluviatilis 

(Nanda et al., 2000). Across the northeastern region, bordering Bhutan, Bangladesh and 

Myanmar, the main vectors include Anopheles minimus (Dev, Sharma and Hojai, 2009) and 

Anopheles dirus (Prakash et al., 2001). The bionomic properties of these vectors are similarly 

diverse. Anopheles culifacies is primarily zoophilic (Joshi et al., 1988), whilst Anopheles 

fluviatilis displays a wide array of feeding preferences depending on the particular sibling 

species being considered (Dev and Sharma, 2013). Whilst both Anopheles culicifacies and 

Anopheles fluviatilis are predominantly nocturnal feeders and generally endophilic, other 

vectors, most notably Anopheles dirus s.l, can be highly exophilic and exophagic (Obsomer, 

Defourny and Coosemans, 2007).  

This heterogeneity in vector species distributions and their respective bionomic properties and 

behaviours has important ramifications for malaria dynamics and transmission given differing 

vector behaviours (e.g. tendencies to bite indoors or outdoors), the impact of interventions 

aimed at controlling and combatting the disease (such as ITNs or IRS) will be highly variable 

depending on the ecological context and which particular vector species (or combinations of 

species) predominate. For example, where biting occurs predominantly outdoors interventions 

such as ITNs or IRS, which predominantly target indoor feeding and resting, are likely to have 

limited impact, and require different interventions (such as ATSBs or baited traps) to reduce 

malaria transmission (Sougoufara, Ottih and Tripet, 2020). Relatedly, in settings where the 

dominant malaria vectors also feed on animals in addition to humans, treating livestock or 

domestic animals with insecticidal drugs such as ivermectin are likely to be highly impactful 

(Chaccour et al., 2018). This bionomic diversity and its influence on intervention impact is in 

addition to extensive temporal heterogeneity in the profile of malaria risk (described in further 

detail below), itself underpinned by interactions between vector preferences for different larval 

habitats, the immediate hydrological environment (and its response to patterns of precipitation), 

and the broader ecological structure of the setting, which further influences the appropriateness 

and timing of key control interventions (such as IRS, IPTi or SMC).  
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This bionomic diversity is further underpinned by genetic variation in the vector, and in particular, 

its influence on the viability and utility of different insecticides used in malaria control. Across 

many settings, resistance against the widely utilised pyrethroid-based compounds typically 

present in ITNs and IRS has developed, with many mosquitoes (at least across sub-Saharan 

Africa) now at least partially resistant to the compounds (Hancock et al., 2018), findings which 

have motivated the development of new replacement compounds operating through different 

mechanisms to kill the mosquito (Sherrard-Smith et al., 2018). Development of this resistance 

is usually underpinned by selection for genetic variation resulting in upregulation of 

detoxification enzymes (e.g. esterases or P450 monooxygenases (Edi et al., 2014)), mutations 

to the site targeted by the insecticides (Kawada et al., 2011), or cuticular thickening (Wood et 

al., 2010). The degree of pyrethroid resistance (and to other insecticides more generally) 

present in the local mosquito population will have a significant impact on the expected effect of 

vector control interventions, given the significant influence on transmission that interventions 

affecting mosquito lifespan have, and the significant impact that specifically the killing effect of 

IRS and ITNs have on malaria burden (Protopopoff et al., 2018; Mosha et al., 2022). 

Sources of Heterogeneity iv. Factors Relating to the Broader Environment 

The epidemiology of malaria also varies extensively depending on the overall levels of local 

malaria transmission intensity. Patterns of clinical disease associated with malaria infection vary 

substantially with transmission intensity (Carneiro et al., 2010) – in highly endemic areas, 

disease burden is typically greatest in infants and young children. By contrast, in areas of lower 

transmission (where the average age of first infection is later and acquisition of immunity through 

cumulative exposure is slower), many cases also occur in older children and adults (Griffin, 

Ferguson and Ghani, 2014; Brasseur et al., 2011; Ceesay et al., 2008; Lalloo, Olukoya and 

Olliaro, 2006). Indeed, the age distribution of malaria infections appears to adapt relatively 

rapidly to reflect changes in transmission, with infection profiles typically shifting to older 

individuals as transmission declines. This phenomenon is observed in both infections in the 

wider community (Griffin, Ferguson and Ghani, 2014), as well as clinical cases (Brasseur et al., 

2011). The resulting age shift has also been shown to influence the composition of disease 

sequalae, particularly in terms of severe malaria. Because youngest children are most at risk of 

severe anaemia, shifting the average age of first admission to hospital has resulted in an 

increase in the proportion of severe malaria cases presenting with cerebral malaria in some 

settings (O’Meara et al., 2008; Paton et al., 2021). Shifting case distributions depending on 

overall levels of transmission has important implications regarding the effectiveness of age-

targeted control (such as a focus on protecting and preventing disease in children under 5, as 

in the now widespread SMC campaigns across the Sahel (Baba et al., 2020)), and the need to 
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consider potential alternative, less targeted options for burden reduction (such as mass-drug 

administration) or expansion of approaches like SMC to older age-groups (Cissé et al., 2016).  

In addition to the overall levels of malaria transmission experienced by individuals in a given 

setting, there is also frequently extensive temporal heterogeneity in malaria risk over the course 

of a year, with the degree of this seasonality in malaria transmission varying significantly across 

locations (Cairns et al., 2012). This seasonality is frequently underpinned by changes to size of 

the populations of Anopheles mosquitoes responsible for malaria transmission, which are highly 

dynamic and frequently exhibit substantial temporal fluctuations in size that shape the profile of 

malaria risk. The extent and timing of these fluctuations has important implications for the control 

of malaria, given that the viability, efficacy and cost-effectiveness of a number of malaria 

interventions (e.g. SMC (Wilson and IPTc Taskforce, 2011; Ross et al., 2011) or IRS (Pluess et 

al., 2010)) depends on ensuring appropriate timing of their delivery relative to peaks in risk. 

Indeed, in settings where malaria transmission is marked by significant seasonal fluctuations in 

disease risk and transmission is highly seasonal, significant success has been achieved with 

SMC programmes. Perhaps the most notable example has been across the Sahelian region of 

West Africa, where administration of prophylactic anti-malarial drugs to children over the course 

of the rainy season has led to reductions in hospital malaria deaths in the region of 40-60% 

(Baba et al., 2020), with even more promising results from recent trials combining SMC 

campaigns with seasonal delivery of the RTS’S vaccine (Chandramohan et al., 2021). Achieving 

maximal impact from seasonally delivered interventions such as these however is intimately 

dependent on appropriate timing relative to the seasonal peak in disease risk – the impact and 

cost-effectiveness of such programs are lower in settings where malaria transmission is more 

perennial (Selvaraj, Wenger and Gerardin, 2018).  

The drivers of these temporal fluctuations are complex and multifaceted, but largely driven by 

changes in the suitability and habitability of the environment. For example, mosquitos are highly 

sensitive to the ambient temperature of a setting, with local temperature strongly influencing the 

development rate of various stages of the vector life cycle (Kirby and Lindsay, 2009), as well as 

biting rates, adult mosquito and parasite mortality rates, and vector competence (Shapiro, 

Whitehead and Thomas, 2017). The role of temperature can also impact different mosquito 

species in different ways, with temperature shown to have a variable, and different impact on 

the developmental rates of Anopheles arabiensis and Anopheles funestus (Lyons, Coetzee and 

Chown, 2013). Rainfall is also an important determinant of transmission intensity in a region, 

due to the requirement of the early life cycle stages of the mosquito for an aquatic habitat in 

which to develop. Close relationships have been observed between the occurrence of rainfall 

and peaks in parasite prevalence (Odongo-Aginya et al., 2005) and disease incidence (Baird et 

al., 2002), though the influence of rainfall is not strictly linear, instead being determined by a 
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complex combination of the intensity, duration and level of precipitation an area receives 

(Fillinger et al., 2004; Koenraadt, Githeko and Takken, 2004). These rainfall dynamics strongly 

interact with the structure of the local environment to modulate the availability and extent of 

aquatic habitats suitable for egg laying and larval development. For example, the comparative 

composition of permanent (typically large bodies of water) and temporary (e.g. small puddles 

created by recent rainfall) aquatic habitats in a setting following rainfall varies dramatically 

depending on the local ecology and environment (Majambere et al., 2008). Variability in these 

factors as well as differences in the productivity (based on nutrient availability) and suitability 

(extent of pollution, water chemical composition etc) of aquatic habitats for breeding across 

different ecologies similarly structure the influence of rainfall on mosquito population dynamics 

and lead to noticeable differences, as has been observed across rural and urban settings with 

similar patterns of rainfall (Gimnig et al., 2001; Mattah et al., 2017).  

The above factors in turn interact with species-specific breeding preferences to further generate 

and shape variation in transmission dynamics across settings – although all members of the 

Anopheles genus share a requirement for standing water in which to breed, the exact location 

and requirements for breeding vary extensively. A close correlation between rainfall and peaks 

in Anopheles gambiae populations (Appawu et al., 2004; Okello et al., 2006; White et al., 2011) 

across African settings has been observed (in-keeping with its preference for transient, rain-fed 

pools of water in which to breed (Gimnig et al., 2001)). By contrast, previous work has 

highlighted the preference Anopheles fluviatilis frequently displays for streams and surrounding 

stagnant water as breeding sites (Dasgupta et al., 2018) – such breeding sites are typically 

unsuitable for breeding periods of heavy rain and instead are most productive following the 

cessation of rains, during the dry season.  

Together then, these climatic factors (as well many others such as humidity (Gray and Bradley, 

2005) and patterns of land use) interact with the geographical distribution of different anopheline 

mosquito species and their specific preferences around breeding to yield extensive variation in 

the degree, extent and timing of seasonal fluctuations (if any) in malaria risk across settings, a 

phenomenon which has material consequences for control interventions aimed to malaria 

control, particularly those that are typically seasonally delivered. This seasonal variation is 

further shaped by inter-annual fluctuations in the suitability of the environment for malaria 

transmission (such as inter-annual variability in rainfall across East Africa (Pascual et al., 2008) 

or the size of monsoon experienced by northwest India (Cash et al., 2013)) to further modify 

and alter temporal variation in malaria risk across settings.  

The above relates primarily to rural settings, but urban centres also represent sites of malaria 

transmission (in some contexts). Across sub-Saharan Africa, entomological inoculation rates 

and malaria transmission tends to be lower in urban settings compared to rural ones (Doumbe-
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Belisse et al., 2021; Robert et al., 2003) – this phenomenon is thought to arise from differences 

between settings in the types of housing that predominate (Trape and Zoulani, 1987; Killeen et 

al., 2019) and the more limited availability of viable water sources for the vectors that dominate 

transmission across the continent (De Silva and Marshall, 2012; Awolola et al., 2007; Kasili et 

al., 2009). By contrast, urban malaria transmission is a common phenomenon across much of 

South Asia, due to the presence of the highly efficient urban malaria vector Anopheles 

stephensi, which is able to transmit both Plasmodium falciparum and Plasmodium vivax 

effectively, and whose ability to thrive in urban settings is suggested to be underpinned by an 

increased tolerance for breeding in polluted water sources (Batra et al., 2001), and a superior 

ability to utilise the manmade hydrological habitats present in urban settings (Thomas et al., 

2016; Kumar and Thavaselvam, 1992). Concerningly, the vector has recently been imported to 

sub-Saharan Africa (having first been identified in Djibouti City in 2012 (Faulde, Rueda and 

Khaireh, 2014) and is now present across the Horn of Africa), with its further establishment and 

proliferation potentially threatening urban centres across the continent (Feachem et al., 2019).  

Sources of Heterogeneity v. Factors Relating to Ongoing Malaria Control 

The above primarily relates to how heterogeneity in various factors between settings can 

influence which malaria control interventions are most suitable and how they should be 

delivered to achieve maximum impact. It  is however also important to note that the 

epidemiology and transmission dynamics of malaria in the same setting are highly dynamic and 

can change over longer time-periods as transmission declines due to control efforts (Cotter et 

al., 2013). Thus, what constitutes the most effective and impactful forms of control at a single 

location will be intimately shaped by current transmission levels and the history of control efforts 

that have preceded them. Though the exact way in which the epidemiology of malaria changes 

as transmission declines is often driven by setting-specific factors, previous work has 

highlighted a number of common patterns which have material consequences for intervention 

impact.  

For example, previous work has highlighted the shifting composition of the infectious reservoir 

and a declining detectability of infections by conventional diagnostics like microscopy as 

transmission declines (Okell et al., 2012). Submicroscopic infections frequently predominate in 

low transmission settings and although they typically possess lower gametocyte densities than 

microscopically-detectable infections (Slater et al., 2019), can harbour gametocytes and so still 

contribute to onwards transmission. Given this, the comparative importance of control efforts 

explicitly targeting submicroscopically infected individuals is likely to vary significantly with 

current levels of transmission, and has material implications for the comparative impact of 

approaches targeting entire populations (such as mass-drug administration (Brady et al., 2017)) 



Page 35 of 194 
 

versus only targeting those with detectable malaria infections (such as mass-screen and treat 

(Kim et al., 2021)).   

Another important way in which malaria epidemiology changes as settings progressively control 

and reduce transmission is related to imported cases. In settings approaching malaria 

elimination where transmission has significantly reduced, imported malaria cases become 

increasingly important and represent a significant threat to achievement and maintenance of 

elimination (Le Menach et al., 2011). Indeed, importation is thought to have contributed to 

resurgences of malaria in settings trying to achieve elimination such as Zanzibar (Smith et al., 

2011), as well as those that have previously successfully achieved elimination such as with the 

reintroduction of Plasmodium vivax to Greece (Danis et al., 2011). Together, these highlight the 

changing approach to prioritising and targeting imported malaria cases that is required as 

transmission declines and settings approach and aim for elimination. Declines in malaria 

transmission also result in significantly increased spatial heterogeneity and clustering of cases 

(Bousema et al., 2010, 2012). This increased focality of malaria infections as transmission 

declines requires extensive adaptation by control programmes to effectively target remaining 

parasite reservoirs (potentially involving use of active-case detection methods to identify 

infected individuals (Sturrock et al., 2013b)) whilst recognising that overall reductions in malaria 

burden may lead to reduced prioritisation of the disease and motivate the use of potentially more 

cost-effective, less resource-intensive approaches to control such as reactive-case detection 

(Stresman et al., 2020).  

Control efforts leading to reductions in burden can also perturb and alter the entomological 

dynamics that underpin malaria transmission. Previous work from Zambia has highlighted how 

suppression of transmission using vector control efforts (such as ITNs and IRS) targeting 

predominantly indoor feeding and resting by mosquitoes can lead to an increasing proportion 

of onwards transmission being driven by secondary anopheline vectors which are primarily 

exophilic and less affected by indoor interventions (Gebhardt et al., 2022). Relatedly, even 

amongst the primary vectors of malaria transmission in sub-Saharan Africa (Anopheles 

gambiae, Anopheles funestus and Anopheles arabiensis), outdoor biting and resting has 

recently been implicated as a significant source of residual malaria transmission that becomes 

progressively more important as malaria is controlled through traditional vector-control tools 

(Sherrard-Smith et al., 2019). This work has highlighted the crucial need for vector control 

approaches targeting outdoor biting anopheline malaria vectors such as host/odour baited traps, 

resting traps or ATSBs (Sougoufara, Ottih and Tripet, 2020), which are likely to prove 

particularly crucial in low transmission settings where effective control through ITNs and IRS 

has led to an increased proportion of transmission occurring through exposure outdoors 

(Russell et al., 2011).    
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These changes in patterns of exposure to infectious mosquito bites can also lead to the 

emergence of new risk groups (frequently adult men), as the comparative importance of peri-

domestic (i.e. exposure occurring immediately occurring around the home) and occupational 

exposures (typically away from the home) to vectors changes (Chuquiyauri et al., 2012). Whilst 

peri-domestic exposure is common in the high transmission settings across sub-Saharan Africa, 

in numerous other (typically low-transmission settings), exposure frequently occurs away from 

the home (e.g. across the forests of the Peruvian Amazon (Saavedra et al., 2019) and 

Cambodia (Rossi et al., 2018b)). In these contexts, the utility of household-based ITNs and IRS 

is likely to be limited and previous research has highlighted the crucial need for other tools such 

as insecticide-treated hammock nets (Thang et al., 2009) or targeted chemoprophylaxis to 

forest-goers (von Seidlein et al., 2019a) in order to effectively control malaria in these settings.  

Thesis Aims 

The examples presented above highlight the diversity of different ways in which the 

epidemiology of malaria can vary – either between settings or as settings progressively control 

and reduce transmission. This variation drives heterogeneity across and between settings in 

where malaria is concentrated, how malaria is transmitted and who is most at-risk. In turn, these 

changes have material consequences for what constitutes the most impactful control 

interventions to be utilising. For example, the highest impact interventions in high transmission 

settings (where the aim is burden reduction) are likely to be significantly different to those 

required in low transmission settings (where goals may be centred around achieving 

elimination). Together, this underscores the crucial need to better understand and quantify the 

factors underlying heterogeneity in malaria epidemiology and transmission dynamics, in order 

to better tailor control efforts to the different and setting-specific eco-epidemiological contexts 

driving malaria burden.  

Motivated by the above, the aim of this thesis is to use a combination of statistical and 

mathematical modelling to further our understanding of variation in the epidemiological and 

entomological determinants of malaria transmission and dynamics, and explore the implications 

of this variation for control efforts, particularly for the appropriateness of different interventions 

in different settings. In Chapter 2, I carry out a systematic literature review and meta-analysis 

exploring the prevalence of submicroscopic malaria infections across a diverse range of settings 

globally, with an emphasis on understanding how and why the size of the submicroscopic 

reservoir varies so much across different settings, and the implication this heterogeneity might 

have for malaria control efforts. In Chapter 3, I continue my focus on the human host and 

characterise the degree of fine-scale spatial clustering of malaria infections at the household 

level across a diverse range of sub-Saharan African settings. I explore how the extent of this 
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clustering varies depending on overall levels of malaria transmission, and what this 

heterogeneity means for the appropriateness of reactive vs proactive based infection detection 

strategies. Chapter 4 shifts the focus away from variation in the spatial heterogeneity focussed 

and human infections and turns instead to variation in the temporal dynamics of the anopheline 

vectors responsible for sustaining malaria transmission. This Chapter focuses on developing a 

better understanding of the annual fluctuations in patterns of mosquito abundance and develops 

a statistical framework to characterise the drivers underlying the diverse seasonal patterns often 

observed across populations of different mosquito species, with a particular focus on what a 

better understanding of these dynamics can facilitate with regards to the appropriate timing of 

seasonally delivered malaria control interventions such as SMC or IRS. Chapter 5 extends the 

framework developed in Chapter 4 and applies it to the vector Anopheles stephensi (a highly 

efficient urban malaria vector typically endemic to South Asia and the Middle East) in order to 

better understand the consequences of its recent establishment in the Horn of Africa. Integrating 

these results into a previously developed model of malaria transmission, I explore the potential 

public health impact and consequences of diversity in its temporal dynamics on the viability and 

suitability of different IRS compounds. Finally, in Chapter 6, I summarise and discuss the results 

presented across the course of the thesis, consider key findings and limitations, and suggest 

potential avenues and directions for future research.   



Page 38 of 194 
 

Chapter 2 Global Patterns of Submicroscopic Plasmodium 

falciparum Malaria Infection: Insights from a Systematic 

Review and Meta-Analysis of Population Surveys 

Accurate ascertainment of malaria infection represents a crucial component of malaria control, 

and yet mounting evidence has highlighted the often-substantial prevalence of infections with 

parasite densities lower than the threshold of detection by microscopy (so called 

“submicroscopic” infections). The drivers of these infections remain uncertain, despite their 

established relevance to onwards transmission. Using a Bayesian regression modelling 

approach in tandem with a systematic review of the literature, in this Chapter I explore a number 

of human host- and setting-specific factors and examine their association with submicroscopic 

malaria infection. Using these results, I explore how variation in these factors shapes 

heterogeneity globally in the size and extent of the submicroscopic reservoir and the 

implications of this heterogeneity on the utility of specifically targeting submicroscopic malaria 

infections in near-elimination settings.  

Introduction 

The ability to accurately detect malaria infection during population surveys is a cornerstone of 

effective surveillance and control of the Plasmodium parasite. Routinely, malaria detection is 

undertaken using microscopy of blood films or rapid diagnostic tests, although in recent years 

there has been an increase in the use of more sensitive molecular methods in research 

contexts. These techniques (typically PCR based) (Snounou et al., 1993) have revealed the 

widespread presence of infections with parasite densities lower than the threshold of detection 

by routine methods such as microscopy (Lamptey et al., 2018; Zhou et al., 2016; Mueller et al., 

2009). Such submicroscopic infections are present across a range of different settings and 

populations (Tadesse et al., 2017; Steenkeste et al., 2010). Although rarely causative of severe 

symptoms, these infections have been associated with some adverse outcomes during 

pregnancy (Cottrell et al., 2015) and in children younger than 10 years (Katrak et al., 2018).  

These infections are also relevant to public health because of their potential to be transmittable, 

despite being undetectable by conventional diagnostics. Although typically characterised by 

lower parasite densities and infectivity than microscopically detectable infections (Slater et al., 

2019), individuals with submicroscopic infections frequently harbour gametocytes (the 

transmissible form of the parasite) and can contribute to onwards transmission of malaria. 

Individuals with submicroscopic infections have been shown to contribute to transmission 

across areas of high (Lin Ouédraogo et al., 2015) and low (Tadesse et al., 2018) transmission 

intensity, as well as seasonal (Ouédraogo et al., 2009) and perennial (Schneider et al., 
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2007) settings, underscoring the potential relevance of this infection subgroup to malaria 

control efforts. 

Despite this potential relevance to malaria transmission, our understanding of the factors 

influencing the size of the submicroscopic reservoir remains far from complete. Previous 

reviews have found that microscopy misses on average, half of all Plasmodium 

falciparum infections compared with PCR-based methods in cross-sectional surveys (Okell et 

al., 2009) and that adults are more likely to harbour submicroscopic infections than children 

(Okell et al., 2012). However, these reviews also identified extensive unexplained variation in 

the size of the submicroscopically infected population across settings, suggesting the existence 

of other important factors that determine the size of the reservoir. For example, although the 

extent of submicroscopic infection is highly heterogeneous across different locations (Tadesse 

et al., 2017; Idris et al., 2016), it remains unclear whether this represents systematic variation 

according to geographical location or is reflective of other underlying location-specific 

characteristics. 

Resolving these gaps in our understanding of submicroscopic epidemiology has material 

consequences for the future of malaria control. Given that submicroscopic infections can 

contribute to malaria transmission, understanding when and where they are most prevalent is 

vital to the control of the disease. Whilst recent years have seen increases in transmission 

across a number of settings, elimination remains a target for a number of countries (World 

Health Organization, 2021). Low-transmission settings (such as those aiming for elimination) 

can have high proportions of submicroscopically infected individuals (Okell et al., 2012; Lin, 

Saunders and Meshnick, 2014). Understanding the prevalence, detectability, and 

infectiousness of low-density infections in these settings will be essential for planning for the 

elimination of malaria: is there benefit in detecting and treating such infections, or are resources 

better spent elsewhere? Improving our understanding of the drivers of submicroscopic infection 

in these areas is, therefore, crucial to better define when and where submicroscopic infection is 

likely to occur and how the size of the submicroscopic reservoir is likely to change as areas 

approach elimination. 

Here I update previous reviews on submicroscopic malaria infection prevalence (Okell et al., 

2009, 2012), leveraging the increase in the usage of molecular methods over the past decade 

to explore novel determinants of submicroscopic infection prevalence. These determinants 

include geographical location and historical patterns of transmission, diagnostic methodology, 

seasonality, and the role of age at a finer resolution than previously possible. These results are 

then integrated with estimates of the infectivity of submicroscopic individuals to mosquitoes to 

estimate their contribution to malaria transmission across a range of different settings. 
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Methods 

Search strategy and selection criteria 

A systematic review and meta-analysis of available data on submicroscopic malaria prevalence 

was carried out. Cross-sectional malaria prevalence data in which both microscopy and PCR 

based methods had been used to determine infection were compiled, updating a previous 

review published in 2012(Okell et al., 2012). PubMed and Web of Science were searched using 

the terms “PCR” OR “Polymerase Chain Reaction” AND “falciparum” from Jan 1, 2010, (i.e., the 

end date of the previous systematic review (Okell et al., 2012)) to Oct 11, 2020. Only studies in 

English were included. Studies reporting asexual Plasmodium falciparum prevalence by 

microscopy and PCR in the same population were included. See Figure 2.1 for details of 

retained and excluded records at each stage of review. Surveys of pregnant women, in which 

participants were chosen on the basis of symptoms or treatment, or which did not involve a 

population from a defined location were excluded. Submicroscopic infections were defined as 

where infection was detectable by PCR but not by microscopy. Specificity of microscopy 

compared to PCR is high (average 98·4% (Okell et al., 2009)), and so it was assumed that 

microscopy-positive individuals are also PCR-positive. 

Data extraction 

From each study, I extracted information on the number of individuals tested by PCR and 

microscopy, as well as the number of tested individuals positive for Plasmodium 

falciparum malaria by each method. I also extracted data on the exact diagnostic methodologies 

used (specifically, the PCR method used and number of microscopy slides scanned) and 

characteristics of the survey location and timing (the global region, country, specific location, 

and sampling season). Where available, information on the age range of survey participants 

were also extracted. 

ANOVA and Tukey's honest significant difference 

Data were analysed using an ANOVA based approach to assess differences in the mean 

prevalence ratio (defined as the proportion of PCR positive infections also detectable by light 

microscopy) and the factors underlying these differences. Data were weighted according to the 

cross-sectional survey sample size and controlling for the PCR prevalence recorded in the 

survey. Tukey's honest significant difference (HSD) test was used to post-hoc examine pairs of  
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Figure 2.1: Systematic review overview, workflow and selection of eligible studies. 
Searches for malaria prevalence data where infection status had been determined using both 

microscopy and PCR based methods were carried out using a systematic review, updating a 

systematic review last conducted in 2017. A total of 121 studies were newly identified in the 

update. Alongside 45 studies identified in the previous systematic review, this gave a total of 

166 studies included in the formal analyses presented here. 
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factors for significant differences in the mean prevalence ratio. These analyses were done using 

R statistical software, version 4.0.2. 

Log-linear regression model formulation 

In line with a previous review (Okell et al., 2012), data were also analysed using a Bayesian log-

linear regression-based framework to estimate microscopy prevalence and the prevalence ratio 

as a function of PCR prevalence. We define the following pLM,i as the underlying prevalence of 

microscopically detectable malaria in survey 𝑖, and p𝑃𝐶𝑅,𝑖 as the underlying prevalence of PCR-

detectable malaria in survey 𝑖. We then define the following: 

LMi = ln (
pLM,i

1 − pLM,i
) 

PCRi = ln (
pPCR,i

1 −  pPCR,i
) 

i.e.  where LMi is the log odds of microscopy prevalence in survey i, and PCRi is the log odds of 

PCR prevalence. Per the methodology described by Sharp and Thompson (Sharp and 

Thompson, 2000), we define the following equation to relate LMi and PCRi:  

LMi =  PCRi +  δi            

 

where δi is the log odds ratio of microscopy to PCR prevalence. δi is defined as: 

 

δi =  δi
′ +  β0(PCRi − PCR̅̅ ̅̅ ̅)            

where PCR̅̅ ̅̅ ̅ is the log odds of the mean survey PCR prevalence, β0 is a coefficient shared across 

all surveys describing how log odds of microscopy prevalence varies with log odds of PCR 

prevalence, and δi
′ is a survey-specific intercept coefficient describing the effect of PCR 

prevalence on microscopy prevalence. This model structure allows δi to vary between surveys, 

with β0 controlling the extent of this variation. In addition to this logit-linear model, I also explored 

a range of different model structures representing relationships between microscopy and PCR 

prevalence of varying flexibility, to assess their capacity to fit to this newly collated and updated 

dataset. These were formulated as follows: 

LMi =  PCRi +  δi 

where: 

δi =  δi
′                         (Basic)  

δi =  δi
′ +  β(PCRi − PCR̅̅ ̅̅ ̅)                     (Linear)  

δi =  δi
′ +  β(PCRi −  PCR̅̅ ̅̅ ̅) +  𝛾(PCRi − PCR̅̅ ̅̅ ̅)2               (Quadratic)  

δi =  δi
′ +  β(PCRi −  PCR̅̅ ̅̅ ̅) +  𝛾(PCRi − PCR̅̅ ̅̅ ̅)2 +  𝜎(PCRi −  PCR̅̅ ̅̅ ̅)3           (Cubic)  
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Where, as above, LMi is the log odds of microscopy prevalence in trial i and PCRi is the log odds 

of PCR prevalence in trial i. PCR̅̅ ̅̅ ̅ is the log odds of the mean PCR prevalence across surveys. 

δi is the log odds ratio (OR) of microscopy to PCR prevalence, with δi
′ the expected log OR 

when the log odds of PCR prevalence is equal to the overall mean across trials. β, 𝛾 and 𝜎 are 

regression coefficients specifying the extent and nature of how δi varies between surveys.  

Modelled prevalence values were assumed to be drawn from a binomial distribution with the 

sample size of the survey as the number of trials (people tested) and the underlying true 

prevalence as the probability of “success” (malaria positivity) in any given trials: 

Positive𝐿𝑀,i ~ Binomial(pLM,i, N𝑖) 

Positive𝑃𝐶𝑅,i ~ Binomial(pPCR,i, N𝑖) 

where Positive𝐿𝑀,i and Positive𝑃𝐶𝑅,i are the observed number of malaria positive individuals by 

each diagnostic method, pLM,i and pPCR,i re the underlying prevalences according to each 

diagnostic, and N𝑖 is the sample size for survey i. 

Bayesian Gibbs Sampling MCMC Based Model fitting 

The models described above were fitted within a Bayesian Markov chain Monte Carlo (MCMC) 

framework, implemented in the probabilistic programming language JAGS (Just Another Gibbs 

Sampler (Plummer and Others, 2003)) which uses a Gibb-sampling based approach to sample 

the posterior distribution of Bayesian models. The code implementing the analyses described 

below is openly available via GitHub at 

https://github.com/cwhittaker1000/submicroscopic_malaria. Each of the models described 

above were fitted to the entirety of the collated prevalence data (including both surveys identified 

in this review as well as those from previous reviews).  

The goal of Bayesian model fitting schemes underpinned by MCMC-based algorithms such as 

these is for the algorithm to generate a set of samples that correspond to a random sample from 

the posterior distribution of interest – specifically to draw from the posterior density 𝑝(𝑥|𝑦) where 

𝑥 represent the model parameters and 𝑦 the observed data. Given a multivariate posterior 

distribution, and with 𝑋 = (𝑥1, . . . , 𝑥𝑛) representing a single sample from the joint distribution 

𝑝(𝑥1, . . . , 𝑥𝑛|𝑦) (where 𝑦 is our observed data and (𝑥1, . . . , 𝑥𝑛) are our model parameters), 

denote the 𝑖th sample by 𝑋𝑖 = (𝑥1
𝑖 , . . . , 𝑥𝑛

𝑖 ). The Gibbs Sampling algorithm then updates via the 

following steps:  

1. The aim is to generate the next sample, which we will call 𝑋𝑖+1. 𝑋𝑖+1 =  (𝑥1
𝑖+1, . . . , 𝑥𝑛

𝑖+1). 

Starting from 𝑋𝑖, we sample the parameters in order from 1 … 𝑛 conditioning on the 

current values of all other model parameters. I.e. if 𝑗 indexes the parameters, then for 

https://github.com/cwhittaker1000/submicroscopic_malaria
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𝑥𝑗
𝑖+1 sample from the distribution of that parameter conditional on the current values of 

all the other parameters sampled so far i.e. 𝑝(𝑥𝑗
𝑖+1| 𝑥1

𝑖+1 … , 𝑥𝑗−1
𝑖+1, 𝑥𝑗+1

𝑖 , . . . , 𝑥𝑛
𝑖 ).  

2. Repeat this step 𝑛 times (i.e. once for each parameter). 

3. Repeat steps 1. and 2. 𝑘 times, where 𝑘 is the pre-specified number of MCMC iterations.  

Uninformative normal prior distributions were assigned to all parameters in the model. In each 

instance, 4 chains of 10,000 iterations were run for purposes of model fitting and parameter 

inference. 5,000 of these iterations were discarded as burn-in, leaving 5,000 iterations from 

each chain and therefore a total of 20,000 iterations available for inference. This sample was 

further thinned by selecting only every 10th element in order to minimise auto-correlation, leaving 

a sample of 2,000 values upon which inference was based. The Gelman-Rubin convergence 

statistic were monitored in all cases to assess convergence and were all consistently <1.02, 

indicating stability of the chains and likely convergence to the underlying true posterior 

distribution.  

Model comparison 

Model comparison was carried out using the deviance information criterion (DIC), which 

considers both the capacity of the model to fit the data, as well the model’s underlying complexity 

(Spiegelhalter et al., 2014). It is formulated as follows: 

DIC =  D(θ̅) +  2𝑝𝐷  

where D(θ̅) is the deviance evaluated at the expectation of θ (the vector of parameter values 

that together specify the model used, so δi
′, β, 𝛾 and 𝜎 for our purposes) and 𝑝𝐷 is the variance 

of the deviance evaluated across all values of θ. This latter quantity can be considered to be a 

proxy measure of the effective number of parameters the model contains, and so reflects the 

underlying complexity of the model. Lower DIC values are preferred and so in doing so, the DIC 

trades off model fit (as indicated by D(θ̅)) and model complexity (𝑝𝐷) to enable (in theory) 

selection of the model best able to extrapolate to new, unobserved data. For the data considered 

here, a model with a linear relationship linking PCR and microscopy prevalence on the logit 

scale (the model used in previous reviews) was found to have the lowest DIC and is therefore 

the preferred model. Based on this, this model was used for all subsequent analyses, though 

model fits to the data for each of the different formulations are provided in Figure 2.9.  

Historical and current regional transmission intensity stratification 

Surveys done in Africa were geolocated and prevalence estimates (aggregated to the 

administrative unit 1 level, which represents the highest level of officially delineated area within 

a specific country) from the Malaria Atlas Project (Bhatt et al., 2015b) (MAP) were used to 

characterise current and historical transmission intensity of the region that each survey 
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belonged to. Note that this distinguishes between local malaria transmission (defined by the 

prevalence recorded in each survey and hereafter referred to as survey PCR prevalence), and 

malaria transmission at the regional level (reflecting broader patterns of transmission and 

hereafter referred to as regional prevalence, which represents prevalence averaged at the 

administrative unit 1 level). This regional-level transmission represents the average of a 

heterogeneous mixture of higher and lower-transmission areas, and has relevance to local 

transmission because factors such as human movement patterns and circulating parasite 

genetic diversity are often similar across nearby settings in the same region, even if 

transmission levels differ markedly (Tatem and Smith, 2010; Tessema et al., 2019).  

Regional transmission levels (both historical and current) were then used to stratify each study 

into one of three transmission archetypes.  

(1) Historically high and currently high refers to areas with historically (defined as 15 years 

previous to the date of the survey) high transmission intensity (>15% slide prevalence 

in children aged 2–10 years) and remain so at the time of the survey;  

(2) historically high and currently low refers to areas of historically high transmission 

intensity that have declined in the 15 years previous to the date of the survey to low 

levels (<15% slide prevalence in children aged 2–10 years); and  

(3) historically low and currently low refers to areas with historical and current low 

transmission (<15% slide prevalence in children aged 2–10 years).  

Where MAP estimates were unavailable (dates earlier than 2000), it was assumed that the year 

2000 was reflective of historical transmission intensity because the substantial increase in 

international financing for malaria control occurred from 2000 onwards (approximately a 

twentyfold increase between 2000 and 2015) (WHO, 2014). Separate Bayesian log-linear 

regression models were then fitted to data from each transmission archetype to assess the 

effect of historical and current transmission intensity on the prevalence ratio. 

Estimation of contributions to onwards transmission 

The results of the regression modelling described earlier (which provides an estimate of the 

proportion of infections that are expected to be submicroscopic given an estimate of 

microsopically detectable malaria prevalence) were integrated with estimates of infectivity for 

submicroscopic and microsopically detectable infections to estimate the potential contribution 

of submicroscopic infections to transmission across different settings. Estimates of comparative 

infectivity of microscopically-detectable infections versus submicroscopic infections (hereafter 

referred to as the infectivity ratio) are variable, ranging from a 2× to a 20× difference (Coleman 

et al., 2004; Lin et al., 2016). Given this, three scenarios were considered in which 
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microscopically-detectable infections were 2×, 5×, or 20× more infectious to mosquitoes than 

submicroscopic infections. Proportional contribution to transmission by submicroscopic 

infections was calculated as: 

(pPCR −   pLM) 

(pLM ∗  𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜) + (pPCR −  pLM)
 

Where pPCR and pLM describe the prevalence of malaria by PCR and microscopy respective; 

the term (pPCR −   pLM) therefore describes the proportion of individuals positive by PCR and 

not by microscopy (i.e. the proportion of individuals with submicroscopic infections). The relative 

infectiousness of submicroscopic infections is set to 1, and the infectivity ratio (either 2, 5, or 

20) is a multiplicative factor reflecting the fact that microscopically detectable infections are more 

infectious. The equation's denominator reflects total onwards transmission occurring within the 

population, the numerator the amount of transmission attributable to submicroscopic infections. 

These analyses assume that submicroscopic and microscopically infected populations do not 

differ in other factors that are likely to influence transmission (eg, age and mosquito exposure). 

 

Results 

4893 potentially eligible studies were identified in the systematic review update and 1768 

duplicates were excluded, leaving 3125 studies for screening. After screening titles and 

abstracts for relevance, 520 studies were kept for full-text evaluation, of which 121 were 

included. These 121 studies, alongside 45 identified during previous systematic reviews (Okell 

et al., 2012, 2009), yielded 551 datapoints comprising distinct cross-sectional surveys in which 

surveyed individuals had malaria infection assessed by both PCR and microscopy (Figure 2.2). 

The number of prevalence survey pairs is greater than the number of included studies because 

many studies presented results from multiple different locations. 164 of these 551 datapoints 

were from cross-sectional surveys done in a specific age-group (0–5 years, 6–15 years, and 

>15 years) and were analysed separately; 387 datapoints were from cross-sectional surveys 

done in populations that spanned more than one age-group. Across these data (n=387) included 

in the primary analyses, microscopy detected 44·9% (95% CI 42·0–47·8) of all PCR-detectable 

infections, although this varied across settings. In a small number of instances where the 

number of microscopically detected infections was higher than those identified by PCR (n=10), 

the prevalence ratio was adjusted to 1 (this adjustment does not qualitatively alter the results 

described here). 

I fitted a Bayesian log-linear regression model to this collated data (Figure 2.2) and found that 

the prevalence ratio (defined as the proportion of PCR positive infections also detectable by   
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Figure 2.2: Prevalence of infection by PCR vs microscopy in 267 prevalence survey pairs 
and model fits. Bayesian Markov chain Monte Carlo methods were used to fit a linear 
relationship between PCR prevalence and microscopy prevalence on the log odds scale. (A) 
387 microscopy and PCR prevalence surveys were identified in this study and previous 
systematic reviews. The fitted model relationship (purple line) and the 95% credible interval of 
the mean (light purple shaded area). (B) The prevalence ratio (ie, the proportion of PCR positive 
individuals also detectable by microscopy) according to underlying PCR prevalence for each of 
the 387 survey microscopy–PCR pairs (points) used to fit the full model. The estimated mean 
prevalence ratio (purple line) and 95% credible interval of the mean (light purple shaded area) 
are also shown. (C) Box plot of the prevalence ratio disaggregated by global region. For each 
region, the size of the point reflects the number of individuals tested by microscopy and PCR. 
Thick coloured bar on the box plot represents the weighted mean prevalence ratio for each 
global region. Thin line indicates the median, box indicates IQR, and whisker limits span 1·5× 
the IQR. 
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microscopy) increased as malaria transmission (measured by survey PCR prevalence) 

increased, indicating a declining proportion of submicroscopically infected individuals in the 

settings of highest malaria prevalence. An average of 60–70% of infections were 

submicroscopic in the areas of lowest PCR prevalence, but only 10–20% were submicroscopic 

in the highest prevalence areas. I also fitted the model separately to the data collected in 

previous reviews, and compared it to a model fitted to the data newly collated here. There was 

no difference in the modelled relationship between PCR and microscopy prevalence when fitted 

to the previously compiled dataset compared to the data newly collated here (Figure 2.3), and 

model fit (as assessed by the correlation between the observed and model-predicted 

microscopy prevalence) was similar (R2 of ~0.9 for models fitted to both previously collected 

and newly collated datsets) (Figure 2.4). Some more flexible model structures incorporating 

non-linear relationships between PCR and microscopy prevalence were also fitted to the data. 

A log-linear model provided the best overall fit (as measured by the Deviance Information 

Criterion, DIC) (Figure 2.5). There was a small but significant effect of sampling season after 

controlling for survey PCR prevalence (ANOVA, df=1, p=0·0017), with submicroscopic 

infections less common during the wet season than the dry season (Figure 2.6). There was 

also a significant effect of PCR methodology (ANOVA, df=4, p=0·038) (Figure 2.7) with the 

prevalence ratio marginally lower in surveys using quantitative PCR (qPCR) and RT-PCR to 

determine infection status. Scanning a higher number of microscopy fields to determine the 

presence or absence of infection was also significantly associated with the prevalence ratio 

increasing (ANOVA, df=1, p=0·0053). 

Grouping surveys by global region (west Africa, east Africa, South America, and Asia and 

Oceania) revealed marked geographical variation in the prevalence ratio (ANOVA, p<0·0001, 

df=3), being lower in South American surveys than all other regions (Tukey's HSD, p<0·0001 

for all pairwise comparisons) and higher in west African surveys than all other regions (Tukey's 

HSD, p<0·0001 for all pairwise comparisons) (Figure 2.2). To examine these differences in 

more detail, a separate Bayesian log-linear model was fitted to the data from each global region 

and the modelled prevalence ratio across the range of transmission intensities found in each 

assessed (Figure 2.8 A–D). These results revealed that the prevalence ratio in surveys from 

South America was lower (i.e., more infections were submicroscopic) than would be expected 

based on their respective transmission intensities alone, and consistently lower than all other 

global regions (Figure 2.8 E). Across all settings, nested PCR predominated as the 

methodology used, although South America had higher levels of qPCR usage than other 

settings. No significant variation in which microscopy methodology was used between regions 

was observed (Figure 2.9).   
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Figure 2.3: Prevalence of infection by PCR versus microscopy and model fits for 
previously collated data and data newly identified as part of this review.  Bayesian Markov 
chain Monte Carlo methods were used to fit a log-linear relationship between PCR prevalence 
and microscopy prevalence separately to data collated during previous reviews on 
submicroscopic malaria infections (n = 100, green dots) and data newly identified as part of this 
review (n = 287, pale purple dots). (A) Microscopy and PCR Prevalence data from surveys, with 
the fitted model relationship (green and pale purple lines) and the 95% credible interval of the 
mean (shaded areas around each line). (B) The sensitivity of microscopy (defined here as the 
proportion of PCR positive individuals also detectable by microscopy) according to underlying 
PCR prevalence for each of the survey microscopy-PCR pairs used to fit the full model. For 
each dataset, the estimated average sensitivity (coloured line) and 95% credible interval of the 
mean (shaded area) also shown.  
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Figure 2.4: Comparison of Empirically Observed Microscopy Prevalence and Microscopy 
Prevalence Predicted by Bayesian Regression Modelling. Bayesian Markov chain Monte 

Carlo methods were used to fit a linear relationship between PCR prevalence and microscopy 

prevalence on the log odds scale. For each survey (green for newly identified surveys as part 

of this systematic review, grey for surveys identified in previous systematic reviews), the 

empirically observed and modelled microscopy prevalence were plotted and compared. The 

correlation between the observed and model-predicted microscopy prevalence across the 

surveys was 0.90 (measured via R2, the correlation coefficient).  
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Model 
Structure 

Model Equation DIC 

Basic LMi =  PCRi +  δi  5377 

Standard 
(Linear) 

LMi =  PCRi +  δi + β(PCRi − PCR̅̅ ̅̅ ̅) 5361 

Quadratic LMi =  PCRi +  δi + β(PCRi − PCR̅̅ ̅̅ ̅) +  𝛾(PCRi −  PCR̅̅ ̅̅ ̅)2  5368 

Cubic LMi =  PCRi +  δi + β(PCRi − PCR̅̅ ̅̅ ̅) +  𝛾(PCRi −  PCR̅̅ ̅̅ ̅)2 +
 𝜎(PCRi −  PCR̅̅ ̅̅ ̅)3  

5370 

 

Figure 2.5: Comparison of different model structures and their capacity to fit the collated 
data. Bayesian Markov chain Monte Carlo methods were used to fit a number of different 

relationships, varying in flexibility, to PCR and microscopy prevalence on the logit scale. (A) 

Microscopy and PCR Prevalence data from surveys (black points), with the fitted model 

relationship (red, green, blue and purple lines, denoting Basic, Linear, Quadratic and Cubic 

relationships on the logit scale respectively) all plotted on the natural scale. (B) As for (A), but 

plotted on the logit scale. (C) Description of the different model structures considered, along 

with the corresponding deviance information criterion (DIC) for each. Lower DIC values indicate 

a more preferred model.  
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Figure 2.6: Comparing the prevalence ratio across different sampling seasons.  Where 

available, information from references on which season sampling had occurred in was extracted 

and collated. Presented are boxplots of the prevalence ratio (defined as the ratio of 

microscopically detectable infections and PCR detectable infections, with a lower prevalence 

ratio indicating a higher proportion of individuals with submicroscopic infections) stratified by 

sampling season (n = 100 for dry season sampling, and n = 159 for wet season sampling), 

including also the raw datapoints (coloured circles). Note that an important caveat to these 

results is that I was unable to distinguish exact timing of sampling (e.g. early or late within 

season) in any more granular detail.  
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Figure 2.7: Comparing the prevalence ratio across different PCR methodologies. Where 
available, information from references on the seasonal timing of the sampling was extracted 
and collated. (A) Boxplots of the prevalence ratio (defined as the ratio of microscopically 
detectable infections and PCR detectable infections, with a lower prevalence ratio therefore 
indicating a higher proportion of individuals with submicroscopic infections) stratified by PCR 
methodology used to determine malaria infection in the survey, including also the raw datapoints 
(coloured circles, weighted by the inverse of their variance), and the weighted mean (thicker 
horizontal lines). There was a statistically significant difference in the mean prevalence ratio 
across PCR methodologies (p=0.038), with the prevalence ratio marginally lower in surveys 
using qPCR and RT-PCR to determine infection status (indicating that microscopy performs 
more poorly compared to qPCR than with other PCR methodologies). This significance 
remained even after explicitly accounting for PCR Prevalence in the underlying model. (B) 
Barplot of the mean prevalence ratio (and corresponding 95% confidence interval of the mean, 
as indicated by the error bars) for each different PCR diagnostic methodology used to ascertain 
malaria infection status.  
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Figure 2.8: Global variation in the prevalence ratio and the relative size of the 
submicroscopic reservoir. Microscopy and PCR prevalence in included surveys (points), the 
model-fitted relationship (coloured line) and 95% credible interval (shaded area) for Asia and 
Oceania (A), west Africa (B), east Africa (C), and South America (D). (E) The model-fitted 
average microscopy: PCR prevalence ratio by PCR prevalence for each of the four regions 
(coloured line) and 95% credible interval (shaded area). Coloured countries on each regional 
map indicates countries for which studies were identified during the systematic review. 
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Figure 2.9: Tabulation of diagnostic properties by global region. Where available, 

information from each of the references were collated detailing some of the properties of the 

microscopy and PCR diagnostic methodologies used to determine infection status, and then the 

proportion of studies using each methodology disaggregated by global region. Specifically, 

these were (A) the type of PCR used to diagnose malaria infection, (B) the number microscopy 

fields checked when examining blood smears and (C) the number of leucocytes counted. Note 

that in some instances, the number of leucocytes counted was not used to determine infection 

status, but instead used to calculate parasite densities. The exact purpose of leucocyte counting 

was not consistently reported however, and so all instances in references that mention the 

number of leucocytes counted are tabulated here.  
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The majority of South American surveys had been done in areas marked by historically low 

transmission. I therefore investigated whether a high proportion of submicroscopic infections 

(low prevalence ratio) might be observed in areas with similarly historically low transmission in 

Africa. These results indicated that both regional historical prevalence (in the year 2000) and 

current prevalence (both averaged over the administrative unit 1 level) were significant 

predictors of the prevalence ratio when controlling for survey PCR prevalence (ANOVA, 

p<0·0001 for regional historical prevalence at the administrative unit 1 level, p=0·042 for 

regional current prevalence at the administrative unit 1 level), suggesting that historical 

transmission levels, in addition to current transmission levels, are an important determinant of 

the submicroscopic reservoir size.  

I next classified each survey in my review from Africa into three transmission archetypes on the 

basis of the historical and current levels of transmission at the administrative unit 1 level (Figure 

2.10 A) and fitted log-linear Bayesian regression models to each. The results were concordant 

with those from the ANOVA, with African surveys in regions with both historically and currently 

low transmission (n=40; Sudan, Ethiopia, and parts of Kenya and Tanzania) having on average 

a lower prevalence ratio (more submicroscopic infections) than other currently 

low endemicity areas in Africa where historical transmission was high (n=99) and settings where 

both historical and current transmission levels were high (n=90) (Figure 2.10 B). There was no 

evidence of systematic differences in which PCR and microscopy methodologies were used 

across different transmission archetypes (Figure 2.11).  

In order to assess whether the threshold used to define transmission archetypes influenced the 

results, I repeated these analyses with a variety of different prevalence thresholds (specifically, 

5, 10 and 20%) used to distinguish “high” from “low” transmission (with 15% used for the results 

presented in Figure 2.10). In all instances (Figure 2.12 A – D), model fitting revealed an 

incremental decline in prevalence ratio (indicating a higher proportion of individuals who were 

submicroscopically infected) going from High High surveys to High Low and then Low Low 

surveys. This was most evident with the higher cutoffs of 20% or 15% (Figure 2.12 A and D) – 

as the cutoff threshold was lowered, an increasing number of surveys that had previously been 

classified as “High Low” were reclassified to “High High” and the difference in prevalence ratio 

between “High Low” and “Low Low” settings declined. Importantly however, the difference 

between “High High” and “Low Low” settings remained irrespective of the definitional threshold 

used, a finding that is also corroborated through the results of additional statistical analyses 

carried out (Figure 2.12 E), highlighting that the observed results are robust to the choice of 

stratification threshold used to define high and low levels of transmission.  

 



Page 57 of 194 
 

 
 
 
 
 

 
 
Figure 2.10: The effect of historical and current transmission intensity on the prevalence of submicroscopic malaria infection in Africa. 
(A) Map detailing the African countries and associated administrative unit 1 level regions for which prevalence surveys were identified, as well 
as their assigned transmission archetypes based on historical and current transmission intensity (high high=historically high and currently high; 
high low=historically high and currently low; low low=historically low and currently low). (B) The prevalence ratio of surveys in each transmission 
archetype (points; n=90 for high high, n=99 for high low, and n=40 for low low), and the modelled average prevalence ratio (coloured line) with 
95% credible interval (shaded area). 
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Figure 2.11: Tabulation of diagnostic properties by transmission archetype. Where 

available, information from each of the references were collated detailing some of the 

properties of the microscopy and PCR diagnostic methodologies used to determine infection 

status, and then the proportion of studies using each methodology disaggregated by 

transmission archetype (defined as described in the Methods section of the main text). 

Specifically, these were (A) the type of PCR used to diagnose malaria infection, (B) the 

number microscopy fields checked when examining blood smears and (C) the number of 

leucocytes counted. Note that in some instances, the number of leucocytes counted was not 

used to determine infection status, but instead used to calculate parasite densities. The exact 

purpose of leucocyte counting was not consistently reported however, and so all instances in 

references that mention the number of leucocytes counted are tabulated here.  
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Prevalence 
Cutoff 

Overall Significance High High vs High Low High Low vs Low Low High High vs Low Low 

20% Yes (p < 0.001) No (p = 0.42) Yes (p < 0.001) Yes (p < 0.001) 

15% Yes (p < 0.001) No (p = 0.92) Yes (p = 0.003) Yes (p < 0.001) 

10% Yes (p < 0.001) Yes (p < 0.001) Yes (p = 0.003) Yes (p < 0.001) 

5% Yes (p < 0.001) Yes (p < 0.001) Marginal (p = 0.07) Yes (p < 0.001) 
 

Figure 2.12: Sensitivity analysis to assess the robustness of the results surrounding 
historical and current patterns of transmission intensity. The analyses presented in 

Figure 5 of the main text Results section were repeated using different thresholds (5, 10, 15 

or 20%) for defining transmission archetypes. In each instance, the standard log-linear model 

was fitted and the results plotted for each definition (panels (A) – (D)), where the points 

represent a single survey, the line represents the model fit and the pale shaded area the 95% 

Credible Interval. Statistical analyses were also carried out (E), with ANOVA used to explore 

whether the mean prevalence ratio of the three transmission archetypes significantly differed 

(table 2nd column), with a post-hoc Tukey test carried out to assess pairwise differences (table 

columns 3-5).   
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Surveys carried out in specific age groups were also collated, and from these surveys, three 

age-based categories were defined: young children (0–5 years) giving 49 prevalence survey 

pairs, older children (6–15 years) giving 62 prevalence survey pairs, and adults (>15 years) 

giving 53 prevalence survey pairs. The prevalence ratio varied significantly between age 

groups (ANOVA, p<0·0001, df=2), and was significantly lower in adults (indicating a greater 

proportion of submicrosopic infections) than in young children (Tukey's HSD, p<0·0001) and 

older children (Tukey's HSD, p<0·0001) (Figure 2.13 A). Fitting the Bayesian regression 

model separately to the data for each age group highlighted that the increased prevalence 

ratio observed in young children and older children compared with adults was less pronounced 

in higher-transmission settings. In high endemic areas with 70% overall PCR prevalence, the 

prevalence ratio for young children was predicted to be 1·42× that of adults, but 1·92× at low 

endemic areas with 10% overall PCR prevalence (Figure 2.13 B). A similar result was 

observed for adults and older children, suggesting genuine differences in 

submicroscopic epidemiology both between age groups and across transmission settings. 

I additionally explored how the contribution of submicroscopic infections to onwards 

transmission might vary across settings characterised by different historical transmission 

patterns, using a range of estimates for the comparative infectivity of submicroscopic and 

microscopically detectable infections. In transmission settings characterised by both historical 

and current low levels of transmission, submicroscopically infected individuals could account 

for an estimated 17·5% to 68·0% of onwards transmission (Figure 2.14 C). By contrast, the 

results suggest the contribution of the submicroscopic reservoir to transmission is less 

important (although not negligible) in settings where transmission has only recently declined 

(Figure 2.14 B), ranging from 7·8% to 46·0% depending on assumed comparative infectivity. 

Discussion 

Considerable debate surrounds the importance of the submicroscopic reservoir to malaria 

control efforts and whether it needs to be targeted by interventions (Lin, Saunders and 

Meshnick, 2014), particularly in areas of low transmission. Disaggregating the now greater 

quantity of available data (551 prevalence survey pairs from 44 countries) has given insight 

into the complex relationships underlying the global pattern of submicroscopic occurrence. 

This insight has facilitated a more refined evaluation of when and where submicroscopic 

infections are likely to be most prevalent and who is most likely to harbour them. This work 

suggests that some of the differences observed in the size of the submicroscopic reservoir 

can be explained by differences in historical patterns of transmission and the age profile of the 

infected population. Moreover, although previous work has generally noted the potential   
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Figure 2.13: The influence of age on submicroscopic malaria infection. (A) Box plot of age disaggregated prevalence survey data for young 
children (0–5 years, purple points, n=49) older children (6–15 years, pink points, n=62), and adults (>15 years old, blue points, n=53). For each 
age group, the size of the point reflects the number of individuals tested by microscopy and PCR. Thick coloured bar on the boxplot represents 
the weighted mean prevalence ratio for each age group. Thin line indicates the median, box indicates IQR, and whisker limits span 1·5× the IQR. 
(B) The prevalence ratio in surveys where age-disaggregated data (points) were available by age group, showing the fitted model relationship 
(coloured lines) and the 95% credible interval (shaded areas). 
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Figure 2.14: The potential contribution of submicroscopic infections to onwards 
transmission according to current and historical transmission intensity.Potential 
contribution of the submicroscopic reservoir to onwards transmission for each of the 
transmission archetypes: historically high and currently high (A), historically high and currently 
low (B), and historically low and currently low (C) if microscopic infections are either 2×, 5×, 
or 20× more infectious than submicroscopic infections. 
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relevance of submicroscopic infections in low-transmission settings (Cotter et al., 2013), these 

results suggest that this relevance is likely to be highly context dependent, potentially 

warranting different approaches to the control of submicroscopic infections in different 

locations. Both increasing age (independent of exposure) and increased immunity (due to 

previous exposure, which also increases with age) have been linked to lower parasite 

densities (Rodriguez-Barraquer et al., 2018). These results underscore the importance of age 

(and the demography of the population in general) as well as other setting-specific factors 

(such as historical patterns of transmission) in determining the size of the submicroscopic 

reservoir. However, an important caveat to these findings is that there were insufficient data 

to examine the role of these factors simultaneously. The average age at which an individual 

is infected is typically higher in low-transmission settings (Carneiro et al., 2010); therefore, a 

greater proportion of infected individuals in all-age surveys would be expected to be adults. It 

is also possible that systematic biases in the age of surveyed populations might exist between 

geographies or transmission archetypes. These results surrounding past transmission history 

might then be confounded by differences in the average age of infection across these different 

settings. However, the age distribution of malaria infection appears to adapt fairly rapidly to 

reflect changes in transmission, with infection profiles shifting to older individuals as 

transmission decline, a feature observed in both clinical cases (Brasseur et al., 2011) and 

infection in the wider community (Griffin, Ferguson and Ghani, 2014). Although this 

observation suggests that the difference in infected population age profile between surveys 

from historically low and currently low settings might not be substantial, I am unable to 

conclusively disentangle the potentially confounding role of age in the analyses of 

transmission archetypes (and global regions). There is also scope for residual confounding 

from variation in other factors such as microscopy or PCR methods across locations, although 

the results collating methodologies used across regions and archetypes suggest this might 

not be substantial. Although the global regional analyses showed that South American surveys 

were more likely to have used qPCR (a more sensitive diagnostic), the analysis of 

transmission archetypes revealed no systematic variation in the PCR methodologies used 

across archetypes. More broadly, it is also important to note that the data collated here 

represents cross-sectional surveys of locations that have not necessarily been sampled at 

random (and instead might be biased towards established research sites), which could 

introduce systematic bias into the findings. 

Another potential limitation is the strong geographical bias in the transmission archetype 

stratification, which precludes exact determination of the extent to which variation in 

submicroscopic malaria is driven by geography compared to transmission patterns. The 

majority of surveys assigned to the historically low and currently low archetype are from east 
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Africa, while the majority of surveys in the historically high and currently high archetype are 

from west Africa. The observed results across transmission archetypes could, therefore, be 

reflecting geographical variation (i.e. the fact that a significant proportion of surveys belonging 

to a particular transmission archetype are also from the same broad geographical area) rather 

than variation driven by past transmission history. However, the fact that the proportion of 

infections that are submicroscopic in historically high and currently low settings (a strata also 

predominantly composed of studies from east Africa) was consistently lower than that 

observed for historically low and currently low settings, together with the results observed for 

South America, provide tentative support for an effect of transmission history on the size of 

the submicroscopic reservoir, independent of variation due to geographical location. 

Several hypotheses other than geographical confounding could explain the observed results 

across the different transmission archetypes, including various haemoglobinopathies and 

human genetic traits that have been linked to lower average parasite densities (Kiwanuka, 

2009). Parasite-related factors could also account for the results observed here, such as 

systematic variation across locations in asexual blood stage multiplication rate of Plasmodium 

falciparum (Murray et al., 2017) or selective pressures that vary with transmission intensity. 

Previous work has suggested that high-transmission settings might select for parasites with 

high replication rates and virulence (to outcompete other co-circulating Plasmodium 

falciparum strains), whereas low-transmission settings might select for non-virulent parasites 

with lower rates of replication better able to persist and avoid causing symptomatic infection 

(which would prevent drug exposure but be more likely to present submicroscopically) 

(Björkman and Morris, 2020). Lower genetic diversity (resulting in more rapidly acquired 

immunity to local parasite clones) might also contribute to the observed results. It is also not 

possible to definitively preclude a role for systematic variation in diagnostic quality across 

settings, although analyses have found that microscopy quality does not vary systematically 

with transmission intensity (Slater et al., 2019). Although these results highlight that PCR 

methodology does significantly influence the prevalence ratio, systematic variation in 

methodological quality across transmission archetype settings was not observed. 

The analyses revealed a significant influence of seasonal effects on submicroscopic carriage, 

with submicroscopic infections more common in the dry season. This is in keeping with 

previous work showing that parasite densities rise slightly during the rainy season (even when 

prevalence does not change significantly) (Slater et al., 2019). It is important to note, however, 

that classification of sampling season was necessarily coarse due to limitations in available 

data (with information on timing within season being typically sparse). It is possible then that 

more granular disaggregations might reveal further variation that data limitations have 
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precluded exploring here. Seasonal effects have also previously been shown to play a role in 

shaping performance of rapid diagnostic tests for malaria (Watson et al., 2019b) and so future 

work exploring the factors driving the prevalence of false negatives in these diagnostics (which 

have shown similar relationships with overall transmission in previous reviews (Watson et al., 

2019a)) would also likely be important given their increasing use over microscopy for 

surveillance and diagnosis of malaria infection. 

This work suggests that the contribution of submicroscopic infections to onwards transmission 

is likely to be highly variable across settings. However, this analysis is based on the detection 

of asexual parasites and does not provide direct insight into gametocyte densities. 

Additionally, due to data constraints, I was unable to consider a range of relevant factors, such 

as age profile of the infected population and related skin surface area effects (whereby adults 

have larger skin surface areas available for biting by mosquitoes compared with children) and 

adjusting for these would likely increase the contribution to transmission from older children 

and adults (who are more likely to have submicroscopic infection). The relationship between 

asexual parasite and gametocyte density is highly non-linear and the distributions of parasite 

densities in the submicroscopic range can differ substantially between settings (Slater et al., 

2019). The proportion of submicroscopic infections might, therefore, not linearly relate to their 

contribution to onwards transmission. For example, while a membrane feeding study done in 

Burkina Faso and Kenya (high-transmission settings) found that 45–75% of all mosquito 

infections were derived from submicroscopic infections (Gonçalves et al., 2017), only 4% of 

infections arose from submicroscopic individuals in a similar study carried out in Cambodia (a 

low-transmission setting) (Lin et al., 2016). Similarly, recent work from a setting with effective 

malaria control in eastern Uganda has suggested that the majority of onwards transmission 

(84%) arises from asymptomatic but microscopically detectable infections rather than 

submicroscopic infections (16%) (Andolina et al., 2021). These findings contrast with the 

predictions presented here and underscore the need to better resolve the relationship between 

submicroscopic parasite carriage, gametocyte densities, and mosquito infectivity. 

Despite their potential relevance to maintenance of malaria transmission, our understanding 

of submicroscopic infections remains far from complete. Do submicroscopic infections 

represent a substantial source of transmission and threat to future progress? Do these 

infections need to be targeted to achieve malaria elimination? Although more work is required, 

these findings highlight important differences in submicroscopic epidemiology between 

settings and suggests the absence of a one-size-fits-all solution for malaria control targeting 

this infection subgroup. Such variation will probably warrant different approaches to malaria 

control if the infection is to be controlled most effectively in the effort towards elimination. 
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Conclusion 

In this chapter, I have explored the factors underlying heterogeneity in the size and extent of 

the submicroscopic malaria reservoir across different settings and explored the implications 

such heterogeneity might have for the appropriateness of explicitly targeting this infected sub-

group for treatment. In the next chapter, I examine another source of significant heterogeneity 

relating to malaria infections and the human host, specifically the fine-scale spatial 

heterogeneity and clustering of malaria infections at the household level. Using the same 

Bayesian regression modelling framework used in this Chapter, in the following Chapter I 

explore how the extent of spatial clustering of malaria infections varies with levels of 

transmission and explore how this variation in the degree and extent of clustering influences 

the viability of certain control measures centred around the household.   
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Chapter 3 Quantifying Plasmodium falciparum Infection 

Clustering Within Households to Inform Household-Based 

Intervention Strategies for Malaria Control Programs 

In contexts where malaria transmission is peri-domestic, understanding spatial heterogeneity 

is key to optimising delivery of certain control strategies. This enables the most at-risk 

individuals to be identified and through this, more effective targeting of interventions. Using 

the Bayesian regression modelling approach applied in Chapter 2, in this Chapter I leverage 

malaria infection data from Demography and Health surveys from across sub-Saharan Africa 

to better understand the role of fine-scale spatial heterogeneity in the clustering of malaria 

infections at the household level. Specifically, I quantify the degree of spatial clustering, and 

how this varies with overall levels of malaria transmission. I explore the implications of this 

heterogeneity in the degree and extent of spatial clustering of infections on the viability of 

different household-based control measures and identify the settings in which they are likely 

to be more appropriate.  

Introduction 

The transmission and dynamics of malaria are highly heterogeneous between and within 

different populations, a phenomenon underpinned by a diversity of different factors including 

the vector species driving transmission (Sinka et al., 2010b; Massey et al., 2016), the parasite 

species causing disease (Phillips et al., 2017), patterns of exposure (Pollard et al., 2020; 

Sandfort et al., 2020; Kar et al., 2014) and the ecological structure of the location (Whittaker 

et al., 2021), amongst others. Spatial variation in infection is also a key factor underlying the 

heterogeneous nature of malaria transmission across settings. Variation in infection risk and 

disease burden is evident at a range of spatial scales (Grillet et al., 2010) and settings, but is 

thought to be particularly acute in the areas of lowest transmission (Stresman et al., 2018; 

Mogeni et al., 2017). In contexts where transmission of malaria is peri-domestic (that is, where 

contact with the vectors responsible for infection and onwards transmission occurs primarily 

around the main residence, in contrast to other settings where malaria exposure transmission 

is primarily occupational (Ekawati et al., 2020)), a better understanding of this spatial 

heterogeneity is key to optimising delivery of various control strategies, enabling the most at-

risk populations to be identified and effective targeting of interventions.  

The apparent clustering of malaria infections has led to usage in some cases of so called 

“reactive control strategies” – an example of this being Reactive Case Detection (RACD), 

which involves testing and treating all positive household members of confirmed malaria cases 

that have been passively detected at health facilities (Sturrock et al., 2013a; Aidoo et al., 

2018). Such strategies are now widespread and most commonly employed in low transmission 
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settings (Rossi et al., 2018b; Sturrock et al., 2013a; Hustedt et al., 2016), in-keeping with WHO 

guidelines (World Health Organization, 2018c). Significant concerns remain however around 

how best to operationalise RACD, particularly in settings with low treatment-seeking rates 

(Rossi et al., 2018a) and where access to healthcare is limited (Weiss et al., 2020), which 

might lead to only a small fraction of the total infections present in a community being targeted. 

These limitations have led to renewed interest in community-based approaches such as Mass 

Screen and Treat (MSAT) which involves testing all febrile members of a community for 

malaria and treating those positive for malaria (Millar, Toh and Valle, 2020); and Mass Test 

and Treat (MTAT), which involves testing the whole population for malaria using rapid 

diagnostic tests (RDTs) or light microscopy (LM), irrespective of symptoms, to identify and 

treat any infections that may be present (Conner et al., 2020). Whilst potentially able to reach 

a far larger fraction of the infected population (including asymptomatic or mild infections not 

leading to treatment seeking at health facilities), they are also far more operationally and 

resource intensive – potential modifications to these approaches that remain community-

based but reduce programmatic costs have centred around focussing efforts on individual 

households, and treating entire households upon detection of a single malaria case, in turn 

reducing the number of individuals who must be screened (MSAT) or tested (MTAT). 

Underpinning the viability of any of these strategies will be a better understanding of how and 

the degree to which malaria infections cluster within households; and in particular, whether 

the types of infection detected by each of the different programmes (RACD = symptomatic 

and presenting at health facility; MSAT = symptomatic; MTAT = detectable by RDT/LM) cluster 

within households. Significant uncertainties remain however surrounding the degree and 

generality of household clustering of malaria infections – empirical evidence is limited, 

particularly as to whether household clustering is consistently observed across settings 

characterised by differing patterns of vectors, ecologies, patterns of exposure and 

transmission intensities (Stresman, Bousema and Cook, 2019). By extension, it remains 

unclear in which settings household-based reactive strategies are likely to be the most 

appropriate and effective. Here I collate and analyse information on clustering of malaria 

infections diagnosed by rapid diagnostic tests (RDTs) or light microscopy (LM) in over 200,000 

children from 57 Demographic and Health Surveys conducted in 23 countries across sub-

Saharan Africa to answer the question of whether Plasmodium falciparum infections cluster 

within households of programmatically detectable infections. This work builds upon and 

complements recent systematic reviews of the literature exploring this question of clustering 

from the perspective of RACD (van Eijk et al., 2016), MSAT and MTAT campaigns (Stresman 

et al., 2020). In particular, utilisation of the Demographic and Health Surveys data allows 
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exploration of a wider diversity of settings than has previously been possible in analyses of 

existing published literature.  

Utilising a Bayesian logistic regression-based framework, I systematically explore how the 

degree of household clustering of malaria infections changes with transmission intensity, 

whilst controlling for other potential confounders such as household size. The results highlight 

the operation relevance of malaria clustering to control programmes, but also substantial 

variation in the degree and extent of this household clustering across the range of transmission 

intensities spanned by the 23 countries considered. In doing so, these results highlight 

particular types of settings in which reactive control strategies for malaria are likely to have 

the most relevance and impact.  

Methods 

DHS Data: Overview of Data Collation, Survey Selection Criteria and Index 

Household Definition 

The Demographic and Health Surveys (DHS) Program is an organisation responsible for 

collecting and disseminating accurate, nationally representative data on health and population 

in developing countries (Demographic and Health Surveys, 2022). These data are collected 

through conducting surveys involving in-depth interviews of households and individuals, 

following a set methodology and using a routine questionnaire consisting of core questions 

(collecting a suite of information on various economic, health-related and demographic 

variables) that are supplemented with a variety of different questions depending on the context 

and particular survey. The results of these surveys are then processed into different datasets 

(called “recodes”) characterised by different units of analysis (broadly, “who” or “what” is being 

studied). Depending on the recode, these units of analysis are typically either households, 

women, children or men. Each recode typically contains a core set of uniquely identifying 

information (Age, Sex, Region etc) that is present across all recodes, as well as information 

that is unique to that recode (and present in that recode only).  

Individual-level data from 57 DHSs conducted across 23 African countries containing 

information on malaria infection status (as diagnosed by RDT or light microscopy) in children 

under 7 years of age were collated using the rDHS R package (Watson, FitzJohn and Eaton, 

2019). From these surveys, I extracted a suite of demographic and household related 

information (described further below), as well as data enabling identification and definition of 

whether that individual resided in an “Index Household”. I describe this in more detail below, 

but briefly, an individual was defined as residing in an “Index Household” if the household 

contained at least one other person (i.e. other than the individual being considered) with a 
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malaria infection detectable through one of the programmatic strategies considered i.e. when 

not considering the infection status of the individual in question, are there any other infections 

present in the household that would have led to the considered individual having been 

identified and treated under the three programmatic strategies considered. The definitions for 

each strategy are as follows:  

• Mass Screen and Treat (MSAT): Household contains an individual with a malaria 

infection detectable by either light microscopy or RDT (i.e. contains an individual 

testing positive for malaria at the time of the survey).  

• Mass Test and Treat (MTAT): Household contains an individual with a malaria 

infection (as detected by light microscopy or RDT) and who was/is symptomatic i.e., 

the individual had had fever during the previous 2 weeks.  

• Reactive Case Detection (RACD): Household contains an individual with a malaria 

infection, and treatment for that infection has recently (i.e. within the past 2 weeks) 

been sought at a health centre.  

Defining the Index Households in this way allows me to mimic the detection strategies being 

assessed, and explore whether residency in an Index Household increases an individual’s 

chances of being malaria positive - specifically, whether an individual who shares a household 

with someone who is currently malaria positive (MTAT), has recently had a symptomatic 

malaria infection (MSAT), or has recently sought treatment for malaria (RACD) is more likely 

to be malaria positive compared to households negative for each definition (see Table 3.1).  

DHS Data: Detailed Information On Data Collation and Processing Workflow 

Using the rDHS package (Watson, FitzJohn and Eaton, 2019), I identified all surveys that had 

assessed malaria infection status by either rapid diagnostic test (RDT, SurveyCharacteristicID 

89 in the rDHS package) or light microscopy (SurveyCharacteristicID 90 in the rDHS package). 

In total, 57 surveys were identified in this way, as well as a single additional survey not 

reporting SurveyCharacteristicID 89 or 90 but where malaria infection status had been 

ascertained. Together, these 57 surveys spanned the years 2006 – 2018, and included over 

2.5 million individuals (although the number included in my analyses is far lower as only a 

subset of these individuals had their malaria status tested, see below for further details) from 

23 countries across sub-Saharan Africa.  
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Table 3.1 Overview of programmatic strategies for identifying households likely to have asymptomatic and/or subpatent infections. 
For the analyses presented here, I defined an index household, control and case population for each type of programmatic strategy. 
Infections in the index and control  

Note: To avoid index children making self-defining residency in an index household, when defining the binary indicator for a particular child, I 

only consider the other children who live in that house and their infection/symptoms/treatment seeking. 

 

Strategy Definition of Index Household Individual-Level Binary Indicator For Residence In Index Household  

Reactive Case Detection 
(RACD) 

Households with confirmed infections 
detected within health facilities. I.e., 
Households with any child who is malaria 
positive (by RDT/microscopy) and who has 
sought antimalarial treatment in the past 2 
weeks. 

For a given child, 1 if any other child in the household is positive for malaria 
and has sought anti-malarial treatment (based on the collated treatment 
seeking variables), and 0 otherwise (i.e., all other children in the household 
who are tested and provide responses are malaria negative and have not 
sought anti-malaria treatment respectively). 

Mass Screen and Treat 
(MSAT) 

Households with a symptomatic case (fever 
and RDT/light microscopy positive for 
malaria) which has been detected in the 
community as part of an active campaign. 
I.e., Households with a child who is 
RDT/microscopy positive and who has had a 
fever during the past 2 weeks. 

For a given child, 1 if any other child in the household has had a malaria-
related fever during the past two weeks (defined as that other child in the 
household being malaria positive and having had a fever during the past 2 
weeks) and 0 otherwise (i.e. all other children in the household who were 
tested and provided responses were malaria negative and have not reported 
a fever during the past 2 weeks respectively). 

Mass Test and Treat 
(MTAT) 

Households with any infected individual 
(irrespective of symptoms, detected by 
RDT/light microscopy) detected in the 
community as part of an active campaign.  
I.e., Households with a child who is 
RDT/microscopy positive. 

For a given child, 1 if any other child in the household is currently malaria 
positive and 0 otherwise (I.e. all other children in the household who are 
tested are malaria negative). 
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Of the surveys identified, 51 tested for malaria infection only in children under 7, whilst the 

remaining 6 surveys tested all individuals regardless of age. The outcome of interest in the 

analyses conducted here was the probability of an individual possessing a malaria infection 

(as determined by RDT or light microscopy) or not, and so individuals not tested for malaria 

were excluded. The primary dataset for consideration therefore consists of children under 7 

whose malaria status had been determined by either RDT or microscopy and for whom 

information was available on recent fever occurrence and treatment seeking behaviour. This 

information (on malaria status, recent fever occurrence, treatment seeking status etc) is not 

contained in a single part of the survey and is instead across two datasets associated with 

each survey: the “People’s Recode” (containing information on malaria infection status) and 

the “Children’s Recode” (containing information on recent fever occurrence and treatment 

seeking behaviour), necessitating linkage of individuals across both datasets.  

In order to do this linkage, I extracted uniquely identifying information that was present across 

both survey recodes. Specifically, these variables were Age, Sex, Cluster Number, Household 

Number and Line Number. Using these variables, I was able to link the vast majority of 

respondents (consistently >90%) across both datasets (see Table 3.2 column “Linked Across 

Recodes”) allowing near complete collation of malaria infection status, recent fever occurrence 

and treatment seeking behaviour across surveyed individuals. Inability to link all individuals 

likely arises either from errors associated with individual enumeration of data entry or issues 

surrounding who is included in the “Children’s Recode”. Specifically, if a child in the household 

during the survey is without a mother (who would typically be interviewed to provide data for 

the “Children’s Recode”), that child will not be present in the “Children’s Recode” but will be 

present in the “Person’s Recode”. Irrespective, these instances represented a small fraction 

of the overall individuals surveyed and are therefore unlikely to affect the conclusions arising 

from subsequent analysis of the data.  

Infection status was detected by either RDT (n = 11 surveys) or Light Microscopy and RDT (n 

= 47 surveys). There was one survey for which it was unclear which technique had been used 

– for the purposes of the results presented here, individuals were defined as positive if the 

individual tested positive for malaria by either method. Recent fever occurrence was defined 

based on the survey variable h22 from the Children’s Recode, which describes whether the 

child has experienced fever during the past 2 weeks. To characterise treatment seeking 

behaviour, I examined the full array of malaria treatment related variables detailed in each 

survey’s Children’s Recode, utilising them as a proxy for treatment seeking behaviour (i.e. I 

assume that an individual receiving a particular anti-malarial treatment recently is indicative of 

that individual having recently sought treatment). Although treatment related variables were 

largely consistent across surveys, there were a number of survey-specific treatment related 
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variables, asked as an additional, non-standard question during the survey. For the analyses 

presented here, I utilised all of the treatment-seeking variables available for a given survey, 

with an individual defined as having sought treatment if any one of these extracted variables 

was positive (see Table 3.2 for the full list of variables utilised). In addition to these variables, 

I also extracted uniquely identifying information for each individual, including their region of 

residence, their household number (as enumerated by the survey) and unique line number, 

allowing linkage of children between the People’s Recode (containing information of malaria 

status) and the Children’s Recode (containing information on recent fever occurrence and 

treatment seeking behaviour) associated with each survey. 

Using these collated variables, I defined a set of three binary indicators for each individual that 

describe whether that individual belongs to an Index household, as defined each of the 

programmatic strategies being considered. Briefly, an individual was defined as residing in an 

index household if the household contained at least one other infection detectable through 

one of the programmatic strategies considered i.e. when not considering the infection status 

of the child in question, are there any other infections present in the household that would 

have led to that household having been identified as an index household under the three 

programmatic strategies i.e. through i. clinical care seeking (RACD model), ii. through 

household surveys using routine diagnostics in symptomatic individuals (MSAT) or regardless 

of symptoms (iii. MTAT). For a given individual, these binary indicators describing whether 

that individual resides in an Index Household are defined in the following way: 

• MTAT Index Household Status (MTAT): 1 if any other child in the household is 

currently malaria positive at the time of the survey and 0 otherwise (i.e. all other 

children in the household who are tested are malaria negative).  

• MSAT Index Household Status (MSAT): 1 if any other child in the household has 

had a malaria-related fever during the past two weeks (defined as that other child in 

the household being malaria positive and having had a fever during the past 2 weeks) 

and 0 otherwise (i.e. all other children in the household who were tested and provide 

responses are malaria negative and have not reported a fever during the past 2 weeks 

respectively).  

• RACD Index Household Status (RACD): 1 if any other child in the household is 

positive for malaria and has sought anti-malarial treatment (based on the collated 

treatment seeking variables), and 0 otherwise (i.e. all other children in the household 

who are tested and provide responses are malaria negative and have not sought anti-

malaria treatment respectively).   
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Table 3.2 Definition and Extraction of Treatment Seeking Variables 

Variable 
Label Description Response Survey Usage 

h37a Fansidar taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

h37aa Artesunate rectal taken for fever 0 no, 1 yes, 9 missing All Where Used 

h37ab Artesunate injection/IV taken for fever 0 no, 1 yes, 9 missing All Where Used 

h37b Chloroquine taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

h37c Amodiaquine taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

h37d Quinine taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

h37da Quinine injection/IV taken for fever 0 no, 1 yes, 9 missing All Where Used 

h37e Combination with artemisinin taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

h37f CS antimalarial taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

h37g (CS) PRIMO taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

h37h Other antimalarial taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

h37n Artesunate mefloquine taken for fever 0 no, 1 yes, 9 missing 53 only 

ml13a Fansidar taken for fever 0 no, 1 yes, 9 missing All Where Used 

ml13aa Artesunate taken for fever 0 no, 1 yes, 9 missing All Where Used 

ml13ab Artesunate injection/IV taken for fever 0 no, 1 yes, 9 missing All Where Used 

ml13b Chloroquine taken for fever 0 no, 1 yes, 9 missing All Where Used 

ml13c Amodiaquine taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

ml13d Quinine taken for fever 0 no, 1 yes, 9 missing All Where Used 

ml13da Quinine injection/IV taken for fever 0 no, 1 yes, 9 missing All Where Used 

ml13e Combination with artemisinin taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 
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ml13f Coartem taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

ml13g AL/Artemether Lumefantrine taken for fever 0 no, 1 yes, 9 missing All Where Used 

ml13h Other antimalarial taken for fever 0 no, 1 yes, 9 missing All Where Used 

ml13n Artesunate ( injection ) taken for fever/cough 0 no, 1 yes, 9 missing 17, 53 Only 

s623a Medicine taken during fever: Antimalarial, combination with artemisinin (tca) 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s623b Medicine taken during fever: Antimalarial, Sp/fansidar 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s623c Medicine taken during fever: Antimalarial, Chloroquine 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s623d Medicine taken during fever: Antimalarial, Amodiaquine 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s623e Medicine taken during fever: Antimalarial, Quinine pills 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s623f Medicine taken during fever: Antimalarial, Quinino injection 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s623g Medicine taken during fever: Antimalarial, Coartem 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s623h Medicine taken during fever: Antimalarial, Other 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s538c Dihidroartemis- Piperaquine taken for fever 0 no, 1 yes, 9 missing All Where Used 

s538e Artesunate-Amodiaquine taken for fever 0 no, 1 yes, 9 missing All Where Used 

s538g Malaxin taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s538h Malaritab taken for fever/cough 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s538i Arinate taken for fever/cough 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s538j Artesunate taken for fever/cough 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s538k Mefloquine taken for fever/cough 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s125a Antimalaria medicines prescribed or taken: SP/Sulphadoxine Pyrimethamine 0 no, 1 yes, 9 missing All Where Used 

s125b Antimalaria medicines prescribed or taken: chloroquine 0 no, 1 yes, 9 missing All Where Used 

s125c 
Antimalaria medicines prescribed or taken: DP/Dihydroartemisinin-
Piperaquine 

0 no, 1 yes, 9 missing All Where Used 
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s125d Antimalaria medicines prescribed or taken: quinine 0 no, 1 yes, 9 missing All Where Used 

s125e Antimalaria medicines prescribed or taken: AA/Artesunate Amodiaquine 0 no, 1 yes, 9 missing All Where Used 

s125f Antimalaria medicines prescribed or taken: artemisinin 0 no, 1 yes, 9 missing All Where Used 

s125g Antimalaria medicines prescribed or taken: AL/Artemether-Lumefantrine 0 no, 1 yes, 9 missing All Where Used 

s412a Combination with artemisinin taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s412b Fansidar taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s412c Chloroquine taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s412d Amodiaquine taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s412e Quinine pill taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s412f Quinine injection taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s412g Artesunate : by rectal taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s412h Artesunate : by injection taken for fever/cough 0 no, 1 yes, 9 missing 15, 28 Only 

s412i Fansidar and Amodiaquine  (combined) taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s412j Other antimalarial taken for fever/cough 0 no, 1 yes, 9 missing 28 Only 

s326f Larimal taken for fever/cough 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s326h Arsumoon taken for fever/cough 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s326i Falcimon taken for fever/cough 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s326j Asaq Wintrop taken for fever/cough 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s326k Artefan taken for fever/cough 0 no, 1 yes, 8 dk, 9 missing All Where Used 

s411a Actipal taken for fever 0 no, 1 yes, 9 missing All Where Used 

s411b Larimal taken for fever 0 no, 1 yes, 9 missing All Where Used 

s411c Artemodi taken for fever 0 no, 1 yes, 9 missing All Where Used 

s411d Arsumoon taken for fever 0 no, 1 yes, 9 missing All Where Used 
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s411e Falcimon taken for fever 0 no, 1 yes, 9 missing All Where Used 

s411f Other ASAQ taken for fever 0 no, 1 yes, 9 missing All Where Used 

s411g Quinine (injection/IV) taken for fever/cough 0 no, 1 yes, 9 missing All Where Used 

s411h Artefan taken for fever 0 no, 1 yes, 9 missing All Where Used 

s411i Lumartem taken for fever 0 no, 1 yes, 9 missing All Where Used 

s411j Other AL taken for fever 0 no, 1 yes, 9 missing All Where Used 

s411asaq Any ASAQ taken for fever 0 no, 1 yes, 9 missing All Where Used 

s411al Any AL taken for fever 0 no, 1 yes, 9 missing All Where Used 

s124 
Any antimalaria medicine prescribed to treat the malaria or took medicines 
without prescription 

0 no, 1 yes, prescribed, 2, yes 
took without prescription 

All Where Used 

s311a Fansidar taken for fever 0 no, 1 yes All Where Used 

s311b Chloroquine taken for fever 0 no, 1 yes All Where Used 

s311c Amodiaquine taken for fever 0 no, 1 yes All Where Used 

s311d Quinine taken for fever 0 no, 1 yes All Where Used 

s311e Combination with artemisinin taken for fever 0 no, 1 yes All Where Used 

s311f Coartem taken for fever 0 no, 1 yes All Where Used 

s311g Other antimalarial taken for fever 0 no, 1 yes All Where Used 

s623a Medicine taken during fever: Antimalarial, combination with artemisinin (tca) 0 no, 1 yes, 8 dk All Where Used 

s623b Medicine taken during fever: Antimalarial, Sp/fansidar 0 no, 1 yes, 8 dk All Where Used 

s623c Medicine taken during fever: Antimalarial, Chloroquine 0 no, 1 yes, 8 dk All Where Used 

s623d Medicine taken during fever: Antimalarial, Amodiaquine 0 no, 1 yes, 8 dk All Where Used 

s623e Medicine taken during fever: Antimalarial, Quinine pills 0 no, 1 yes, 8 dk All Where Used 

s623f Medicine taken during fever: Antimalarial, Quinino injection 0 no, 1 yes, 8 dk All Where Used 
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s623g Medicine taken during fever: Antimalarial, Coartem 0 no, 1 yes, 8 dk All Where Used 

s623h Medicine taken during fever: Antimalarial, Other 0 no, 1 yes, 8 dk All Where Used 

Note: Sometimes the variable descriptions are different across surveys despite the same Variable Label. I went through all of the Variable Labels 
individually to assess. In instances where all different versions of the label still pertained to treatment seeking behaviour, the label was retained and used in 
all surveys (denote "All Where Used" in Survey Usage). Where only a subset of the label occurrences pertained to malaria treatment seeking, the variable 
was used only for a subset of surveys, with that information detailed in the "Survey Usage" column.  
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This collation yielded 3 datasets containing identical information except for the binary indicator 

(which differs between datasets and are unique to the particular programmatic strategy being 

considered). This separation was done as many more individuals had been tested for malaria 

than reported recent fever occurrence or treatment seeking status and so defining the 3 

separately enabled us to maximise the number of individuals included in each dataset. This 

means that each dataset contains all individuals for whom malaria status was determined and 

it was possible to define Index household status for. Definition of Index Household status in 

this way is contingent upon a household containing multiple individuals, and so I implicitly 

remove all children who are the sole respondent detailed in the surveys.  

Analysis and Bayesian Regression Modelling of DHS Data 

Model Formulation and Specification 

To these collated DHS data, I fitted a logistic regression model relating malaria infection status 

to a suite of variables present in the dataset. The model was formulated as follows: I assume 

malaria infection status (a binary indicator taking either 0 or 1, indicating, respectively, 

absence and presence of a malaria infection in a given individual) for individual 𝑖, belonging 

to household 𝑗 surveyed as part of survey 𝑘 to be drawn from a Bernoulli distribution: 

𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑆𝑡𝑎𝑡𝑢𝑠𝑖,𝑗,𝑘 ~   𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃𝑟𝑜𝑏 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖,𝑗,𝑘) 

where 𝑃𝑟𝑜𝑏 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖,𝑗,𝑘 represents the probability of that individual being malaria 

positive. I model this probability using logistic regression i.e. as being a linear function of a 

number of different covariates on the logit scale. It is specified in the following way:  

𝑙𝑜𝑔𝑖𝑡(𝑃𝑟𝑜𝑏 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖,𝑗,𝑘) =  𝛼𝑘 +  𝛽1𝐼𝑛𝑑𝑒𝑥 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖,𝑗,𝑘 + 𝛽2𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑘 +

 𝛽3𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑆𝑖𝑧𝑒𝑗,𝑘 +  + 𝛽4(𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑘 ∗ 𝐼𝑛𝑑𝑒𝑥 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖,𝑗,𝑘) 

Where 𝐼𝑛𝑑𝑒𝑥 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖,𝑗,𝑘 is one of the three binary indicators (either 0 or 1, defined 

separately for each of the three programmatic strategies considered i.e. RACD, MTAT and 

MSAT) for individual 𝑖, belonging to household 𝑗 surveyed as part of survey 𝑘 describing one 

of three following scenarios: 

• Whether anyone else in the individual’s household is malaria positive (i.e. the 

individual resides in an Index Household as defined by the MTAT approach). 

• Whether anyone else in the individual’s household is malaria positive and has had 

fever in the past 2 weeks (i.e. the individual resides in an Index Household as defined 

by the MSAT approach). 
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• Whether anyone else in the individual’s household is malaria positive and has sought 

treatment for malaria (i.e. the individual resides in an Index Household as defined by 

the RACD approach).  

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑘 is the overall malaria prevalence recorded for survey 𝑘, 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑆𝑖𝑧𝑒𝑗,𝑘 is the 

size of household 𝑗 in survey 𝑘 where individual  𝑖 is resident, 𝛽1−4 are regression coefficients 

determining the magnitude of the influence of each variable on the probability of being malaria 

positive. Individually, they describe the odds ratio of being malaria positive vs malaria negative 

for a unit increase (for continuous variables) or an indicator is 1 (rather than 0, for binary 

variables), all other variables kept equal. 𝛼𝑘 is an intercept within the regression framework 

used and 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑘 ∗ 𝐼𝑛𝑑𝑒𝑥 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖,𝑗,𝑘 is an interaction term describing how the effect 

of 𝐼𝑛𝑑𝑒𝑥 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖,𝑗,𝑘 varies with the overall survey prevalence (a proxy for overall 

transmission intensity).  

The primary interest is to assess how the influence of the three binary indicators for Index 

Household residency (𝐼𝑛𝑑𝑒𝑥 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑) vary with transmission intensity (described by the 

survey prevalence 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) and so I include an interaction term involving these two 

variables. This allows the influence of 𝐼𝑛𝑑𝑒𝑥 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 to vary with survey prevalence, 

allowing me to formally test whether the odds ratio associated with 𝐼𝑛𝑑𝑒𝑥 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 differs 

systematically according to transmission intensity – this formally tests the hypothesis that the 

association between being malaria positive and sharing a household with someone who 

satisfies one of the three programmatic criteria (Malaria Positivity for MTAT, Recent Malaria 

Fever for MSAT or Malaria and Treatment Seeking Behaviour for RACD) varies with malaria 

endemicity. It therefore explores the extent to which these infections (as detected by each of 

the different programmatic strategies) cluster and how this varies depending on the level of 

malaria endemicity.I fitted three separate instances of this model, one for each of the three 

programmatic strategies being considered (i.e. three different models utilising one of the three 

binary indicators).  

Bayesian Hamiltonian Monte Carlo Model Fitting 

This model was fitted within a Bayesian framework, with parameter inference carried out using 

a Hamiltonian Monte Carlo (HMC) based sampling scheme implemented in the probabilistic 

programming language Stan (Carpenter et al., 2017), with the model written using the R 

package RStan (Stan Development Team, 2022). Stan implements a Hamltonian Monte Carlo 

(HMC) based algorithm and a No-U-Turn Sampler (NUTS) based sampling scheme – the 

result of this is an adaptive HMC algorithm able to efficiently explore complex posterior 

densities (Hoffman and Gelman, 2011). As with other Bayesian model fitting schemes 
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underpinned by MCMC-based algorithms, the aim is for the sampling algorithm to generate a 

series of samples that correspond to a random, unbiased sample from the posterior 

distribution of interest – specifically to draw from the Bayesian posterior 𝑝(𝜃|𝑦) where 𝜃 

represent the model parameters and 𝑦 the observed data. The simplest implementation of the 

HMC algorithm (so-called “static HMC” (Monnahan, Thorson and Branch, 2017)) works by 

augmenting the posterior distribution density with an independent momentum variable (λ) and 

then drawing from the joint density: 

𝑝(λ, 𝜃) = 𝑝(λ|𝜃) 𝑝(𝜃)  

where 𝜃 represent the model parameters and 𝑝(λ|𝜃) is therefore the distribution of momenta 

conditional on a particular set of model parameters. This joint density 𝑝(λ, 𝜃) defines the 

following Hamiltonian:  

𝐻(λ, 𝜃) = 𝑇(λ|𝜃) + 𝑉(𝜃)  

where the term  𝑇(λ|𝜃) = − log 𝑝( λ| 𝜃) is referred to as the “kinetic energy” (describing the 

distribution of momentum conditional on given parameter values) and 𝑉(𝜃) =

− log(𝑝(𝜃|𝑦)𝑝( 𝜃)) is referred to as the “potential energy” (the negative log of the unnormalized 

posterior density) (Neal, 2011). This Hamiltonian is then used within the algorithm to generate 

new parameter proposals. Specifically, the HMC algorithm updates via the following steps:  

1. Starting from the current vector of parameter values 𝜃, sample a random momentum 

λ from a multivariate normal distribution, with  λ ~ 𝑀𝑉𝑁(0, 𝑀), where 𝑀 is a covariance 

typically set to the identity matrix or estimated from warmup draws. 

2. Evolve the joint system of momenta and parameters (λ, 𝜃) (and the corresponding 

Hamiltonian specified by these equations) via Hamilton’s equations (Betancourt, 

2017). Specifically the current parameter and momentum values (λ, 𝜃) are updated 

using the Leapfrog Integrator (specified by step size 𝜖 and number of steps 𝐿), which 

is used to simulate the system of ordinary differential equations describing these 

Hamiltonian dynamics. 

3. The resulting state at the end of this simulation (λ′, 𝜃′) (corresponding to applying 𝐿 

leapfrog steps of step size 𝜖) is then used as a parameter proposal. These newly 

proposed parameters (λ′, 𝜃′) are then either accepted or rejected via a metropolis 

acceptance step. Specifically, the newly proposed parameters are accepted with 

probability min(1, exp(𝐻(λ′, 𝜃′) − 𝐻(λ, 𝜃))). 

Stan extends this “static-HMC” algorithm to automatically optimise tuning of many of the 

different parameters described above. The software automatically tunes  𝜖 to match a targeted 
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metropolis acceptance rate, produces an estimate of 𝑀 based on warmup samples, and via 

the No-U-Turn sampler (NUTS) algorithm is able to dynamically adapt 𝐿 between HMC 

iterations (Hoffman and Gelman, 2011). Specifically, NUTS extends the static HMC procedure 

described above to automatically select the appropriate number of leapfrog steps through a 

tree-building algorithm through sequentially growing the number of leapfrog steps taken until 

the trajectory is detected to have turned back on itself (i.e. that a “U-Turn” has occurred). At 

this point, no more leapfrog steps are applied, and the resulting state is evaluated with the 

same metropolias acceptance step described above.  

For each model, a total of 5 HMC chains, each 10,000 iterations in length, were run for 

purposes of model fitting and parameter inference. Half of each chain’s iterations were 

discarded as burn-in/the adaptive phase of the sampling, leaving a total of 25,000 iterations 

available for inference. Non-informative normal priors were placed on all regression coefficient 

parameters. The Gelman-Rubin statistic was monitored to assess convergence of the MCMC 

chains, and in all cases, it was consistently <1.02, indicating stability of the chains and 

supporting the probability of convergence to the underlying true posterior distribution.  

Results 

From 57 Demographic and Health surveys spanning 23 African countries and the time-period 

2006-2018, I extracted data for 72,498, 177,243, and 208,140 (depending on the availability 

of data to define the index household) children according to the RACD, MSAT, and MTAT 

strategies, respectively, representing 24,836, 50,590, and 59,050 patent infections (Figure 

3.1 and Table 3.1).The average transmission intensity recorded in these surveys varied 

widely, from 0.9% in the survey with the lowest recorded prevalence of patent malaria infection 

to 84.9% in the survey with the highest recorded prevalence.  

Residing in an index household was consistently associated with increased odds of additional 

infections clustering within the same household (p<0.001 for all 3 strategies), and across all 

strategies used to define index households, a significant interaction between index household 

status and overall survey prevalence was observed (P < 0.001 in all instances), with clustering 

of infections becoming more prominent at low transmission levels (Figure 3.2). For RACD, 

the odds ratio (OR) for index household residency ranged from 8.21 (7.47-9.02) at 10% overall 

malaria prevalence, to only 0.68 (0.60–0.77) at 80% survey prevalence of malaria. For MSAT, 

the OR for index household residency ranged from 15.8 (95% CI 15.2-16.5) when survey 

malaria prevalence was 10%, to only 2.67 (2.51-2.85) at a survey malaria prevalence of 80%. 

For MTAT, the OR for index household residency ranged from 10.3 (9.61-10.9) at 10% survey 

overall malaria prevalence, to only 1.05 (0.97-1.14) at a malaria survey prevalence of 80%.   
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Figure 3.1 Map of Africa highlighting the geographic distribution of countries where 

the Demographic and Health Surveys (DHS) used in the analyses were conducted. 

Data from 23 DHSs conducted across sub-Saharan Africa were utilised in the analyses 

presented here – countries where surveys were carried out are coloured in yellow above. 

The world map was obtained from the rnaturalearth R package (version 0.1). 
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Figure 3.2 Malaria infection and the extent of household clustering according to detectability by different programmatic strategies. 
DHS data from 57 surveys and 23 countries detailing malaria infection status in children under 7 were collated, and the extent of infection 
clustering based on detectability by different programmatic strategies (RACD, MSAT or MTAT) was assessed. For each of these analyses, an 
individual was defined as residing in an index household if the household contained at least 1 other infection detectable through the 
programmatic strategy considered. The OR of being malaria positive in children who share a household with another child detectable through 
(A) RACD (clinical care seeking; population-level screening for infecton using routine diagnostics such as RDTs), (B) for the MSAT strategy 
(population-level recent fever screening), and (C) for the MTAT strategy (population-level screening for infecton using routine diagnostics such 
as RDTs) as compared to those who do not. Plots display the modelled OR (generated using a logistic-regression approach, coloured line) 
whilst points are the same ORs but calculated empirically for each survey. Pale shaded area represents the 95% Credible Interval.   
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Figure 3.3 Malaria infection and the extent of household clustering according to detectability by different programmatic strategies 
when comparing DHS surveys carried out in all age-groups, compared to those conducted in children under 7 only. Data from the 51 
DHS surveys in which only children under 7 had been tested for malaria infection (dark line with corresponding 95% credible interval in shaded 
area), and the 6 surveys in which all ages had been tested (lighter line with corresponding 95% credible interval in shaded area) were extracted 
and analysis repeated to compare the trends with the few all age surveys with the results from the larger dataset with children under 7 years of 
age. The dashed line represents an Odds Ratio (OR) of 1 with the dots representing the empirically estimated OR from each DHS study. Pale 
shaded area represents the 95% Credible Interval. 
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Table 3.3 Summary of the Collated Demography and Health Survey Data For Each Survey.  

Survey Country  Year  Diagnostic 
Age 
Group 

Survey Size 
(People's 
Recode) 

Survey Size 
(Children's 
Recode) 

Linked 
Across 
Recodes 

# 
Included, 
MTAT  

# 
Included, 
MSAT  

# 
Included, 
RACD  

1 Angola 2006 RDT All Ages 14281 1698 1522 1436 690 150 

2 Angola 2011 RDT Under 7s 40083 8242 7621 2513 2195 891 

3 Angola 2015 RDT Under 7s 72879 14322 12710 6112 4634 958 

4 Benin 2012 RDT Under 7s 86432 13407 12259 3155 2466 441 

5 Benin 2017 LM & RDT Under 7s 73364 13589 12389 3972 3723 1127 

6 
Burkina 
Faso 2010 LM & RDT Under 7s 81156 15044 13616 3668 3502 1156 

7 
Burkina 
Faso 2014 LM & RDT Under 7s 39152 6841 6387 3799 3544 1790 

8 
Burkina 
Faso 2017 LM & RDT Under 7s 36415 6061 5926 3052 2876 697 

9 Burundi 2012 LM & RDT Under 7s 23020 4267 4041 2087 2007 878 

10 Cameroon 2011 RDT Under 7s 70627 11732 10118 4822 3870 2247 

11 DRC 2013 LM & RDT Under 7s 94585 18716 16809 5413 4949 4964 

12 Ivory Coast 2012 LM & RDT All Ages 50010 7776 6744 2878 2227 932 

13 Gambia 2013 LM & RDT Under 7s 52176 8088 7488 2772 2518 821 

14 Ghana 2014 LM & RDT Under 7s 41202 5884 5463 1684 1332 339 

15 Ghana 2016 LM & RDT Under 7s 21874 3235 3051 1509 1377 706 

16 Guinea 2012 LM & RDT Under 7s 44769 7039 6262 1973 1784 825 

17 Kenya 2015 LM & RDT Under 7s 24271 3614 3389 8917 4536 2074 

18 Liberia 2009 LM & RDT Under 7s 22469 4193 3523 3702 2700 1455 

19 Liberia 2011 LM & RDT Under 7s 18970 3319 2906 1886 1544 941 

20 Liberia 2016 RDT Under 7s 21643 2956 2624 1457 1185 569 

21 Madagascar 2011 LM & RDT Under 7s 40160 6248 6015 4112 3318 577 

22 Madagascar 2013 LM & RDT Under 7s 38122 5477 5295 3575 2812 430 

23 Madagascar 2016 LM & RDT Under 7s 48349 6978 6797 3024 2582 430 



Page 87 of 194 
 

24 Malawi 2012 LM & RDT Under 7s 14022 2283 2194 941 862 279 

25 Malawi 2014 LM & RDT Under 7s 14026 2078 2020 744 681 209 

26 Malawi 2017 LM & RDT Under 7s 16495 2377 2273 1013 808 302 

27 Mali 2012 LM & RDT Under 7s 58004 10326 9290 4173 3412 577 

28 Mali 2015 LM & RDT Under 7s 39359 7749 7321 5954 5680 5680 

29 Mali 2018 RDT Under 7s 54270 9940 9034 2712 2502 588 

30 Mozambique 2011 LM & RDT Under 7s 61377 11102 10069 2673 2442 485 

31 Mozambique 2015 LM & RDT Under 7s 32399 5178 4903 2261 2006 958 

32 Mozambique 2018 RDT Under 7s 28516 4579 4326 2244 1981 633 

33 Nigeria 2010 LM & RDT Under 7s 29950 5978 5288 3565 3129 1847 

34 Nigeria 2015 LM & RDT Under 7s 37540 6524 6222 3893 3552 1777 

35 Nigeria 2018 LM & RDT Under 7s 181737 33924 29482 6776 6306 2204 

36 Rwanda 2008 RDT All Ages 32029 5489 5067 3701 3238 1356 

37 Rwanda 2010 LM & RDT All Ages 55718 9002 8361 2920 2328 1583 

38 Rwanda 2015 LM & RDT All Ages 53898 7856 7385 2208 1719 1697 

39 Rwanda 2017 LM & RDT All Ages 19484 2946 2797 2181 1562 547 

40 Senegal 2008 LM & RDT Under 7s 90586 15595 13920 3328 3137 1600 

41 Senegal 2010 LM & RDT Under 7s 77056 12326 11080 3944 3496 1464 

42 Senegal 2012 LM & RDT Under 7s 41400 6862 6275 6406 5785 1968 

43 Senegal 2014 LM & RDT Under 7s 40540 6842 6238 5652 5178 1299 

44 Senegal 2015 LM & RDT Under 7s 41681 6935 6327 5679 5191 1737 

45 Senegal 2016 LM & RDT Under 7s 41393 6725 6173 5492 5037 1425 

46 Senegal 2017 LM & RDT Under 7s 78492 12185 11112 8468 7991 3259 

47 Sierra Leone 2016 LM & RDT Under 7s 39836 6213 5753 5389 3990 1364 

48 Tanzania 2007 Unclear  Under 7s 44656 7502 6746 3795 3461 739 

49 Tanzania 2012 LM & RDT Under 7s 53325 8648 7980 4699 4242 1164 

50 Tanzania 2015 LM & RDT Under 7s 63851 10233 9313 7128 5779 1453 

51 Tanzania 2017 RDT Under 7s 46950 7688 7162 4266 3858 997 

52 Togo 2013 LM & RDT Under 7s 45286 6979 6443 2525 2068 883 
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53 Togo 2017 LM & RDT Under 7s 22340 3415 3281 1750 1632 473 

54 Uganda 2009 LM & RDT Under 7s 21121 4012 3560 2724 2416 1280 

55 Uganda 2014 LM & RDT Under 7s 26995 4728 4345 3323 2919 1091 

56 Uganda 2016 RDT Under 7s 88642 15522 13733 3555 2761 1425 

57 Burundi 2016 LM & RDT Under 7s 77425 13192 12231 4540 3723 2757 
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Whilst the majority (n = 51) of surveys had only assessed malaria infection status in children 

under 7, a small number of surveys (n = 6) had assessed malaria status in individuals of all 

ages. In these surveys, it was therefore possible to defined Index Household status for 

individuals older than 7. I therefore replicated the analyses retaining these individuals 

(spanning a wider range of ages) and compared the results of these analyses to the inferences 

drawn from the full range of surveys. Inclusion of these older individuals did not qualitatively 

affect the inferences presented here, and there was a significant effect of Index Household 

residency (P<0.001) and a significant interaction between Index Household and Survey 

Prevalence (P<0.001) for each of the three analyses of RACD, MTAT and MSAT respectively 

(Figure 3.3).  

Discussion 

Collating data from over 200,000 individuals across 23 countries in sub-Saharan Africa, I 

explored the degree and extent of the household clustering of malaria infections across a 

range of different settings, and for a range of different programmatically relevant definitions of 

what constitutes a detectable malaria infection. The results highlight extensive clustering of 

malaria infections at the household level, for all programmatic definitions considered – whether 

defining malaria infection detectability based on that infection being patent and detectable by 

RDT/LM (as in the case of MTAT), based on both symptoms and detectability by RDT/LM (as 

in the case MSAT), or based on the detectable infection, fever and seeking treatment at health-

centres (in the case of RACD). The results also highlight an important interaction between 

malaria transmission intensity and household clustering, with the degree of clustering 

becoming more pronounced as transmission intensity declines (i.e., a larger proportion of 

infected individuals within a population are clustered in fewer households). Particularly in these 

contexts, giving all residents of an Index Household (as defined by the programmatic strategy 

being employ) curative doses of antimalarial therapeutics may therefore provide malaria 

control programs with an option to easily target infections that may not otherwise be detected.  

Importantly however, the appropriateness and viability of such strategies will depend 

intimately on the transmission intensity, and the associated resource and operational 

requirements this imposes. These results have highlighted that malaria infections tend to 

cluster (though to different degrees) in all but the settings of highest (>65%) prevalence, which 

in theory suggests that household-based strategies to identify and treat infections could be 

appropriate across a wide range of settings. The operational feasibility of such approaches is 

likely to be limited in the settings with the highest transmission however (Bannister-Tyrrell et 

al., 2019; Mlacha et al., 2017). In these settings, where the majority of the households are 

likely to have at least 1 detectable infection, uniformly applied interventions (such as 
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insecticide treated bednets) are typically considered more appropriate (Stresman et al., 2018). 

Moreover, because the absolute number of infections is higher, and the degree of clustering 

reduced, targeted strategies are likely to identify a smaller proportion of the overall infectious 

population compared to low transmission settings (Stresman et al., 2020). In settings with low 

transmission (e.g. between 1 and 10% prevalence of malaria infection) however, where such 

strategies become operationally feasible, the results presented here suggest that reactive 

strategies such as those considered here may well be able to identify and target a significant 

fraction of the infected population, and in doing so, materially impact onwards transmission 

(Stresman et al., 2020).  

These analyses however are subject to a number of important limitations. Firstly, malaria 

infection in the DHS surveys was diagnosed using non-molecular methods i.e. either rapid 

diagnostic tests or light microscopy. These methods will therefore not detect individuals with 

submicroscopic malaria infections (i.e. those where parasite densities are below the limit of 

detection by RDT/LM and are undetectable with these methodologies, but which would be 

detectable with more sensitive molecular methods such as PCR). These infections have 

previously been shown to be infectious (Gonçalves et al., 2017; Slater et al., 2019) and my 

work in Chapter 2 has highlighted that they can constitute a significant fraction of the infectious 

reservoir in certain settings, particularly in the areas of lowest transmission which the results 

presented in this Chapter suggest are most amenable to reactive, household based control 

strategies. It is unclear therefore whether such clustering would be apparent when applied to 

the totality of malaria infections present, rather than just those detectable by typically 

employed diagnostics – and in turn, the comparative viability and utility of the different types 

of reactive based control measures.  

Relatedly, in the vast majority of surveys conducted, malaria infection status (and by 

extension, occurrence of recent fever or treatment seeking behaviour) was limited to children, 

specifically those under 7. Because of this constraint, I am unable to consider the full 

complement of individuals residing in households in my analysis, and by extension, it remains 

unclear the degree to which the results presented here would generalise to mixed populations 

including both children and adults. However, the results presented here are consistent with a 

recently conducted systematic review of the literature that reviewed these programmatic 

strategies in a similar manner (and which was combined with the results of the analyses 

presented here and subsequently published (Stresman et al., 2020)) and that collated studies 

in which infection had been diagnosed using molecular methods in all resident members of 

households (Stresman et al., 2020). More generally, it is also important to note that reactive 

strategies such as RACD are mainly appropriate when peri-domestic transmission is the key 
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driver of malaria infection. Such modalities of transmission are common across sub-Saharan 

Africa, but other drivers of exposure dominate in other settings (such as Cambodian or 

Amazonian forests where much exposure is occupationally related (Saavedra et al., 2019; 

Rossi et al., 2018b)). In these settings, the appropriateness and viability of household-based 

approaches is far from clear, and ultimately reactive strategies need to be designed in a 

manner sensitive to the underlying local transmission context.  

Despite these limitations however, these results highlight that where peri-domestic 

transmission dominates, the degree of household clustering of malaria infections is highly 

variable across the malaria endemicity spectrum, with the extent of this highest in the areas 

with the lowest transmission intensity. Together this work provides systematically collected, 

empirical evidence supporting the potential effectiveness of reactive, household-based 

approaches to controlling malaria transmission in the settings of lowest transmission, in-

keeping with both the results of multiple trials (Rossi et al., 2018b) as well as recent meta-

analyses comparing different approaches across the endemicity spectrum (Stresman et al., 

2020). Such control strategies can potentially enhance elimination efforts in these settings 

particularly when combined with effective vector control and wider strengthening of existing 

health systems, which will be crucial in ensuring a sufficient proportion of all infections can be 

targeted. 

Conclusion 

In this Chapter, I have explored the spatial clustering of microscopically detectable malaria 

infections, how the extent of this clustering varies depending on overall levels of malaria 

transmission, and what this heterogeneity means for the appropriateness of different control 

measures. Both this Chapter and Chapter 2 have been focussed primarily on patterns of 

heterogeneity relating to the human host, specifically those surrounding spatial variation in 

risk of infection (this Chapter) and infectivity/detectability of these infections (Chapter 2). In 

Chapters 4 and 5, I will turn to instead focus on the anopheline mosquito populations that 

underpin transmission and explore entomological determinants of heterogeneity in the malaria 

parasite’s transmission dynamics. Unlike Chapters 2 and 3, where work has primarily focussed 

on understanding spatial patterns of heterogeneity, these next chapters will be focussed on 

exploring the factors influencing the degree of seasonality in anopheline mosquito populations, 

to better understand the factors influencing temporal heterogeneity in the abundance of 

mosquito populations and its impact on the underlying temporal profile of malaria risk.   



Page 92 of 194 
 

Chapter 4 The Ecological Structure of Mosquito Population 

Seasonal Dynamics 

Populations of the anopheline mosquitoes responsible for malaria transmission are highly 

dynamic, frequently exhibiting substantial temporal (often seasonal) fluctuations in size that 

shape the profile of malaria risk. Understanding these dynamics is a crucial input to optimising 

certain control strategies (such as seasonal malaria chemoprevention or indoor-residual 

spraying), with impact depending on the ability to time delivery in relation to seasonal peaks 

in disease risk. In this Chapter, I develop a statistical framework enabling characterisation of 

the temporal patterns displayed by different mosquito species complexes and identification of 

“dynamical archetypes” sharing similar temporal properties. I apply this framework to 

temporally disaggregated anopheline catch data spanning 7 species and 117 unique locations 

across India collated via a systematic literature review. Integrating the collated data with this 

developed framework, I identify substantial heterogeneity in the extent and nature of seasonal 

dynamics both within and between different species and explore ecological factors driving this 

variation.  

Introduction 

Malaria transmission is underpinned by mosquito vectors belonging to the Anopheles genus 

– these vectors are heterogeneously distributed across the globe (Warrell and Gilles, 2017; 

Hay et al., 2010) and display marked variation in their vectorial capacity and bionomics (such 

as their propensity to bite humans vs other animals) (Massey et al., 2016). This results in 

marked differences in the transmission dynamics of malaria across different ecological 

contexts. To date, significant work has focussed on characterising the global spatial 

distribution (presence/absence) of these malaria vectors (and other mosquitos relevant to 

public health) (Sinka, 2013; Sinka et al., 2012). This work represents a vital input to 

surveillance and control programmes aimed at mitigating the impacts of vector-borne diseases 

worldwide. By contrast, less attention has been paid to understanding the temporal patterns 

of vector abundance, and how these dynamics are shaped by the local environment. Mosquito 

populations are highly temporally dynamic, exhibiting substantial annual fluctuations in size 

that drive the temporal profile of disease risk (Koenraadt, Githeko and Takken, 2004; Das et 

al., 2017). Understanding the determinants of these dynamics is important given that the 

efficacy of many malaria control interventions (such as seasonal malaria chemoprevention 

(Wilson and IPTc Taskforce, 2011; Ross et al., 2011) and indoor-residual spraying (Pluess et 

al., 2010)) depends on the timing of their delivery in relation to seasonal peaks in risk. Effective 

utilisation of these interventions will be vital for achieving the goals of the World Health 
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Organisation’s “High Burden, High Impact” strategy, which aims to substantially 

reduce/eliminate malaria in India and the ten African nations with the highest global burden.  

Despite their importance, many questions remain surrounding the drivers of mosquito 

population dynamics. A close relationship has been observed between rainfall occurrence, 

peaks in mosquito populations and malaria cases (Cairns et al., 2012) including for Anopheles 

gambiae s.l. (Appawu et al., 2004; Okello et al., 2006; White et al., 2011) across several 

African settings and Anopheles dirus s.l. across India and south-East Asia (Obsomer, 

Defourny and Coosemans, 2007); in-keeping with the aquatic breeding of mosquitoes and the 

preferences some species display for transient, rain-fed pools of water in which to breed 

(Gimnig et al., 2001). However, studies of Anopheles funestus s.l. populations have identified 

varying degrees of seasonality (Cohuet et al., 2004; Mendis et al., 2000) including population 

abundance peaking in the dry season (Matowo et al., 2021). Relatedly, for Anopheles 

annularis s.l., a number of studies have demonstrated only limited seasonal peaks (despite 

highly seasonal rainfall), with the species detected in significant numbers over the course of 

the entire year even in periods when other major vectors (such as Anopheles culicifacies s.l.) 

are largely absent (Das et al., 2017; Singh et al., 2013; Das et al., 2011). This brings into 

question how generalisable relationships between rainfall and mosquito population dynamics 

are. The influence of other factors such as temperature (which has a marked influence on 

many mosquito traits including larval development (Bayoh and Lindsay, 2003), biting rates 

and mortality rates (Shapiro, Whitehead and Thomas, 2017)) remains similarly unclear. 

Recent field-based work has suggested that considerations of both rainfall and temperature 

are necessary to understand seasonal patterns of malaria incidence (Beck-Johnson et al., 

2017). However, these analyses have been restricted to a small number of settings across 

sub-Saharan Africa; leaving the influence of temperature regimen on mosquito population 

dynamics largely unexplored in other ecological settings. Previous work has also suggested a 

potential role for numerous other ecological factors in shaping mosquito population dynamics, 

including land-use (such as irrigative practices (Sang et al., 2016) or structure of the built-

environment in urban settings (Thomas et al., 2016)) or the local hydrological environment 

and presence of long-lived water bodies (Minakawa et al., 2012, 2008) (which potentially 

provide opportunities for breeding year-round).  

Altogether, these results highlight outstanding questions surrounding the drivers of mosquito 

population dynamics. Whilst numerous entomological studies of Anopheline seasonality have 

been carried out, focus is typically on a single species and/or location –such studies are rarely 

gathered and synthesised together to identify generalisable patterns and facilitate systematic 

comparisons across key vector species. Using India as a case study, I collate a dataset of 
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temporally disaggregated mosquito catch data from across the country to better understand 

variation in mosquito population dynamics, the factors underlying this variation, and how 

dynamics vary across different species. I develop statistical methodologies enabling 

characterisation of the temporal patterns displayed by different mosquito species complexes 

and identification of “dynamical archetypes” sharing similar temporal properties. This work 

reveals pronounced heterogeneity in the extent and nature of seasonal dynamics, both 

between species complexes and across different locations. In doing so, these results highlight 

the importance of considering both species composition and ecological structure when 

implementing interventions aimed at controlling vector-borne diseases. 

Methods 

Systematic Review of Indian Entomological Literature  

Web of Science and PubMed databases were searched on 17th October 2017 using the 

keywords “India” AND “Anophel*” to identify references with temporally disaggregated 

entomological data. I identified 1945 records with 1556 remaining after removing duplicates. 

References were selected for Inclusion/Exclusion according to the following criteria: 

Inclusion Criteria: 

• Reference contains temporally disaggregated adult mosquito catch data at a temporal 

resolution of monthly or higher. 

Exclusion Criteria: 

• Mosquito catch data is not temporally disaggregated to a sufficient extent (e.g. catches 

were done yearly or seasonally rather than monthly). 

• Mosquito catch data was collected as part of a trial assessing a vector control 

intervention (which would perturb the natural dynamics of the vector, rendering the 

data unrepresentative of the population dynamics in the absence of control). 

• Reference only contains information on immature/larval mosquito life cycle stages. 

• Reference contained insufficient information to geolocate the area in which the study 

was conducted.  

Following Title and Abstract screening 281 records were retained for full text evaluation. I 

included records containing temporally disaggregated adult mosquito catch data with monthly 

(or finer) temporal resolution spanning at least 12 months that had not been conducted as part 

of vector control intervention trials, and where sufficient information to geolocate the catch site 

was provided. 78 references were retained that yielded 117 geolocatable areas across India. 

These references contained 272 time-series spanning the malaria vectors Anopheles 



Page 95 of 194 
 

annularis s.l., culicifacies s.l., dirus s.l., fluviatlis s.l., minimus s.l., stephensi s.l. and subpictus 

s.l. and spanning 5 collection methods.  

Data Extraction, Collation and Initial Processing  

Entomological Data Extraction  

For each reference, I extracted all relevant entomological catch data detailed. I restricted 

extraction to 7 major Anopheles species known to be relevant to malaria transmission in India 

(although a number of others exist) and for which multiple catch data time series were 

available. These were Anopheles annularis (Dev and Sharma, 2013), Anopheles culicifacies 

(Singh et al., 1999), Anopheles dirus (Dutta et al., 1996; Prakash et al., 1997), Anopheles 

fluviatilis (Nanda et al., 2012; Tripathy et al., 2010), Anopheles minimus (Dev and Manguin, 

2016; Dev, 1996), Anopheles stephensi (Korgaonkar et al., 2012) and Anopheles subpictus 

(Kumar et al., 2016). Where data were presented in the form of a table, data was copied 

directly from the table. Where graphs only were presented, estimates of the data were 

extracted using DataThiefTM software. This yielded a total of 305 time series of monthly 

mosquito catch data, ranging in length from 5 – 46 months. I restricted subsequent analyses 

to time series that spanned a year (12 timepoints, monthly) or longer, a total of 272 time series. 

This yielded the following number of time series for each of the species considered: 

Table 4.1 Number of time series collated for each species  

 annularis culicifacies dirus fluviatilis minimus stephensi subpictus 

# Time-

Series 

39 85 11 60 12 27 38 

As the primary focus of this research was to explore annual and seasonal patterns of mosquito 

population dynamics, as well as the fact that variations in time series length are a factor known 

to affect their statistical properties (Fulcher, Little and Jones, 2013) (and which would therefore 

impact the comparability of the time series gathered and analysed here), all time series were 

standardised to be 12 months in length. For time series containing more than 12 time points 

(i.e. time series that spanned longer than a single year), I averaged the recorded catches for 

a given month. Where the study has been initiated in a month other than January, and 

concluded in a month other than December, the recorded counts were rearranged to yield a 

complete time series running from January to December. The studies analysed here employed 

a wide array of different sampling methodologies including Indoor and Outdoor Resting 

Collections, Human Landing Catches, Spray Catches and Trap Catches amongst others.  

Table 4.2 Number of time series collated according to method of collection  
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 Landing 

Catch 

Resting 

Collections 

Pit 

Collections 

Light Traps Spray 

Catches 

# Time 

Series 

41 194 5 15 5 

 

The majority of studies carried out were resting collections – within each of the different catch 

methods however, there was further variation according to the location the catch was carried 

out in (typically human dwellings or cattlesheds), the timing (daytime, night-time or overnight) 

and (where relevant) the bait used (typically either cattle or humans). Note that when summed 

(260), these values do not correspond to the number of time-series used (272) as in a small 

number of cases, multiple sampling methods were used, and the results not disaggregated 

(and have therefore not been counted for the purposes of the table above). 

Results were typically, though not always, presented in the form of some sampling-effort 

standardised measure such as Man Hour Density (MHD). As such, though reflective of 

mosquito population dynamics, these measures do not represent the overall number of 

mosquitoes caught. To this end, where information on sampling effort (number of hours spent 

sampling, number of households/cattlesheds searched, number of human baits, number of 

traps set etc) was present, I used this information to convert MHD back to the raw counts. In 

the small number of instances where there was variable sampling effort across the time series 

(which would bias the conversion away from the true underlying population dynamics), I 

conservatively used the lowest sampling effort recorded across the time series in the 

conversion. Together, this allowed me to produce an estimate of the number of mosquitoes 

sampled (a raw count, based on equal sampling effort across the time series).  

Environmental Covariate Assembly  

For each of the 117 study locations I extracted a suite of environmental variables derived from 

satellite data that together describe the location’s ecological structure. These include time-

period and location specific rainfall data from The Climate Hazards Group Infrared 

Precipitation With Stations (CHIRPS) dataset (Funk et al., 2015), BioClimatic variables (a suite 

of biological relevant covariates defined from monthly rainfall and temperature satellite data 

(Fick and Hijmans, 2017)), various measures of aridity (Zomer et al., 2008), a number of 

covariates describing the seasonality and extent of water bodies (Lehner and Döll, 2004), 

landcover (Friedl et al., 2010) and a number of other variables previously used in defining the 

global distribution of anopheline vectors (Sinka et al., 2011b). The environmental covariates 

(i.e. the independent variables that, along with species, are used to predict the different 

seasonal patterns) used in this research consist of raster layers spanning all of India at a 2.5 
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arc-minute (~ 5km by 5km) spatial resolution. The covariates utilised here were initially 

selected from a set of 66 covariates derived from:  

• Covariates previously used in other Anopheles mosquito mapping efforts (Sinka et al., 

2010a), as well as in other mapping efforts looking at the spatial distribution of the 

malaria parasite, Plasmodium falciparum (Bhatt et al., 2015b).  

• Consideration of some of the possible drivers of seasonal dynamics (primarily 

hydrological considerations surrounding the seasonality and availability of aquatic 

breeding sources, and how this might interact with environmental composition (Gimnig 

et al., 2001; Mattah et al., 2017) and species specific breeding preferences (Singh et 

al., 2014; Amerasinghe, Indrajith and Ariyasena, 1995) to structure population 

dynamics). From these considerations, a number of other raster layers were included 

that together describe further the underlying hydrological environment.  

The majority of these covariates are derived from high temporal resolution satellite images 

that were initially gap-filled (Weiss et al., 2014) to eliminate missing data that typically arises 

from cloud cover. These images were then aggregated and summarised to produce a suite of 

synoptic environmental covariates for prediction. From these 66 covariates (a number of which 

are highly correlated with one another), a reduced subset of 25 covariates were selected. 

These were selected in the following way. Firstly, covariates were grouped into one of five 

categories based on the ecological features they were describing. These categories were 

Temperature, Rainfall, Aridity, Hydrological and Landcover. A subset of covariates were then 

selected in each category in order to minimise the correlation between covariates (based on 

correlation matrices of Spearman correlation coefficients) whilst also retaining measures of 

important quantities such as the mean, the dispersion etc for a given category. Based on this, 

the final covariates included in each category were the following: 

• Temperature: Annual Mean Temperature, Temperature Seasonality & Mean 

Temperature in the Driest Quarter (3 covariates). 

• Rain: Annual Rain, Rain Seasonality, CHIRPS Minimum and Rain in the Coldest 

Quarter (4 covariates). 

• Aridity: Specific Humidity Standard Deviation, Tasseled Cap Wetness Standard 

Deviation, Tasseled Cap Brightness Standard Deviation (3 covariates). 

• Hydrological: Water Areas Occurrence, Water Areas Recurrence and Flow 

Accumulation (3 covariates). 

• Landcover: Dominant Landcover and City Accessibility (2 covariates).  
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together, comprising a total of 25 covariates (Dominant Landcover consists of 11 classes of 

landcover type). This reduction reduced the extent of multicollinearity in the covariates and 

reduced the scope for model overfitting. The association between each of these environmental 

covariates and membership of each dynamical archetype/cluster was then assessed using a 

Bayesian, regularised multinomial logistic regression-based framework (described in further 

detail below), that analyses the relationship linking each covariate to cluster/archetype 

membership whilst controlling for all other covariates included in the model. 

Study Geolocation and Environmental Covariate Extraction 

Geolocation of study areas was possible to a varying degree depending on the information 

available within the paper (and related literature). When villages names or the details of the 

administrative unit a study was carried out in were provided in the paper text, geolocation was 

carried out utilising a wide array of resources containing spatially explicit information on the 

location of Indian settlements and administrative units. These were Google Maps/Google 

Earth, Etrace, OneFiveNine, Veethi, Wikimapia, VillageInfo, MapsOfIndia, Geonames and 

AlipurduarTourism. Additionally, a number of the references identified in my review had 

previously been utilised as part of the Malaria Atlas Project (MAP) Presence/Absence mapping 

work and so had previously been geolocated (Sinka et al., 2011b). In these instances, the 

MAP location estimate was used. The precision of study location estimates varied greatly (due 

to the extent of spatial detail provided in the paper e.g. village vs district as well as the 

identifiability of villages/administrative units) – this uncertainty is explicitly incorporated into 

the analyses, with raster covariates extracted over the full area the study is believed to have 

been carried out in, and then the average of those raster values used. 

In addition to the environmental covariates detailed above, for each of the 117 geolocated 

study locations, daily rainfall estimates specific to the location and time-period the study was 

conducted in were also collated. These data were taken from “The Climate Hazards Group 

Infrared Precipitation With Stations” (CHIRPS) dataset (Funk et al., 2015) and were 

subsequently aggregated up to the same temporal resolution as the mosquito catch data (i.e. 

monthly). Data from the CHIRPS dataset is only available from the year 1981, and so for 

locations where the sampling date predated this, daily rainfall data was extracted for the year 

1981, and assumed to be representative of past rainfall. These rainfall data were used to 

calculate the cross-correlation coefficient between mosquito catches and rainfall.  

Maps of Vector Presence/Absence  

Extensive work has previously been undertaken mapping the distributions of key Anopheline 

vectors across Africa, the Middle East and Europe (Sinka et al., 2010a), the Americas (Sinka 

et al., 2011a) and the Asia and Pacific region (Sinka et al., 2011b). These maps describe the 
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probability of occurrence at a 5km by 5km resolution for many of the dominant vector species 

involved in malaria transmission. Here, I utilise updated versions of these maps that include 

presences up to the year 2016 as part of work conducted with the Humbug Project 

(http://humbug.ac.uk/), funded through a recent Google Impact Challenge grant. These maps 

describe the probability of occurrence for the species An. annularis, An. culicifacies, An. dirus, 

An. fluviatilis, An. minimus, An. stephensi and An. subpictus. These estimates of occurrence 

probability were then integrated with a multinomial logistic regression model of dynamics to 

generate estimates of the probability of a given location containing a particular temporal 

pattern/profile (see section Penalised Multinomial Logistic Regression Modelling, 

Evaluation of Model Accuracy and Predictive Modelling below for further technical details).  

Time-Series Fitting and Interpolation  

Negative Binomial Gaussian Process – Fitting and Inference: 

I use a highly flexible stochastic process model, known as a Gaussian Process, to temporally 

interpolate between the monthly catch datapoints and integrate over uncertainties in the 

estimates of mosquito abundance (a product of both the catch methodology as well as generic 

random variation in the sampling of the mosquito population) spanning the entire year. 

Gaussian processes specify a distribution over functions such that any finite set of function 

values 𝑓(𝑥1), 𝑓(𝑥2), … 𝑓(𝑥𝑁) have a joint Gaussian distribution (Rasmussen, 2004). The 

Gaussian process is entirely specified by its mean function, defined as: 

𝐸[𝑓(𝑥)] =  𝜇(𝑥) 

and by its covariance function: 

𝐶𝑜𝑣[𝑓(𝑥), 𝑓(𝑥′)] =  𝑘(𝑥, 𝑥′) 

also known as the kernel. This kernel is a positive-definite function of two inputs, 𝑥 and 𝑥′ that 

defines the covariance between any two points (and by extension the covariance matrix of our 

Gaussian Process when all pairwise combinations of points are considered). In doing so, the 

kernel encodes prior information about the extent to which I would expect two objects (𝑥 and 

𝑥′ in this instance) to be similar. A wide array of kernels exist that specify an equally wide array 

of similarity structures, such as the squared exponential (where similarity varies with the 

Euclidean distance separating 𝑥 and 𝑥′) and the linear kernel (which allows the relationship 

governing similarity to vary with not just the relative position of two inputs, i.e. 𝑥 − 𝑥′, but with 

their absolute position, a property that makes this kernel “non-stationary”). Given the strong 

seasonality known to be present in mosquito catch time series and from the empirically 

observed patterns of abundance observed when examining the raw time series, I selected a 

http://humbug.ac.uk/
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Periodic Kernel. This kernel defines similarity based on the distance between 𝑥 and 𝑥′ 

compared to some period 𝑝 and so is able to accommodate patterns that broadly repeat 

themselves over time (such as seasonal or annual peaks in mosquito abundance).  

𝑘(𝑥, 𝑥′) = 𝛼2exp (−
2

𝑙2
𝑠𝑖𝑛2 (

𝜋|𝑥 − 𝑥′|

𝑝
)) 

Where the 𝑝 represents the period, 𝛼 specifies the magnitude of the covariance given a certain 

period, and 𝑙 represents a lengthscale parameter further constraining the extent to which two 

values separated by a given distance can co-vary with one another. Bayesian inference and 

fitting of Gaussian Processes typically utilises the following hierarchical formulation:  

𝜃 ~ 𝜋(𝜃) 

𝑓 ~ 𝐺𝑃(0, 𝐾𝜃(𝑥)) 

𝑦𝑖  ~ 𝑀𝑉𝑁(𝑓(𝑥𝑖), 𝜎2) ∀𝑖 ∈ {1, … , 𝑁} 

where 𝜃 represents a vector of hyperparameters involved in defining the kernel’s properties, 

𝑓 is a distribution of functions from a zero-mean Gaussian Process with covariance function 

𝐾𝜃, 𝑓(x) are function evaluations at times 𝑥, and 𝑦 our observed counts. However, mosquito 

catch data is rarely normally distributed (leaving aside limit theorems) and frequently displays 

high levels of overdispersion (Boussari et al., 2012), a common property of biological systems 

generally, but made more acute by the fact that for a number of the time series, the monthly 

catches reported represented the summed total of multiple catches made throughout the 

period (but that were not presented in the paper, where only monthly totals were presented); 

this process of summation also introduces overdispersion. Motivated by this, I adapted the 

above framework to accommodate a Negative Binomial likelihood, leading to the following 

inferential framework: 

𝜃 ~ 𝜋(𝜃) 

𝑓 ~ 𝐺𝑃(0, 𝐾𝜃(𝑥)) 

𝑦𝑖  ~ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑒𝑓(𝑥𝑖), 𝜎) ∀𝑖 ∈ {1, … , 𝑁} 

where the exponential function 𝑒𝑥 is used to reflect the fact that I use a log link between the 

observed counts and the underlying latent process reflecting the population dynamics, and 𝜎 

represents the overdispersion parameter of the Negative Binomial distribution.  

Prior Probability Specification 

Prior distributions for the estimated parameters were defined as follows: 
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𝑙 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(2, 12) 

𝛼 ~ 𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0, √𝑆𝐷 (𝑦)) 

𝑝 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(12, 42) 

𝜎 ~ 𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0, 82) 

Weakly informative priors were set on the scaling factor 𝛼, the period, 𝑝, and the 

overdispersion parameter, 𝜎. The period prior was centred around 12 (a value which would 

represent annual variation) to reflect the fact that the majority of observed variation in mosquito 

abundance recorded has typically been observed to cycle annually due to annual variation in 

key ecological factors such as rainfall and ambient temperature. A wide standard deviation 

was used however in to allow the model to identify and accommodate instances of bimodality 

or periods operating across timescales longer than a year, although important to note is that 

the lower and upper bounds for the period were set to 4 and 18 months respectively, to avoid 

identifiability issues arising from the lack of data at temporal resolutions substantially below 

and above these bounds. A similarly wide prior was set over the overdispersion parameter 𝜎 

and the scaling factor 𝛼. An informative prior was set for the lengthscale 𝑙, although the use 

of less informative priors, either for the lengthscale or for the period, did not significantly alter 

conclusions arising from the analysis (see Figure 4.5), highlighting the robustness of the 

results presented in the results section of this chapter. 

Model Fitting and Parameter Inference 

This Negative Binomial Gaussian Process were fitted using STAN a probabilistic programming 

language utilising a HMC-based sampling algorithm in conjunction with the No-U-Turn 

sampler for Bayesian inference (Hoffman and Gelman, 2011). The model specified above was 

implemented in R using the rStan package (Carpenter et al., 2017). For each time series, 4 

chains of 5,000 iterations were run for purposes of model fitting and parameter inference. Half 

of each chain’s iterations were discarded as burn-in/the adaptive phase of the sampling, 

leaving a total of 10,000 iterations available for inference. The Gelman-Rubin statistic was 

monitored for each model fitting to assess convergence and in all cases, estimates were 

consistently <1.02, indicating stability of the chains and probable convergence to the 

underlying true posterior distribution.  

Fitted Time Series Normalisation and Von Mises Distribution Fitting: 

Following this fitting process, and to establish comparability across the time series (which 

varied substantially in the absolute count numbers recorded and used a wide and highly 
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heterogeneous array of different sampling methods), I normalised each time series in the 

following way: 

𝑝𝑖 =  
𝑦𝑖

∑ 𝑦𝑖
 

where 𝑝𝑖 is the normalised count for timepoint 𝑖 and 𝑦𝑖 is the un-normalised count for timepoint 

𝑖  as predicted from the Negative Binomial GP fitting described in the previous section.  

To further characterise the periodic properties of these time series, I fit a Von Mises 

distribution, which is a continuous probability distribution on the circle with range from 0 to 2𝜋. 

Broadly, it can be regarded as the circular analogue of the normal distribution on the line, with 

the probability density function for the angle 𝑥 given by: 

𝑓(𝑥|𝜇, 𝜅) =  
𝑒𝜅 cos (𝑥−𝜇) 

2𝜋𝐼0(𝜅)
 

where 𝐼0(𝜅) is the modified Bessel function of order 0, the parameter 𝜇 is a measure of location 

(analogous to the mean of the normal distribution, describing where on the circle the 

distribution is clustered around) and 𝜅 describes the concentration of density around 𝜇 (and 

thus its inverse is a measure of dispersion, analogous to 𝜎2 for the normal distribution.  

I fit two sets of Von Mises densities to the normalised time series, the first containing a single 

component, specified as: 

𝑓(𝑥|𝜇1, 𝜅1) = 𝑓1(𝑥|𝜇1, 𝜅1) 

And the other possessing two components (sometimes called a mixture), formulated as: 

𝑓(𝑥|𝜇1, 𝜅1, 𝜇2, 𝜅2, 𝑤) = 𝜔𝑓1(𝑥|𝜇1, 𝜅1) + (1 − 𝜔)𝑓2(𝑥|𝜇2, 𝜅2) 

where 𝑥 in both instances represents the normalised monthly count formulated as a random 

variable on the circle, i.e. by defining 𝑥 =
2𝜋𝑝𝑖

12
 . Fitting was carried out in R using the optim 

function and with the sum of squares as the loss function. The outputs arising from this fitting 

– the comparative suitability of the one and two component distributions, as well as the values 

of 𝜔, 𝜇 and 𝜅, were then explored to further characterise the temporal properties of the data.  

Time-Series Characterisation and Clustering by Features  

Motivated by previous work providing a framework to statistically characterise the empirical 

structure of time-series data (Fulcher, Little and Jones, 2013) and work characterising the 
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seasonality of malaria case incidence (Nguyen et al., 2020), I calculated several summary 

statistics for each smoothed time-series to characterise their temporal properties, specifically 

the following: 

1. Kullback-Leibler Divergence: Also known as the relative entropy, the Kullback-

Liebler divergence represents a measure of how different one probability distribution 

is from a second probability distribution (where a value of 0 indicates that the two 

distributions are identical). It is specified in the following manner: 

𝐸𝑖 =  𝑝𝑖𝑙𝑜𝑔2 (
 𝑝𝑖

 𝑞𝑖
) 

𝐸 = ∑ 𝑝𝑖𝑙𝑜𝑔2 (
 𝑝𝑖

 𝑞𝑖
)

12

𝑖=1

 

where  𝑝𝑖 is the average value of the normalised time series for month 𝑖, and 𝑞𝑖 = 1/12 

for 𝑖 = 1, … , 12. This operation therefore measures the deviation of a normalised time 

series from a uniform distribution, in doing so, informing about the extent to which a 

seasonal peak (or peaks) is present in the time series. 

2. Periodic Kernel Median: Fitting the Negative Binomial Gaussian Process with a 

periodic kernel allowed inference of the period, 𝑝, providing us with an estimate of the 

frequency of repeating patterns in the monthly abundance of mosquitoes. An estimate 

of 𝑝 was calculated for each fitted time series using the MCMC samples, and the 

median value of 𝑝 based on these samples used.  

3. Proportion of Points Greater Than 1.65x the Mean: For each fitted, normalised time 

series, the proportion of points greater than 1.65x the mean of the time series was 

calculated. This informs about the extent to which the data is peaked, as well as the 

width of the peak.  

4. Peak Distance from January: For each fitted, normalised time series, the maximum 

recorded value was noted and the distance of this value from January was calculated.  

5. Number of Peaks: Estimates of the parameters governing the fitted two component 

Von Mises distribution were used to infer the number of peaks in each time series. 

Specifically, a time series was deemed to possess one peak if the value of the Von 

Mises component weighting was either < 0.3 or > 0.7 and the difference in means was 

< 
2𝜋

3
 or > 

4𝜋

3
 , indicating that the majority of the density could be attributed to one of the 

two components, and that the two means identified during the fitting were temporally 

close to one another. Otherwise, a time series was judged to possess two peaks.  
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6. Von Mises 1 Component Mean: This operation is based on the number of peaks 

inferred from fitting of 1 and 2 component Von Mises distributions to the Negative 

Binomial GP fitted, normalised time series. If a 1 component Von Mises distribution 

was preferred, then the Von Mises mean corresponding to the maximum likelihood 

predicted value was used. If the 2 component Von Mises distribution was preferred, 

the value for this operation for that particular time series is set to -5.  

7. Von Mises Two Component Weight: Estimates of the weight parameter governing 

the two component Von Mises distribution were also used to infer the bimodality of the 

time series. The weight specifies the proportion of each component that is used to fit 

the time series and thus a very high (or very low weight) indicates the dominance of a 

single component and the comparatively small contribution of the other.  

I then applied a Principal Components Analysis (PCA) to these results to identify a lower-

dimensional representation of the structure present in the data amenable to visualisation and 

implemented k-means clustering to identify clusters of time-series with similar temporal 

features – i.e. this clustering assigns each smoothed time-series to one cluster. 

Statistical Modelling and Prediction of Seasonal Modality  

Prediction of cluster membership was carried out using a multinomial logistic regression 

model. Multinomial logistic regression generalises logistic regression (which predicts a binary 

outcome) to instances with >2 possible outcomes and predicts the probabilities of all possible 

outcomes of a categorically distributed dependent variable (in this instance, the 4 clusters 

representing distinct temporal patterns) given a set of independent variables (in this instance, 

the species each time series belongs to and the previously mentioned suite of environmental 

covariates). Whereas logistic regression frameworks typically have a single coefficient per 

covariate (which describes the influence of that particular covariate on the outcome being 1 

rather than 0), within a multinomial logistic framework, each category being predicted (each of 

the 4 clusters of temporal patterns in this instance) has a coefficient per covariate. Thus, a 

given covariate e.g. isothermality (defined as the mean diurnal temperature range divided by 

the overall average temperature, i.e. a measure of the variability of the temperature profile in 

a setting) will have 4 coefficients associated with it, with each of these 4 coefficients specifying 

the association between isothermality and membership of Clusters 1, 2, 3 and 4 respectively.  

I employed an ℓ2 (ridge) penalty on all coefficients in order to reduce issues surrounding 

overfitting and partially mitigate multicollinearity across some of the environmental covariates: 

this regularised multinomial logistic regression model was then fitted within a Bayesian 

framework and implemented in Stan. Following fitting, the mean coefficient values were used 

to generate estimates of the probability that a given time series belongs to each of the 4 
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clusters. Time series were assigned to the cluster with the highest cluster probability and the 

misclassification rate computed based on the proportion of time series whose cluster 

membership was correctly predicted.  

The results of these analyses were then integrated with recently produced maps of vector 

presence/absence (as part of work conducted with the Humbug Project (http://humbug.ac.uk/), 

funded through a Google Impact Challenge grant) to generate predictive maps of mosquito 

population dynamics across India, specifically, the probability of locations containing at least 

one mosquito species displaying a particular temporal pattern (1 of the 4 temporal patterns 

associated with the clusters). For each location, I individually calculated for each of the seven 

species the probability that the species was present (using the recently generated maps of 

vector presence/absence), and the probability that the species would display a particular 

temporal pattern, conditional on presence. For a given location (indexing suppressed for ease 

of notation), ror each temporal profile 𝑇𝑃 𝑖 and the probability of a vector species 𝑗 being 

present and displaying that particular temporal profile was calculated as follows: 

𝑝(𝑇𝑃𝑗
𝑖) = 𝑝(𝑇𝑃𝑗

𝑖| 𝑉𝑃𝑗) 𝑝(𝑉𝑃𝑗) 

where 𝑝(𝑉𝑃𝑗) describes the probability of the vector species 𝑖 occurring in that location (taken 

from the Humbug vector occurrence probability maps) and 𝑝(𝑇𝑃𝑗
𝑖| 𝑉𝑃𝑗) describes the 

probability of vector species 𝑖 displaying temporal profile 𝑗 conditional on its occurrence in that 

location.  

1 −  𝑝(𝑇𝑃𝑗
𝑖) is then the probability of the absence of vector species 𝑗 displaying temporal profile 

𝑖 in the location being considered. Taking the product of these terms over all 𝑁 vector species, 

we then have: 

𝑝(𝑇𝑃𝑖′
) =  ∏ (1 −  𝑝(𝑇𝑃𝑗

𝑖))

𝑁

𝑗=1

 

Where 𝑝(𝑇𝑃𝑖′
) is therefore the probability of temporal profile 𝑖 being absent from the particular 

location being considered, across all species being considered. The probability of temporal 

profile 𝑖 being present in the location being considered, in at least 1 vector species is then 

given as: 

𝑝(𝑇𝑃𝑖) = 1 −  𝑝(𝑇𝑃𝑖′
) 

http://humbug.ac.uk/
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Results 

A total of 272 time-series from 117 locations across India were identified through the 

systematic review, spanning seven species complexes that together represent the dominant 

malaria vectors in the country. These noisy time-series (Fig. 4.1) were then smoothed using 

a Negative Binomial Gaussian Process based framework (Fig. 4.2). Substantial variation in 

temporal dynamics was observed between different species complexes in degree of 

seasonality and timing of seasonal peaks. Whilst Anopheles dirus s.l. populations tended to 

peak during the monsoon period (typically June to September), many Anopheles fluviatilis s.l. 

populations peaked between November and February (the dry season across most of India), 

reaching their lowest density during the monsoon. Anopheles dirus s.l. populations 

demonstrated the highest degree of seasonality with an average of 75% of the total annual 

catch being concentrated in a 4-month time-period (Fig. 4.2C). This was in contrast to 

Anopheles annularis s.l., where only 53% of the total annual catch on average was caught in 

any 4-month period. In addition to this variation between species complexes, I also observed 

extensive variation in temporal dynamics within a species complex. Across the 85 time-series 

collated for Anopheles culicifacies s.l., populations varied substantially in both the extent and 

timing of their seasonal peaks; this ranged from sharp peaks in the monsoon season to less 

seasonal, more perennial characteristics similar to those observed for Anopheles annularis 

s.l.. A range of dynamics were also observed for time-series belonging to Anopheles stephensi 

s.l., from peaks coincident with the monsoon season to bimodal dynamics displaying peaks 

both during and outside the rainy season.  

An array of summary statistics were calculated for each time series in order to characterise 

their temporal properties (Fig. 4.3). This was followed by k-means clustering of the results, to 

assess whether the observed variation could be delineated into discrete groups, each 

characterised by distinct temporal patterns. I identified 4 groups (Fig. 4.4A) – these included 

time-series peaking during the monsoon season (Cluster 1), displaying bimodal characteristics 

(Cluster 2), peaking in the dry season (Cluster 3) or displaying perennial patterns of 

abundance (Cluster 4) (Fig. 4.4C). Cluster assignment was robust to the choice of prior used 

in the time-series fitting and smoothing (Fig. 4.5). Average catch size varied between Clusters, 

ranging from a median catch size of 356 for Cluster 2 to 42 for Cluster 4 (see Fig. 4.6). The 

distinct patterns displayed by each group were not due to differences in the timing and extent 

of rainfall across India – I collated location and time-period specific rainfall data for each study 

(collated from the CHIRPS dataset (Funk et al., 2015)) and calculated the cross-correlation 

between mosquito density and rainfall. This varied between clusters –a high positive cross- 

correlation product between rainfall and mosquito density was observed for Cluster 1 (average   
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Figure 4.1 The Raw Mosquito Data Extracted During the Systematic Review Process.  
Through a systematic review, a total of 272 time series containing species-specific, monthly 
disaggregated mosquito catch data spanning at least 12 months were identified and extracted. 
Together, these time series span 118 locations across India and 7 major Anopheline species 
known to be involved in the transmission of malaria. For each panel presented here, pale lines 
represent a single normalised time series for that particular species, and the brighter line is 
the mean of all the time series belonging to that species, evaluated at that particular timepoint.  
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Figure 4.2 Exploring Species Complex-Specific Patterns of Mosquito Population 
Dynamics. Negative Binomial Gaussian Processes incorporating a periodic kernel were fitted 
to each of the 272 time-series collected from 118 locations across India and spanning the 
period 1979-2017 were collated as part of the systematic review. These fitted time-series 
(representing monthly catches over the course of a year) were then normalised and the results 
plotted here, disaggregated by species complex. (A) Map of India showing the different 
locations for which time-series data was available. Points represent a single collected time-
series, coloured according to the species complex. (B) Normalised, Gaussian Process fitted 
time-series disaggregated by species complex. In all instances, pale lines represent a single 
time-series for that particular species complex, and the brighter line is the mean of all of the 
time-series belonging to that species complex, evaluated at that particular timepoint. (C) 
Boxplot of the maximum percentage of total annual study catch caught in any consecutive 4 
month period (an approximate measure of seasonality, with a higher value implying greater 
seasonality). Each point is a study, coloured according to Anopheline species. (D) As for (C) 
but showing the mean percentage of the total annual study catch caught across a range of 
different months for each species.  
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Figure 4.3 Temporal Cluster Statistical Properties. A series of mathematical operations 
were applied to the fitted time series in order to further characterise and explore their temporal 
properties. The results of this characterisation were then clustered using the k-means 
algorithm. For each cluster, the mean temporal profile is displayed, as well as the underlying 
distribution of each temporal property is displayed, namely the Entropy, the Distance of the 
Highest Peak from January, the Proportion of Points > 1.6x the Mean, the Period of the 
Fitted Gaussian Process Kernel, the Mean of the Fitted Von Mises Distribution, the 
Weights of the Two Von Mises Components and the Optimal Number of Von Mises 
Components. For further information on each of these operations, see Supplementary 
Information: Time Series Characterisation and Analysis.  
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Figure 4.4 Characterisation and Clustering of Time-Series with Similar Temporal 
Properties.  Statistical characterisation of time-series properties was followed by PCA and 
results clustered using the k-means algorithm. (A) Results of k-means clustering for 4 clusters, 
with a PCA applied for visualisation purposes. Point colour refers to cluster membership, 
ellipsoids demarcate the 75th quantile of the density associated with each cluster. First 3 
principal components are plotted, explaining 82% of variation. (B) Boxplot of the cross-
correlation between rainfall and mosquito catch for each location and time-series. Rainfall data 
is specific to study location and time-period and was extracted from the The Climate Hazards 
Group Infrared Precipitation With Stations (CHIRPS) dataset. Each point indicates an 
individual time-series, coloured according to cluster membership (C) Time-series belonging to 
each cluster. Pale lines represent individual time-series, brighter line represents the mean of 
all the time-series belonging to that cluster, evaluated at each timepoint. Dashed black line 
represents the mean rainfall across the time-series belonging to the cluster. Characterisation 
and clustering in this way revealed distinct groups of time-series that share similar temporal 
properties. (D) The proportion of time-series for each species complex belonging to each 
cluster - different coloured bars indicate different species complexes (see legend) and y axis 
corresponds to the proportion of time-series (for a given species complex) belonging to that 
cluster.   
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 Uninformative Prior 

Informative Prior Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Cluster 1 76 0 3 0 

Cluster 2 2 72 0 11 

Cluster 3 1 1 53 2 

Cluster 4 8 3 3 37 

 

Figure 4.5 Results of Clustering When Fitting Mosquito Catch Data Using An 
Uninformative Prior.  In order to assess the sensitivity and robustness of the time series 
clustering, a less informative prior was used during the fitting process and the results displayed 
here. Top are the plots displaying the time series belonging to each cluster and which replicate 
the same 4 broad classes of temporal dynamics identified when clustering using the results 
from the fitting using an Informative Prior. Bottom table cross-tabulates Cluster assignments 
for individual time series across both sets of fitting – the majority (88%) of time series were 
consistently clustered across both sets of fitting, with the majority that displayed an 
incongruency being those belonging to Cluster 2 and Cluster 4 (from the Informative Prior 
fitting), the least peaked of the four temporal profiles. Predictive power based on the results of 
the multinomial logistic regression decreased when using the Uninformative Prior results but 
remained substantially above that of a random classifier (predictive accuracy was 0.51, 
compared to the 0.25 expected for a truly random classifier and 0.58 for the model constructed 
using time series fitted with Informative Priors).  
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Cluster Median Catch 
Size 

Mean Catch Size Standard Deviation 

1 (Monsoon) 252 8350 34300 

2 (Bimodal) 356 2150 4520 

3 (Dry 
Season) 

242 1240 2940 

4 (Perennial) 42 1170 3560 

Overall 226 3760 19800 
 

Comparison t-test (Difference in 
Mean) 

Mood’s test (Difference in 
Median) 

1 vs 2 p=0.10 p=0.24 

1 vs 3 p=0.06 p=0.65 

1 vs 4 p=0.06 p<0.001 

2 vs 3 p=0.16 p=0.03 

2 vs 4 p=0.18 p=0.15 

3 vs 4 p=0.90 p<0.001 

 

Figure 4.6 Comparison of Individual Study Sizes By Cluster.  For each study the total 
number of mosquitoes caught over the year was calculated, and the results presented by 
cluster. (A) Density plot of the catch-sizes for the studies belonging to each of the archetype 
clusters. (B) Table showing the median, mean and standard deviation for the catch sizes 
across each of the clusters, as well as the results of hypothesis tests pairwise testing for either 
difference in means (t-test) or medians (Mood’s test) between clusters.  
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Figure 4.7 Exploring the Cross-Correlation Between Rainfall and Mosquito Densities.  
For the 117 locations across India where mosquito catch data had been collected, daily, year 
specific rainfall data was also extracted and collated. This rainfall data was then aggregated 
up to the same temporal and spatial scale as the collected mosquito data and the cross-
correlation between the two quantities explored. (A) Rainfall dynamics in India across the 
course of a year. Each black line represents the rainfall in a given location, whilst the thicker 
red line represents the average rainfall profile across all 117 locations. (B) Cluster specific 
cross-correlations between rainfall and mosquito catch size. (C) Mean mosquito catch 
temporal profiles for each Cluster.  
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r=0.52), but a negative correlation for Cluster 3 (r=-0.41) and low correlation for Clusters 2 and 

4 (r=-0.08 and 0.03 respectively, Fig. 4.7). This suggests that the observed patterns represent 

genuine differences between species and across locations in how mosquito populations 

respond to rainfall. For some species complexes, the majority of their time-series belonged to 

a single cluster (Fig. 4.4D) – Anopheles dirus s.l time-series were restricted primarily to Cluster 

1 (monsoon season peaking) whilst Anopheles fluviatilis s.l. time-series were almost 

exclusively found in Cluster 3 (dry season peaking). Using binary indicators for species 

complex (seven total, indicating which species complex a particular time-series belongs to) 

and a suite of ecological variables (25 total) as predictors, I fitted a multinomial logistic 

regression model to the cluster labels (i.e. which cluster each time-series had been assigned 

to) to explore potential factors underlying the observed variation in temporal dynamics. This 

framework produces one coefficient estimate for each cluster and predictor (a total of 4 

coefficients per cluster and predictor), with that coefficient defining the strength of the 

association between a predictor and a particular cluster. Across the species complex 

regression coefficients, Anopheles culicifacies sl. and Anopheles subpictus s.l. demonstrated 

positive associations with Cluster 1 (monsoon peaking dynamics), whereas for Anopheles 

fluviatilis s.l., this relationship was negative (the species-complex associated with Cluster 3 

instead) and Anopheles annularis s.l. was most strongly associated with Cluster 4 (perennial 

dynamics). To explore this variation more systematically, I employed a hierarchical clustering 

approach to identify groups of species with similar patterns of association with specific 

temporal dynamics (Fig. 4.8A). Anopheles culicifacies s.l. and Anopheles subpictus s.l. 

clustered together and showed a positive association with Cluster 1 and a negative association 

with Cluster 3). By contrast, Anopheles fluviatilis s.l. clustered on its own, positively associated 

with Cluster 3 and negatively associated with Cluster 1. There were significant disparities in 

the number of time-series available for each species (ranging from 85 for Anopheles 

culicifacices s.l. to only 11 for Anopheles dirus s.l.) and so I explored how robust the results of 

this clustering were to subsampling the data so that all species had the same number of time-

series (as Anopheles dirus s.l.). Hierarchical clustering showed that these groupings were 

robust to subsampling, except in the case of Anopheles dirus s.l., which instead clustered with 

Anopheles culicifacies s.l. and Anopheles subpictus s.l. (and showed positive associations 

with Cluster 1 dynamics, and a negative association with Cluster 3 dynamics, Fig. 4.9).  

Both temperature seasonality and total annual rainfall were strongly associated with Cluster 1 

(which possessed the dynamics most strongly correlated with rainfall) (Fig. 4.8B). By contrast, 

perennial dynamics (Cluster 4) strongly associated with the continuous presence of water 

bodies and negatively associated with both temperature seasonality and rain seasonality. 

Strong associations with landcover were observed for Cluster 2 (strongly negative for 
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urbanicity) and Cluster 3 (strongly positive for woody savannas). In order to examine the 

broader patterns of association, I ranked the coefficients for each environmental variable 

within each cluster according to their magnitude, and selected the 15 with the strongest 

association in each cluster (positive or negative). The top 15 variables for each cluster were 

then compared to assess the extent of overlap, revealing that each cluster tended to associate 

with a unique set of ecological factors (Fig. 4.8C). These mutually exclusive and cluster-

specific patterns of association with environmental covariates were similarly borne out across 

an analysis of the correlation of all coefficients between clusters, which revealed them to be 

highly negatively correlated (Fig. 4.10). 

I next integrated these results with spatial predictions of mosquito species complex 

presence/absence to produce predictive maps of mosquito population dynamics across India; 

specifically, to generate estimates of the probability that a given location contains ≥1 mosquito 

species complex displaying a particular temporal pattern (Fig. 4.11). These results predict that 

monsoon peaking dynamics (Cluster 1) are most likely in the North and Northeast (Fig. 4.11A). 

This contrasts with the predicted spatial distribution of bimodal dynamics (Cluster 2), which 

are predicted to be more likely across central India and less likely in the Northeast. Dynamics 

involving peaks during the dry season tracks the predicted spatial distribution of Anopheles 

fluviatilis s.l. closely and are predicted to be most probable across central India (Fig. 4.11C) – 

a similar pattern was observed for spatial predictions of perennial dynamics (Fig. 4.11D). 

Together these results suggest that spatial variability in both species complex occurrence and 

environmental factors together generate the complex patterns of mosquito temporal dynamics 

observed across India.  

Discussion 

Understanding the temporal dynamics of malaria transmission represents an important input 

to effective deployment of control interventions. Here I leverage a collection of temporally 

disaggregated mosquito time-series catch data from across India to explore these dynamics. 

These results reveal extensive variation in mosquito population dynamics between species 

complexes and across locations, ranging from highly seasonal and rainfall-concordant 

dynamics through to perennial and rainfall-discordant dynamics. Analysis of this variation has 

revealed a complex interplay between biotic (species complex-specific drivers) and abiotic 

(the broader ecological structure of the environment) factors in shaping these dynamics.  

In a manner largely independent of the ecological setting, Anopheles fluviatilis s.l. populations 

typically peaked during the dry season. Whilst previous work has identified these dynamics 

(Gunasekaran et al., 1994; Sahu et al., 2017), this work highlights the consistency of this   
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Figure 4.8 Exploring Drivers of Mosquito Population Dynamics Using 
Multinomial Logistic Regression.  A multinomial logistic regression-based approach 
using both species complex and a suite of environmental variables was used to 
explore the factors associated with different mosquito population dynamics. The output 
of this regression is a single coefficient describing the strength of the association per 
variable and cluster. (A) Hierarchical clustering of the regression results for each 
species complex, as defined by the set of coefficient values describing the strength of 
the association between that species complex and the particular cluster. (B) The 
strength of the association between each of the 25 environmental covariates used and 
the relevant temporal cluster. (C) Upset plot summarising the environmental variable 
coefficients. For each cluster, the 15 environmental covariates with the strongest 
association were selected and the extent of overlap in this top 15 covariates compared 
across clusters; x-axis indicates the specific pairwise cluster comparison, y axis the 
number of shared top 15 covariates between the two clusters.   
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Figure 4.9 Species-Cluster Coefficient Values and Hierarchical Clustering Results 
When Data Were Subsampled.  There were significant disparities in sample sizes for each 
species (highest being Anopheles culicifacies s.l. with 85 and lowest being Anopheles dirus 
s.l. with 11) and so a sensitivity analysis was conducted to assess whether differences in 
sample sizes were affecting the coefficient values inferred between species. Results 
presented above are derived using the mean coefficient values from 30 permutations, with 
each permutation involving a round of data subsampling and running of the multinomial 
logistic-regression based framework using this subsample. (A) Comparison of inferred cluster 
coefficient values for Anopheles fluviatilis when using the full dataset available (dark grey), 
subsampling so that each species had 25 (or less if fewer were available) datapoints available 
for inference, or subsampling to 11 datapoints per species (which matches the number of 
datapoints for the smallest sample – Anopheles dirus s.l.). Dotted red and green lines indicate 
the maximum and minimum coefficient values inferred for Anopheles dirus s.l. (B) As for (A), 
but for Anopheles subpictus s.l.. (C) Dendogram based on hierarchical clustering of the 
coefficient values inferred using the full dataset. (D) Dendogram based on hierarchical 
clustering of the coefficient values inferred using a dataset subsampled so that all species had 
11 datapoints (to match the lowest sample size i.e. that of Anopheles dirus s.l.) only.   
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Figure 4.10 Cross-Cluster Correlations For Ecological Coefficients.  The cross-
correlation between the predicted ecological coefficients from the multinomial logistic 
regression for each Cluster.  
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Figure 4.11 Predictive Maps of Mosquito Population Seasonality Across India.  The 
results of the multinomial logistic regression were integrated with recently generated maps 
describing the probability of presence/absence for different anopheline species complexes 
(not shown). Together, these were used to generate estimates of a given area possessing at 
least one mosquito species complex with a particular temporal profile (as defined by the 
previously described clusters), with these probabilities then thresholder at 0.67 to produce a 
binary indicator (i.e. value 1 if the probability for a given pixel is > 0.66 and 0 otherwise). (A) 
Results of this analysis for Cluster 1 (the “monsoon peak” cluster) – red dots describe the 
locations in which a mosquito species complex with a temporal profile assigned to Cluster 1 
were found. (B) As for A, but for the “bimodal” cluster (Cluster 2). (C) As for A, but for the 
“peak in dry season” cluster (Cluster 3). (D) As for A, but for the “perennial” cluster (Cluster 
4). In all cases, the map colour describes the probability of a given area containing one or 
more mosquito species complex displaying that pattern of temporal dynamics. The coloured 
points indicate locations where a mosquito species complex displaying temporal dynamics 
belonging to that cluster were empirically observed.    
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observation across locations, showing that these dynamics are largely restricted to Anopheles 

fluviatilis s.l. and highlight the capacity for the population dynamics of a regionally important 

malaria vector to significantly depart from local patterns of rainfall. These results align with 

previous work that has indicated streams and surrounding stagnant water as breeding sites 

for this species complex (Dasgupta et al., 2018) – such breeding sites are typically unsuitable 

during the monsoon season when flooding occurs but become increasingly suitable as the dry 

season ensues. By contrast, Anopheles culicifacies s.l. displayed a wide array of temporal 

dynamics depending on the sampling site. These ranged from peaking during the monsoon to 

bimodal and even perennial behaviour – a finding consistent with documented variation in the 

species complex’s breeding habits (Surendran and Ramasamy, 2005; Barik, Sahu and Swain, 

2009; Jude et al., 2010). However, due to the inability to disaggregate time-series according 

to sibling species (which frequently show differences in preferred types of breeding sites 

(Barik, Sahu and Swain, 2009)), the drivers of this variation in temporal dynamics for 

Anopheles culicifacies s.l. remains unclear – specifically, whether is it due to sibling species 

displaying distinct temporal dynamics or because Anopheles culicifacies s.l. temporal 

dynamics are more plastic (and hence display different temporal dynamics depending on the 

particular ecological setting) than Anopheles fluviatilis s.l. (where the same dynamics were 

observed irrespective of the broader ecological structure).  

My results highlight the limited utility of considering rainfall alone when trying to understand 

temporal patterns of mosquito abundance, with variable associations with rainfall observed 

across the populations studied here. Indeed, I identified a significant impact of temperature on 

population dynamics, with temperature seasonality strongly positively associated with the 

highly seasonal, monsoon peaking seasonal dynamics (Cluster 1) and both temperature 

seasonality and rainfall seasonality negatively associated with perennial (Cluster 4) dynamics. 

The role of temperature in shaping mosquito population dynamics is increasingly being 

recognised (Beck-Johnson et al., 2017; Mordecai et al., 2019), due in part to the significant 

influence it has on many individual mosquito life-history traits (Shapiro, Whitehead and 

Thomas, 2017; Johnson et al., 2015b), including biting rate, fecundity and mortality (amongst 

others); with its influence on these factors typically non-linear and unimodal with clear optima 

(Johnson et al., 2015a) and subject to interactions with other factors such as the demographic 

structure of the mosquito population (Miazgowicz et al., 2020). Together, this has significant 

consequences for mosquito population dynamics and, in turn, the range and dynamics of 

vector-borne diseases (such as malaria) they underpin (Ryan et al., 2015; Mordecai et al., 

2013). These results therefore suggest a role for both rainfall and temperature in shaping 

annual patterns of mosquito abundance and underscores the importance of considering 
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seasonal fluctuations in a range of environmental variables when trying to understand 

seasonality in mosquito population dynamics. 

In addition to temperature, I observed associations between temporal dynamics and a variety 

of other ecological covariates. The perennial patterns of abundance observed for Cluster 4 

were strongly associated with flow accumulation and water area occurrence (acting as proxies 

for proximity to rivers and bodies of water). These factors were negatively associated with all 

other clusters. This is consistent with reports indicating that static water sources may provide 

sites available for oviposition and mosquito breeding year round (Minakawa et al., 2012; 

Kumar et al., 2016) and highlights the importance of the local hydrological environment (which 

in the cases of large bodies of water is only partially dependent on patterns of rainfall) in 

shaping mosquito population dynamics. Together with the results above, this highlights the 

importance of considering a broad array of ecological factors, including temperature, rainfall 

and the local hydrological environment more generally, when exploring the temporal dynamics 

of mosquito populations.  

There was also a significant influence of landcover patterns, specifically urbanicity (measured 

by the two covariates Landcover and Distance to City) on temporal dynamics. Higher degrees 

of urbanicity were consistently and positively associated with monsoon peaking dynamics 

(Cluster 1). This is consistent with previous work which has extensively documented the 

differences in the nature of the hydrological environment utilised by mosquitoes in urban vs 

rural settings, and noted particularly the diverse array of physical features present in cities 

(e.g. tyres, wells, overhead tanks etc) that are able to hold water following rainfall and act as 

breeding sites for mosquitoes (Thomas et al., 2016; Lin et al., 2018). However, an important 

confounding factor is that the majority of the collated time-series from surveys that were 

carried out in urban settings were from Anopheles stephensi s.l., a highly efficient urban vector 

able to sustain malaria transmission effectively in cities. Whether the observed association 

directly represents differences in how the hydrological environments associated with different 

types of settlement (e.g. rural vs urban settings) respond to rainfall, or is partly driven by the 

confounding described above remains unclear. Disentangling this is important however, 

particularly in light of recent work identifying Anopheles stephensi s.l. in the Horn of Africa 

(Faulde, Rueda and Khaireh, 2014). The species complex’s range has historically been 

restricted to South Asia and the Middle East – mounting evidence of a range expansion (Sinka 

et al., 2020) and the possibility of established urban malaria transmission in the region would 

be detrimental to control efforts (particularly given cities are not typically foci of malaria 

transmission across sub-Saharan Africa (Doumbe-Belisse et al., 2021; Robert et al., 2003)). 

Understanding the temporal dynamics of this vector, particularly in urban centres, will be vital 
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in order to minimise spread and further proliferation of the species beyond the Horn of Africa. 

Further developing this understanding forms the basis for the following and final chapter of the 

PhD thesis. 

It is important to note that factors other than mosquito dynamics are also involved in defining 

the temporal profile of malaria risk. Whilst an association between the size of mosquito 

populations and case numbers is well established (Bashar and Tuno, 2014; Galardo et al., 

2009), the nature of this relationship remains less clear. Interactions between malaria 

endemicity (Churcher, Trape and Cohuet, 2015), mosquito abundance (Romeo-Aznar et al., 

2018) and vector competence (Beck-Johnson et al., 2017) can lead to non-linear dynamics 

that can be further modified by human behavioural factors such as migration or occupational 

practices (Cohen et al., 2013). Due to limitations on the extent of entomological data 

describing relevant malaria metrics such as sporozoite positivity, I was unable to explore many 

of these factors. Similarly, the lack of disaggregation according to sibling species (which vary 

markedly in malaria vectorial efficiency) and accompanying epidemiological information (on 

malaria prevalence or incidence) precludes us from better resolving the comparative 

contributions of different mosquito species to transmission. This limits my ability to translate 

temporal patterns of mosquito populations into relevant metrics such as the Entomological 

Inoculation Rate (EIR). Whilst I mitigate this limitation somewhat by focussing the analyses 

specifically on dominant vector species-complexes previously established as relevant to 

malaria transmission in India (Dev and Sharma, 2013), it is not necessarily the case that each 

mosquito species analysed here is equally relevant to malaria transmission. Future work 

integrating these analyses with those exploring seasonality of case incidence (c.f. Nguyen et 

al. (Nguyen et al., 2020)) would therefore likely prove instructive.  

There are a number of limitations to the work presented here – firstly, whilst location and time-

period specific data were available for the collated rainfall, varying (often limited) degrees of 

geospatial information were present in each included study. The environmental covariates 

used in the multinomial-logistic regression were therefore spatially averaged over reported 

study area, and additionally often across multiple years due to the absence of time-period 

specific data. This spatio-temporal averaging may obscure relevant inter-annual variation in 

factors (e.g. rainfall) that affect population dynamics (Mendis et al., 2000), and may contribute 

to some of the more limited seasonality (e.g. Clusters 2 and 4) and timing of seasonal peaks 

(in e.g. Clusters 1 and 3) observed. I mitigate this somewhat by extracting time-period specific 

rainfall data for each study but cannot preclude some role of spatio-temporal averaging in the 

results presented here. Another limitation is the heterogeneity in mosquito sampling methods 

across the studies. Studies varied in the catch-method used (landing catch, resting collections, 
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pit collections, light traps and spray catches), as well as timing (dawn, dusk, night-time etc) 

and location (typically either human-dwellings or cattlesheds) of collections. This 

heterogeneity may interact with mosquito traits (such as timing (Sherrard-Smith et al., 2019) 

or degree of indoor/outdoor biting (Massey et al., 2016) and host preferences (Griffin et al., 

2016)) that vary between species, and have implications for which species are sampled, and 

their comparative abundance (van de Straat et al., 2021). I partially mitigate this heterogeneity 

by normalising the catch data, but this incomplete accounting for differences in catch 

methodological characteristics might lead to biases in the presented inferences presented. 

There were also significant differences in the average number of mosquitoes caught between 

clusters, with Cluster 4 (perennial dynamics) having the lowest average catch size. Whilst 

differences in catch sizes between clusters were smaller than within cluster variation (where 

individual study counts ranged over several orders of magnitude and were highly 

overdispersed), it is possible that the lack of observed seasonality for Cluster 4 time-series 

might be an artefact of limited sampling effort and mosquitoes caught.  

Overall, this work highlights that the substantial variation in temporal dynamics across 

mosquito populations can be clustered into a small number of dynamical archetypes, each 

characterised by distinct temporal properties and associated with distinct environmental 

factors. In doing so, this work underscores the crucial importance of integrating both species 

composition and ecological structure into our understanding of the temporal profile of malaria 

risk and provides a generically applicable framework to better identify and understand patterns 

of seasonal variation in vectors relevant to public health – a crucial and operationally relevant 

input for optimising the delivery of control interventions.  

Conclusion 

In this Chapter, I have explored the diversity in temporal dynamics displayed by key 

anopheline mosquito species implicated in the transmission of malaria across India. This 

exploration has been facilitated by development of a statistical framework enabling 

characterisation of the diversity and variation present in temporally disaggregated 

entomological catch data, and delineation of this heterogeneity into discrete temporal 

archetypes. In the following chapter of my thesis, I continue to focus on temporal variation in 

mosquito populations and leverage this same framework to investigate the temporal dynamics 

of Anopheles stephensi, a highly efficient malaria vector capable of sustaining transmission in 

urban settings and which has recently been introduced into the Horn of Africa. Specifically, I 

apply this same framework to characterise the species’ temporal dynamics, explore the factors 

driving these dynamics, and integrate the collated temporal profiles of mosquito abundance 



Page 124 of 194 
 

into an existing model of malaria transmission, in order to more directly and concretely link 

these dynamics to implications for malaria transmission and control.   
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Chapter 5 Seasonal Dynamics of an Emerging African 

Malaria Vector Anopheles stephensi and the Implications 

for Malaria Control 

Across sub-Saharan Africa, urban centres often experience lower levels of malaria 

transmission compared to equivalent rural settings. Recent importation of the highly efficient 

urban malaria vector Anopheles stephensi to the Horn of Africa threatens this paradigm. In 

this Chapter, I apply the statistical framework developed in Chapter 4 to a dataset of 

Anopheles stephensi time-series catch data in order to better characterise the species’ 

seasonal dynamics and explore the factors underpinning them. Integrating these results with 

an established model of malaria transmission, I highlight the crucial role that knowledge of 

timings of vector seasonality and peak densities will play in maximising the impact of vector 

control interventions such as indoor residual spraying (IRS) on mitigating and controlling the 

vector’s further proliferation. 

Introduction 

There has been an estimated 40% reduction in the burden of malaria since 2000, 

predominantly due to significant scale-up of control interventions (Bhatt et al., 2015b). 

Alongside this expansion of control efforts, increasing urbanisation of Africa’s populace (rising 

from 31% to 43% between 1990 and 2018, with >60% expected to live in urban areas by 2050 

(United Nations, 2018)) is also thought to have indirectly contributed to reductions in disease 

burden. Previous work has found significantly lower annual Entomological Inoculation Rates 

(EIR) in urban compared to rural settings (Doumbe-Belisse et al., 2021; Robert et al., 2003). 

This is thought to be underpinned by factors including differences in the quality of housing 

(Trape and Zoulani, 1987; Killeen et al., 2019), reduced availability and suitability of habitats 

for anopheline breeding in urban settings (De Silva and Marshall, 2012; Awolola et al., 2007; 

Kasili et al., 2009), better access to treatment (Weiss et al., 2020), and higher population 

densities leading to higher human to mosquito ratios (and reduced transmission) (Romeo-

Aznar et al., 2018). Whilst these trends are not always consistently identified (e.g. surveys 

where prevalence of malaria is higher in urban areas than surrounding locations (Mourou et 

al., 2012; Wang et al., 2006); or previous work highlighting that Anopheles gambiae s.s. can 

adapt to breeding in polluted water characteristic of urban environments (Klinkenberg et al., 

2008)), increasing urbanicity across sub-Saharan Africa is likely to complement planned scale-

up of malaria control interventions aimed at achieving the targets outlined in the World Health 

Organization’s 2030 Global Technical Strategy for Malaria (World Health Organization, 

2021a).  
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This impact of increasing urbanization on disease burden is contingent on these remaining 

areas of comparatively low malaria transmission. This phenomenon is currently under threat 

by the invasion and establishment of the highly efficient urban malaria vector Anopheles 

stephensi. Found throughout South Asia, there are three known forms of the species (“type”, 

“intermediate” and “mysorensis”). The mysorensis form is predominantly found in rural 

settings, and typically possesses a low vectorial capacity (due to its zoophilic behaviour 

(Subbarao et al., 1987)). By contrast, the type and intermediate forms represent highly efficient 

vectors capable of transmitting both Plasmodium falciparum and Plasmodium vivax, with their 

ability to proliferate in urban locations distinguishing this species from other malaria vectors in 

the region. This efficiency as an urban vector is thought to be underpinned by an increased 

tolerance for breeding in polluted water sources (Batra et al., 2001), and a superior ability to 

utilise the anthropogenic hydrological habitats present in urban settings (Thomas et al., 2016; 

Kumar and Thavaselvam, 1992). The species was first identified in sub-Saharan Africa in 

Djibouti City in 2012 (Faulde, Rueda and Khaireh, 2014) and has since been recorded in both 

Ethiopia (Balkew et al., 2020; Tadesse et al., 2021) and Sudan (Ahmed et al., 2021b, 2021a), 

with recent work highlighting likely suitability for the species across some of the continent’s 

largest population centres comprising over 100 million people (Sinka et al., 2020). Whilst 

causality has yet to be conclusively established, its emergence is thought to have contributed 

to the significant resurgence of malaria transmission in Djibouti (which experienced a 10-fold 

increase in cases between 2013 and 2019), highlighting the potential threat establishment of 

this vector poses to malaria control across the Horn of Africa (Hamlet et al., 2021) and the 

continent more generally (Feachem et al., 2019).  

Experiences in Djibouti to date highlights the significant public-health threat this vector 

potentially poses. Despite this, substantial uncertainty remains regarding how its 

establishment might influence malaria dynamics in the region, particularly in the 

(predominantly urban) settings where the disease is currently largely absent. A key driver of 

this will be the vector’s seasonal dynamics. As my work in Chapter 4 has highlighted, 

anopheline mosquito population dynamics are characterised by extensive diversity both 

between species and across locations; and frequently exhibit substantial annual fluctuations 

in size. Understanding the factors underlying these dynamics is crucial given that the 

effectiveness of many malaria control interventions (such as seasonal malaria 

chemoprevention (ACCESS-SMC Partnership, 2020) or indoor-residual spraying (Tukei, Beke 

and Lamadrid-Figueroa, 2017)) depends on the timing of their delivery relative to seasonal 

peaks in transmission. A better understanding of Anopheles stephensi’s seasonal dynamics 

is therefore likely to have material consequences for effective entomological monitoring and 
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surveillance of the vector’s spread and establishment across the Horn of Africa, as well as 

effective control of malaria across the region.  

Substantial uncertainty remains regarding Anopheles stephensi’s seasonal dynamics; studies 

carrying out longitudinal catches are present in the literature, but typically only focus on a 

single location, precluding systematic comparison and identification of generalisable patterns. 

Whilst the work presented in Chapter 4 began to answer some of these questions, the 

Anopheles stephensi data presented there was only from studies carried out in India. Here I 

extend the work presented in Chapter 4 and collate longitudinal mosquito catch data for 

Anopheles stephensi from across the extent of its geographical range, including India, the rest 

of South Asia and the Middle East in order to better understand the species’ temporal 

dynamics. Leveraging the statistical framework developed in Chapter 4, I explore patterns of 

Anopheles stephensi temporal dynamics and the factors driving them. The results highlight 

pronounced variation in the extent and timing of seasonality, with distinct dynamics observed 

across rural and urban settings. Integrating these results with a model of malaria transmission 

highlights how this variation will influence the efficacy of malaria control efforts in parts of the 

Horn of Africa where the disease is currently (or has previously been) largely absent and 

underscores the need for rapid scaleup of entomological monitoring across the region.  

Methods 

Systematic Review of Anopheles stephensi Literature  

I collated references from a previously published systematic review of the literature relating to 

Anopheles stephensi (focusing on its presence/absence across a wide geographical range 

(Sinka et al., 2020) and combined it with the systematic review carried out and presented in 

Chapter 4. I then updated these two previous searches (both conducted in 2017) by searching 

Web of Science and PubMed databases from January 2017 for further relevant references 

containing temporally disaggregated Anopheles stephensi catch data. Key words for this 

search were: 

(((anophel*) AND ((India) OR (BURMA) OR (MYANMAR) OR (BANGLADESH) OR 

(THAILAND) OR (ISLAMIC REPUBLIC OF IRAN) OR (ETHIOPIA) OR (DJIBOUTI) 

OR (SUDAN))) AND (("2017"[Date - Publication] : "3000"[Date - Publication])) OR 

((anophel*) AND ((Pakistan) OR (Iran) OR (Afghanistan)) AND (("1990"[Date - 

Publication] : "3000"[Date - Publication])) 

with references for Pakistan, Iran and Afghanistan searched for over an extended time-period 

(i.e. date range of 1990-2020 rather than 2017-2020) to ensure completeness of the collated 
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references, and fill in countries not included during previous reviews. Identified records were 

then screened according to the following Inclusion/Exclusion criteria: 

Inclusion Criteria: 

• Reference contains temporally disaggregated adult mosquito catch data for Anopheles 

stephensi, at a temporal resolution of monthly or higher.  

• The time-period spanned by the survey must be at least 10 months in duration and 

have caught at least a total of 25 Anopheles stephensi (i.e. minimum monthly average 

catch of 2.5 mosquitoes) over the period for which catches were being carried out.  

Exclusion Criteria: 

• Mosquito catch data are not temporally disaggregated to a sufficient extent (e.g. 

catches were done yearly or seasonally rather than monthly). 

• Mosquito catch data were collected as part of a trial assessing a vector control 

intervention (which would perturb the natural dynamics of the vector, rendering the 

data unrepresentative of the population dynamics in the absence of control). 

• The reference only contained information on immature/larval mosquito life cycle stages 

rather than mature adults.  

Overall, a total of 34 references were collated containing 65 time-series from catch surveys 

carried out in distinct locations from across Afghanistan (n=2), Djibouti (n=1), India (n=32, 27 

of which are from the results presented in Chapter 4), Iran (n=17), Myanmar (n=5) and 

Pakistan (n=8). These were further supplemented with 2 references (from Pakistan and India 

respectively, yielding a total of 3 time-series) collated as part of a (currently unpublished) 

systematic review of the bionomics of secondary malaria (i.e., non-dominant) vectors across 

South Asia, yielding a total of 65 time-series from these 34 references.  

Systematic Review Data Extraction, Collation and Initial Processing 

Entomological Data Extraction  

For each reference, I extracted all relevant entomological catch data provided that pertained 

specifically to Anopheles stephensi. Where data were presented in a table, data were copied 

directly from the table. Where the data were in a graph, data were extracted using the 

DataThiefTM software. This yielded a total of 65 time series of monthly mosquito catch data 

(no reference presented data at a finer temporal resolution), ranging in length from 10 – 60 

months, with a mean time-period of 15.6 months and a median time-period of 12 months, a 

mean catch size of 758 and a median catch size of 289.  
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Table 5.1 Number of time series collated according to method of collection  

 Landing 

Catch 

Resting 

Collections 

Pit 

Collections 

Light Traps Spray 

Catches 

# Time 

Series 

3 33 2 4 14 

 

Of the collated studies, the majority sampled mosquitoes via resting collections (n=33). As 

with the results presented in Chapter 4, there was also variation between surveys as to where 

mosquitoes had been sampled (e.g. human dwellings or cattlesheds), when sampling had 

been carried out (daytime, night-time or overnight) and for the small number of landing catch 

studies collated (n=3), which bait had been used (cattle or humans). Of the 65 collated time-

series, 56 represented results arising from a survey carried out using 1 catch methodology 

(described in Table 5.1 above). 9 time-series represented results which presented the total 

number of Anopheles stephensi mosquitoes caught across all methods of collection and could 

not be disaggregated by catch-type. They have not been counted in Table 5.1. 

The primary focus of these analyses was to characterise annual and seasonal patterns of 

variation in Anopheles stephensi abundance. Given this, and also that variations in time-series 

length are a factor known to affect their statistical properties (Fulcher, Little and Jones, 2013) 

(and therefore limit the comparability of the time series gathered and analysed here), all time-

series were standardised to be 12 months in length. For time series containing more than 12 

time points (i.e. time series that spanned longer than a single year), I averaged the recorded 

catches for a given month. Where the study was initiated in a month other than January, and 

concluded in a month other than December, the recorded counts were rearranged to yield a 

complete time series running from January to December.  

The results presented in the collated references were frequently presented in a form 

standardised by sampling effort, such as Man-Hour Density (MHD). They do not therefore 

represent the total number of mosquitoes caught each month (required for the statistical 

framework utilised to characterise temporal properties) and therefore, where information on 

sampling effort was present (e.g. number of hours spent sampling/catching Anopheles 

stephensi, number of households or cattlesheds searched, number of trap nights etc), I used 

this information to convert MHD back to the raw counts. In the small number of instances 

where there was variable sampling effort across the time series (which would bias the 

conversion away from the underlying population abundance), I conservatively used the lowest 

sampling effort recorded across the time series in the conversion. Together, this enabled 

production of an estimate of the number of mosquitoes sampled (a raw count, based on equal 

sampling effort across the time series).  
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Study Geolocation and Environmental Covariate Extraction 

For each study where geolocation was possible, I recorded the location at both the 

administrative unit 1 and 2 level, based on information provided in the reference. A number of 

the references identified in my review had previously been utilised as part of previous reviews 

(i.e. the work presented in Chapter 4 and that of (Sinka et al., 2020)) – where these data were 

available, these descriptions of study location were used. For each location, I then extracted 

a suite of satellite-derived environmental covariates. These environmental covariates consist 

of raster layers spanning all of the countries in which studies had been conducted in (i.e. 

Afghanistan, Djibouti, India, Iran, Myanmar and Pakistan) at a 2.5 arc-minute (~5km by 5km, 

depending on the exact location and distance from the equator) spatial resolution and then 

averaged at the administrative unit 1 level. The covariates utilised here were derived from the 

BioClimatic variables (a suite of biological relevant covariates defined from monthly rainfall 

and temperature satellite data (Fick and Hijmans, 2017)) as well as measures of landcover 

and urbanicity (European Space Agency (ESA)), population density (Gaughan et al., 2013; 

Linard et al., 2012) and enhanced vegetation index (Justice et al., 2002). This provided a total 

of 51 covariates, many of which were highly correlated with one another. From these 

covariates, a reduced subset with minimal multi-collinearity were generated using the 

tidymodels collection of R packages (Kuhn and Wickham, 2020), which minimises the 

Spearman correlation coefficients between retained covariates via an optimisation procedure. 

I also excluded covariates where there was minimal variation for that (scaled and standardised 

to have mean 0 and unit variance) covariate across the full dataset, leaving 18 covariates in 

total. In addition to the environmental covariates described above, for each of the 

administrative units a survey had been carried out in, I also collated daily rainfall estimates for 

the time-period the survey had been conducted in, using the “The Climate Hazards Group 

Infrared Precipitation With Stations” (CHIRPS) dataset (Funk et al., 2015). These data were 

aggregated up to the same temporal resolution as the Anopheles stephensi catch data (i.e. 

monthly). These rainfall data were used to calculate the cross-correlation coefficient between 

mosquito catches and rainfall.  

Time-Series Fitting and Interpolation  

Negative Binomial Gaussian Process Fitting and Time-Series Characterisation 

Using the methodology developed and presented in Chapter 4, I fitted the same Negative 

Binomial Gaussian Process-based model to smooth the collated mosquito count time-series. 

Model fitting was carried out within a Bayesian framework, using the probabilistic programming 

language STAN (Carpenter et al., 2017) – priors for each of the model parameters were the 

same as used in Chapter 4. I characterised time-series properties using the same summary 
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statistics presented in Chapter 4 as well as an additional metric motivated by previous work 

exploring malaria seasonality seeking to define operationally and programmatically relevant 

definitions of seasonality (Cairns et al., 2012). Specifically, I also included the maximum 

percentage of total annual catch occurring in any 3-month period as a summary statistic. To 

do this, I used a sliding 3-month window to calculate the maximum percentage of the total 

annual catch that was caught in any 3-month period across the course of the year. As with the 

work presented in Chapter 4, from these summary statistics, I obtain for each time-series a 

set of 8 real numbers providing a reduced representation of the temporal properties of each 

time-series. I then applied a PCA to identify a lower-dimensional representation of the 

structure present in the data and implemented k-means clustering to identify clusters of time-

series with similar temporal properties. 

Statistical Modelling and Prediction of Cluster Membership  

Random Forest Prediction of Cluster Membership  

The extracted suite of environmental variables derived from satellite data were then used as 

predictors within a Random-Forest based classification framework aimed at predicting the 

cluster membership (i.e. results of the k-means algorithm described above). Random Forests 

are a machine learning, ensemble-based statistical method that work by fitting  a collection of 

decision trees to the data (where data are either a continuous outcome variable in the 

regression context, or a binary indicator in the classification context) (Breiman, 2001). The 

outputs of these decision trees are subsequently aggregated to produce a “forest” (or 

ensemble) of trees that together produce predictions for comparison with data. They have 

previous been shown to provide significant improvements in accuracy over traditional linear 

regression based approaches, particularly in contexts where non-linear relationships or 

interactions between covariates are likely present and to be relevant to prediction of an 

outcome (Biau, 2012).  

Given a training set of covariates 𝑋 = 𝑥1, … , 𝑥𝑛 and responses 𝑌 = 𝑦1, … , 𝑦𝑛, the algorithm 

underlying construction of the random forest takes the following steps: 

1. Sample with replacement 𝑛 training examples from 𝑌 yielding 𝑌𝑆, and 𝑘 covariates from 

𝑋 yielding 𝑋𝑆. 

2. Train a classification tree 𝑓𝑆 on 𝑋𝑆, 𝑌𝑆 by minimising the Gini impurity (a measure of 

how frequently a random chosen element from 𝑌𝑆 would be incorrectly classified if it 

was randomly labelled according to the distribution of labels in the relevant node of the 

tree).  

3. Repeat steps 1 and 2 multiple times. 
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4. Having constructed a large number of decision trees (a “forest” of trees), aggregate 

and use this forest to make predictions given new data. In a classification context, this 

is typically carried out by taking the majority vote of the ensemble of decision trees.  

a. Note that evaluation of performance can either be carried out via cross-

validation or by examining the out-of-bag error, which is the mean prediction 

error on each training sample 𝑥𝑖 using only the trees that did not have 𝑥𝑖 in their 

training subsample 𝑋𝑆.  

I used a Random Forest based approach to either 1) classify time-series cluster membership 

(as defined via the PCA and k-means clustering analysis described above); or 2) predict 

Anopheles stephensi time-series seasonality (defined as the percentage of total annual vector 

density in any continuous 3-month period). These models were fitted using the software 

package Ranger (Wright and Ziegler, 2015), implemented in the tidymodels framework for R 

(Kuhn and Wickham, 2020), with 6-fold cross-validation utilised to optimise hyperparameter 

combinations. Presented results are based on averaging the results of 25 separate iterations 

of cross-validation and model fitting (to account for stochasticity in model fitting), and any 

predictions made using out-of-bag model estimates in all instances. Due to significant 

imbalances in class size across the time-series clusters (49 time-series in Cluster 1 compared 

to only 16 time-series in Cluster 2, I carried out upsampling using the SMOTE (synthetic 

minority over-sampling technique (Chawla et al., 2002)) algorithm. I also carried out model 

fitting without this upsampling, the results of which are presented in Figure 5.8.  

In all instances, out-of-sample predictive accuracy was assessed using 6-fold cross-validation 

(CV) and used to optimise the hyperparameters associated with the Random Forest method 

algorithm. Random Forest models were fitted to the training dataset (i.e. the full dataset minus 

one of the CV folds) and then model accuracy assessed on the remaining fold of data not 

included in model training. In the case of the cluster classification example, the metric used to 

evaluate model performance was the area under the curve (AUC). In the case of the 

regression prediction of seasonality, the metric used to evaluate model performance was the 

root mean squared error (RMSE). The Random Forest hyperparameters providing the best 

out-of-sample AUC/RMSE (based on 6-fold CV) were then selected, and a final Random 

Forest model then fitted on the full set of data available. Predictive accuracy (assessed via 

AUC/RMSE) was then calculated for the entire dataset by using out-of-bag predictions for 

each sample i.e. predictions on each training sample using only the trees that did not have 

that training sample in their bootstrap sample. I also calculated both permutation variable 

importance and generated partial dependency plots (Molnar, 2020) for each model to assess 

the contribution of specific, individual environmental covariates to whether a time-series had 

a single seasonal peak or not. Together these methods allow evaluation of the importance of 
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each included covariate to model predictive accuracy, and in turn, allows “ranking” of 

covariates according to their contribution to the predictive performance of the model. This 

entire process was repeated 25 times in order to average over the stochasticity and variation 

inherent in the Random Forest fitting process.  

I also carried out an additional sensitivity analysis where a set of the available data (n=12 time-

series) was held-out at the onset, and the random forest model trained (using 6-fold cross-

validation) on the remaining available data (n=53 time-series total, with 43 time-series used in 

model fitting and 10 time-series used for performance evaluation in each of the cross-

validation folds). Optimal hyperparameters were selected in the same way as described 

above, and then a final model fitted to the full, non-held out data (n=53 time-series), and model 

predictive accuracy assessed by evaluating performance on the held-out data (n=12 time-

series).  

Calculating Probabilities of Catching Anopheles stephensi Given Seasonal Variation 

I first normalised vector density over the course of the year such that the maximum value 

recorded (i.e. the highest recorded mosquito catch) was set to 1 and all other values were 

scaled proportionally (i.e. another catch at a different timepoint that was half the size of the 

peak catch size would be assigned 0.5). I then used these estimates as the probability of 

successfully sampling Anopheles stephensi if an entomological survey was carried out in that 

month. These estimates therefore represent conservative bounds on the likelihood of missing 

Anopheles stephensi, given I optimistically assume that the mosquito would successfully be 

detected if a survey is carried out in the month where its population is largest (i.e. the annual 

peak in abundance as reflected in the catch size). For each time-series, I then calculated the 

probability of not catching Anopheles stephensi in an entomological survey, given a certain 

number of consecutive months sampled, and averaged over all possible permutations of 

continuously sampled months possible (e.g. in the case of 11 consecutive months sampled, 

there are two possibilities: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}). 

Note that the aim here is not to describe the exact probability of missing Anopheles stephensi 

in any given entomological survey, as this will depend on a wide array of other, poorly defined 

and heterogeneous factors (such as effort e.g. person-hours, type of catch methodology used 

etc). Instead, the aim is to highlight how variation in seasonal dynamics can influence the 

nature of surveillance required to successfully detect establishment of Anopheles stephensi.  

Transmission Modelling of Anopheles stephensi-Driven Malaria 

Dynamics and Control  



Page 134 of 194 
 

I integrated the temporal profiles of Anopheles stephensi abundance into a previously 

developed deterministic compartmental model of Plasmodium falciparum malaria 

transmission and disease (Griffin, Ferguson and Ghani, 2014; Challenger et al., 2021; Unwin 

et al., 2022) to explore the implications of the vector’s establishment and seasonality on the 

dynamics of malaria transmission, with a particular focus on areas where malaria transmission 

is currently absent or only minimally present. Specifically, I use the modelling framework to 

understand how variation in seasonality of the mosquito might influence the impact of indoor 

residual spraying (IRS), a key vector control intervention. The deterministic, compartmental 

malaria model used here considers both human and mosquito populations. What follows is a 

description of the mathematical modelling framework, specifically a description of the human 

and vector models separately, followed by specific details about how exactly this framework 

was used to model malaria transmission underpinned by Anopheles stephensi in settings 

where malaria is currently absent or only minimally present. 

Human-Component of the Transmission Model  

The model groups humans within a population into discrete compartments based on their age, 

which is indexed by the subscript 𝑖. At each point in time, individuals of age 𝑖 can exist in any 

one of six different infection states. Upon infection, individuals progress from an uninfected 

state (Susceptible, 𝑆𝑖) to either Asymptomatic (𝐴𝑖) or clinical disease, with the comparative 

probability of these two outcomes depending on the degree of acquired natural immunity due 

to previous exposure to the parasite (a function of age, described in more detail below).  

If an individual progresses to clinical disease, they enter either a Treated (𝑇𝑖) or Untreated 

(𝐷𝑖) Clinical Disease state that depends on the probability of receiving treatment. For those 

receiving treatment, individuals progress through a period of prophylactic protection following 

treatment (𝑃𝑖), and then return to the susceptible compartment. For those developing clinical 

disease, they remain symptomatic for the duration of the disease, before moving to an   
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Figure 5.1 Model schematic illustrating the different disease states and the possible 

transitions between them.The states are shown in boxes with the transitions marked by 

arrows; dashed arrows indication superinfection. S = susceptible, D = clinical disease, T = 

successfully treated disease, P = prophylaxis from prior treatment, A = asymptomatic patent 

infection, U = subpatent infection.  
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asymptomatic state (𝐴𝑖, detectable by light microscopy), before subsequently moving to a 

submicroscopically infected state (𝑈𝑖, not detectable by light microscopy). Individuals who are 

currently asymptomatically infected (including individuals in both the 𝐴𝑖and 𝑈𝑖states) can be 

reinfected and develop clinical disease once again – if this does not occur, they subsequently 

clear the infection and return to the susceptible state (see Figure 5.1 for schematic overview 

of the model and the transitions between states).  

People are born into the first age compartment (i.e. 𝑖 = 1) susceptible to infection (with new-

borns possessing a degree of maternally-inherited immunity that gradually decays over the 

first 6 months of life) and progress through age-compartments via natural ageing. Within each 

age-compartment, susceptible individuals (i.e. those in 𝑆𝑖) are exposed to infectious mosquito 

bites according to a hazard of infection λ𝑖 – this is a function of mosquito biting rate, overall 

mosquito population level (and degree of infection in the mosquito vector), as well as the pre-

erthryocytic immunity that age-group 𝑖 possesses (itself a function of age and prior exposure, 

described in more detail below). Infected individuals develop clinical disease or asymptomatic 

infection following a latent period τ, with the probability of progression to either of these two 

states depending on the probability of developing clinical disease Φ𝑖  (itself dependent on the 

level of immunity against clinical disease, described in further detail below). The proportion 

developing clinical disease can be successfully treated with anti-malarials (with probability 

𝑝𝑡𝑟𝑒𝑎𝑡) and move to the state 𝑇𝑖. Individuals not receiving treatment (with probability 1 − 𝑝𝑡𝑟𝑒𝑎𝑡) 

move to infection state 𝐷𝑖. Treated individuals then recover from infection at rate 𝑟𝑡𝑟𝑒𝑎𝑡 and 

move to an uninfected state characterised by a partial degree of prophylactic protection from 

infection (i.e. 𝑃𝑖), before returning to 𝑆𝑖 (after this protection wanes, at rate 𝑟𝑑𝑟𝑢𝑔). Those not 

receiving treatment (i.e. 𝐷𝑖) recover to the asymptomatically infected state (i.e. 𝐴𝑖) at rate 

𝑟𝑟𝑒𝑐𝑜𝑣𝑒𝑟1, and then (as parasite densities are progressively controlled) to the 

submicroscopically infected state (i.e. 𝑈𝑖) at rate 𝑟𝑟𝑒𝑐𝑜𝑣𝑒𝑟2. The possibility of superinfection (i.e. 

a new infection occurring whilst an individual is still infected) is included as a possibility, with 

individuals in states 𝐷𝑖, 𝐴𝑖 and 𝑈𝑖 all having the possibility for re-infection. All of the rates 

described above are constant and independent of age.  

The model above is described by the following set of ordinary differential equations: 
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In order to account for heterogeneity in biting rates both between and within age-groups, we 

further stratify each age-compartment (indexed by 𝑖) into separate heterogeneity 

compartments (indexed by 𝑗, suppressed in the above set of equations for clarity). Each age-

compartment is assigned a unique biting rate (reflecting age-specific patterns in exposure 

relating to both lifestyle and skin-surface area): 
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for age-group 𝑖 where 𝜌 and 𝑎0 are parameters that determine the relationship between age 

(i.e. body size) and biting rate. This age-specific biting rate is then modified by a relative biting 

rate within age-groups ( j ), which is specified by the following draw from a log-normal 

distribution with a mean of 1:  
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The entomological inoculation rate 휀𝑖,𝑗 (EIR, corresponding to the average number of infecting 

bites an individual receives) and the force of infection 𝜆𝑖,𝑗 experienced by age compartment 𝑖 

and within-age group heterogeneity group 𝑗 at time 𝑡 is then: 

휀𝑖,𝑗  =  휀0(𝑡)Ϛ𝑗𝜓𝑖(𝑎) 

 𝜆𝑖,𝑗  =  𝑏𝑖(𝑡)휀𝑖,𝑗(𝑎, 𝑡) 
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where 휀0(𝑡) is the average EIR experienced by the population at time 𝑡, 𝑏𝑖(𝑡) is the probability 

that an infectious bite leads to a patent infection (determined by the level of pre-erythrocytic 

immunity, described in further detail below).  

Modelling Different Components of Immunity to Plasmodium falciparum Malaria 

Acquisition (and loss over time) of naturally acquired immunity to malaria is dynamically 

modelled as a function of both age and exposure. Within the modelling framework described 

here, there are three key stages at which a host immune response is considered to act. Each 

of these are described in more detail below. 

Pre-Erythrocytic Immunity (𝑰𝑩) – which reduces the probability that an infection is able to 

establish following an infectious bite.  In a population subject to an EIR of  휀𝑖,𝑗(𝑡), 𝐼𝐵 is a 

function of age and time and follows the following partial differential equation: 
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with 𝜇𝐵 a parameter limiting the rate at which immunity to infection can be boosted at high 

exposure and 𝑑𝐵is the mean duration of immunity to infection.  Given a level of pre-erythrocytic 

immunity at time 𝐼𝐵(𝑡) in age-group 𝑖 and heterogeneity group 𝑗, the probability of an infectious 

bite resulting in successful infection is then given by the following Hill function:  
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where 𝑏0 is the probability of infection with no immunity and 𝐼𝐵0 and 𝜅𝐵 are scale and shape 

parameters for the Hill-Function. 

Clinical Immunity (𝑰𝑪) – which reduces the probability of developing clinical disease once 

infected, and that is made up of both clinical immunity accrued due to direct infectious 

exposure 𝐼𝐶𝐴 and clinical immunity that is maternally acquired (i.e. in infants in the months 

following birth, 𝐼𝐶𝑀). In a population subject to an EIR of  휀𝑖,𝑗(𝑡), 𝐼𝐶𝐴 is a function of age and 

time and follows the following partial differential equation: 
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where 𝜇𝐶  limits the rate at which immunity to clinical disease can be boosted at high exposure 

and 𝑑𝐶𝐴 is the mean duration of clinical immunity. Maternally acquired immunity 𝐼𝐶𝑀(𝑡) is 

assumed at birth to be a proportion (𝑃𝐶𝑀) of the level of immunity present in a 20-year old 

woman, 𝐼𝐶20,𝑗(𝑡), living in the same location and which decays at a constant rate (1/dM), 
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The total clinical immunity by age and time is given by 𝐼𝐶 =  𝐼𝐶𝐴 +  𝐼𝐶𝑀. The probability of 

acquiring clinical disease upon infection by age is then given by a Hill function, 
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where 𝛷0 is the probability of disease with no immunity and 𝐼𝐶0 and 𝜅𝐶 are scale and shape 

parameters for the Hill-Function. 

Detection Immunity (𝑰𝑫) – which reduces parasite load, reducing the probability of an 

infection being detectable diagnostically (and relatedly, the probability of onwards 

transmission to mosquitoes). This is given by the following partial differential equation: 
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where 𝜇𝐷  limits the rate at which detection immunity can be boosted at high exposure and 𝑑𝐷  

is the mean duration of detection immunity.  The detectability by microscopy of an 

asymptomatic infection in age compartment i and heterogeneity compartment j  at time t is 

given by: 
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where 𝑑1  is the minimum probability of detection and 𝐼𝐷0 and 𝜅𝐷 are scale and shape 

parameters for the Hill-Function. 𝑓𝐷,𝑖 represents an age-dependent modifier of the detectability 

of infection taking the following form 
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Vector Component of the Transmission Model 

The vector model is based on a previously developed compartmental model of the anopheline 

mosquito life cycle and population dynamics (White et al., 2011). Within this framework, both 

adult mosquito populations and the earlier juvenile stages in the life-cycle are explicitly 

modelled. Immature mosquitoes start off as larvae, divided into early and late stage (𝐸𝐿 and 

𝐿𝐿 respectively), which then mature into pupae (𝑃𝐿) before eventually maturing into adult 

mosquitoes (𝑀). The average durations spent in each of these states are denoted by 𝑑𝐸, 𝑑𝐿 

and 𝑑𝑃 respectively. Adult mosquitoes are stratified according to infection with Plasmodium 

falciparum status – they begin as susceptible (𝑆𝑀) and upon infection, progress to an exposed 

(but non-infectious, 𝐸𝑀) state, and then onto the infectious state (𝐼𝑀) following the extrinsic 

incubation period (EIP). Mosquitoes are infected through exposure to humans currently 

possessing transmissible infections i.e. the treated (𝑇), clinical disease (𝐷), asymptomatic (𝐴) 

and submicroscopic (𝑈) infection states. Once infected, mosquitoes pass through a latent 

period ( )ME  of fixed length M
 and then they become infectious to humans ( MI ). They are 

assumed to remain infectious until they die. The model is described by the equations below: 
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Larval mortalities (𝜇𝐸 and 𝜇𝐿) are regulated by a density dependence, such that mortality 

increases with increasing population size. These mortalities are a function of both the overall 

larval population size and the (time-varying) carrying capacity  𝛫𝑡, which describes the 

capacity of the hydrological environment to support breeding sites. Solving the above 



Page 141 of 194 
 

differential equations at equilibrium per (White et al., 2011) and rearranging allows derivation 

of an expression for the larval carrying capacity in terms of the number of observed 

mosquitoes at equilibrium: 
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where 𝑀0 is the initial female mosquito density (dependent on the EIR which is a tuneable 

model parameter), 𝜇0 is the baseline mosquito death rate and  
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Here 𝛽𝐿  is the maximum number of eggs per oviposition per mosquito and  𝜇𝑀  is the mosquito 

death rate defined as:  

 ( )1 2log ,M Rf p p = −    

where  𝑝1 is the probability of a mosquito surviving one feeding cycle, 𝑝2  is the probability of 

surviving one resting cycle and 𝑓𝑟  is the feeding rate. The probability that a mosquito survives 

the extrinsic incubation period is therefore: 

M M

MP e  −=   

Seasonality is incorporated in the model by allowing a time-varying carrying capacity, which 

is represented in the framework as: 

 ( )=( ) LK t K V t   



Page 142 of 194 
 

Where  𝐾𝐿  is the equilibrium carrying capacity and 𝑉(𝑡) a time-varying relative vector density 

derived from the collated Anopheles stephensi profiles that describes the density of the vector 

at time 𝑡 relative to the mean annual vector density. Specifically, I took the fitted mosquito 

density temporal profile for each time-series, and then normalised it according to the following 

equation: 

( ) = t

Peak

D
V t

D
 

where tD is the fitted vector density (i.e. from the negative binomial gaussian process) at 

timepoint 𝑡, and PeakD is the vector density at the point of highest density across the course of 

the year so that the peak density takes the value of 1 and all other values are <1 in proportion 

to the peak. ( )V t  is then a multiplicative factor applied to the carrying capacity LK  to produce 

a time-varying carrying capacity ( ( )K t ) that matches the temporal dynamics of each vector 

temporal profile. Note that this formulation makes the implicit assumption the seasonality 

profile inferred for adult densities can be directly applied to a larval carrying capacity (𝐾𝐿) with 

any adjustment. Such an adjustment would require the carrying capacity to be lagged by a 

period specifying the time between larval emergence and development into mature adult 

mosquitoes. Given the primary aim of this work is to explore how the degree of seasonality 

(rather than exact timing) influences the impact of seasonally delivered interventions, adjusting 

for this delay was deemed unnecessary.  

It is assumed that 50% of the emergent adult mosquitoes are female and all enter the 

susceptible state  𝑆𝑀 Susceptible mosquitoes get infected at a rate that depends on the 

prevalence of infection in the human population (and includes a time lag to account for the 

time taken for infected humans to produce the transmissible gametocyte form of the parasite). 

These mosquitoes become infected at a rate that depends on the infectiousness of the human 

population including an appropriate time-lag  𝜏𝐺 to account for the time taken for parasites to 

become infectious gametocytes.  The force of infection on mosquitoes, 𝜆𝑀 is the sum of the 

contributions from the different human infection state compartments:  

 ( )


      


= − + − + − + − , , , ,( ) ( ) ( ) ( ) ( )M j i D i j G T i j G A i j G U i j G

i j

t c D t c T t c A t c U t    

where the parameter 𝜃 is the rate at which individuals are bitten and depends on the patterns 

and coverage of vector control in a setting (and so is described below in the section on the 

way in which IRS is modelled). 𝐶𝑈, 𝐶𝐴, 𝐶𝐷 and 𝐶𝑇 are parameters specifying the relative 
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infectiousness to mosquitoes from of humans belonging to the sub-patent infection, 

asymptomatic, clinical disease and successfully treated compartments respectively. The 

mean EIR experienced by adult humans at time t is defined to be: 




=0

1
( ) ( ).Mt I t  

where the parameter 𝜔 represents a normalising constant for the biting rate over all ages and 

adjusts exposure based on the comparative proportion of the population each age-group 

corresponds to: 

0

( )g(a)daa 



=   

Modelling the Impact of Indoor Residual Spraying (IRS) 

The mode of action and impact of IRS is modelled following a previously established 

intervention model (Winskill et al., 2017; Griffin et al., 2010; Sherrard-Smith et al., 2018) that 

probabilistically models the likelihood of the different outcomes that can arise during and 

following attempted feeding by mosquitoes. Specifically, it generates the probability of different 

events occurring following an attempt by a blood-seeking mosquito to feed on human. Within 

the modelling framework, we consider 5 different outcomes of a mosquito attempting to feed 

(and use the model described below to calculate the probabilities of each of these outcomes):  

1) It bites a non-human host 

2) It is killed by IRS before it bites 

3) It is killed by IRS after it bites 

4) It successfully feeds and survives that feeding attempt 

5) It is repelled without feeding, either through the actions of IRS.  

Define the probability that a mosquito of a given species successfully bites host 𝑖 during a 

single attempt as 𝑦𝑖; the probability that a mosquito bites a host and survives the feeding 

attempt as 𝑤𝑖, and the probability that the mosquito is successfully repelled without feeding as 

𝑧𝑖. Together, these probabilities exclude natural vector mortality so that for an individual 𝑖, in 

the absence of any protection or vector control interventions in place, both 𝑦𝑖 = 1 and 𝑤𝑖 = 1, 

and 𝑧𝑖 = 0.  

During a single feeding attempt the probability that a mosquito successfully feeds is: 

 0 0(1 ) i i

i

W Q Q w= − +  ,  
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and is repelled without feeding with probability: 

 0 i i

i

Z Q z=  ,  

where in both equations 𝑄0 is the proportion of bites taken on humans in the absence of any 

intervention and 𝜋𝑖 is the proportion of the total bites occurring on humans that person 𝑖 

receives in the absence of any intervention. Two periods of time relating to feeding are also 

defined here – the length of time the mosquito spends looking for a blood meal (𝛿1); and the 

length of time resting following ingestion of a blood meal (𝛿2). Given these two durations, the 

mosquito rate of feeding 𝑓𝑅 is then given by: 

1 2

1

 
=

+
Rf . 

It is assumed that that 𝛿2 is unaffected by vector control interventions, but that in the presence 

of interventions, the fact that mosquitoes can be repelled without feeding (i.e. 𝑍 > 0) leads to 

𝛿1 increasing to:  

10
1

1


 =

− Z
  

where 10  is the value of 𝛿1 in the absence of any vector control interventions. Assuming a 

constant natural death rate 𝜇0 during each of the periods 𝛿1 and 𝛿2, the probabilities of 

surviving the periods of feeding (𝑝1) and resting (𝑝2) in the absence of any interventions is 

given by:  

 10 0 10 2 0 2exp( ), exp( )   = − = −p p ,  

With interventions 𝑝1 increases to: 

 10
1

101
=

−

p W
p

Z p
  

The probability of surviving one entire feeding and resting cycle is 𝑝1𝑝2. The mosquito death 

rate 𝜇𝑀 can therefore be calculated as: 

 

1 2

1 2

exp( / )

log( ).

M R

M R

p p f

f p p





= −

= −
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Given this, in the presence of vector control interventions that alter 𝑝1 or 𝑝2, the probability of 

surviving the extrinsic incubation period, 𝑃𝑀 therefore also changes. The probability that a 

feeding cycle ends with a successful bite on person 𝑖, 𝑞𝑖 is: 

 

( )10 0

10 0

101





= +

=
−

i i i i

i i
i

q p Q w Z q

p Q w
q

Z p

  

The probability that a feeding cycle ends with a bite on an animal, 𝑞𝐴:  
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The proportion of successful mosquito bites which occurs on humans is therefore given by: 
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and the associated biting rate on humans is:  

  = RQ f  . 

The rate at which person i is bitten by a given mosquito species is therefore:  

 i i
i

i i

i

w

w

 



=


,  (1) 

When IRS is in use, a proportion of biting mosquitoes some mosquitoes may die following 

biting a person due to picking up a lethal insecticide dose whilst resting on the walls of the 

sprayed home. Calculating the force of infection on humans therefore requires the biting rate 

on each person needs to be inflated by a factor of i

i

y

w
giving an effective biting rate of:  

 i i
i

i i

i

y

w

 



=


  (2) 
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The EIR then experienced by person 𝑖 due to a given mosquito species is therefore i MI . 

This formulation of the EIR is shaped by the values of 𝑦𝑖, 𝑤𝑖 and 𝑧𝑖, which will vary according 

to the vector control interventions in place. Below, I describe the form these parameters take 

and how they are modified in the presence of IRS.  

Define the rate at which an individual who is currently indoors is bitten at hour 𝑡 as 𝜃𝐼(𝑡), and 

the corresponding figure for someone outdoors as 𝜃𝑂(𝑡). Knowing the proportion of human 

hosts indoors 𝑝𝐼(𝑡) at time 𝑡 then enables calculation of the proportion of bites taken on 

humans whilst indoors:  

 
( )

( ) ( )

(1 ( )) ( ) ( ) ( )

I I

t
I

I O I I

t

p t t

p t t p t t



 
 =

− +




 ,  

Once a mosquito enters a house to feed, one of three things can happen: it can feed 

successfully, die or make a repeat attempt at feeding (if the initial attempt was unsuccessful). 

Figure 5.2 shows the order in which the different processes operate within the mosquito 

feeding model used in this framework, specifically the order when a mosquito attempts to feed 

on an individual protected by IRS. This intervention model yields the following probabilities for 

the different outcomes of vector feeding in the presence of IRS vector control:  

Successful feed (wi): 1 (1 )(1 )(1 )I I I IW IW IFr r d d− + − − − −  

Biting (yi): 1 (1 )(1 )I I I IW IWr r d− + − − −  

Repulsion (zi): ( )(1 )I I I IWr r r + −  

where 𝛷𝐼 is the probability (with respect to the time of day) of feeding indoors, 𝑟𝐼 is the 

probability of being repelled before entering the house due to IRS. The parameters 𝑟𝐼𝑊, 𝑑𝐼𝑊 

and  𝑑𝐼𝐹 are the (time-varying) probabilities of being repelled (conditional on having entered 

the house) before feeding, killed before feeding or killed after feeding following resting on the 

wall of an IRS sprayed house. The time varying nature of these parameters arises from the 

chemical decay in the active ingredients over time. These parameter estimates – including 

both initial efficacy and the rate of decay – are all taken from a previously published systematic 

review of IRS compounds and their efficacy (Sherrard-Smith et al., 2018). Within the context 

of the work presented here, I explore the potential impact of 3 different IRS compounds – 

bendiocarb, clothiandin and pirimiphos methyl. I modelled the impact of a single round of IRS, 

timed to achieve the maximum reduction in malaria burden (as measured by total annual 

incidence in the 12-month period following spraying compared to a counterfactual of no IRS). 

For the purposes of the results presented here, parameter values for the model parameters  
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Figure 5.2 Flow diagram illustrating the probabilities associated with feeding outcomes.  𝚽𝑰 indicates the proportion of bites taken indoors, 

𝒓𝑰 the probability of being repelled from entering the house, 𝒓𝑰𝑾 the probability of being repelled from feeding (conditional on having entered the 

house) by the IRS, 𝒅𝑰𝑾 the probability of being killed before feeding and 𝒅𝑰𝑭 the probability of being killed after feeding.  
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described above are all taken from (Unwin et al., 2022), except for estimates of Anopheles 

stephensi’s binomics, which are taken from (Hamlet et al., 2022) and the estimates of IRS 

efficacy over time, which as described above are taken from (Sherrard-Smith et al., 2018). 

Results 

A total of 65 time-series from studies across Afghanistan, Djibouti, India, Iran, Myanmar and 

Pakistan were identified (Figure 5.3A). These noisy time-series were then smoothed using a 

negative binomial gaussian process-based framework (see Figure 5.3B for example time-

series from each country and Figure 5.4 for the results of fitting for all of the collated time-

series). Substantial variation in temporal dynamics was observed across the collated time-

series in terms of the degree and timing of seasonality – ranging from highly seasonal 

dynamics with a single seasonal peak (e.g. Afghanistan example in Figure 5.3B) to more 

perennial patterns of abundance (Pakistan example in Figure 5.3B) and bimodal population 

dynamics with two peaks observed during a single year (Iran example in Figure 5.3B).  

To these collated time-series, I then calculated a series of summary statistics that describe 

and characterise different aspects of their temporal properties and then applied PCA and k-

means clustering to the results to cluster the time-series into discrete groups sharing similar 

temporal patterns. The results presented here highlight two distinct clusters, with each cluster 

characterised by distinct temporal patterns and degree of their seasonality (defined as the 

percentage of total vector density that occurs across any continuous 3-month period, Figure 

5.5). Cluster 1 time-series typically had clear, single seasonal peaks and were more seasonal 

on average (57% of total vector density in a 3-month period) than Cluster 2 time-series, which 

had less seasonal (more perennial) patterns of annual abundance (average 36% vector 

density in any consecutive 3-month period), including time-series with two peaks across the 

course of a single year. Despite differing significantly in vector abundance seasonality (Figure 

5.5C, top panel, p<0.001), there was no significant difference across Cluster 1 and Cluster 2 

time-series in terms of rainfall seasonality (Figure 5.5C, bottom panel, p=0.59).  

In order to further investigate the different patterns of temporal dynamics present in the 

collated dataset, I re-ran the k-means clustering algorithm this time specifying 4 clusters 

(Figure 5.6). The less seasonal cluster from the 2 cluster analysis was retained (here Cluster 

3), and Cluster 1 from the 2 cluster analysis was further disaggregated into 3 different clusters 

(here, Clusters 1, 2 and 4), each defined by differences in the timing of their seasonal peak 

relative to the timing of peaks in monthly rainfall (mean timing of vector density peak 7, 8.25 

and 5.86 months after January for Clusters 1, 2 and 4 respectively) and the timing of the vector 

peak relative to peaks in rainfall (rainfall peak on average 1.03 and 2.32 months before vector   
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Figure 5.3 Sources and Locations of Anopheles stephensi Time-Series Data and 
Examples for Each Country.(A) Map of the geographical range over which collated time-

series had been carried out in, with countries where studies had been carried out in highlighted 

in light grey, and the locations of individual studies indicated by points, coloured according to 

the country they were carried out in (Afghanistan = red, Djibouti = yellow, India = green, Iran 

= turquoise, Myanmar = blue and Pakistan = pink). (B) Example Anopheles stephensi time-

series from each country, with the empirical monthly mosquito catch (black points) and fitted 

gaussian process curves (mean = coloured line, ribbon = 95% Bayesian Credible Interval) for 

each, coloured according to country. The x-axis indicates the month of sampling, the y-axis 

normalised annual vector density (i.e. arbitrary units).  
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Figure 5.4 Results of model fitting to the longitudinal entomological data collated in this study.  Reviews of the literature in tandem with 

previously published databases of entomological data identified 65 Anopheles stephensi time-series matching the inclusion criteria (>10 months 

of catch data at monthly temporal resolution or finer), and a negative binomial gaussian process with period kernel fitted to each time-series. For 

the results presented above, black points are the data, and the lines represent the model output, coloured according to the country in which the 

study was conducted. Line indicates the mean model output, with the shaded ribbon delineating the 95% credible interval (CI). 



Page 151 of 194 
 

 

 

 

 

 

 

 

Figure 5.5 Characterisation and Clustering to Identify Time-Series with Similar 
Temporal Properties.  (A) Results of principal components analysis (PCA) and k-means 

clustering for 2 clusters. Points indicate individual time-series, with point colour indicating 

cluster membership. Ellipsoids demarcate the 75th quantile of the density associated with each 

cluster. Principal components 1 and 2 are plotted, together explaining 69% of the total variation 

in temporal properties across the time-series. (B) Time-series belonging to each cluster. Pale 

lines represent individual time-series, brighter line the mean of all the time-series belonging to 

that cluster – in all cases vector density is normalised to sum to 1 over the course of the year, 

and time-standardised so that the highest vector density for each time-series is arbitrarily set 

to occur at month 7. (C) Boxplots of the percentage of annual total mosquito catch (top) and 

annual total rainfall (bottom) for each time-series. Rainfall data comes from the CHIRPS 

dataset and is specific to study location and time-period. Each point indicates an individual 

time-series. 
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Figure 5.6 Results of Clustering For 4 Clusters Instead of 2.  In order to further investigate 

the different patterns of temporal dynamics present in the collated dataset, I re-ran the k-

means clustering algorithm this time specifying 4 clusters. The less seasonal cluster from the 

2 cluster analysis in the main text (Cluster 2 in the main text results) was retained (here Cluster 

3), and Cluster 1 from the main text was further disaggregated into 3 different clusters (here, 

Clusters 1, 2 and 4), each defined by different peak timings (mean timing of vector density 

peak 7, 8.25 and 5.86 months after January for Clusters 1, 2 and 4 respectively) and the timing 

of the vector peak relative to peaks in rainfall (rainfall peak on average 1.03 and 2.32 months 

before vector density peak for Clusters 1 and 2, 1.09 months after vector density peak on 

average for Cluster 4).  
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density peak for Clusters 1 and 2, 1.09 months after vector density peak on average for Cluster 

4) (Figure 5.6). 

In order to explore in more depth potential drivers of the observed variation in seasonal 

dynamics across different time-series, I next fitted a random forest-based classification 

framework to satellite-derived environmental covariates in order to predict cluster membership 

(either Cluster 1 or Cluster 2, as defined in Figure 5.5). Due to the significant class size 

imbalance between Cluster 1 (n=49) and Cluster 2 (n=16), I upsampled the Cluster 2 data 

using the SMOTE algorithm to generate balanced classes. Across the 25 iterations of random 

forest model fitting, the mean AUC was 0.89 (indicating good predictive performance, Figure 

5.7A) and on average, the model was able to correctly classify Cluster 1 and Cluster 2 time-

series similarly well (83% and 85% of the time respectively). Both population per km2 and 

temperature seasonality, as well as a number of measures of landcover (specifically LC30 

which corresponds to mosaic cropland/natural vegetation, and LC20 which corresponds to 

irrigated or post-flooding cropland) were all highly predictive of Cluster membership (Figure 

5.7B). Time-series from surveys in locations with lower population density were more likely to 

belong to Cluster 2 (i.e. less seasonal), as were areas with high values of LC20 (i.e. land 

predominantly occupied by irrigated or post-flooding cropland). By contrast, areas with high 

values of LC10 and LC30 (i.e. substantial fraction of land covered either rainfed cropland or a 

mosaic of cropland and natural vegetation) were more likely to belong to Cluster 1 (i.e. more 

seasonal), as were areas in which rainfall was strongly seasonal. Figure 5.8 presents the 

partial dependence covariate plots for all included covariates and their relationships with 

cluster membership in full. Examining the association between rurality/urbanicity (as defined 

by the authors of each study) and temporal dynamics (Figure 5.7C), there was an indication 

of an association with rurality/urbanicity and cluster membership, though this was not 

statistically significant (chi-squared test, p=0.07). 88% (n=22/25) time-series from urban 

settings were assigned to Cluster 1, compared to only 65% (n=24/37) from rural settings. Only 

12% (3/25) time-series from urban settings were assigned to Cluster 1, compared to 35% 

(n=13/37) from rural settings. 

In order to assess the sensitivity of the results to the upsampling procedure applied, I also 

carried out model fitting with no upsampling to balance the classes. Model predictive 

performance and variable importance rankings were similar when no up-sampling was applied 

to the dataset (AUC=0.81, Figure 5.9), though average predictive accuracy on Cluster 2 (50%) 

was substantially lower than for Cluster 1 time-series (94%), likely because of the significant 

disparities in class size. I also assessed model performance and variable importance ordering 

when fitting the model and explicitly holding out a small subset of the data to evaluate model 

performance (n=7 time-series, see Figure 5.10). Across the 25 iterations of random forest   
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Figure 5.7 Random Forest Prediction of Temporal Cluster Membership.  A random forest-

based classification modelling framework was used to predict membership of the temporal 

cluster (either Cluster 1 or Cluster 2, as defined in Fig 2) and explore the ecological factors 

underpinning variation in Anopheles stephensi seasonality. (A) Receiver-operator curve 

(ROC) for each of the 25 individual iterations of random forest model fitting carried out, with 

results for each displayed as grey lines. The mean AUC across these 25 iterations was 0.89. 

(B) Variable importance plot for the covariates included in the random forest model – bar 

height indicates the mean variable importance across the 25 individual iterations of random 

forest fitting, with error bars representing the 95% confidence interval. (C) Collated Anopheles 

stephensi time-series, disaggregated according to urbanicity and cluster membership. Cluster 

1 and Cluster 2 time-series from rural locations are plotted separately; all time series for time-

series carried out in urban locations (22 belonging to Cluster 1 and only 3 belonging to Cluster 

2) are plotted together. Coloured line indicates the mean and ribbon indicates the 90% range 

spanned by the group of time series belonging to each displayed grouping. For landcover (LC) 

variables, LC10 = rainfed cropland, LC11 = herbaceous cover, LC20 = irrigated or post-

flooding cropland, LC30 = mosaic of cropland and natural vegetation, LC110 = mosaic of 

herbaceous cover and tree/shrub cover, LC120 = shrubland, LC122 = Deciduous shrubland, 

LC130 = grassland, LC150 = sparse vegetation (<15% cover of any type), LC180 = mixture of 

herbaceous cover and flooded with water.   
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Figure 5.8 Partial Dependence Plots for Covariates Used in the Random Forest 
Classification Modelling.  The y-axis on the left shows the probability of the time-series 

belonging to Cluster 2 (i.e. a high probability indicates the time-series is predicted to likely 

belong to Cluster 2, a low probability indicates the time-series likely belongs to Cluster 1). The 

x-axis describes the value of the (scaled, normalised) covariate. For landcover (LC) variables, 

LC10 = rainfed cropland, LC11 = herbaceous cover, LC20 = irrigated or post-flooding 

cropland, LC30 = mosaic of cropland and natural vegetation, LC110 = mosaic of herbaceous 

cover and tree/shrub cover, LC120 = shrubland, LC122 = Deciduous shrubland, LC130 = 

grassland, LC150 = sparse vegetation (<15% cover of any type), LC180 = mixture of 

herbaceous cover and flooded with water.   
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Figure 5.9  Random Forest Classification Results Without Upsampling Cluster 2. Due to the extreme class-imbalance of Clusters 1 and 2 

(49 vs 16 time-series respectively), the results presented in the main text are following upsampling of the Cluster 2 time-series to create a dataset 

with equal numbers of time-series belonging to each cluster. As a sensitivity analysis, I also carried out the random forest fitting without 

upsampling and assessed both model fit (as measured by AUC) and variable importance. Model performance was somewhat reduced compared 

to the upsampled data (mean AUC of 0.81 vs mean AUC >0.9 for the upsampled dataset), whilst variable importance results were broadly 

consistent across both analyses, with population per square kilometre and various land-cover measures all emerging as important predictive 

variables. For landcover (LC) variables, LC10 = rainfed cropland, LC11 = herbaceous cover, LC20 = irrigated or post-flooding cropland, LC30 = 

mosaic of cropland and natural vegetation, LC110 = mosaic of herbaceous cover and tree/shrub cover, LC120 = shrubland, LC122 = Deciduous 

shrubland, LC130 = grassland, LC150 = sparse vegetation (<15% cover of any type), LC180 = mixture of herbaceous cover and flooded with 

water.  
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Figure 5.10 Random Forest Classification Results With Held-Out Data. Due to the overall sample size (n = 65 time-series), the results 

presented in the main text were generated using a random forest-based workflow where final model fitting (using hyperparameters tuned using 

6-fold cross-validation) utilised the entirety of the dataset. As a sensitivity analysis, I also carried out the random forest fitting holding out a small 

portion of the dataset (n = 9) during model fitting, with model performance subsequently evaluated on this held-out data. Results presented above 

are in the case where data was upsampled to address class imbalance (top) and where no upsampling was carried out (bottom). For landcover 

(LC) variables, LC10 = rainfed cropland, LC11 = herbaceous cover, LC20 = irrigated or post-flooding cropland, LC30 = mosaic of cropland and 

natural vegetation, LC110 = mosaic of herbaceous cover and tree/shrub cover, LC120 = shrubland, LC122 = Deciduous shrubland, LC130 = 

grassland, LC150 = sparse vegetation (<15% cover of any type), LC180 = mixture of herbaceous cover and flooded with water.   
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Figure 5.11 Exploring Variation In Total Catch Size By Cluster. Boxplot and histogram of the total number of Anopheles stephensi mosquitoes 

caught over the duration of each study, coloured according to cluster membership. Total catch size was highly overdispersed, varying over several 

orders of magnitude across both clusters.  
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Figure 5.12 Random Forest Classification Results Including Monthly Catch Size As A Model Covariate.  As a sensitivity analysis, I also 

carried out the random forest fitting including average monthly catch size for each time-series as a predictive covariate, to assess whether any 

of the cluster assignments might be due to the model spuriously not detecting seasonal peaks in studies with low catch sizes. Results presented 

above are in the case where data was upsampled to address class imbalance (top) and where no upsampling was carried out (bottom), with 

predictive performance and variable importance largely unchanged compared to results presented in the main text (which do not include average 

monthly catch size as a covariate). For landcover (LC) variables, LC10 = rainfed cropland, LC11 = herbaceous cover, LC20 = irrigated or post-

flooding cropland, LC30 = mosaic of cropland and natural vegetation, LC110 = mosaic of herbaceous cover and tree/shrub cover, LC120 = 

shrubland, LC122 = Deciduous shrubland, LC130 = grassland, LC150 = sparse vegetation (<15% cover of any type), LC180 = mixture of 

herbaceous cover and flooded with water.  
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model fitting and performance evaluation carried out, model performance and variable 

importance ordering remained similar. 

Study catch size was highly variable between the studies (Figure 5.11), and I therefore 

assessed whether any of the results presented here might be due to systematic differences in 

study catch size between clusters. Whilst median catch size across the two clusters did not 

differ (Moody’s Median Test, p=0.47), the mean catch size did differ (t-test, p=0.025). I 

therefore carried out a sensitivity analysis including study average monthly catch as a 

covariate in the random forest model (Figure 5.12) – model results were largely unchanged 

compared with the other analyses that lacked monthly catch size as a covariate – predictive 

performance and results around the comparative importance of the different included variables 

remained similar, with monthly catch size the 2nd least most important variable in both 

instances of model fitting with and without upsampling. Via a random-forest based regression 

framework, I also assessed the capacity of the collated ecological covariates to predict 

seasonality (defined as the largest percentage of vector catch in any continuous 3-month 

period). Model predictive performance was more modest than in the classification setting, 

although model estimates and empirical values were positively correlated (r=0.43, see Figure 

5.13) and measures of landcover including LC10, LC20 and LC30, as well as temperature and 

rainfall seasonality were all strongly associated predictors of seasonality, as in the 

classification modelling setting.  

I next explored the potential implications of these results on the seasonal dynamics of 

Anopheles stephensi across the Horn of Africa. I collated the same satellite-derived 

environmental covariates for countries across the Horn of Africa where Anopheles stephensi 

has been reported and integrated them with the trained random forest classification model to 

predict potential temporal dynamics (as denoted by Cluster membership) of Anopheles 

stephensi across the region (Figure 5.14). The results highlight distinct geographical areas 

across the region considered more likely by the model to belong to Cluster 1 (more seasonal, 

Fig. 5.14A) and Cluster 2 (less seasonal), as well as substantial areas of significant 

uncertainty. Using the collated seasonal profiles belonging to each cluster, I next asked what 

consequences this uncertainty about the degree and timing of Anopheles stephensi 

seasonality might have on entomological surveillance of the vector. Specifically, I asked what 

the probability of missing Anopheles stephensi in entomological surveys might be as a function 

of the number of consecutive months sampled (with start month selected randomly i.e., 

assuming no knowledge of Anopheles stephensi’s temporal dynamics). In instances where 

sites are sampled for a limited number of months, there is a significant risk of missing 

Anopheles stephensi, with the exact value dependent on the specific time-series (i.e. 

Anopheles stephensi temporal profile) being considered (Figure 5.14B). In the absence of a   



Page 161 of 194 
 

 

 

 

 

Figure 5.13 Random Forest Prediction of Percentage of Vector Density In Any 3 Month 
Period. As a further sensitivity analysis, I used a random forest modelling approach to predict 

the percentage of vector density occurring in a single continuous 3-month period. Results 

presented above are the average of 25 independents random forest model fittings, with no 

upsampling of the data carried out, and the final model fitted (using hyperparameters tuned 

using 6-fold cross-validation) to the full dataset. Model predictive power was moderate, with 

correlation between predicted and actual values = 0.43. For landcover (LC) variables, LC10 = 

rainfed cropland, LC11 = herbaceous cover, LC20 = irrigated or post-flooding cropland, LC30 

= mosaic of cropland and natural vegetation, LC110 = mosaic of herbaceous cover and 

tree/shrub cover, LC120 = shrubland, LC122 = Deciduous shrubland, LC130 = grassland, 

LC150 = sparse vegetation (<15% cover of any type), LC180 = mixture of herbaceous cover 

and flooded with water.   

  



Page 162 of 194 
 

 

 

 

 

 

Figure 5.14 Predicting the Possible Seasonal Dynamics of Anopheles stephensi Across 
the Horn of Africa. (A) Environmental covariates were collated across countries in the Horn 

of Africa where Anopheles stephensi has been found, and the fitted random forest 

classification model from Fig 3 used to predict potential temporal dynamics. Map shows the 

probability of temporal dynamics belonging to Cluster 1, with pink corresponding to Cluster 1 

dynamics being more likely than Cluster 2, black indicating Cluster 2 dynamics are more likely 

than those for Cluster 1, and white indicating both are equally likely. (B) Histogram of the 

percentage of total annual catch in any continuous 4-month period for each time-series, 

coloured according to the cluster the time-series belong to. (C) The probability of missing 

Anopheles stephensi in an entomological catch survey (y-axis) as a function of the number of 

consecutive months randomly sampled, assuming the start-month is picked at random. 

Coloured lines are the mean results across all time-series belonging to each cluster, with the 

shaded area indicating the range spanned by all time-series belonging to each cluster.  
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Figure 5.15 Modelling the Public-Health Impact of Indoor Residual Spraying (IRS) and 
How This Is Impacted by Anopheles stephensi Seasonality. (A) Probability of mosquitoes 

dying upon exposure to each IRS compound – yellow indicates bendiocarb, green indicates 

clothiandin and grey indicates pirimiphos methyl. (B) Percentage reduction in annual 

incidence (with optimal timing of IRS delivery), for each of the IRS compounds considered. 

Individual points correspond to specific time-series. (C) The relationship between percentage 

reduction in annual malaria incidences and the overall seasonality of malaria incidence in the 

setting (as modelled and implied by each Anopheles stephensi temporal profile). (D) Malaria 

incidence modelling results for a highly seasonal (left) and less seasonal (right) setting. Black 

lines indicate endemic dynamics in the absence of any IRS, coloured solid lines indicate 

incidence following a single IRS round (with timing of the round indicated by the coloured 

dashed lines).  

 



Page 164 of 194 
 

 

Figure 5.16 Sources and Locations of Anopheles stephensi Time-Series Data According to Urban/Rural Assignment. Collated time-

series are displayed above coloured according to 1) whether or not the study was carried out in an urban or rural location; and 2) which cluster 

they were assigned to.  
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detailed understanding of Anopheles stephensi’s anticipated temporal dynamics, sampling for 

a limited number of months therefore appears to pose a significant risk of missing Anopheles 

stephensi and erroneously concluding it is absent.  

I next integrated the collated temporal profiles of Anopheles stephensi abundance with a model 

of malaria transmission to model the impact of Anopheles stephensi seasonality on vector 

control measures. Specifically, I explored how variation in Anopheles stephensi temporal 

dynamics influences the impact of indoor residual spraying (IRS), a key malaria control 

intervention. I explore three different IRS compounds – bendiocarb, clothiandin and pirimihpos 

methyl (each commonly used throughout the Horn of Africa) that span a range of different 

functional half-lives and lethalities (Figure 5.15A) and model the impact of a single annual round 

of IRS, assuming optimal timing (as defined by subsequent impact on disease burden) of 

delivery is possible. Across the Anopheles stephensi temporal profiles considered, pirimiphos 

methyl consistently had the highest impact, reducing annual malaria incidence by 47.6% on 

average in the 12 months following spraying, compared to only 43.9% and 28.9% on average 

for clothiandin and bendiocarb (Figure 5.15B). The overall impact on disease burden was highly 

dependent on the degree of seasonality, with IRS having the most impact in highly seasonal 

settings, and the least impact in settings where the degree of seasonality was minimal (Figure 

5.15C and Figure 5.15D). This influence of seasonality was most significant for bendiocarb (the 

insecticide with the shortest half-life), with reduction in malaria burden ranging from only 21.7% 

in the lowest seasonality setting, through to as high as 37.0% in the most seasonal setting, a 

1.7 fold difference. I assume in all instances optimal timing of IRS delivery relative to seasonal 

peaks, which in turn requires sufficient understanding of the vector’s dynamics and when peaks 

in density are going to occur.  

Discussion 

Invasion and establishment of Anopheles stephensi across the Horn of Africa represents an 

urgent threat to malaria control in the region. Understanding the temporal profile of malaria risk 

this vector might lead to will represent a crucial input to effective deployment of surveillance, 

monitoring and control interventions aimed at mitigating the potential impact of Anopheles 

stephensi’s arrival, particularly in urban settings across the region where malaria has historically 

been largely absent or only minimally present. Collating data from across South Asia and the 

Middle East, I identify extensive diversity across Anopheles stephensi populations in the extent 

and nature of their seasonal dynamics. This variation is associated with a wide array of 

ecological factors, including patterns of land-use and temporal fluctuations in rainfall and 

temperature. Perhaps most crucially, I find evidence of distinct temporal dynamics across rural 
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and urban settings – this variation has material consequences for the efficacy of interventions 

aimed at controlling the threat this vector poses to urban areas across the Horn of Africa.  

The analyses have identified several ecological factors associated with Anopheles stephensi 

seasonal dynamics. Patterns of land-use (e.g. whether the land is rain-fed or irrigated), as well 

as the seasonality of temperature were identified as key drivers of the extent and nature of 

Anopheles stephensi seasonality. This is consistent with the work presented in Chapter 4 that 

highlighted features of the local hydrological environment and its interaction with land-use 

(particularly whether it is predominantly rain-fed or static, perennially available bodies of water) 

as a key factor shaping the seasonality of diverse anopheline species across India. Similarly, 

previous work has identified temperature as a key driver of mosquito population dynamics, due 

to its impact on an array of mosquito life-history traits including biting rate, lifespan and fecundity 

(amongst several others) (Beck-Johnson et al., 2017; Mordecai et al., 2019). These results 

therefore highlight the importance of considering both the hydrological environment (including 

patterns of land use and their interaction with rainfall and other hydrological features), as well 

seasonal fluctuations in temperature when trying to understand seasonal patterns of mosquito 

abundance. 

Perhaps most notably, the analyses identified population per km2 as a key predictor of cluster 

membership, with high population density being strongly associated with Cluster 1 dynamics 

(i.e. more seasonal patterns of abundance), a finding that was also observed when stratifying 

surveys according to whether they had been carried out in urban or rural settings. This potential 

disparity in temporal dynamics across rural and urban settings will likely have implications for 

the public health impact of different control interventions. These results suggest that urban 

Anopheles stephensi populations are likely to display seasonal dynamics, supporting the utility 

of interventions like IRS in these settings – the same is not necessarily true in rural settings, 

where a range of seasonal profiles including more perennial patterns of abundance were 

observed. Implementing these measures and achieving sufficient IRS (and ITN) coverage in 

urban settings is likely to prove challenging, given the historical absence of large-scale vector 

control campaigns. If these barriers can be surmounted, such measures are likely to be 

impactful however, given the results presented here as well as previous modelling work that 

has identified low altitude urban areas with minimal levels of pre-existing transmission as the 

areas likely to experience the largest increase in disease burden (due to high population 

densities, absence of existing vector control and minimal human population immunity (Hamlet 

et al., 2021)).  

This work has also highlighted the paucity of currently available entomological data from the 

Horn of Africa region, particularly the absence of longitudinal studies surveying the same site 

over multiple months and the risk this poses for erroneously concluding Anopheles stephensi’s 
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absence. Indeed, these analyses demonstrate that a lack of a detailed understanding of the 

vector’s dynamics (precluding targeting of entomological surveys to periods of highest vector 

density) risks missing Anopheles stephensi’s presence. Longitudinal surveys elucidating these 

dynamics would therefore be useful in enabling subsequent refinement and timing of shorter 

surveys aimed at detecting presence only, even before considering the additional information 

these surveys would provide on temporal dynamics that can facilitate the effective targeting and 

timing of control interventions such as IRS. Indeed, in my assessment of IRS impact, I assume 

implementation teams would have sufficient understanding of the vector’s dynamics to time 

delivery of IRS optimally in relation to any seasonal peaks in vector abundance – something 

likely not possible for a newly establishing vector. Such surveillance is therefore vital – both for 

optimising control efforts, but also for enabling better awareness of the establishment during its 

earliest phases. Unnoticed proliferation of an invasive anopheline vector has previously been 

observed with Anopheles arabiensis in North-Eastern Brazil, where extensive spread prior to 

detection subsequently led to a significant malaria epidemic across the region (Killeen et al., 

2002).  

There are a number of important limitations to the work presented here. Firstly, I do not formally 

include considerations of insecticide resistance in the model of malaria transmission. Insecticide 

resistance is well-documented for Anopheles stephensi, including populations across 

Afghanistan (Safi et al., 2019), Iran (Vatandoost and Hanafi-Bojd, 2012), Pakistan (Ali Khan, 

Akram and Lee, 2018) and India (Tiwari et al., 2010). Recent populations assayed in Ethiopia 

showed resistance to insecticides of all four major insecticide classes (Yared et al., 2020; 

Balkew et al., 2021), suggesting that pyrethroid-only ITNs and IRS (both already in use across 

the country) might have limited impact at controlling malaria transmitted by Anopheles 

stephensi. Relatedly, I do not consider uncertainty in Anopheles stephensi bionomic properties 

(such as timing of biting, or whether resting occurs predominantly indoors or outdoors), which 

will further modulate the impact of interventions such as IRS whose killing is mediated primarily 

through indoors resting following feeding. Significant variation in Anopheles stephensi’s 

bionomic properties across settings has previously been identified (Massey et al., 2016), 

including a propensity for crepuscular biting and resting outside of houses compared to African 

anopheline species (Sinka et al., 2020). Previous work has identified these factors as key drivers 

of malaria intervention impact (Sherrard-Smith et al., 2019), and more specifically, the impact 

of control interventions aimed at mitigating the public health threat this vector poses (Hamlet et 

al., 2021). Whilst the aim of the work here is not to provide specific estimates of intervention 

impact, and instead highlight how seasonality modulates impact and underscore an 

understanding of seasonal dynamics as a crucial input to optimising control interventions, these 

limitations highlight the urgent need for a more detailed characterisation of Anopheles stephensi 

in the settings across the Horn of Africa where it is now present, in order to more precisely 
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quantify how its bionomic properties and insecticide resistance profile might erode intervention 

impact.  

I also assume that the inferred relationships linking environmental features to temporal 

dynamics will translate from settings in South Asia and the Middle East to the Horn of Africa. 

Indeed, these results highlight significant plasticity and variation in Anopheles stephensi’s 

seasonal dynamics depending on the setting, and therefore the extent to which the results will 

extrapolate to new settings beyond Anopheles stephensi’s historical range remains unclear. 

Relatedly, due to the limited amount of data available and the wide geographical range over 

which the collated studies were conducted, I cannot rule out possible spatial confounding in 

shaping the associations inferred – though exploratory analysis of the distribution of locations 

stratified by rural/urban status and cluster assignment did not reveal obvious patterns of spatial 

confounding (Figure 5.16). One factor that I was unable to consider is the possibility of variation 

between Anopheles stephensi forms (“type”, “intermediate” and “mysorensis”) in their 

geographical range and temporal dynamics. Identification of the particular Anopheles stephensi 

form is challenging, often requiring close visual examination (Nagpal et al., 2003) or molecular 

methods (Chavshin et al., 2014). Availability of this data was limited, and I therefore lack the 

ability to disaggregate time-series by the specific Anopheles stephensi form caught. It therefore 

remains unclear whether the variation in temporal dynamics observed across the time-series is 

due to inherently flexible dynamics that are shaped by distinct environmental drivers, or instead 

maybe arising from different Anopheles stephensi forms.  

Despite these limitations, this work highlights significant variation in temporal dynamics across 

surveyed Anopheles stephensi populations; variation that is shaped by distinct ecological 

factors, can differ pronouncedly between urban and rural settings, and which has material 

consequences for the potential effectiveness of vector control interventions. This work also 

underscores the need to better understand the vector’s dynamics in settings where it has newly 

established. Indeed, the trajectory of Anopheles stephensi’s establishment and subsequent 

dynamics in Horn of Africa remains deeply unclear and the paucity of published studies from 

the region underscores the need for studies longitudinally surveying locations where Anopheles 

stephensi has recently arrived. This will be vital to understanding the patterns of seasonal 

variation the vector displays, a crucial and operationally relevant input for optimising the delivery 

of malaria control interventions aiming to mitigate the impact of this invasive vector. 

Conclusion 

With the work presented here, I have extended the framework developed in Chapter 4 and 

applied it to Anopheles stephensi data spanning South Asia and the Middle East in order to 

inform our understanding of how the seasonal dynamics of this efficient urban malaria vector 
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are likely to play out given its recent introduction to the Horn of Africa. This work has provided 

insight into the factors underlying variation and heterogeneity in the species’ temporal dynamics, 

particularly highlighting the potential for discordant, asynchronous dynamics across urban and 

rural settings. Across this thesis, I have sought to quantify and explore some of the factors (both 

relating to the human host and the mosquito vector) that drive heterogeneity in malaria 

transmission and burden across a diversity of different settings. In the following, final chapter of 

this thesis, I synthesise these different strands of work together and reflect on how these 

different sources of heterogeneity contribute to the diverse transmission dynamics of malaria 

observed globally, and what they imply for the most effective control of the disease and its 

mitigation.  
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Chapter 6 Discussion 

Thesis Aims and Objectives 

In this thesis, my aim was to use a combination of statistical and mathematical modelling to 

further our understanding of some key factors (relating to the parasite, the human host, the 

mosquito vector and the broader environment) underlying variation in the transmission 

dynamics and burden of malaria between settings. In particular, the aim was to explore how 

heterogeneity in these key determinants of transmission might influence the appropriateness 

and efficacy of different malaria control interventions.  

Summary of Findings 

In Chapter 2, I carried out a systematic literature review and meta-analysis to explore how the 

prevalence of submicroscopic Plasmodium falciparum malaria infection varies across a diverse 

range of settings globally, using a Bayesian regression-based approach to understand the 

factors influencing the size of the submicroscopic reservoir, and the implications this might have 

for malaria control efforts. The results of this analysis highlighted extensive variation between 

settings in the size and extent of the submicroscopic reservoir, with the proportion of infections 

that are submicrosopic highest in low transmission settings. Crucially however, I showed that 

significant variation in the size of the submicroscopic reservoir exists even across settings 

characterised by similar current levels of transmission, and that this variation can be in-part 

explained by historical patterns of control, namely whether transmission has recently declined 

or has been low for many years. Integrating these results with estimates of infectivity in relation 

to parasite density suggests the contribution of submicroscopic infections to transmission 

across different settings is likely to be highly variable and dependent on the historical patterns 

of control and transmission characterising a setting. Variation in the extent to which the 

infectious reservoir is detectable by commonly used diagnostics such as microscopy has 

material implications for the efficacy of interventions only targeting detectable infections 

compared to those treating the whole community (or specifically targeting submicroscopic 

infections). My results better quantify the types of settings in which these different approaches 

are likely to be most relevant and impactful.  

In Chapter 3, I continued the thesis’ focus on the dynamics and characteristics of malaria 

infections in the human host and explored the spatial distribution of malaria infections within 

communities, specifically the degree of clustering within households and the factors affecting 

the extent of this phenomenon. A number of malaria control interventions specifically target 

individual households (e.g. reactive case detection) and are routinely implemented across a 

wide range of settings, but the appropriateness of these approaches (which depend on the 
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degree of household clustering of infections) remained largely unclear. Applying a Bayesian 

regression-based approached to data from the Demographic and Health Surveys spanning 23 

African countries, I show that malaria infections in children consistently cluster together at the 

household level, though the degree of clustering is highest in areas of lowest transmission. This 

variation has material consequences for the appropriateness of malaria control strategies 

focussed on the household. In the settings of highest transmission where the degree of 

household clustering is most limited and overall prevalence of infection is higher, reactive 

household-based approaches are likely to offer limited benefit (in terms of resource saving) over 

community-based approaches such as mass-drug administration. By contrast, in the settings of 

lowest transmission where there are overall fewer infections and where the degree of clustering 

is most substantial, household targeted strategies may offer malaria control programs the ability 

to target infections in a highly cost-effective way, and also catch infections that may not 

otherwise be detected (such as asymptomatic infections). Crucially however, this will depend 

on the extent to which malaria transmission continues to be peri-domestic (i.e. occurring 

predominantly in and around the household).  

Together, Chapters 2 and 3 explored variation in the detectability, prevalence and spatial 

clustering of malaria infections across communities, and the implications this variation has for 

effective control of the disease across different settings. In Chapter 4, my work shifted to focus 

on the anopheline mosquitoes that underpin malaria transmission. The aim with this work was 

to better understand the factors influencing the population dynamics of these mosquitoes, and 

their influence on the temporal patterns and seasonality of malaria transmission. I developed a 

statistical framework enabling characterisation and comparison of the temporal properties of 

entomological time-series catch data. Applying this framework to data collated from across 

India, I showed how this framework can identify the dominant temporal patterns present in the 

data and explore the ecological factors underpinning the empirically observed variation in the 

degree and extent of seasonality. This work highlights that even within the same location, 

different mosquito species can display substantially different temporal dynamics. This 

phenomenon, likely underpinned by species-specific factors and their interaction with the 

ecological structure of the surrounding environment (such as species-specific preferences for 

different types of breeding water sources and the availability of those given the setting’s 

hydrological characteristics) will influence the most effective way to controlling the disease. 

Understanding these dynamics is a crucial input to optimising timing and delivery of vector 

control interventions such as IRS, and importantly, the efficacy of these interventions will 

depend intimately on both the timing and degree of seasonality displayed by the mosquito 

populations responsible for malaria transmission.  
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In the final Chapter of this thesis, I apply this same framework to a collection of time-series data 

assembled for the malaria vector Anopheles stephensi, a highly efficient urban malaria vector 

that has recently been introduced in the Horn of Africa and is thought to be driving a resurgence 

in malaria transmission in parts of the region. The results of my analyses revealed pronounced 

diversity in the extent and degree of seasonality displayed by different Anopheles stephensi 

populations. Using a random-forest based modelling approach, I showed that this variation is 

driven by a variety of ecological factors including temperature seasonality and land-use 

patterns. Importantly, this work revealed clear structuring of temporal dynamics across rural and 

urban settings, suggesting a key role of the built environment in modulating the vector’s 

temporal dynamics. This finding suggests a potential need for different interventional strategies 

aimed at controlling the vector in cities compared to other non-urban locations. Extending the 

framework presented in Chapter 4, I then integrated the collated temporal profiles of Anopheles 

stephensi abundance into a previously published model of malaria transmission to link variation 

in vector temporal dynamics more directly to their implications for malaria transmission and 

control. These results highlight that maximising the impact of annually delivered vector control 

interventions such as IRS is intimately dependent on both the degree of vector seasonality in 

settings, and the ability to time these interventions appropriately relative to seasonal peaks in 

abundance.  

The results presented here highlight some of the factors that can shape malaria epidemiology 

and whose variation across settings contributes to the diverse malaria ecologies observed 

globally. The comparative importance of these factors in shaping intervention impact is variable, 

however. For example, the impact of interventions such as IRS or SMC depends on their timing 

relative to seasonal peaks in transmission, and so their impact is modulated substantially by the 

degree and extent of seasonality in a given setting. By contrast, the overall impact of other 

vector control interventions such as the delivery and distribution of ITNs is likely less sensitive 

to timing relative to seasonal peaks in transmission. Similarly, whilst the impact of spatially 

targeted interventions such as reactive case detection intimately depends on the spatial 

distribution and clustering of malaria infections, approaches targeting the entire community 

simultaneously (such as mass drug administration campaigns) are less dependent on the 

underlying spatial distribution of infections with a community. The results presented here 

underscore the material implications different malarial ecologies have for the impact of different 

control interventions, and the need to tailor interventions to context if impact is to be maximised, 

and the most achieved given limited resources. 

Limitations and Future Directions 

There are a number of important limitations to the results presented here. Firstly, significant 

work remains to be done integrating all the different factors explored in this thesis into 
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transmission models to quantify their influence on the public health impact of interventions more 

formally. Indeed, it is only in Chapter 5 where I integrate the results of my analyses (in that case 

relating to vector temporal dynamics) into a mathematical model of transmission that allows the 

impact of the variation (in vector temporal dynamics) on the burden of malaria and the efficacy 

of different control strategies (specifically IRS) to be quantified. Mathematical models such as 

the one utilised in Chapter 5 represent useful platforms for integrating and synthesising a range 

of different characteristics of settings. Drivers of heterogeneity explored in this thesis are 

currently considered standalone – exploration of multiple different sources of heterogeneity 

simultaneously would also likely prove useful, given that real-world settings are characterised 

by a complex combination of these different factors, which may well interact to further modulate 

the impact of different control interventions.  

Relatedly, future work expanding the range of interventions considered would likely prove 

instructive. In this thesis, results exploring intervention impact are limited to IRS. There are of 

course numerous other interventions that can and should be explored using the developed 

framework. For example, comparisons of treatment-based approaches to control that include 

both targeted (such as reactive case detection) and untargeted (such as mass-drug 

administration) strategies would be useful in quantifying just how much variation in the spatial 

clustering and detectability of malaria infections affect impact and would provide a more direct 

link from the results presented in Chapters 2 and 3 to variation in public health impact. 

Additionally, considering new interventions such as vaccines (e.g. RTS,S/ASO1 (RTS,S Clinical 

Trials Partnership, 2015; RTS,S Clinical Trials Partnership et al., 2011) or R21 (Datoo et al., 

2021)), larviciding (Leslie Choi, 2017), attractive toxic sugar baits (ATSBs) (Müller et al., 2010) 

or the utilisation of genetically modified mosquitoes (Marshall and Taylor, 2009) and how this 

interacts with some of the factors considered in this thesis would also likely prove instructive. 

Given these interventions in some cases act at different parts of the malaria transmission cycle 

compared to the most commonly used interventions (e.g. larviciding and targeting of the 

immature developmental stages compared to IRS’s impact on mature adults mosquitoes), 

quantifying their impact and how it is modulated by differences in malaria epidemiology across 

different settings will be vital, though has not been explored here.  

Perhaps most crucially, there are a number of different factors not considered here that will 

similarly affect the appropriateness, viability and efficacy of different control strategies. Notable 

examples include insecticide resistance (Hancock et al., 2018) and drug resistance (Okell, 

Griffin and Roper, 2017), which will shape and influence the most appropriate strategy for 

control of malaria across all levels of transmission and endemicity. Previous work has also 

identified extensive variation within-species across different sites in vectorial factors such as 

mosquito bionomic properties (e.g. degree of endophagy, the human blood index etc) (Sherrard-
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Smith et al., 2019), all of which have material implications for the success of vector control 

efforts predicated on indoor feeding and indoor resting, which includes ITNs and IRS, and which 

are not considered here. Other factors absent from consideration in this thesis include a number 

which are directly and specifically relevant to settings approaching elimination. During the 

transition to low endemic levels of transmission and possible elimination, there are often marked 

shifts in the nature and dynamics of malaria (Cotter et al., 2013) – whilst some have been 

considered here (such as the increasing proportion of submicroscopic infections or greater 

extent of spatial clustering), there are numerous changes to the disease’s epidemiology that 

have not been considered here and that likely have important consequences for the optimal 

control strategy as settings shift from focuses on burden reduction to elimination of malaria. 

These include increasing fractions of imported malaria cases (Martens and Hall, 2000; Churcher 

et al., 2014), the emergence of new risk groups as the comparative importance of peri-domestic 

and occupational exposures to vectors changes (Chuquiyauri et al., 2012), and the persistence 

of transmission in hard-to-reach groups leading to even finer spatial heterogeneity in the 

distribution of burden (Bejon et al., 2014). All have material consequences for which 

interventions are likely to be most impactful, and thus their absence from consideration in this 

thesis is an important limitation to the results presented here.  

Beyond these factors, it is also important to note that the focus of this thesis has been on the 

transmission dynamics and burden of Plasmodium falciparum malaria. For countries that have 

co-endemic Plasmodium falciparum and Plasmodium vivax malaria, there have been repeated 

observations of the fraction of cases attributable to Plasmodium vivax increasing as the total 

burden of malaria decreases (World Health Organization, 2020), and indeed, there is mounting 

recognition that Plasmodium vivax malaria is likely to pose a significant challenge to malaria 

elimination efforts (Cotter et al., 2013). Whilst many of the factors considered in this thesis will 

also be relevant to the transmission and control of Plasmodium vivax malaria, there are other 

factors that represent unique challenges to Plasmodium vivax malaria transmission and control. 

Previous work has highlighted extensive variation in the relapse frequency of Plasmodium vivax 

infection (White et al., 2016), itself underpinned by systematic variation between parasite 

genotypes between temperature and tropical settings as well as intense overdispersion in the 

number of hypnozoites individuals are host to (White et al., 2014). Recent work has seen the 

development of mathematical modelling approaches explicitly focussing on the transmission 

dynamics and burden of disease due to Plasmodium vivax (White et al., 2018), providing a 

framework in which to systematically explore the impacts of these different factors. Furthering 

our understanding of the factors influencing variation and heterogeneity in Plasmodium vivax 

transmission dynamics across settings, the degree to which these factors overlap or differ to 

the factors relevant to transmission of Plasmodium falciparum malaria, and how this affects 

control of the disease would therefore represent a likely instructive avenue of future inquiry. 
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Finally, the work in this thesis has made the assumption that the primary motivating factor for 

what constitutes the most appropriate intervention(s) to deploy in settings will centre around 

how to achieve the most impact. The reality is that the viability of different control interventions 

are shaped by a wealth of additional considerations including cost-effectiveness, technical or 

operational feasibility, and equity (amongst many others). All of these factors would further 

shape and constrain the feasibility of different control strategies in different settings. Indeed, 

whilst the results of this thesis highlight the likely wide variation in public health impact that can 

be achieved with different interventions and how this varies according to the setting, whether or 

not that intervention is viable will intimately depend on its cost, and how much impact is achieved 

given a certain amount of expenditure. Considerations of cost-effectiveness are therefore a vital 

input to considerations around the viability and practicality of different malaria control strategies; 

a crucial component that is absent from the analyses presented here. Previous work has utilised 

this same mathematical modelling framework to explore the cost-effectiveness of different 

malaria intervention packages (Walker et al., 2016), demonstrating the cost-benefits of carefully 

tailoring malaria intervention to the ecological context in which malaria transmission is situated 

and how cost-effectiveness of the same intervention can vary widely depending on the setting. 

Given the important insight into allocative decisions that incorporating the cost of malaria 

interventions can provide (Conteh et al., 2021), future work explicitly incorporating 

considerations of cost-effectiveness are likely to prove instructive. 

Conclusions  

Though the years since 2000 saw significant reductions globally in the burden of morbidity and 

mortality attributable to malaria, more recent progress has been limited. Progress stalled and 

malaria incidence remained constant in 2016 and 2017, before increasing in 2020 and 2021 

following the advent of the COVID-19 pandemic. Reversing this trajectory and achieving the 

goals laid out in the World Health Organization’s Global Technical Strategy for Malaria 2016-

2030 (World Health Organization, 2015) will be contingent on maximising the impact of limited 

resources aimed at control of the disease. In turn, maximising impact will require both focussing 

of efforts on the settings where burden is currently greatest (e.g. the WHO’s “High Burden to 

High Impact” strategy (World Health Organization, 2018b) and efficient tailoring of interventions 

to match the specific eco-epidemiological context of each setting. In this thesis, I have attempted 

to in-part address this latter need. Malaria’s transmission dynamics and epidemiology is marked 

by extensive diversity and heterogeneity across settings – heterogeneity that materially 

influences the impact of control interventions. Across the work presented in this thesis, I have 

explored both entomological and epidemiological factors that give rise to this diversity, 

quantified their influence on malaria transmission dynamics, and began to develop a framework 

to assess the material consequences they have for the efficacy of the different malaria control 
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tools currently available. In doing so, my work has underscored the crucial importance of 

considering the setting-specific ecological and epidemiological context of malaria transmission 

when designing control strategies, and the need for appropriate targeting of efforts if impact is 

to be maximised.  
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